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Extrachromosomal DNAs (ecDNAs) are circular DNA molecules prevalent in

human cancers that drive tumor evolution and drug resistance. Their circular
topology, which disrupts topological domains and rewires regulatory circuits,
has typically been studied via pairwise interactions. Here we develop ec3D, a
computational method for reconstructing three-dimensional ecDNA struc-
tures from Hi-C data. Given a candidate ecDNA sequence and whole-genome
Hi-C data, ec3D reconstructs spatial structures by maximizing the Poisson
likelihood of observed interactions. We validate ec3D using simulated struc-
tures, previously characterized cancer cell lines, and microscopy imaging. Our

reconstructions reveal that ecDNAs occupy spherical configurations and
mediate unique long-range regulatory interactions involved in gene regula-
tion. Through algorithmic innovations, ec3D can resolve complex structures
with duplicated segments, identify multi-way interactions, and identify
potential intermolecular (trans) interactions. Our findings provide insights
into how ecDNA'’s spatial organization bypasses normal chromosomal con-
straints and contributes to increased oncogene expression.

Somatic copy number amplification of oncogenes is a major driver of
cancer pathogenicity'™. Recent studies*® have revealed that onco-
genes are often amplified by extrachromosomal DNA (ecDNA). EcD-
NAs are highly prevalent, occurring in approximately 15% of early-stage
and 30% of late-stage cancers’, but are rarely seen in normal cells®. The
presence of ecDNA in tumors is associated with increased pathogeni-
city and poor outcomes for patients®. While this can partially be
attributed to increased oncogene expression associated with copy
number amplification on ecDNA, recent results point to other con-
tributing factors. ECDNAs have highly accessible chromatin, and their
constituent genes are highly expressed, even after accounting for
higher copy numbers®®.

In normal chromosomes, Topologically Associating Domains
(TADs), often bounded by CTCF binding sites, demarcate the reg-
ulatory elements that are accessible to a gene®’. In many cancers, the
integrity of TADs can be altered. EcDNA formation, which often
involves the joining of distal genomic segments, changes chromatin
conformation and disrupts existing topological domains, allowing for
enhancer hijacking and rewiring of regulatory circuitry" . ECDNAs
often cluster into hubs promoting trans regulatory interactions
between different ecDNA molecules™. ECDNAs with no protein-coding
genes have been identified, suggesting an exclusively regulatory role in
promoting oncogenesis®. Finally, ecDNAs are also suggested to act as
roving enhancers for chromosomal genes'.
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Despite the large (10°-10% bp)>" size of ecDNA, their genomic
compositions, including genes and regulatory elements, can be reli-
ably identified using short and long read whole genome
sequencing'® . However, a deeper understanding of the regulatory
machinery depends not only on the genomic architecture but also on
the 3-dimensional conformation of the circular structure. The spatial
organization and the three-dimensional structure of ecDNA have, to
our knowledge, not been investigated previously.

High-throughput chromosome conformation capture technique
(Hi-C) is a dominant technology for characterizing the 3D genome
organization**, identifying TADs, and understanding long-range
chromatin interactions®. The technique quantifies the interaction fre-
quency between each pair of genomic loci, presented in the form of a
2-dimensional matrix. High frequency correlates with spatial proxi-
mity, which can be attributed to (a) genomic proximity, (b) structural
variation that brings distal loci together, and (c) topological constric-
tions in DNA structure. Computational methods have been developed
to identify significant pairwise interactions suggesting spatial proxi-
mity of pairs that are distant in the reference chromosomes®?. While
they provide important structural and topological information, Hi-C is
a 2-dimensional projection of the 3-dimensional structure, and some
important structural features are not immediately discernible. There-
fore, these methods do not typically identify multi-way interactions or
interactions induced by structural variation, with few exceptions (such
as NeoLoopFinder®®). Smaller changes in 3-dimensional configuration
are not immediately apparent in the Hi-C projection. Finally, none of
the existing methods accounts for the circular topology of ecDNA.

Many recent methods have been developed to infer the
3-dimensional structure directly from Hi-C data with increasing reso-
lution, and they have been applied to large genomic segments
including human chromosomes®~¢. However, cancer genomes and
ecDNAs in particular present unique challenges for these methods.
Most ecDNAs involve complex structural variations, joining together
genomic segments from different chromosomes. They may also con-
tain multiple copies of large genomic segments, showing aggregated

signals of interactions in the Hi-C matrix, which must be implicitly or
explicitly de-duplicated.

In this work, we present ec3D, which reconstructs the three-
dimensional structure of ecDNA using deep Hi-C data and identifies
topological constrictions and clusters of statistically significant chro-
matin interactions, including multi-way and crossing (non-planar)
interactions. We use ec3D to reconstruct the 3-dimensional structures
of ecDNAs in multiple cancer cell lines and use the structures to better
characterize the unique regulatory biology of ecDNA. The 3D struc-
tures allow for improved detection of CTCF binding, A/B compart-
mentalization, and enhancer-promoter interactions. They also point to
putative sites of ecDNA-protein, ecDNA-ecDNA interactions, and
ecDNA-chromosome tethering, thereby providing valuable avenues
for exploring ecDNA biology.

Results

Overview of ec3D

Ec3D uses two types of data: (i) a local assembly of ecDNA sequence
and (ii) a whole-genome Hi-C contact matrix, both aligned to the same
reference genome (see Methods for how these data can be obtained).
The input ecDNA sequence is represented by ordered and oriented
genomic segments in Browser Extensible Data (BED) format, possibly
with segments occurring multiple times. The Hi-C matrix describes the
interaction frequencies for pairs of bins, each representing a genomic
region of pre-specified resolution (default 5kb), in either hic or cool
format.

With these inputs, ec3D first extracts Hi-C submatrices corre-
sponding to segment pairs, where both segments are chosen from the
ecDNA sequence. Ec3D reassembles these submatrices into a single
matrix C of dimension N.xN_ bin pairs, representing chromatin
interactions within ecDNA intervals (Fig. 1). Next, ec3D reconstructs
the 3D structure of the input ecDNA by maximizing the joint Poisson
likelihood™*?, which models interaction frequencies C; as indepen-
dent Poisson random variables with mean A= ﬁd,j, a decreasing func-
tion of the Euclidean distance d;; between bin i and bin j, with a scaling
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structure of duplicated regions within ecDNA. Finally, it computes and reports
significant interactions between pairs of bins.
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parameter $>0 and a power law decay parameter a <0 (see Methods
for details).

A key feature of ec3D is reconstructing ecDNAs containing
duplicated segments. In such cases, some entries in the Hi-C matrix
have interaction data from multiple bins (duplicated intervals) in the
reconstruction, and this matrix is named a collapsed matrix. Ec3D
automatically reconstructs a structure with N, 3-dimensional coordi-
nates, one for each (potentially duplicated) fixed-resolution bin. If
duplicated bins exist, N, exceeds the dimension N, of the input Hi-C
matrix. The observed interaction frequencies are modeled as the sum
of Poisson random variables from all copies, enabling duplicated
segments positioned in 3D space. Otherwise, N, =N, and the Poisson
model directly applies.

After determining the 3D structure of ecDNA, ec3D constructs an
expanded Hi-C matrix E of dimensions N, x N, by redistributing the
interactions to individual copies of bin pairs, proportional to their
spatial distance in the reconstructed structure (see Methods). Next,
Ec3D identifies significant interactions within this expanded matrix
(Fig. 1). These significant interactions are subsequently clustered using
the Louvain method”. Ec3D outputs the expanded Hi-C matrix corre-
sponding to the ecDNA sequence, the reconstructed 3D structure
coordinates as a text file (Fig. 1), and an interactive structure visuali-
zation showing associated genes and clusters of significant
interactions.

Ec3D reconstructs structures accurately on simulated data
Given a ground truth structure and the corresponding expanded or
collapsed Hi-C matrix, ec3D can reconstruct a 3D structure with the Hi-
C matrix, and its performance can be measured by comparing the
ground truth and reconstructed structures. We developed an exten-
sive suite of simulated ecDNA structures and Hi-C matrices to bench-
mark ec3D’s performance. Very briefly, we simulated base structures
with k (k € {1,2,3}) topological constrictions (TCs). (See Methods and
Supplementary Methods for details.) Each TC corresponds to a pair of
genomic regions that are genomically distant but spatially close. We
also added multiple random local folds to the base structures (Sup-
plementary Fig. 1). Structures, which share the same topological con-
strictions but differ in local folds, are referred to as having the same
base structure. Each simulated structure is described as an N,x3
matrix (Fig. 2a), corresponding to the 3D coordinates of N, bins. We
simulated 30 random structures for each value of k (the number of
TCs), resulting in a total of 90 simulated 3D structures.

For each simulated structure, we generated 10 simulated Hi-C
matrices (Fig. 2b) by sampling interaction frequencies from the Pois-
son distribution described above, with random combinations of a
[-3, — 0.75]and § € [1,10], which cover a typical range we observed in
real data. This gives 900 simulated Hi-C in total. The first 450 N, x N,
matrices £ are expanded matrices with duplicated bins kept separate.
The other 450 N, x N. matrices C are collapsed matrices after merging
duplicated bins. To simulate Hi-C with duplicated bins, we randomly
selected two regions, each with [ bins, as duplicated regions. We then
generated the collapsed Hi-C matrix C by summing the interactions for
the duplicated regions from the original expanded matrix E. Thus, if
the original sample with N, bins had [ bins duplicated, the dimen-
sionality of the collapsed matrix C became N.xN,, where N.= (N, — [).
Note that the 3D structures were not changed when collapsed matrices
were generated from expanded matrices. In a simulated 3D structure,
topological constrictions and local folds contribute to global and
proximalinteractions in £, which mimic the Hi-C matrix of a real ecDNA
sample.

To evaluate performance, we measured the root mean square
deviation (RMSD) and the Pearson correlation coefficient (PCC)
between the ground truth and the structures reconstructed from the
Hi-C matrix (Fig. 2a-c). The RMSD compares coordinates of two
structures and requires a rotation and translation step for optimal

alignment, whereas PCC is measured directly on pairwise distances
between pairs of bins (see Methods). The median RMSD values of the
450 reconstructions without duplication was 0.058, with an inter-
quartile range IQR =[0.032, 0.106], which was significantly lower than
RMSD values computed both by comparing two randomly selected
structures with the same base structure (median RMSD 0.338, IQR =
[0.268, 0.429], Wilcoxon rank-sum test, p-value =3.8e-122), and by
comparing two random structures with different base structures
(median RMSD 0.573, IQR =[0.525,0.638], Wilcoxon rank-sum test, p-
value =1.2e-147) (Fig. 2d; Supplementary Data 1, 2). This result sug-
gested that ec3D can reconstruct 3D structures with high accuracy and
even reconstruct smaller local folds accurately. Similar results were
seen with the PCC metric - the PCC values for the reconstruction were
significantly higher than those computed by comparing random
structures (Supplementary Fig. 2a; Supplementary Data 1, 2). Notably,
samples with k=2 and 3 topological constrictions had lower median
RMSD values and higher median PCC, compared to samples with k=1
(Supplementary Fig. 3). This improved performance was likely due to
stronger global interactions in samples with a higher number of con-
strictions, resulting in more constraints on possible structures.

We next evaluated the ability of ec3D to reconstruct structures
with duplicated bins. We ran ec3D on the 450 collapsed matrices and
obtained the median RMSD 0.102 (IQR =[0.054,0.201]), which again
was significantly better than two random structures with the same base
structure (Wilcoxon rank-sum test, p-value =5.5e-102) and with dif-
ferent base structures (Wilcoxon rank-sum test, p-value =2.0e-148)
(Fig. 2d; Supplementary Data 1, 2). Comparisons using the PCC metric
were highly correlated with RMSD (Supplementary Fig. 2a). Note that it
is not known in advance if the duplicated regions fold into a similar
local substructure. Therefore, in our simulations, we selected half of
the samples to have the same local substructure in the duplicated
regions, while the other half had different local substructures. The
RMSD and PCC values in the two cases were very similar (Supple-
mentary Fig. 4), indicating that ec3D has consistent performance
regardless of the similarity of local substructures in the duplicated
regions.

Because the raw RMSD and PCC values are data dependent and
difficult to interpret directly, we compared the PCC (respectively,
RMSD) value of ground truth versus a reconstructed structure against
the PCC (RMSD) values of the ground truth versus a random structure.
The vast majority (97.56%) of reconstructed structures had higher PCC
than random structures (Fig. 2e). Similarly, 95.72% of reconstructed
structures had lower RMSD than random structures (Supplemen-
tary Fig. 5).

Next, we tested the accuracy of ec3D estimates of the power law
decay parameter a by measuring the correlation between the true and
estimated values of a in the 900 reconstructions. The ground truth
and estimated values were highly correlated (Supplementary Fig. 6).
Defining the error as 137 |&; — a;l/a;, where a; is the ground-truth,
and a; the estimated value for sample i, the mean error values in
estimating a, for samples without and with duplication, were 2.32% and
3.68%, respectively. The results indicated that a could be estimated
accurately in most samples, regardless of duplication. The estimation
accuracy was higher when the true a values were large (~-1). To
investigate this further, we reanalyzed the RMSD values of all
900 simulated samples across the different ranges of a values. We
found that structure reconstruction accuracy was also better on sam-
ples with larger a values (Fig. 2f). Notably, a values of real data
obtained from human samples tend to be close to -1 (Supplementary
Data 3), further raising confidence in the accuracy of our reconstruc-
tions on real data.

Expectedly, the objective value (negative log-likelihood)
decreased smoothly with iterative optimization until convergence.
Broadly, the RMSD (respectively, PCC) metric also decreased
(respectively, increased), but the transition was much sharper so that a
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Fig. 2 | Performance of ec3D on simulated data. a A simulated 3D circular
structure (ground truth) with 250 bins. b A simulated Hi-C matrix generated from
the structure in (a). ¢ The reconstructed structure computed by running ec3D on
the Hi-C data in (b). d RMSD-metric simulation test results in 4 different groups: No
duplication - ground-truth versus reconstructed structures without duplication;
Duplication - ground-truth versus reconstructed structures with duplication; Same
base - random pairs of structures with the same base structure; Different base -
random pairs of structures with different base structures. Each group has 450 pairs
of samples. P-values were calculated using a one-sided Wilcoxon rank-sum test for
two samples. Center lines indicate the median. Boxes represent the interquartile
range (IQR) from the 25th to the 75th percentile. Whiskers extend to the minimum
and maximum values within 1.5 times the IQR (the same below). e PCC values of
ground truth versus reconstructed structures (PCC-reconstructed) compared to
PCC values of ground truth versus random structures (PCC-random). A data point
at the bottom right of the dashed line indicates that the reconstructed structure is

more similar to the ground truth than a random structure. f Distribution of RMSD
values (ground truth versus reconstructed structures) over a values. Each range of
a value and number of topological constrictions includes 60 samples (30 with
duplication and 30 without duplication). g Violin plots showing the RMSD com-
parisons between ec3D and other methods that reconstruct DNA structure from Hi-
C. Box plots within each violin indicate the median, interquartile range (IQR) from
the 25th to the 75th percentile, and whiskers extending to the minimum and
maximum values within 1.5 times the IQR. P-values were calculated using a one-
sided Wilcoxon rank-sum test for two samples. h Imaged TR14 ecDNAs using
Sequential OligoSTORM. i The correlation of the pairwise bin distances obtained by
ec3D and by OligoSTORM imaging averaged across 10 ecDNA molecules. The dis-
tances were normalized to a range of 0.2 -1.0 by min-max normalization. The
P-value was calculated using a two-sided t-test. Source data are provided as a
Source Data file.
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relatively modest improvement in the beginning was followed by a
more dramatic shift later (Supplementary Fig. 7). Intriguingly, the
initial and final RMSD and PCC values of all runs (900 samples x 5
repeats) were positively correlated, with correlation scores 0.704 and
0.571, respectively (Supplementary Fig. 8), highlighting the impor-
tance of the initialization step in reaching optimal final structures.

In our model, ecDNA chromatin forms a continuous polymer
chain, where fixed resolution bins are represented as discrete points
along the chain. To ensure two adjacent bins have roughly equal spatial
distance in the 3D space, we included a regularization term (see
Methods and Supplementary Fig. 9). The impact of this additional
constraint on reconstruction was modest. The average absolute dif-
ference between the RMSD (and PCC) values with and without reg-
ularization was 0.0324 (and 0.0170) in the simulated data.

Ec3D compute time

All samples were run on a supercomputing node equipped with two
64-core AMD EPYC 7742 processors and 256 GB of DDR4 memory, with
at most 16 threads and 2 GB of memory allocated for each sample.
Because ec3D follows a stochastic optimization function, its running
time varies from sample to sample. Running time increased with the
number of bins (Supplementary Fig. 10a). Duplications took a longer
time to resolve (Supplementary Fig. 10b). Most (>=90%) samples
without duplication could be resolved within 12,000s, and most
samples with duplication could be resolved within 35,000 s.

Ec3D versus other reconstruction methods

We compared ec3D against three existing 3D genome reconstruction
methods, MiniMDS*, ShRec3D?*, and PASTIS*, with the caveat that the
other methods were not specifically developed for ecDNA and cannot
handle structural variations and duplications. MiniMDS and ShRec3D
utilize multidimensional scaling with fixed parameters, while PASTIS
models ajoint Poisson likelihood to simultaneously infer structure and
parameters and can be considered as the starting point of our work.
Using both metrics, ec3D significantly outperforms the other methods,
and the performance gap is wider in samples with duplicated bins
(Fig. 2g, Supplementary Fig. 2b).

Ec3D predicted structures correlate strongly with

imaged ecDNAs

High-resolution microscopy using fluorescent probes has also been
used to understand the 3-dimensional structure of DNA molecules®™ ™,
but has not been attempted previously for an entire ecDNA. Notably,
the process is not trivial because each cell contains an unknown
number of ecDNA molecules. To provide a baseline comparison, we
selected the TR14 cell line, which amplifies the oncogene MDM2 on
ecDNA. We acquired Hi-C data and reconstructed the 3D structure
using ec3D (see next section). Next, we designed custom probes cov-
ering the ecDNA region with 200-kb genomic resolution. The probes
were imaged using Sequential OligoSTORM*** (see Methods). The
centroids of fluorescent signals from each probe were used to identify
putative ecDNAs in a cell (Fig. 2h and Supplementary Fig. 11a-c).
Pairwise distances predicted by the OligoSTORM images strongly
correlated with the corresponding pairwise distances predicted by
ec3D (Pearson Correlation coefficient 0.84, Fig. 2i), providing a base-
line, orthogonal validation of ec3D structures.

Ec3D reveals circular structure of ecDNA linking distant
segments

We applied ec3D to high coverage Hi-C data acquired from 9 cancer-
derived cell lines (Supplementary Data 3). 7 of the 9 cell lines contained
ecDNA, while the other two, GBM39HSR and IMR-5/75, contained
intrachromosomal focal amplifications that displayed as Homo-
geneously Staining Regions (HSRs). We used previously published

reconstructions of the ecDNA and HSR sequences to obtain the
genomic regions of the amplicons (Methods; Supplementary Data 4).

Scatter plots comparing Hi-C interaction frequency and 3D dis-
tance showed a clear inverse relationship on a log-log scale, confirming
the expected negative power law decay relationship between fre-
quency and distance in 3D space suggested by the Poisson model
(Fig. 3a, Supplementary Fig. 12). The correlation was very strong, with
PCC ranging from -0.97 to -0.76. Notably, the correlation magnitude
increased with increasing Hi-C contact (Supplementary Fig. 12). The
results indicate a more consistent and precise prediction of spatial
distances as interaction frequencies increase. The observed horizontal
scatter of bins for low distances was due to the regularizer term, which
forced adjacent bins to have similar Euclidean distances even if their
interaction frequencies varied.

Previous estimates’*? of a range from a ~ -3 to a ~-1.5. The
optimal values of a on ecDNA structures were somewhat larger, esti-
mated as -1.05 + 0.27 (Supplementary Data 3). The significantly smaller
decay of interaction strength with increasing Euclidean distance sug-
gests that ecDNAs maintain their structures despite their large size and
volume.

All ecDNA reconstructions naturally converged to circular
3-dimensional structures in contrast with the structure of identical
regions in control cell lines. For example, for the GBM39 ecDNA, a
relatively simple structure was formed by a single front-to-back joining
of a chr7 segment that encompasses the oncogene EGFR (Fig. 3b). High
spatial proximity between the first and last bin was automatically dis-
covered by ec3D. For comparison, we reconstructed the structure of
the identical genomic region in GM12878, a cell line where EGFR is
located on the chromosome (Fig. 3c). The reconstruction on
GM12878 showed similarity in the smaller topological domains, but
importantly, no interactions between the first and last bins.

EcDNA structures are oblate spheroidal and occupy all three
dimensions

Scanning electron microscopy data on cultured cells in metaphase’ do
not reliably explain whether ecDNAs occupy a sphere-like or a disk-like
volume. To address this question, we first computed a minimum
volume bounding cuboid that captured the overall shape of the
reconstructed 3D structure (Fig. 3d). Had the 3D structure of ecDNA
been disk-like, we would expect the smallest dimension of the cuboid
to be much smaller than the largest dimension. However, the ratios
between the minimum and maximum edge lengths of the bounding
box of the ecDNA structures were generally high, ranging from 0.476
(GBM39) to 0.895 (H2170) (Supplementary Data 3). This suggested
that ecDNA structures were oblate spheroidal with a large third
dimension.

We next tested if the ecDNA could be embedded in a flatter
bounding box (i.e., with smaller edge length ratios) and still generate
the observed Hi-C interactions. Specifically, we reconstructed 3D
structures of the GBM39 ecDNA (amplifying EGFR) and RCMB56
ecDNA (amplifying DNTTIP2) by fixing the parameter § with optimal
estimated values (=4 for RCMB56 and p=16 for GBM39) and
repeatedly halving the maximum range in the first axis without
modifying the range [-1, 1] of the other two axes. By fixing the scaling
factor B, we ensured that the structure was not shrinking pro-
portionally in all axes in reconstruction. We hypothesized that for
disk-like structures, decreasing the range of one axis would not
impact the Poisson likelihood, as bins could still be placed on a plane
orthogonal to that axis, preserving the pairwise spatial distances;
however, for spherical structures, the Poisson likelihood would
become worse, due to additional constraints in the 3D space dis-
rupting expected spatial distances suggested by Hi-C interactions.
For GBM39, the likelihood indeed became worse as the smallest
dimension decreased from 0.25 to 0.12 (Fig. 3e, Wilcoxon rank-sum
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test, p-value <0.0045). For RCMBS56, the likelihood reduced sig-
nificantly as the smallest dimension decreased from 1 to 0.5 (Sup-
plementary Fig. 13, p-value <0.0045), strongly suggesting a
spheroidal conformation. Our results are consistent with ecDNA
requiring all 3 dimensions for optimal folding, providing additional
freedom for complex topological constrictions.

Ec3D reveals high structural similarities between HSR and
ecDNA in isogenic lines

The cell line GBM39HSR is isogenic to GBM39EC but with an intra-
chromosomal or HSR amplification of EGFR. Remarkably, the Hi-C
pairwise interactions of the amplified region were highly similar
(Correlation = 0.9859, Supplementary Fig. 14a-c). Previous findings
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have suggested that HSRs can be formed via reintegration of tandemly
duplicated copies of ecDNA into a chromosomal locus*, and this is
supported by the similarity of the breakpoints in the isogenic cell lines.

To rebuild the structure of GBM39HSR, we duplicated the first 3
bins (Methods) during preparation of the collapsed matrix and ran
ec3D using this genome with duplications. The 3D reconstructions of
GBM39EC and GBM39HSR were also remarkably similar (Fig. 3b, f,
Supplementary Fig. 14d), with RMSD 0.346 (PCC=0.937). By com-
parison, the RMSD between identical regions in GMI12878 and
GBM39EC was higher at 0.394 (PCC = 0.850). The similarity between
GBM39EC and GBM39HSR structures matched that of random struc-
tures with the same base structures (median RMSD = 0.338; Fig. 2d),
suggesting that the major topological constrictions were identical, but
ec3D captured fine structural differences between the ecDNA and HSR
structures in a way that the Hi-C image could not (Supplementary
Fig. 14d-f). For example, the spatial distance between chr7:54.865-
54.87Mb and chr7:55.08-55.1Mb nearly doubled from 0.16 in
GBMB39EC to 0.3 in GBM39HSR.

Despite these advances, the current Hi-C data do not provide
enough resolution to distinguish between different possible HSR sub-
structures. Distinct structures, such as the ‘spring’ and the ‘petal’
shapes (Supplementary Fig. 15), are possible in the tandem duplication
model, and resolving the fine HSR structure will likely require new
technologies.

A tandem duplication model for HSR had previously been sug-
gested for the MYCN amplification in the human neuroblastoma cell
line IMR-5/75". In the proposed architecture of this amplicon, a neo-
TAD joined two genomically remote segments connecting the ANTXRI
locus (chr2:68.9-69.2 Mb) and LRATDI (chr2:14.5-15.1Mb) locus, con-
sistent with a tandem joining of the last and first segments. Notably,
the structure revealed by Helmsauer et al.”” to have two TADs was
based on a collapsed matrix containing duplicated copies of
chr2:14.63-15.1 Mb (Supplementary Fig. 16a). Ec3d automatically gen-
erated an expanded matrix that resolved the duplicated region. It
found that the two TADs were maintained, and that the duplicated
copies of chr2:14.63-15.1 Mb were part of a single TAD, with smaller
substructures (Supplementary Fig. 16b). We next asked if these
duplicated regions folded into similar substructures.

Duplicated regions on ecDNA can have similar structures

One key feature of ec3D is the reconstruction of ecDNA structures with
duplicated segments. Two ecDNA-positive cell lines, D458 and H2170,
and one HSR line, IMR-5/75, contained duplicated segments with sizes
ranging from 4 bins (20kb) to 163 bins (815kb) (Supplementary
Data 5). Each segment was duplicated at most two times on the two
ecDNAs, including two inverted duplications in D458. We compared
the significance of similarity of the local 3-dimensional structure of the
duplicated regions using a permutation test (Methods). Of the 8 pairs
of duplicated regions (6 of size at least 50 kb), 2 pairs in D458 and 1 pair
in H2170 had significantly similar structures (Supplementary Data 5),
including for example, duplicated bins [18, 96] and [364, 442] on
H2170 (Fig. 3g, permutation test p-value < 0.016). The other 4 dupli-
cate pairs did not have significantly similar structures, including the
duplicated pair on the IMR-5/75 HSR.

We next compared identical genomic regions
chr2:15.585-15.985 Mb amplified in two different cell lines. The region
is amplified on ecDNA in the cell line CHP-212, and on an HSR in IMR-5/
75 (Fig. 3h). The RMSD value of 0.237 was highly significant (permu-
tation test p-value < 0.0072), confirming that identical genomic
sequences folded into very similar local structures despite the very
different context. Together, the results suggest that the underlying
DNA sequence only provides partial information for reconstructing the
structure. Interactions with other factors and nuclear bodies play arole
in determining structure.

Ec3D clarifies the neo-TAD structures, A/B compartmentaliza-
tion, and oncogene dysregulation in ecDNA

Recent results on Neuroblastoma cell lines revealed a class of MYCN
amplicons that lacked key local enhancers of MYCN, but hijacked distal
fragments containing previously discovered super-enhancers known
to mediate Neuroblastoma progression®. Hi-C data from the cell line
CHP-212 revealed the formation of a neo-TAD that connects MYCN to
distal super-enhancers. We compared the TAD boundaries identified
using scaled ec3D distances (Fig. 4a, lower triangle) against those
identified using Hi-C (Fig. 4a, upper triangle). As TAD structures are
often supported by CTCF binding sites®***, we measured the proximity
of TAD boundaries to CTCF binding. Remarkably, the ec3D predicted
TAD boundaries explained 53.85% of the top CTCF peaks (Methods
and Supplementary Data 7, p-value =4.5e-10) in comparison to the
26.92% explained using Hi-C (Supplementary Data 8, p-
value = 0.0029).

We next compared the A/B compartments of the CHP-212 ecDNA
that were generated using either the original Hi-C or the spatial dis-
tances from the 3D structure (Methods). Compared to Hi-C, ec3D
generated a correlation matrix with more intense signals. Further,
ec3D identified similar but finer A/B compartment structures on CHP-
212 ecDNA (Fig. 4b, Supplementary Fig. 17). We also investigated the A/
B compartments of the identical genomic regions on a control cell line,
GM12878. In direct contrast with GM12878, three distinct regions
spanning chr2:15.58-16.07 Mb, chr2:12.46-12.62Mb, and chr2:12.62-
12.75 Mb were in the same compartment on the CHP-212 ecDNA. We
next explored the 3D structure of this compartment as predicted by
ec3D (Fig. 4¢) and the activity of its constituent genes.

Single-cell RNA-seq data of CHP-212 had previously revealed that
out of the 6 genes present on ecDNA, 4 were overexpressed (LPINI,
TRIB2, DDX1, and MYCN), but the expression of two genes GREBI,
NTSR2 remained at basal level (p-value =1.0e-11), with median expres-
sion at least 5X lower than the minimum median expression of the
overexpressed genes (Fig. 4d)*. The ec3D structure clarifies this
observation by revealing multiple topological domains on the A
compartment described above. One domain contained LPINI, TRIB2,
DDX1, and the other contained MYCN along with a super-enhancer,
and this active compartment excluded the two basally expressed
genes. Intriguingly, LPINI was split in the ecDNA. The 5’ half of LPINI
was over-expressed along with TR/IB2 and DDX1, while LPINI 3’ half
was excluded and not expressed (Supplementary Fig. 18a). Moreover,
the structural variation that split LPINI, brought the LPIN1 5’ end in
proximity to the 3’ end of MIR3681HG, resulting in expression of a
fused transcript (Supplementary Fig. 18b), and also a readthrough
event resulting in expression of intronic DNA downstream of the
genomic breakpoint (Supplementary Fig. 18c). Finally, the circular-
ization removed the region immediately upstream of GREBI, con-
sistent with its reduced expression. Thus, ecDNA can alter the
regulation of genes through a combination of structural variation
and 3D conformational change.

We also investigated a TAD on the Medulloblastoma cell line
D458, which is a 2.5 Mb molecule amplifying the oncogenes MYC (chr8)
and OTX2 (chr14) on an ecDNA. Earlier results had suggested that a
DNase-hypersensitive region (DHS1**) containing a putative enhancer
located 80 kb from the OTX2 gene on chrl4 was essential for pro-
liferation of the cell line”, and it was speculated that DHSI might be
hijacked by MYC to drive proliferation. However, DHS1 was found not
to influence MYC activity on D458"; instead, it enhanced OTX2
expression in other Medulloblastoma cell lines**. Ec3D analysis sug-
gests a neo-TAD that includes DHSI1, OTX2, and the IncRNA OTX2-AS1,
but not MYC, providing more clarity for the observed experimental
data (Supplementary Fig. 19). We also noted that an inversion of the
OTX2 region brought OTX2-ASI closer to the enhancer on the ecDNA,
in contrast to their positioning on the reference genome.
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and a super-enhancer from a distal segment on chr2. The dashed line distinguishes
aregion with overexpressed genes (bottom right) from the other region with base-
level gene expression (top left). Predicted TAD boundaries proximal to CTCF
binding sites are shown. d Single cell expression level of genes (left) and IncRNAs
(right) amplified on CHP-212 ecDNA, from 96 cells. P-value was calculated using a
one-sided Wilcoxon rank-sum test for two samples. Box plots (gray) within each
violin indicate the median, interquartile range (IQR) from the 25th to the 75th
percentile, and whiskers extending to the minimum and maximum values within 1.5
times the IQR. Source data are provided as a Source Data file.

The ensemble and consensus ecDNA structures change with
biological context

Methods for DNA structure reconstruction generate either a
consensus®*>* or an ensemble of structures*****’, with both meth-
odologies being useful for different applications*. While ec3D was
primarily designed to generate a consensus structure, it can be run
with multiple random initializations to obtain an ensemble of struc-
tures, which is akin to sampling from a collection of locally optimal
structures. To investigate this feature of ec3D, we acquired Hi-C data
for the ecDNA-containing MSTO211H cell line in two specific condi-
tions: 2 replicates in G1 phase, and 2 replicates in M phase. For each of
these 4 datasets, we generated an ensemble of 5 structures for a total
of 20 ec3D-derived structures. The structures revealed some inter-
esting insights. First, the pairwise correlation, measured using PCC,
between ensemble structures from any single biological replicate was
high (Supplementary Fig. 20). Correspondingly, the pairwise correla-
tion between ensemble structures from two different replicates from
the same cell-cycle phase was also high and matched the correlation of
ensemble structures within the same replicate in both G1 phase and M

phase. By contrast, the consensus (and ensemble) structures from G1
phase and M phase were very different (Fig. 5a). The results suggest
that the consensus structures are a good representation of the
ensemble. Additionally, ecDNA structures are governed by external
influences such as different ecDNA-protein interactions and ecDNA-
chromosome tethering. Ec3D-derived consensus structures can reli-
ably reveal those differences.

Ec3D reconstructions enable identification and clustering of
significant Hi-C interactions

We used ec3D to identify the mechanisms of significant interactions
(SIs) between pairs of bins in an expanded matrix. We used 3 meth-
odologies (Methods, Supplementary Data 6), each capturing a subset
of the possible interactions. Briefly, ref-SI captured Sls relative to
expectation on the reference genomes. It was the most general
method for capturing significant interactions. The next method, circ-
SI, captured SlIs after conditioning on the ecDNA sequence, thereby
removing interactions due to the joining of distal segments (structural
variations) leading to ecDNA formation. The third measure, spatial-SI,
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an active enhancer at SELENOF locus to remote oncogenes (DNTTIP2 and ABCD3).
c Differential interactions in D458 connecting MYC and a remote enhancer on chr14.
Source data are provided as a Source Data file.

captured interactions that could be directly attributed to higher spatial
proximity in the ec3D reconstruction, relative to their genomic dis-
tance on the ecDNA. Thus, circ-SI and spatial-SI captured decreasing
subsets of the interactions predicted by ref-SI.

The number of ref-SI interactions in the ecDNA of GBM39 and
RCMB56 was significantly larger relative to the identical region in
controls GM12878 and IMR90, and the difference was most pro-
nounced at larger genomic distances due to circularization (two-
sample Kolmogorov-Smirnov test p-values: GBM39-GM12878 = 0.024,
GBM39-IMR90 =0.00016, RCMB56-GM12878=1.2e-36, RCMBS56-
IMR90 =1.1e-71; Supplementary Fig. 21). The results did not change
even after rescaling the control matrices to correct for the higher copy
number of ecDNA (Methods). Furthermore, the proportion of
distance-dependent significant interactions remained consistent
despite variation in the total number of interactions.

Ec3D predicts interactions that corroborate heterogeneity of
ecDNA sequence

Sequence heterogeneity exists when different copies of ecDNA do not
have identical sequences. It is observed when the dominant cycle
identified by sequence reconstruction tools, such as

AmpliconArchitect (AA) or CoRAL, does not explain all of the copy
number change®. This information is known to ec3D, which uses the
dominant cycle to generate a 3D structure and identifies significant
interactions. All ecDNA-positive cell lines except TR14 carried a single
dominating ecDNA species. A CoRAL reconstruction of a TR14 ecDNA
carrying MYCN suggested 3 overlapping cycles with estimated copy
numbers 279 (explaining 65.7% of the amplification), 86 (20.2%), and
30 (Supplementary Fig. 22a). We analyzed ec3D predictions of these
ecDNA cycles to investigate sequence heterogeneity. Ec3D-derived
structure using Cycle 1 (Supplementary Fig. 22b) revealed many sig-
nificant interactions. Some were mediated by 3D topological con-
strictions (Supplementary Fig. 22b, ¢). In contrast, the interactions
marked SV1-3 were not supported by the ec3D conformation. How-
ever, they were proximal to breakpoints created by Cycle 2, thereby
independently corroborating its existence. Cycle 3 has a much lower
copy number that explains only 5.8% of the amplicon, causing the
reduced strength of the SV4 interaction.

Ec3D reconstruction captures “crossing” interactions
We next investigated if ecDNA could have significant interactions with
a non-planar topology, unlike interactions on TADs that are
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represented as diagonal blocks consistent with a planar topology. One
discernible feature of a complex or non-planar 3D fold is the presence
of crossing significant interactions, which can be described by 4
remote loci, or two interacting pairs (x,z) and (y,w), such that
X <y<z<uw, corresponding to two topological constrictions (Supple-
mentary Fig. 23a). While the smaller ecDNA structures (e.g., GBM39,
Fig. 3b) encompassed only a single topological constriction, other,
larger ecDNAs contained multiple topological constrictions with
crossing interactions (Supplementary Data 3). For example, we iden-
tified 15 crossing interactions from the D458 ecDNAY. Among these
interactions, one between 500 kb distal sites on the MYC-PVTI locus
crossed another interaction that connected the region upstream of
TMEM260 in chromosome 14 with a region upstream of CASC8 on
chromosome 8 (Supplementary Fig. 23b). The results suggest that
ecDNA can promote novel interactions utilizing not only structural
variation but also complex topological constrictions.

Ec3D reconstructions identify multi-way interactions

We used Louvain clustering (Methods) to obtain clusters of ref-SI
interactions for each of the cell lines, suggestive of complex regulatory
networks. In D458, we identified 6 ref-SI clusters (Supplementary
Data 9). One of these was a clique-like interaction among multiple loci
on chr8 and chrl4: chr8:127.95-128.02 Mb, the PVT1 locus; chr8:128.44-
128.58 Mb; chr8:128.70-128.74 Mb; and chr14:56.80-56.88 Mb, the
OTX2locus (Supplementary Fig. 24a). A second cluster (cluster 4) from
the same cell line showed a star-like connectivity where a central
region containing MYC, PVTI interacted with multiple distal loci situ-
ated -430kb 5 upstream, and ~-800 kb, -1.01Mb, and ~1.06 Mb 3’
downstream of the MYC/PVTI region (Supplementary Fig. 24b). The
regions upstream and downstream of MYC/PVT1 are devoid of coding
genes but contain ncRNA including CASC8 and CASC21. These findings
support earlier studies that show the co-amplification and ecDNA
formation of these two distinct regions in multiple acute myeloid
leukemia samples®, It is also notable that the ncRNA PVTI appears
(partially) with 4 copies in the ecDNA with SV driven proximity to
OTX2, TMEM260 (natively on chrl4), and CASC8, MYC (chr8) consistent
with its role in mediating gene fusions®.

Ec3D reveals differential Hi-C interactions

As described earlier, we used circ-SI to identify significant interactions
that cannot be attributed to structural variations. We next used spatial-
SI to identify significant interactions that were specifically due to
spatial proximity. Indeed, in the simpler structures such as GBM39,
interactions in circ-SI were also identified using spatial-SI (Supple-
mentary Fig. 25). Surprisingly, in the ecDNA of RCMB56 (Supplemen-
tary Fig. 26) and D458 (Supplementary Fig. 27), we observed many
differential interactions - interactions in circ-Sl that were not identified
by spatial-SI. These interactions could not be attributed either to
sequence proximity created by structural variation in ecDNA or to
spatial proximity corresponding to topological constrictions. We also
did not find evidence of other structural variations that could indicate
heterogeneity of ecDNA in the sample.

Many mechanistic reasons could explain these differential inter-
actions. They could, for example, occur due to heterogeneity of ecDNA
structure. Another intriguing hypothesis is that these differential
interactions are trans interactions, where regulatory elements in one
ecDNA are utilized by a different ecDNA in the same hub, as has been
suggested previously**°.

We explored the occurrence of known regulatory sites in regions
with differential interactions. In RCMB56, the region from chr1:86.905-
86.935Mb interacted with multiple distal regions, including
chrl:93.845-93.885Mb, containing the oncogene DNTTIP2, and
chr1:94.410-94.430 Mb, containing ABCD3 (Fig. 5b). An H3K27Ac peak,
reflective of an active enhancer, was prominent at chrl:86.915 Mb in
multiple tissue types™ (Supplementary Fig. 26). Similarly, we observed

a multi-chromosomal trans interaction between chr8:127.73-
chr8:127.745 Mb and chr14:56.645-56.675 Mb in D458 (Fig. 5¢), where
the chr8 region contained the oncogene MYC, and the chrl4 region
contained an active enhancer mark (Supplementary Fig. 27).

Discussion

EcDNAs are circular acentric molecules that are exclusively and ubi-
quitously found in cancer cells, where they are responsible for onco-
gene amplification and increased pathogenicity. Their unusual shape
and highly accessible chromatin allow for enhancer hijacking and
regulatory rewiring. Here, we add another layer of understanding of
ecDNA by presenting an algorithm to reconstruct its 3-dimensional
structure using chromatin capture data.

While these are large molecules and not expected to have a rigid
structure, our results on extensive simulation experiments and on real
data suggest that most proximities are accurately captured by ec3D.
Larger a values imply relatively stronger interactions even between
spatially distant regions, adding more information for our structure
reconstruction. Because ecDNAs are formed by joining multiple dis-
tinct genomic segments and are circular, Hi-C interaction is exactly
strong between a pair of bins when they are brought proximal either
because of the structural variation or because of a topological con-
striction. In all experiments, ec3D reconstructions consistently showed
strong inverse correlations between the spatial distance of bin pairs
and the strength of their Hi-C interactions.

Compared with Multidimensional Scaling (MDS) based
methods®*****, which attempt to minimize a stress function that
measures a discrepancy between the “wish distances” and the 3D dis-
tances of the structure, the Poisson model*” allows more flexible
handling of duplicated segments, as one either has to compute wish
distances between each copy of a duplicated bin and other bins by
splitting the interactions; or introduce a stress function to measure the
discrepancy between the expected and observed interactions in
duplicated regions.

The challenge of 3D reconstruction of DNA structures can
potentially be addressed by other complementary methodologies.
Multiplexed imaging of hundreds of genomic loci by sequential
hybridization has the potential to elucidate 3-dimensional structures
of entire chromosomes at single-cell levels, albeit typically with a tra-
deoff between throughput and genomic resolution®**%**, We therefore
focused on chromatin capture data due to finer genomic resolution
and ease of data acquisition, although the data was acquired from bulk
and not from single cells. We also acquired super-resolution imaging
data at 200-kb genomic resolution to compare against ec3D struc-
tures. The results, averaged over 10 ecDNAs, revealed a strong corre-
lation in the pairwise distances predicted by imaging and ec3D. In
future experiments, we plan to further utilize multiplexed imaging
with finer genomic resolution®*™°, to better understand ecDNA struc-
ture at the single-cell level.

Ec3D requires an assembled ecDNA sequence to work with. We
designed it to directly utilize the outputs of AmpliconArchitect or
CoRAL, which use whole-genome sequencing to automatically identify
ecDNA and reconstruct plausible sequences. Thus, ec3D cannot be
used without accompanying whole-genome sequencing. Although Hi-
C technology has been used to detect structural variation and 3D
conformation, reliable ecDNA discovery currently requires WGS data.
In future development, we will focus on methods that detect ecDNA
and resolve its sequence and structure using Hi-C data.

When counterpart WGS is available, tools like AmpliconArchitect
and CoRAL often identify one dominant cycle that explains most of the
observed copy number and structural variation. In this case, the pre-
dicted sequence (generated by traversing the cycle) is likely to be
correct, and ec3D would work directly. In many of our analyzed sam-
ples, sequence heterogeneity was indeed low, and a single sequence
explained the entire copy number. In other cases, multiple ecDNA
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species with varying sequences may exist. In these cases, ec3D pro-
vides the structure of a plausible ecDNA using the dominant cycle but
may also reveal evidence of sequence heterogeneity. In TR14, ec3D
revealed sequence heterogeneity by identifying significant interac-
tions near structural variants that were not part of the dominant cycle.
Moreover, the strength of the interactions correlated with the copy
numbers of the alternative ecDNA sequences. Ec3D can also provide
information about the quality of ecDNA reconstruction by analyzing
correlations between the ec3D-predicted pairwise distances and the
Hi-C-generated interaction frequencies. Recently, Zhao et al>® have
utilized ec3D to support the existence of two different ecDNA species
in a Glioblastoma tumor sample. In future work, we also plan to
develop an integrated tool for identifying the ecDNA sequence using
both WGS and Hi-C data. When multiple distinct ecDNA species exist,
novel methods will be required to deconvolute the Hi-C data to pro-
vide a consensus structure for each species.

The individual ecDNA molecules with the same sequence may
additionally have slightly different structures. In the presence of this
structural heterogeneity, we focused on providing one representative
(i.e., consensus) structure. We observed a strong negative correlation
between the number of Hi-C interactions in a pair of bins and their
predicted spatial distance, across all molecules tested, providing
confidence in the predicted consensus structure. The consensus
structure can be used to generate hypotheses, design experiments,
and integration with other data types (e.g., ChlP-seq). Furthermore,
consensus structures have proven useful in revealing the components
of regulatory machinery in a region, including topologically associat-
ing domains (TADs) and chromatin loops®. While consensus methods
are commonly used in 3D reconstruction, there are also ensemble
methods for reconstruction, and ensemble structures provide com-
plementary information. We briefly investigated ensembles by gen-
erating multiple locally optimal structures for the MSTO211H cell line.
The results revealed that ensemble structures within the same biolo-
gical condition (G1 or M) were highly similar to one another. In con-
trast, structures derived from G1 differed substantially from those in M
phase. Thus, consensus structures provide a reliable representation of
ensembles while also capturing relevant differences in different cell
cycle phases. Additionally, ecDNA structures are governed by external
influences such as different ecDNA-protein interactions and ecDNA-
chromosome tethering. Future work will focus on the mechanistic
underpinnings of these structural changes.

Because ecDNAs are large molecules with the flexibility of DNA
conformations, we hypothesized that their three-dimensional struc-
ture was not entirely intrinsic but was impacted by interactions with
proteins, including those involved in gene regulation. It had been
shown previously that ecDNAs generate new topologically associated
domains and rewire the regulatory circuitry with previously inacces-
sible enhancer regions hijacked by oncogenes. To test this phenom-
enon more, we first looked at the volume occupied by ecDNA. Our
results suggest that ecDNAs fully occupy a 3-dimensional volume,
making their shape less disk-like and more oblate spheroidal. The
3-dimensional shape allows for more complex patterns of interaction
and possibly rewires the regulatory circuitry in ways that could be
quite different from the chromosome. Indeed, our analysis of sig-
nificant interactions revealed many interesting cases; we found
“crossing” interactions which would not be possible in a planar struc-
ture; examples of clique-like and star-like interactions implying
proximity of multiple regions (multiple enhancer elements regulating
a gene); and also possible evidence of trans interactions between dif-
ferent ecDNA molecules. These early findings provide hypotheses that
can be tested in future work, for example, through changes in differ-
ential interactions upon dissociation of ecDNA hubs.

We used ec3D to investigate the structure of amplified regions on
isogenic lines which were mostly identical except for the location of
focally amplified regions, which are either extrachromosomal or

intrachromosomal. Remarkably, the amplicon had very similar struc-
tures, suggestive of similar regulatory patterns. Indeed, in addition to
neo-TADs, chromosomal TADs have also been observed on ecDNA.
These reconstruction data also shed light on the possible
3-dimensional structure of HSRs. As the resolution of Hi-C data
improves, we can use our methods to better distinguish between dif-
ferent HSR configurations.

The ec3D algorithm can work even when the ecDNA contains
duplicated segments whose interactions are all collapsed in the input
Hi-C data. We investigated the fine structure of duplicated regions and
found that while some duplicated regions have very similar structures,
others do not, consistent with the idea that the 3D structure of ecDNA
is not intrinsic to its sequence but is mediated by interacting proteins.
We even found a significantly similar structure of the same region
amplified in two different cell lines, suggesting common patterns of
regulatory wiring across different samples.

There are many future avenues for improving methodology.
Clearly, the technology requires a complete and correct ecDNA pri-
mary sequence. This is often challenging with short-read-based
reconstruction, which could be ambiguous and miss many critical
breakpoints. Here, we selected ecDNA sequences that were tractable
and showed minimal cell-to-cell heterogeneity. This method should
not be deployed straight out of the box into unvalidated sequences.
Patient samples, where there is often greater heterogeneity than in
cancer cell lines, should be analyzed carefully for interactions that
correspond to structural variation from heterogeneous species. The
genomic analysis of complex and heterogeneous ecDNAs will improve
with long-read technologies®, making it easier to utilize ec3D.

Recent methods for single-cell Hi-C***” will allow for measure-
ments of cell-to-cell variability of ecDNA structures and also help elu-
cidate the structures of multiple ecDNAs in the same sample. Methods
are also being developed that disrupt the tethering of ecDNA to
chromosomes or to other ecDNA™. Future work aimed at studying the
change in structure due to the disruption of tethering could help
identify the DNA elements involved in tethering, resolving an impor-
tant biological problem.

In summary, ec3D provides a tool for the exploration of the reg-
ulatory biology of extrachromosomal DNA and other focal
amplifications.

Methods
Modeling genomic duplications in Hi-C
The input ecDNA genome often contains duplicated segments of a
reference genome. Standard Hi-C mapping and binning methods are
unable to separate the interactions on (and between) each distinct
copy of a duplicated segment; instead, we observe the sum of inter-
actions given by all copies of that segment. Formally, we refer to the
collapsed matrix as the Hi-C matrix, where each duplicated segment
occurs only once; and the expanded matrix as the Hi-C matrix repre-
senting the structure of ecDNA, where all duplicated segments occur
as many times as they are duplicated. Note that only the collapsed
matrix is observed. The expanded matrix, which must be inferred,
determines the structure of ecDNA and the significant interactions
on ecDNA.

To differentiate collapsed matrices and expanded matrices, we
use the following notations throughout the method description:

* N,: total number of fixed resolution bins in the expanded matrix.
We typically use 5kb. The size of the expanded Hi-C matrix
is N, xN,.

* N_.: total number of bins involved in ecDNA in the collapsed Hi-C

matrix, which is of size N, xN.

L; : denotes the genomic coordinates (at 5K resolution) corre-
sponding to bin i. Note that in an expanded matrix, different bins
may have the same genomic location if they come from dupli-
cated segments on ecDNA.
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*R;: For each bin i in the collapsed matrix,
R;={ae(l, - ,NJIL;=L,} denotes the set of indices in the
expanded Hi-C matrix that have the same genomic location as bin
i. The bin i is denoted as unique, if |R; |=1, and duplicated otherwise.

* Cy: #interactions between bins i,j in the collapsed Hi-C matrix.

* E,,: #interactions between bins a, b in the expanded Hi-C matrix.

We make the assumption that the observed number of interac-
tions C;; between a pair of bins i,j is given by:

CU= Z Z Eab~ (1)

acR; beRj

The following methods are developed based on this principle.

Preparing ecDNA Hi-C matrices

Ec3D’s three-dimensional reconstruction only depends on interactions
within the ecDNA intervals. Therefore, we first create an ecDNA Hi-C
matrix by extracting, reassembling and reorienting the submatrices
corresponding to interactions between pairs of segments composing
the ecDNA. The input ecDNA sequence is given as a list
S$=[(51,01),(53,0,),(s3,03), ---] of ordered and oriented genomic seg-
ments, where each s; denotes a genomic interval and o; € {'+’, '—'}
indicates the orientation of's;. The Hi-C data is provided as a matrix of
interactions between genomic bins from the whole genome. As a first
step, we map each segment to a collection of bins, allowing for
duplications, to obtain the N, bins that are amplified by the ecDNA. For
each pair of segments (s;, s; |, we extract the corresponding submatrix
of binned Hi-C interactions, and reassemble these submatrices into a
single matrix E of size N,*N, bins according to their order in S, with
inverted segments (0; =/ — ) reoriented (Fig. 1). Next, we iteratively
remove all rows (and columns) @ if there exists a column a <a’ with
L, =L, in E. This results in a collapsed matrix C, to be used subse-
quently. Additionally, we keep the mapping of indices from the
expanded matrix £ to the collapsed matrix C to query the indices in
each R;.

Normalizing ecDNA Hi-C matrices

The Hi-C data is typically normalized, for example, using ICE
normalization®s, to correct for bin-to-bin variation by ensuring that for
each bin i in the normalized matrix C'“*, 3, Ci* =1.

Within the ecDNA Hi-C matrix, we also ignore the copy numbers
contributed by the normal chromosomes as they are much smaller
than the ecDNA copy numbers, and copy numbers are uniform across
the ecDNA. However, normalization must account for duplications of
genomic regions within the ecDNA. With an expanded matrix £, we
could enforce ", F!SF =1. Instead, we work directly with the collapsed
matrix, and aim to compute Cji* = 3. per, Eap - But since £/ is
not known, we approximated C’C through a generahzed version of ICE
normalization such that in the normalized matrix C'E (of the reas-
sembled matrix C), S, Ci* =|R;|, where |R,| is the multiplicity of
genomic bin i on ecDNA. Finally, to keep the original scale of interac-
tions, we multiply a constant r=(3_;3; C;)/N. to the normalized
matrix C'°! and work on the scaled matrix r - C' in the following
steps. We implemented the normalization procedure above using the
iced package®’.

Reconstructing the 3D structure of ecDNA

Given a normalized Hi-C matrix for ecDNA C' (or r - C'f), we com-
pute a single consensus (of multiple copies of ecDNA in a mixture of
cells) 3D structure of the ecDNA. Formally, we compute a vector X €
RNe*3 of dimension N, x3 - where X, = (X, X,X,;) represents the

coordinate of bina(a €1, ---,N,). Define

dap=11Xq — Xpll2= \/(xal — X)) + (Xgp — Xp2)* + (g3 — Xp3)

as the Euclidean distance between bin a and bin b given the coordi-
nates of X, and X,.

The normalized interaction frequency Cji* is modeled as a Pois-
son random variable, relating to dj;. Specifically, for a pair of unique
bins i,j, the expected number of interactions is given by
/1,7=E[Cf-jc£} =Bdj;, for parameters a<0, >0, which are estimated

separately for each dataset. The parameter a describes the rate of
power law decay of Hi-C interactions due to spatial distances, and  can
be treated as a scaling factor. Moreover, the likelihood of observing

C’CE interactions between a pair of bins i,/ is given by a Poisson(-like)
dlstrlbutlon.

ICE

L(CIFE, X)_M 2
v r(Cff+1)
When _ the bin pairs are not unique, we define
Ay —E[C’CE} > aer, Lober, Bday, and the likelihood is computed

based on the new expectatlons

We aim to maximize the log likelihood of the overall collapsed
matrix C'“* or minimize —In([]; ; £(C[*, X)). Additionally, since ecDNA
forms a continuous polymer chain with fixed resolution bins as dis-
crete points along the chain, we introduce a regularization term to

control the variance between consecutive bins a and a +1:

N,~1 2
Reg(X)=Var( aa+1 _1 (Zda a+l (Zda,aJrl) ) (3)
a=1

This regularization term ensures equal spacing of consecutive
bins in the Euclidean space. The overall optimization problem is then
given as follows

min —In(ﬁ(C’CE,X)> +y - Reg(X) *)

or equivalently

(i n(a)) 2y (- (S )
5)

with a constant term not depending on X ignored in the minimization.
The weight y of the regularization term is provided as a user input, and
by default we set y to 0.05 - N,.

Implementation details
The optimization is done iteratively, for X and a (and B), with I-BFGS®°
algorithm implemented in SciPy:
1. Start with an initial estimation of X;
2. Minimize the negative log likelihood with respect to a and 8 by
fixing X;
3. Minimize the negative log likelihood over X after fixing a and §3;
4. lIterate steps 2 and 3 until convergence or reaching an upper
bound of rounds (by default we set the maximum number of
rounds to 1000).

To determine convergence, we look at the value of objective
function in the last 10 rounds and set the convergence criteria to
lobj; — obj;_151/ max(obj;, - --,0bj;_1o) <€, where obj; and obj;_, are
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objective values at the current round and 10 rounds before, respec-
tively. To avoid local minima due to non-convexity, we run the initi-
alization and iterative optimization multiple (5 by default) times, with
random initialization of X for running MDS (see below for the initi-
alization of X). The user can choose to output the final X that leads to
the best objective value as a consensus structure, or all final structures
as an ensemble of structures. In the optimization process, we require
that the three dimensions are bounded by [-1, 1], but do not enforce
any limit on S to allow flexible scaling of the structures.

Initialization of X
We found that initialization plays an important role in deriving the
optimal coordinates X (Results, Supplementary Fig. 8), and hence we
try to initialize X sufficiently close to the final solution by initializing X
with running a procedure similar to multidimensional scaling (MDS)*.
Note that the naive MDS requires the expanded matrix to work
with. To obtain the expanded matrix for MDS, we redistribute the
normalized interactions Ci* to E,, for all @ € R;, b € R, in proportion
to d,; (i.e., with the assumptlon thata= - 3; B, the scalmg factor, can
be canceled out here). Thus,

d73
Ep=—% . CIFifizj.
s vy ©)
AR beR,;
When a, b € R;, we set
— ICE
Egp= AVg(Ci’j’;R,-r =@, Ry =(b),dyy :dab) (7)

(i.e., the average of all unique bin pairs @’ and b’ with the same
distance as bin pair a, b; and we use genomic distance as defined
below) when redistributing the diagonal elements. Since the Euclidean
distance is not known, we use a circular genomic distance on ecDNA as
a proxy: dg, =g, = min(la — b|,N, — |a — b|), i.e., the shortest dis-
tance between bin a and b on the circular ecDNA structure. To better
compute X we allow some flexibility in redistributing interactions by
treating E,;, as variables in the optimization process and adding a
stress function to penalize the discrepancies between >y, 3 pcr, Ean
and Cj.

Speciﬁcally, the objective of MDS can be written as

2
ICE
/cl

Ne Ne

min» "> " (dy — 6

a=1b=1 i=1j=1

N[ NC

20 (2 G

acR; be‘Rj

®)

where 6,,=(E,,/B) "> is the wish distance. Again, we set a= —3
regardless of the true/optimal values as MDS is run just for initializa-
tion purposes.

Resolving HSRs created through reintegration of ecDNA

We preprocessed data to reconstruct the structure of HSRs formed by
head-to-tail recombination of the ecDNA sequence and subsequent
chromosomal reintegration. We ran CoRAL* to obtain a single copy
composing this underlying tandem-duplication like HSR genome (see
section ecDNA genome reconstruction from WGS data below) and
duplicated the first 3 bins, representing 15kb of sequence during
preparation of the collapsed matrix. The predicted CoRAL sequence
along with the 15kb duplication was provided as input to ec3D for
structure reconstruction. Ec3D automatically normalized the col-
lapsed matrix and reconstructed HSR structures.

Identifying significant interactions
Increased Hi-C interactions can be attributed to three main factors: (a)
reference genome proximity, which leads to spatial proximity, (b)

spatial proximity induced by structural variants (SVs)***®*, and (c)
spatial proximity introduced by a conformational change. Further-
more, due to the higher copy number of ecDNA and potential
formation'°, significant interactions may also reveal trans interac-
tions between two ecDNA molecules. As per previous methods> %, we
define significant interactions as pairs of bins (a,b) (a,b=1, ---,N,)
with interaction frequencies £ ,, much more than expected at a given
genomic distance. We first introduce a unified method in ec3D that
computes significant interactions for an abstract definition of genomic
distance here. In the next subsection, we describe different choices of
genomic distance functions that allow us to distinguish interactions
due to SVs from interactions due to conformational change.

Specifically, to identify statistically significant interactions, we
always model the interaction frequencies at each genomic distance g
using a negative binomial distribution with mean y, and variance o,
(04 > p1y). The statistical significance (p-value) of £, is computed as the
probability of observing at least £, interactions with the underlying
distribution: Py, =P(e>E,,), e ~ NB(l,, 0,), Va, b satisfying g,,=g.
Then we correct all resulting p-values for multiple testing using the
Benjamini-Hochberg procedure to compute an adjusted p-value (i.e., q
value) for each bin pair (a, b). By default, pairs of bins with q value
<0.05 are denoted as significant interactions. We noticed that sig-
nificant interactions often occurred clumped with their neighboring
bin pairs in the Hi-C matrix, at high resolutions such as 5 K. Therefore,
we implemented an option to only output the locally maximal sig-
nificant interactions, i.e., those with interaction frequencies greater
than their top, bottom, left, and right neighbors.

The mean (g) and variance (o) of the number of interactions at
each genomic distance g are estimated by computing the empirical
mean and variance of interactions E ,, for all a, b satisfying g, = g, after
detecting and removing outliers using the IQR method®*.

The computation of significant interactions also requires the
expanded matrix E,,. To compute the expanded matrix, we first
redistribute raw interactions C; to E,, for all a € R;, b € R; similar to
Egs. (6) and (7) described in Initialization of X, but using the optimal
values of spatial distance d;;, and a:

(4
Egp=——2b _—.C; ifi#j;
J 9
> 2 day
AR b eR;
and
Eap=AVE(Cij. R, =), Ry = 1b'),dyy ~dgy)

otherwise. The resulting expanded matrix E,, is then renormalized
with ICE normalization.

Finally, we exclude potential false positive calls due to an artifact
of ICE normalization. For example, in RCMB56 matrix, row (or column)
27 has only a few non-zero entries, potentially due to a mapping/bin-
ning artifact of HiC-pro, but ICE normalization forces this row to have
the same sum of interactions as other rows. As such, the interaction
counts were boosted by ICE normalization and returned as significant
in the p-value calculation. We postprocess significant interactions by
removing all rows with far fewer non-zero entries than the average,
again with the IQR method. Ec3d implements a user option to remove
interactions in certain rows/columns.

Choosing genomic distance between two bins

The circular genomic distance g¢, = min(ja — b|, N, — |a — b)) defined
in section Initialization of X implicitly removes the effect of SV
breakpoints joining remote genomic segments (in S) on ecDNA. In
contrast, to capture both SV-driven and conformation-driven sig-
nificant interactions, we define the genomic distance between bins a
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and b as their genomic distance on the reference genome:

g(’lb = min(lLa - Lb|rgmax) (9)

when L, and L, are located on the same chromosome, where g ., is a
sufficiently large genomic distance with no (or few) interactions on
expectation at this distance; and g, =g, When L, and L, are located
on different chromosomes. Notice that genomic distance is not con-
tinuous in Hi-C - two adjacent values differ by a fixed resolution, e.g.,
5kb. We set g,,,,« to the size of ecDNA to avoid large gaps between two
genomic distances. We refer to ref-SI as bin-pairs (a, b) where the
number of Hi-C interactions between loci in bins a and b was
significantly higher than expected for the reference genomic distance
&', between the bins; circ-SI as pairs (a, b) where the number of Hi-C
interactions was significantly higher than expected for the circular
distance g¢,.

The number of bin pairs on ecDNA usually decreases (linearly)
with increasing reference genomic distance. Bin pairs that do not share
the same genomic distance with any other pairs are unlikely to be
identified as significant, due to the way p-values are calculated.
Therefore, we sort all bin pairs according to their genomic distances,
and partition them into groups, each with at least % bin pairs, by
greedily merging bin pairs that are similar in genomic distance. The
mean and variance of the number of interactions are estimated sepa-
rately for each group and used to compute nominal p-values. If circular
genomic distance is used, this partition is not needed as the number of
bin pairs at each genomic distance remains the same (i.e., N,), except
for a maximum distance with Nj bin pairs when N, is even.

Identifying candidate trans interactions

Earlier research has revealed that ecDNA forms hubs with regulatory
interactions between different ecDNA molecules**°. Therefore, it is
possible that ecDNA Hi-C data includes interactions between distinct
copies of ecDNA molecules. To identify cis interactions within ecDNA,
we can optionally compute significant interactions with respect to the
ratio g5, /d,, between circular genomic distances and spatial dis-
tances. Specifically, for each distance g, and all bin pairs (a, b) such that
g¢, =g, we fit a negative binomial distribution for the ratio g/d ;. Pairs
of bins with significantly high ratio after FDR corrections corre-
sponded to significant interactions relative to their spatial proximity.
We refer to this third measure of significant interactions as spatial-SI.
Significant interactions computed from Hi-C using circ-SI that are not
found using spatial-SI are suggestive of “secondary” interactions.
These interactions can result from alternative 3D conformations, sec-
ondary SVs (not participating in the ecDNA sequence), or trans inter-
actions between ecDNAs.

Identifying significant interactions from rescaled matrices

To show that significant interactions on ecDNA were not due to their
higher copy numbers, we rescaled the case (i.e., ecDNA) and control
(i.e., extracted from the same intervals from non-amplified cell lines)
Hi-C matrices by a factor ranging from 0.25 to 4, and then identified
significant interactions with the same procedure but from the rescaled
matrices. The results suggested that the number of significant inter-
actions is not monotonically increasing with the total number of
interactions, and the pattern of significant interactions as a function of
increased genomic distance remains the same. In fact, the number of
significant interactions reached a local maximum in most cases with-
out rescaling. We note that the variance of interactions at each geno-
mic distance decreased quadratically with the downscale factor,
breaking the negative binomial property when the rescaling factor
becomes too small. As such, we only tested rescaling factors that
preserve larger variance than mean interactions at 90% of all distinct
genomic distances.

Clustering significant interactions

EcDNA often exhibits complex conformations that form multi-way
interactions among different regions within its structure to amplify the
oncogene and other associated gene expression. The connectivity of
these multi-way interactions (e.g., star-like shape or clique-like) indi-
cates different types of interacting pathways. To identify multi-way
interactions, we build an interaction network G = (V, €) from all sig-
nificant interactions where the node set V includes all bins involved ina
significant interaction and the edge set £ indicates the actual interac-
tions. We detect communities in the interaction network G by using
Louvain clustering. Louvain clustering® partitions nodes into clusters
while maximizing the modularity score (density of links within clusters
compared to links between clusters).

Simulations

We simulated ecDNA 3D structures and their corresponding Hi-C data
to assess the effectiveness of ec3D in 3D structure reconstruction. At
the highest level, we introduced the notion of topological constrictions
to simulate the effect of major conformational changes on ecDNA
structures. Topological constrictions generalize chromatin loops -
which typically connect a pair of bins (x, y) that are genomically far - by
specifying two broader intervals of bins [x, x + Ax], [y, y + Ay] where the
neighboring bins around x and y are generally genomically distant but
spatially close, resulting in strong off-diagonal Hi-C interactions. An
increased number of topological constrictions usually indicates more
complex 3D structures.

Each simulated structure was obtained by sampling evenly spaced
points from a circular 3D curve. We generated a diverse set of base
structures by varying three key parameters, which determine the shape
of the underlying 3D curve and the number of points to be sampled.
First, we incorporated k € {1,2, 3} topological constrictions. Second,
we varied the spatial distance between the two intervals that partici-
pate in a topological constriction. Third, we simulated structures of
different sizes by varying the total number of points
N, € {250,500, 750}. In addition, we introduced local folds on each
base structure by randomly disturbing the positions of small collec-
tions of continuous points. See Supplementary Fig. 1 and Supple-
mentary Methods for details. In these simulated structures, each
point can be treated as the spatial placement of a genomic bin at a
fixed Hi-C resolution.

We next generated an expanded Hi-C matrix £ of size N, x N, from
each simulated circular structure with N, bins as follows. For each pair
of bins a,be (1,2, ---,N,}, we sampled the interaction counts £,
from a Poisson distribution with mean 8d,*°, where d,;, represents the
Euclidean distance between bins a and b. The parameters a and S were
randomly chosen from [-3, -0.75] and [1, 10], respectively. Next, we
simulated duplications by designating contiguous ranges of bins as
duplicated regions in each Hi-C matrix £, and summing up the inter-
action frequencies of duplicated bins in £ to obtain the collapsed
matrix C of size N.xN.. To evaluate ec3D’s ability to reconstruct
structures where duplicated regions fold into different conformations,
we finally designed our simulations in a way that half of the samples
had the same local substructures for the duplicated regions, while the
other half had different local substructures.

Using the procedure described above, we randomly generated
10 structures for each combination of ke{1,2,3} and
N, € {250,500, 750}, which led to 90 structures in total. And for each
simulated structure, we generated 5 expanded matrices E without
duplication and 5 collapsed matrices C with duplication by varying a
and g, giving 450 expanded matrices and 450 collapsed matrices.

Performance metrics (RMSD, PCC)

Similar to other 3D reconstruction methods, we measure the (dis)
similarity between two 3D structures X and X’ of the same size N
through root mean squared distance (RMSD) and Pearson correlation
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coefficient (PCC):

N
RMSD(X, X') = %Z X; = X))?,
i=1

Sy — ddy —d)
¢ Sy —dy S(dy —d’
LJ

PCCX,X')=

where d;; is the off-diagonal (i#/) Euclidean distance between bin i and
binj,andd= %Y, d;.

However, due to the flexibility of coordinates with respect to rigid
transformation in reconstruction, we first aligned X and X’ by trans-
lation, scaling, and rigid-body rotation using the Kabsch-Umeyama
algorithm®. For a brief summary, the algorithm works in three steps. (i)
Move the centroid of both structures to the origin by subtracting X and
X' with their centroid X and X/. (ii) Rescale the two structures by their
maximum diameters. (iii) Rotate X by singular value decomposition
(SVD) to align it with X7 in the optimal orientation. Namely, we com-
puted SVD of X - X'7 = VSWT and rotated X by (W - V7). X.

Similarity of 3D structure in duplicated regions

We used a permutation test to measure the significance of similarity
between the local structures of duplicated regions D; and D, on the
same ecDNA, or corresponding to the local 3D reconstruction of the
same genomic interval but from different samples (e.g., ecDNA and
HSR amplicon of MYCN). Specifically, to compare duplicated regions D;
and D, on the same ecDNA, we randomly sampled 5,000 regions §;
(i=1,2, ---,5000) of the same size from the same molecule, and
computed the fraction of times, a random pair (D;, S;) had a smaller
RMSD or larger PCC compared to the duplicated pair (D;, D,) as the
empirical p-value. To compare 3D reconstruction of the same genomic
interval from different samples, we sampled S; from the larger genome.

Comparison of ec3D against other reconstruction methods

To compare ec3D and other methods (MiniMDS, ShRec3D, and PAS-
TIS), we input the collapsed matrix C to these tools and allow them to
reconstruct the structure from simulations with default parameters.
For simulations without duplication, we directly compared the
reconstructed structures from each method to the ground truth
structures. However, since these methods treat duplicated segments
as single instances when processing the input matrix, they output a
structure of size N, x 3, with only one copy of each bin when duplica-
tion exists. We therefore compared their reconstructed structures to a
partial ground truth structure consisting of all unique bins and only the
first copy of each duplicated bin.

OligoSTORM library design

The MDM?2 library was designed to cover a 2 Mb region (roughly 1 Mb
of MDM2 ecDNA amplicon plus flanking regions to identify the chro-
mosomal locus), specifically chr12: 68,000,001-70,000,000 (hg38).
Genome homology regions for each oligo were designed using
PaintSHOP®® using the default settings (no repeats, 200 max off-target
score, 5 max K-mer count, and minimum probe value 0), followed by
appending of unique barcodes for each 200kb interval with
OligoLego®® (https://github.com/gnir/OligoLego).

OligoSTORM library amplification

Oligopaint libraries (Supplementary Data 10) were ordered from Twist
Bioscience, whereas the primer, bridge, and toehold sequences were
ordered from Integrated DNA Technologies (IDT, Supplementary
Data 11) with standard desalting. The readout probes carrying an
Alexa647N fluor at each end (two on each readout probe in total) were

ordered from IDT with HPLC purification. The probe libraries were
amplified with PCR as previously described®’. Briefly, libraries were
reconstituted to 20 ng pL™ and amplified via PCR (Kapa Hi-Fi PCR kit,
Fisher 50-196-5217), cleaned (Zymo D4033/D4029), and eluted with
ultra-pure water. The dsDNA product was then in vitro transcribed into
RNA at 37°C for 16 h (NEB HiScribe, E2040S). The RNA was then
reverse transcribed into cDNA using Maxima H Minus Reverse Tran-
scriptase (Thermo Fisher, EP0752). The remaining RNA was digested
using 0.5 M NaOH and 0.25M EDTA to obtain ssDNA, which was then
cleaned and concentrated to a concentration of 200 pmol L. Pro-
duct size was validated using a 2% agarose gel (ThermoFisher A45204).

Sample preparation for sequential OligoSTORM imaging
Adherent TR14 cells were lifted with TripLE (Thermo Fisher,
12605010), diluted to a concentration of 1x10° cells per mL, and 150
KL of cell suspension was added to Ibidi single channel p-Slides I 0.2
(Ibidi, 80167) coated with Poly-L-Lysine. Slides were left at 37 °C and 5%
CO2 overnight to allow cell attachment. The following day, cell media
was removed, cells were washed once with PBS and then fixed in 4%
paraformaldehyde (16% PFA diluted to 4% with PBS, Electron Micro-
scopy Services, 15710) solution for 10 min at room temperature. The
fixed cells were washed and either used immediately or stored in PBS at
4 °C for up to two weeks. On the day of use, samples were washed with
PBS followed by permeabilization of the membrane using 0.5% Triton-
X (Sigma Aldrich, 93443) for 10 min at room temperature. From here,
all subsequent incubations were done at room temperature on a sha-
ker unless otherwise specified. Samples were washed with 1x PBST (1x
PBS + 0.1% (v/v) Tween-20) for 2 min, 0.1 N HCI for 5 min, twice with 2x
SSCT (2x SSC+0.1% (v/v) Tween-20) for 1 minute, and last with 2x
SSCT + 50% Formamide (v/v) for 2 min. The sample was then incubated
with fresh 2x SSCT + 50% Formamide for 20 min on a heat block placed
in a 60 °C water bath. Channel was then aspirated completely, and
liquid was quickly replaced with a hybridization solution containing
primary library probes (50% Formamide + 2x SSCT +10% Dextran
Sulfate (w/v) + 400 ng pL~! RNase A, + 4 pmol pL! library). The
sample containing the primary hybridization solution was then dena-
tured for 3 min on a heat block in an 80 °C water bath. The sample with
primary hybridization was left in a humidity chamber overnight at
42°C. The following day, the primary hybridization solution was
removed, and the sample was washed with 2x SSCT, followed by 4
washes of 5 min each on a heat block in a 60 °C water bath using SSCT
prewarmed to 60 °C. After the warm washes, the sample was washed
twice with room temperature 2x SSCT for 2 min each time, and then
once with 1x PBS. At this point, gold nano-urchins (Sigma, 797707)
were sonicated for 10 min and then diluted 1:30 with 1x PBS. The
diluted nano-urchins were added to the sample and centrifuged at 500
x g for 3min. The sample was then placed on the microscope and
connected to a microfluidics system to be used for all subsequent
secondary hybridizations.

Sequential OligoSTORM imaging

Sequential OligoSTORM imaging was done using a Bruker Vutara VXL
equipped with an Olympus 60x silicone objective with NA of 1.3. Oli-
gopaint oligos were hybridized with Alexa Fluor 647 as well as an Alexa
Fluor 405 activator molecule for photo-activation and were illumi-
nated using 638 and 405 nm lasers (Omicron), respectively, and a 698/
70 emission filter (Semrock bandpass). Blinking fluorophores were
detected using a Hamamatsu Orca Fusion-BT camera with a 10 ms
exposure time. At each round of imaging, we cycled through the axial
dimension (Z) four times, taking 1000 frames per Z-step, with an
approximate total depth of 5 um at 100 nm intervals. Each sequential
step was hybridized and imaged one at a time using a microfluidics
system (Fluigent Bruker Integrated Perfusion System). For each round,
secondary hybridization solutions (2x SSCT + 0.3% Tween-20 (v/v) +
30% Formamide (v/v) + 500nM bridge oligo + 500 nM Alexa647
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readout probe + 500 nM universal readout probe + 500 nM Alexa405)
containing bridge oligos complimentary to one of the 200 kb bar-
coding regions, as well as a fluorescent readout sequence, was then
added to the sample and incubated at room temperature in the dark
for 1h. A universal readout probe, which was complementary to the
oligos’ forward primer and therefore binds to the entire library, was
added in the first sequential step only to be used to take a reference
image and setting of Z-stacks. From the second step of imaging
onwards, this oligo was replaced with 500 nM toeholds of the previous
step to remove the previous bridge sequence. Following secondary
hybridizations, the sample was washed 4 times for 5 min each with a
wash buffer (2x SSCT +35% Formamide (v/v)). Image buffer (10% (w/v)
glucose, 2x SSC, 50 mM Tris, 1% (v/v) B-mercaptoethanol, and 2% (v/v)
of a GLOX stock solution consisting of 100 mg/mL glucose oxidase
(Sigma G2133-250KU), 7.5mg/mL catalase (Sigma C40-500MG),
30 mM Tris, and 30 mM NacCl) is then added to the sample for imaging.
Signal was localized as described previously®. Briefly, the precision of
each localization event was determined, and localizations with an axial
precision of worse than 100 nm were filtered out. After filtering of
localizations, drift correction was done using the center of mass
between fiducial markers across time points. Finally, localizations were
clustered using DBSCAN®® (with a search radius of 150 nm and
50 minimum points) to remove noise before subsequent cluster
analysis.

Identification of ecDNAs from sequential OligoSTORM imaging
We started with the clusters of the OligoSTORM localizations of a cell
containing multiple MDM2 ecDNAs (chr12:68647578-69657744) in the
cell line TR14. The MDM2 ecDNA covers 6 out of the 10 200-kb intervals,
which correspond to 6 distinct clusters in the image. We first computed
the centroid of each cluster, and then constructed a graph where nodes
represent these centroids; edges were added between nodes if their
Euclidean distance was below a specified cutoff. To identify individual
ecDNAs, we searched for cliques (i.e., fully connected subgraphs) of size
6 (6-cliques) in this graph. We optimized the distance cutoff by grid
search (100-1000 nm, stride=100) to maximize the number of 6-cliques.
With a small distance cutoff, nodes remain disconnected and form no
cliques; with excessive distances, spurious connections between signals
from different ecDNAs may create false positive cliques that share
nodes with the true cliques. The optimal cutoff 700 gives the maximum
number of 6-cliques. We further removed noise and verified 10 cliques
by aligning them to a reference image (Supplementary Fig. 11a). By
overlaying them against a reference image of MDM2, we identified 10
cliques that were highly likely to represent MDM2 ecDNA in images
(Fig. 2h and Supplementary Fig. 11b).

Comparison of ec3D prediction against OligoSTORM imaged
structure

We had used ec3D to reconstruct the structure of the MDM2 ecDNA at
5-kb resolution. To validate the ec3D structure, we collected the 3D
coordinates of 40 consecutive 5-kb bins within each 200-kb region,
and computed their centroids to obtain 6 aggregated coordinates in
3D space at 200-kb genomic resolution. We computed the distances
between each pair of centroids (Supplementary Fig. 11c, lower trian-
gle). Next, we computed the average distance for each pair of cen-
troids in the 10 candidate ecDNA structures (cliques) described above
(Supplementary Fig. 11c, upper triangle). We calculated the Pearson
correlations between pairwise distances from the ec3D-reconstructed
3D structure and the imaged structures.

Minimum bounding box analysis

A minimum volume bounding box can be used to describe the overall
3D shape of an ecDNA structure. We implemented both the “rotating
calipers” method® and PCA to compute the bounding box. The
rotating calipers method takes O(Nﬁ) time and computes an exact

solution; PCA takes O(N,) time for the N, x 3 structure matrix X and
gives a good practical solution, though without approximation
guarantee’, In fact, we mainly focused on the ratio between the largest
dimension and the smallest dimension of the bounding box, which can
separate disk-like structures from spherical structures. Both methods
suggested similar ratios (reported in Results) - even if the optimum
bounding boxes computed by rotating calipers turn out smaller than
PCA bounding boxes.

We additionally tested if the reconstructed ecDNA structures
could be placed into a flatter bounding box (i.e., with smaller edge
length ratios) and still generate the observed Hi-C interactions. Spe-
cifically, we reconstructed 3D structures of the ecDNA by optimizing
the objective function described in Eq. (5) with the scaling parameter 8
fixed, but with the maximum range of the first axis repeatedly halving
from [-1, 1] to [-%, 35]. The other two axes remain in the range [-1, 1]. By
fixing B, we ensured that the structure was not shrinking proportion-
ally in all axes in reconstruction. Decreasing the range of one axis
would not impact the Poisson likelihood of a disk-like structure, as bins
could still be placed on a plane orthogonal to that axis, preserving the
pairwise spatial distances; while for spherical structures, the Poisson
likelihood would become worse, due to additional constraints in the
3D space disrupting expected spatial distances suggested by Hi-C
interactions.

Cell lines

Human glioblastoma GBM39/HSR tumor spheroid was derived from
patient tissue’. Neuroblastoma cell line TR14 was a gift from J. J.
Molenaar (Princess Maxima Center for Pediatric Oncology, Utrecht,
Netherlands)"; cell line IMR-5/75 from F. Westermann (German Cancer
Research Center, Heidelberg, Germany); cell line CHP-212 was
obtained from the American Type Culture Collection (ATCC, Mana-
ssas, VA)™. Cell line identity was verified by STR genotyping (Genetica
DNA Laboratories, Burlington, NC and IDEXX BioResearch, Westbrook,
ME). Tumor material for RCMB56 was previously obtained with con-
sent from a TP53-mutant SHH subgroup medulloblastoma of an eight-
year-old male patient who was diagnosed at Rady Children’s Hospital
San Diego, under the protocol Molecular Tumor Profiling Platform for
Oncology Patients (IRB 190055)". Cell lines D458, H2170 and
MSTO211H were obtained from ATCC (catalog numbers CRL-3632,
CRL-5928, and CRL-2081).

Hi-C data preparation

We downloaded the raw Hi-C data of CHP-212 and IMR-5/75 from
Helmsauer et al.?, D458 and RCMB56 from Chapman et al.”, TR14 from
Hung et al.*, MSTO211H from Xie et al.”’. We downloaded high cov-
erage GM12878 and IMR90 Hi-C (as control samples without ecDNA
amplification) from 4D nucleome (https://data.4dnucleome.org/). The
Hi-C library for H2170 was prepared using the Arima-HiC kit. Hi-C
libraries for GBM39EC and GBM39HSR were prepared following a
standard protocol to investigate chromatin interactions*. Cells were
crosslinked with 1% formaldehyde for 10 min at room temperature.
After nuclei permeabilization, DNA was digested with 100 units of
Mbol, end-labeled with biotinylated nucleotides, and proximity-
ligated. Samples were sequenced using Illumina NovaSeq in 150 bp
paired-end reads, with 3 replications for both GBM39EC and
GBM39HSR. We combined these replications into a single matrix in our
structural reconstruction.

We processed the raw Hi-C reads with HiC-Pro version 3.1.0°°. This
process included aligning the reads to the human reference genome
(hg38), removing duplicate reads, assigning reads to restriction frag-
ments, filtering for valid interactions, and generating binned contact
matrices. For Arima Hi-C, we set the restriction enzyme to “GATC and
G"ANTC, and trimmed 5 bases from the 5’ end of both read 1 and read 2
before alignment as per their user guide. Otherwise, we set the
restriction enzyme to Mbol/Dpnii, and did not trim the reads. We
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generated contact matrices at resolutions ranging from 2 kb to 1 Mb,
but focused on 5 kb resolution mostly in our analysis, allowing for a
detailed description of chromatin interactions. The HiC-Pro output
was converted into cooler format (*.cool or *.mcool)”* required by ec3D.
Note that ec3D also supports *hic format as input compatible for
visualization and analysis with Juicebox tools”, and internally converts
* hic input to *.cool format using hic2cool (https://github.com/4dn-
dcic/hic2cool).

ecDNA genome reconstruction from WGS data

Ec3D requires an ecDNA sequence as input. For GBM39, GBM39HSR,
CHP-212, IMR-5/75 (HSR), H2170, and TR14, we assembled the ecDNA
genomes from Oxford Nanopore WGS by running CoRAL*. We ran
CoRAL with a non-default command line argument ‘--min_bp_support
10.0’ (i.e., with minimum coverage cutoff 10 times the diploid coverage
for breakpoints) to eliminate redundant breakpoints that could result
from non-ecDNA structural variations or heterogeneous ecDNA
sequences. We extracted the cycle with the largest predicted copy
number from CoRAL'’s output as the (primary) ecDNA sequence. For
RCMB56 and MSTO211H, we ran AmpliconArchitect’® with default
parameters on paired-end short reads and again selected the cycle with
the largest CN as its ecDNA sequence. The resulting ecDNA sequence
of RCMB56 also agreed with optical genome mapping (OGM) contigs”.
For D458, we reused the ecDNA sequence from Chapman et al.”
computed by AmpliconReconstructor’* from WGS and OGM contigs.
Compared with AmpliconArchitect output consisting of multiple small
cycles (as part of the ecDNA sequence), OGM provided a single con-
sensus ecDNA sequence of D458 that was supported by all informative
contigs”.

RNA-seq data processing

We downloaded the RNA-seq data of CHP-212 from Boeva et al.”>. For
RNA-seq analysis, we aligned the reads to hg38 and called gene fusion
events in ecDNA intervals using STAR-Fusion’® (v1.14.0) with its built-in
annotation GRCh38 gencode_v44_CTAT _lib_0Oct292023.plug-n-play.
We quantified the expression coverage for each 5kb bin by first
counting the coverage of each 50-bp bin using deepTools’’ v3.5.6 and
then averaging the coverage within 5kb bins. We ran multiple
sequence alignment of reads supporting the LPINI-MIR368IHG fused
transcript and the readthrough event between breakpoints 11,785,247
(3) and 12,622,735 (5") on chr2 using Clustal Omega’® (v1.2.4).

CTCF ChIP-seq data processing and TAD boundary calling

We downloaded the CTCF ChiIP-seq data of CHP-212 from Helmsauer
et al.””. We first trimmed adapters (Trimmomatic’ v0.39) and aligned
the reads to hg38 (Bowtie® v2.5.4) with default parameters. We then
counted read coverage using deepTools’” (v3.5.6) by counting reads in
non-overlapping 50-bp bins. For CTCF peak calling, the coverages
were aggregated to identify 5-kb bins, with average coverage >= 30
called as CTCF peaks. For comparative TAD analysis between ec3D
reconstructions and Hi-C, we generated a distance matrix by calcu-
lating d,-j“ for all pairs i,j € {1,2, ---,338}, where dj; is the Euclidean
distance between bin i and binj and «a is the exponent output by ec3D.
TAD boundaries were called with FAN-C* v0.9.28 using insulation
scores at 10 kb window size, respectively from the Hi-C matrix and
distance matrix. Each TAD boundary also corresponded to a 5-kb bin
on the ecDNA. We considered a TAD boundary to match a CTCF peak if
the peak was located within +5 kb of the boundaries.

We applied a hypergeometric test to assess the significance of
matching between TAD boundaries and CTCF peaks. Let the total
number of bins on ecDNA be N; and the total number of bins corre-
sponding to CTCF peaks be K. The P-value of observing at least k
matching peaks from n TAD boundaries is computed as the tail dis-

tribution 1 — Y%_, Pr(X =x), where Pr(X =x) = (D((’Cnl):f ’

Analysis of A/B compartmentalization

We generated three observed/expected (O/E) interaction matrices
from CHP-212 Hi-C, CHP-212 spatial distance matrix (ec3D generated
3D structure), and GM12878 Hi-C at 5-kb resolution with Knight-Ruiz
(KR) normalization. All three matrices covered the same genomic
regions corresponding to the CHP-212 ecDNA. From each O/E matrix,
we computed a correlation matrix and extracted its first principal
component (PCI1) to identify A/B compartmentalization. PC1 signs for
CHP-212 ecDNA were assigned based on correlation with gene
expression levels, and signs for GM12878 were assigned based on the
distribution of intra-region interactions. A positive PC1 sign indicated
an A (open) compartment, and a negative PCl sign indicated a B
(closed) compartment.

Statistics & reproducibility

All ec3D runs were performed without fixing random seeds. Compar-
isons between ec3D and alternative methods on simulated data, ana-
lyses of reconstructions with limited axis ranges, and comparison
between overexpressed and normally expressed genes were per-
formed using one-sided Wilcoxon rank-sum tests. Differences in
cumulative distributions of significant interactions between cancer cell
lines and control samples were assessed using two-sample Kolmo-
gorov-Smirnov tests. Structural similarity between duplicated seg-
ments was evaluated using the permutation test described in Methods.
Hypergeometric test was applied to assess the significance of overlap
between TAD boundaries and CTCF peaks. Exact p-values are reported
where applicable.

No data were excluded from the analyses. No statistical method
was used to predetermine sample size, as our analyses were primarily
computational validations rather than biological experiments. The
experiments were not randomized as they involved computational
analysis of existing datasets. The Investigators were not blinded to
allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The newly generated Hi-C data for H2170, GBM39 and GBM39HSR
have been deposited to NCBI and are available under SRA accession
PRJNA1259562. The short-read WGS and Hi-C data for MSTO211H (from
Xie et al.”’), which were used in this study, are available on Figshare via
https://doi.org/10.6084/m9.figshare.30629882. The previously pub-
lished long read WGS data for GBM39 and GBM39HSR are available
under SRA accession PRJNA1110283. The previously published long
read WGS, Hi-C and CTCF ChiP-seq data for CHP-212 and IMR-5/75 are
available under SRA accession PRJNA622577; RNA-seq data of CHP-212
are available under GEO accession GSE90683. The previously pub-
lished short read WGS data for RCMB56 (PDX) and OGM contigs for
D458 are available under SRA accession PRJNA1011359. The previously
published Hi-C data for RCMB56 and D458 are available under GEO
accession GSE240985. The previously published long read WGS for
TR14 are available under SRA accession PRJNA670737; Hi-C data for
TR14 are available under SRA accession PRJNA732417. The previously
published G&T single-cell data for CHP212 are available on the Eur-
opean Genome Archive (EGA) under accession number
EGAS500000005009. Source data are provided with this paper.

Code availability

The source code of ec3D is publicly available on GitHub at https://
github.com/AmpliconSuite/ec3D under BSD 3-Clause License. The
specific version used in this manuscript (v1.0.0) has been archived at
Zenodo with https://doi.org/10.5281/ZENODO.17082088%.
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