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Evidential deep learning for interatomic
potentials

Han Xu 1,2,7, Taoyong Cui 1,3,7, Chenyu Tang 1,7, Jinzhe Ma1,4,
Dongzhan Zhou 1, Yuqiang Li 1, Xiang Gao2, Xingao Gong5, Wanli Ouyang 1,
Shufei Zhang 1 & Mao Su 1,6

Machine learning interatomic potentials have been widely used to facilitate
large-scale molecular simulations with accuracy comparable to ab initio
methods. To ensure the reliability of the simulation, the training dataset is
iteratively expanded through active learning, where uncertainty serves as a
critical indicator for identifying and collecting out-of-distribution data. How-
ever, existing uncertainty quantification methods tend to involve either
expensive computations or compromise prediction accuracy. Here we show
an evidential deep learning framework for interatomic potentials with a
physics-inspired design. Our method provides uncertainty quantification
without significant computational overhead or decreased prediction accuracy,
consistently outperforming other methods across a variety of datasets. Fur-
thermore, we demonstrate applications in exploring diverse atomic config-
urations, using examples including water and universal potentials. These
results highlight the potential of our method as a robust and efficient alter-
native for uncertainty quantification in molecular simulations.

Molecular dynamics (MD) simulation provides atomic insights into
physical and chemical processes and has become an indispensable
research tool in computational physical science1–3. Classical MD
simulation uses an empirical potential function to determine intera-
tomic forces4,5, which is computationally efficient but not accurate
enough, especially when polarization or many-body interactions are
important6. In contrast, the ab initio approach for modeling atomic
interactions is based solelyon fundamental physical principles, leading
to generally higher accuracy and transferability7,8, but the high com-
putational cost limits the size of systems that can be simulated. To
achieve both efficiency and accuracy, machine learning interatomic
potentials (MLIPs) have been proposed9–12, which allow to learn ab
initio interatomic potentials and performing MD simulations with
much lower computational cost. MLIPs have been successfully applied

in the study of amorphous solid13, catalysis14, chemical reaction15,
and more.

One of the primary challenges to MLIP-based MD simulations lies
in the construction of the training dataset, which should include var-
ious configurations thatmay appear during the simulation. Inadequate
training data will lead to decreased accuracy or even failure of the
simulations16,17. This challenge limits the application ofMLIP-basedMD
simulations. Active learning based on uncertainty quantification (UQ)
plays a crucial role in constructing training sets for MLIPs18–21. During
active learning, configurations with higher uncertainties are sampled
to enrich the training set. This process usually needs to be repeated
dozens or more times19, and the computational cost required for UQ
could be considerable. Therefore, a robust yet efficientmethod forUQ
is desired.
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A variety of UQmethods have been developed forMLIPs.Moment
tensor potential22 uses an extrapolation parameter to estimate uncer-
tainty, but thismethod does not apply to deep neural networkmodels.
Gaussian approximation potential23 utilizes Gaussian process regres-
sion to provide UQ along with its predictions. However, the primary
limitation of the Gaussian approximation potential lies in its compu-
tational cost, which scales cubically with the dataset size. Ensemble
methods24 are quite reliable forUQ, but also suffer fromcomputational
burdens due to the training of multiple models. The computational
issueof the ensemblemethods canbe alleviated byweight-sharing. For
example, Kellner et al. proposed direct propagation of shallow
ensembles (DPOSE)25. However, this approximation may worsen the
known issueof ensembleoverconfidence, especially in largermodels26.
Single-model methods, such as Monte Carlo dropout27–29, Gaussian
mixture models (GMM)30, and mean-variance estimation (MVE)31,
mitigate the computational issue, but their performances are still not
satisfactory32. The development of efficient UQ has been advanced by
methods such as loss trajectory analysis for uncertainty (LTAU)33 and
last-layer prediction rigidity (LLPR)34. LTAU extracts uncertainty from
training trajectories. LLPR proposes a prediction rigidity formalism to
obtain uncertainties and employs several approximations to reduce
computational complexity.

Evidential deep learning35,36 is a promising alternative, which
estimates uncertainty through a single forward pass and requires
minimal extra computational resources. Another advantage of evi-
dential deep learning is that it can estimate aleatoric and epistemic
uncertainties separately. Aleatoric uncertainty arises from intrinsic
noise in the data and cannot be evaded or reduced. In contrast, epis-
temic uncertainty reflects the fidelity of themodel in its representation
of the data (excluding aleatoric effects) and decreases as the number
of training samples increases37. The ability of evidential deep learning
to distinguish between these two types of uncertainty is particularly
beneficial for active learning, where we want to sample data with high
epistemic uncertainty rather than aleatoric uncertainty. However,
recent attempts32,38 trying to integrate evidential deep learning with
MLIPs result in unsatisfactory performance. Failuresmay be attributed
to inappropriate design in model architecture.

In this work, we reexamine the uncertainty associated with MLIPs
from a physical perspective and propose a framework forUQbased on
evidential deep learning. We call this framework the evidential
interatomic potential (eIP). The performance of eIP is evaluated across
various datasets and benchmarked with other UQ methods, demon-
strating outstanding performance with minimal additional computa-
tional cost.We then extend the application of eIP to uncertainty-driven
dynamics (UDD) simulations39–42, enabling the efficient exploration of
the diverse atomic configurations. This approach (UDD) modifies the
potential energy surface by assigning lower energies to high-
uncertainty configurations, thereby making them more accessible.
Lastly, we use eIP to train a universal potential and demonstrate its
ability for concurrent UQduring simulations.While other UQmethods
can achieve this, eIP offers advantages in efficiency and reliability.

Results
Preliminary
Machine learning interatomic potential (MLIP). MLIPs are used to
predict energy and forces within a given atomic configuration. For a
system comprising N atoms, MLIPs typically take the atomic species
Z 2 ZN and coordinates R 2 RN × 3 as input and output the total
potential energy E. The forces F 2 RN × 3 exerted on the atoms are
derived by calculating the negative gradient of E with respect to the
coordinates. The primary distinction among various MLIPs lies in the
algorithm used to convert the input information into vectorized fea-
tures that represent the local atomic environments. These features are
designed to be invariant or equivariant under translation, rotation, and
permutation.

Aleatoric and epistemic uncertainty. Two categories of uncertainty
can be modeled in deep learning43. Aleatoric uncertainty arises from
inherent noise in data labels. In the context of MLIPs, data labels are
obtained from ab initio calculations. Although highly rigorous ab initio
calculations could limit the aleatoric uncertainty, they are often com-
putationally prohibitive in practice. As a result, MLIPs are often trained
on multiple datasets of varying quality, which introduces label noise.
For example, in theMPtrj dataset, aleatoric uncertaintymay stem from
inconsistent Hubbard U correction or varying convergence criteria26.
In contrast, epistemic uncertainty is caused by a lack of knowledge,
typically due to insufficient data. This type of uncertainty can be
reduced by adding more training data, often through active learning.
For the sake of simplicity, the term uncertainty in the following results
refers to epistemic uncertainty, unless otherwise specified. We further
discuss aleatoric uncertainty in Supplementary Note 2.

Evidential deep learning. Evidential deep learning is an efficient
method to estimate the uncertainty of the results predicted by neural
networks. Starting fromamaximum likelihoodperspective, the targets
are assumed to be drawn from a Gaussian distribution but with
unknown mean and variance (μ, σ2). A Gaussian prior is placed on the
unknown mean μ and an Inverse-Gamma prior on the unknown var-
iance σ2, leading to the Normal Inverse-Gamma distribution with a set
of parametersm = (γ, ν, α, β). Neural networks are then trained to infer
m, and the prediction, aleatoric, and epistemic uncertainty are calcu-
lated as35:

E½μ�= γ|fflfflfflffl{zfflfflfflffl}
prediction

, E½σ2�= β
α � 1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

aleatoric

, Var½μ�= β
νðα � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

epistemic

: ð1Þ

Framework of eIP
As illustrated in Fig. 1, eIP consists of an MLIP block for predicting
energy and force, and an evidential quantile regression block for UQ.
The eIP framework extends a regular MLIP by feeding its equivariant
features into a lightweight network that outputs prior parameters m.
The loss function is central to eIP. We used a mean absolute error
(MAE) loss for energy fitting, whereas force predictions are optimized
by a composite loss that combines negative log-likelihood (NLL) with a
regularization term. Further details are provided in the “Methods”
section. In designing eIP, we considered the following points, which
are indispensable to achieving robust performances.

Locality. In most MLIPs, the potential energy is calculated as the sum
of atomic contributions, E =

PN
i = 1 Ei, with the model learning the

mapping from the local environment of the atom i to Ei. Therefore, we
estimate the uncertainty associated with Ei rather than the total
potential energy E. However, we do not have the ground truth for Ei.
Fortunately, we can adapt the atomic forces instead of Ei to estimate
the uncertainty per atom.

Directionality. We attribute uncertainty in MLIP predictions to the
inadequate learning of the local atomic environment. Consequently,
this uncertainty is directionally dependent. Our model produces a
separate uncertainty value for each Cartesian component of the
atomic force, rather than a single value per atom or system. This is
illustrated using a three-atom toy system in Supplementary Note 1,
where the uncertainty varies with direction. Beyond MLIPs, the direc-
tional dependence is also crucial for predicting other non-scalar
properties, such as dipole moments, dielectric tensors, and Hamilto-
nians. In the following experiments, we employ the equivariant back-
bone PaiNN44 to extract equivariant features and output the
parameters of the Normal Inverse-Gamma prior. We also apply eIP to
other equivariant backbones to demonstrate the generality, and the
results are provided in Supplementary Note 5.
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Quantile regression. The original evidential deep learning framework
for regression35 assumes that the targets are drawn from a Gaussian
distribution, which may not adequately describe the target distribu-
tion of MLIPs. To alleviate this limitation, we adopt the Bayesian
quantile regression framework45 that combines evidential deep learn-
ing with quantile regression, enabling UQ without relying on Gaussian
assumptions. Unlike traditional regression that minimizes mean
squared error, our approach learns a specified quantile q of the force
distribution. This is achieved by employing an asymmetric Laplace
distribution, which is subsequently reformulated as a scale mixture of
Gaussians to facilitate Bayesian inference. The computational proce-
dure of Bayesian quantile regression is analogous to the original evi-
dential framework. The key difference lies in the loss functions, which
are specifically designed for quantile estimation. Our implementation
details are provided in the “Methods” section.

Experiments
ISO17 dataset. We started by assessing the performance of eIP using
the ISO17 dataset, which comprises MD trajectories of C7O2H10 iso-
mers. This dataset is divided into in-distribution (ID) and out-of-
distribution (OOD) subsets, making it particularly suitable for
uncertainty quantification (UQ). In the ID scenario (known mole-
cules/unknown conformations), the test molecules are also present
in the training set. In contrast, the OOD scenario (unknown mole-
cules/unknown conformations) involves test molecules that are not
in the training set. The training set contains 400,000 conformations,
which is a substantial amount for such small molecules. Therefore,
we also explore the impact of training data volume. Specifically, we
train the model using 1%, 5%, 30%, and 100% of the training data,
respectively. Figure 2a–d shows the scatter plots that compare

uncertainties with force errors for different amounts of training data,
demonstrating positive correlations in both ID and OOD scenarios.
The mean uncertainty and mean absolute error (MAE) for force
predictions are shown in Fig. 2e, f, respectively. As expected, both
metrics decrease with an increase in the amount of training data.
Furthermore, we evaluated the reliability of UQ using additional
metrics, including Spearman’s rank correlation coefficient and the
area under the receiver operating characteristic curve (ROC-AUC),
whose definitions are provided in the “Methods” section. As shown in
Fig. 2g, h, both Spearman’s rank correlation coefficient and ROC-AUC
improve as the amount of training data grows. In the ID scenario,
Spearman’s rank correlation coefficients ranging from 0.74 to 0.86
and ROC-AUC values ranging from 0.86 to 0.93 indicate the strong
performance of eIP. In the OOD scenario, although the test set
molecules are absent from the training set, the evaluation metrics
still provide reasonable uncertainty estimates.

Silica glass dataset. We then evaluate eIP’s performance for more
complex systems using a silica glass dataset, which comprises large
bulk structures. Given the challenges in partitioning large structures
into ID and OOD datasets, we adopted the dataset partition scheme
consistent with the previous study32. We also compare eIP with other
UQ methods, including ensemble, Monte Carlo dropout, Gaussian
mixture model (GMM), and Mean-variance estimation (MVE), whose
implementations are provided in Supplementary Note 6. Figure 3a
shows the scatter plots of uncertainties versus force errors and indi-
cates that allmethods achieve positive correlations. Figure 3b presents
the computational efficiency analysis of the five methods. Despite the
good performance of the ensemble method, it incurs higher compu-
tational costs during both training and inference due to the need for

(a) Machine Learning Interatomic Potential

(b) Evidential Quantile Regression
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Fig. 1 | Framework of eIP. a A typical equivariant interatomic potential model
extracting both invariant and equivariant features. The invariant features are used
to output the potential energy. b Evidential quantile regression. The equivariant
features are used to output the parameters for uncertainty quantification. The

model is optimized using a mean absolute error (MAE) loss for energy, and a
composite loss that combines negative log-likelihood (NLL) with a regularization
term for force.
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Fig. 2 | Results on ISO17 dataset with increasing data volume. a–d Scatter plots
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respectively. Each point corresponds to the averaged uncertainty/error in a

molecule. eMean uncertainty on the test set. f Force mean absolute errors (MAEs)
on the test set. g Spearman’s rank correlation coefficient between uncertainty and
force error. h ROC-AUC scores.
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Fig. 3 | Comparing eIP with other uncertainty quantificationmethods on silica
glass dataset. a Hexbin plots of uncertainties versus atomic force errors.
b Computational costs. The training time here refers to the time required for each
epoch. The inference time includes the time cost of computing uncertainty. The
light blue dashed bar denotes the time cost of the expectation-maximization (EM)
algorithm. c Force mean absolute errors (MAEs) and root mean square errors

(RMSEs) on the test set. d Spearman’s rank correlation coefficient between
uncertainty and force error. e ROC-AUC scores. While all five methods achieve
strong Spearman’s rank correlations and ROC-AUC scores, ensemble, dropout, and
GMM require longer computation times; dropout and MVE exhibit much lower
accuracy in force prediction. Error bar denotes the standard deviation from 5
independent experiments. Source data are provided as a Source Data file.
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multiple independent MLIPs. Since our implementation uses four
independent models, training and inference times are approximately
four times longer than for a single model. It is worth noting that the
actual time cost is highly dependent on implementation. In practice,
the actual time required to train an ensemble can be less than the
number of models implies. TheMonte Carlo dropoutmethod requires
multiple inferences to obtain uncertainty, and the corresponding
computational cost is similar to the ensemblemethod. GMMquantifies
uncertainty through an iterative expectation-maximization algorithm
and therefore requires additional computation time. BothMVE and eIP
have minimal training and inference times, comparable to those of a
normalMLIP. Regarding the forceprediction accuracy shown inFig. 3c,
ensemble, GMM, and eIP achieve the lowest errors, while dropout and
MVEexhibit larger errors. Figure3d, e further illustrate the comparison
of Spearman’s correlation and ROC-AUC, respectively. Notably, Fig. 3e
shows that eIP performs even better than the ensemblemethod on the
ROC-AUC metric.

Applications
Active learning with eIP. UQ plays a key role in active learning for
training set construction. The quality of the training set is particularly
crucial for MLIP, as the accuracy of MLIPs can significantly decrease
when encountering unseen atomic configurations, leading to the col-
lapse of simulations16. Figure 4a illustrates a typical active learning
workflow for MLIPs, where the data points with high uncertainty are
iteratively explored to enrich the training set. In addition, uncertainty-
driven dynamics (UDD) simulation39 can be employed to enhance
sampling efficiency. InUDDsimulations, thepotential energy surface is
modified so that the atomic configurations with higher uncertainties
are assigned lower potential energies, and consequently, these struc-
tures become more accessible, as indicated in Fig. 4b. The imple-
mentation of UDD simulation with eIP is provided in the “Methods”
section.

We demonstrate the active learning process with eIP, using a
water dataset as an example. In each iteration, we performed standard

Fig. 4 | Active learning with eIP. aWorkflow. Potential energy and uncertainty are
calculated simultaneously by eIP. b Illustration of uncertainty-driven dynamics
(UDD). The potential energy surface (PES) is adaptively modified according to
uncertainty, with the potential energy in high-uncertainty regions being reduced to
facilitate enhanced sampling.c Simulation results ineach generation. Theevolution

of potential energy and uncertainty over time is shown for both conventional MD
and eIP-UDD simulations. The uncertainty for each configuration is the mean
atomic uncertainty determined by Eq. (7). In MD simulations, the PES remains
unmodified, whereas in eIP-UDD simulations, the PES is modified based on the
uncertainty from eIP.
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MD and UDD simulations using our eIP model. We refer to the UDD
simulation driven by the uncertainty quantified by eIP as the eIP-UDD
simulation. Changes in uncertainty and energy over simulation time
are illustrated in Fig. 4c, where the uncertainty for each configuration
is the mean atomic uncertainty determined by Eq. (7). The initial
training set comprises 1000 configurations sampled from a classical
MD simulation trajectory generated using an empirical force field. The
abnormal energy fluctuations suggest that both the MD and eIP-UDD
simulations collapse very early. After the first iteration, the MD simu-
lation remains stable for the full 50ps. Although the eIP-UDD simula-
tion collapses after 20 ps, the uncertainty increases over time,
indicating that more previously unseen configurations are explored
during the eIP-UDDsimulation. After the second iteration, both theMD
and the eIP-UDD simulations remain stable for the full 50ps. We also
observe that the uncertainty does not increase significantly, and this
may suggest that configurations are explored sufficiently around cer-
tain local minima. The UDD parameters can be adjusted to further

explore a broader configuration space. Details of the settings of UDD
parameters are provided in Supplementary Note 7 and Supplementary
Figs. 9–12.

Application of eIP in universal MLIP. Finally, we explored the per-
formance of eIP in universal MLIPs. To this end, we trained the model
on theMaterials Project Trajectory (MPtrj) dataset46. The hexibin plots
and the ROC curve in Fig. 5a–c demonstrate the performance of eIP on
such a large dataset. We then conducted eIP-UDD simulations to test
theperformanceof eIP in enhanced sampling.We selected twodistinct
materials as examples, namely lithium iron phosphate (LiFePO4) and
polydimethylsiloxane (PDMS). LiFePO4 is a mature commercial cath-
ode material for lithium-ion batteries, while PDMS is a widely applied
organosilicon polymer material. These materials serve as benchmarks
for evaluating the configurational sampling performance of eIP-UDD
simulations for both inorganic crystalline and organic polymeric sys-
tems. To evaluate the diversity of the generated configurations, we

Fig. 5 | Universal potential with eIP. a Comparison of atomic forces between eIP
prediction and ground truth. The model is trained on the Materials Project Tra-
jectory (MPtrj) dataset46.bHexbin plots of uncertainties versus atomic force errors.
The Spearman’s rank correlation coefficient is 0.76. c ROC curve. The ROC-AUC
score is 0.914. d–f Simulation results of LiFePO4. g–i Simulation results of poly-
dimethylsiloxane (PDMS). The potential energy curves (d) and (g) indicate that

both MD and eIP-UDD simulations are stable, demonstrating the effectiveness of
the universal potential. The uncertainty curves (e) and (h) reveal that eIP-UDD
configurations exhibit higher uncertainty levels for both materials. The evolutions
of configurational entropy (f) and (i) further confirm that eIP-UDD simulations
generate more diverse configurations than conventional MD simulations.
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calculated the configurational entropy for each trajectory, as detailed
in the “Methods” section. For each material, changes in potential
energy, uncertainty, and configurational entropy over simulation time
are shown in Fig. 5d–i. In Fig. 5d, the initial LiFePO4 configuration was a
pre-optimized structure sourced from the Materials Project. No sig-
nificant decrease in potential energy was observed at the beginning of
the simulation. The brief rise in potential energy during the early stage
of the eIP-UDD simulation occurs due to themodified potential energy
surface that forces the system to escape the original local minimum.
The initial PDMS configuration in Fig. 5g was built in-house (see
“Methods”) and not pre-relaxed. The decrease in potential energy
corresponds to the structural relaxation process. In Fig. 5e, h, the
trajectory of the eIP-UDD simulation has a higher uncertainty than that
of the conventional MD simulation, as expected. The results of the
configurational entropy in Fig. 5f, i further prove that the eIP-UDD
simulations have obtained more diverse configurations.

Discussions
UQ is a critical topic in various fields of machine learning, particularly
in scientific applications such asmolecular simulations based onMLIP.
ConventionalUQmethods suffer fromeither high computational costs
or decreased prediction accuracy. In this work, we propose a single-
model UQ method, called eIP, which achieves both efficiency and
accuracy, as demonstrated by extensive experiments in various
applications. The eIP framework incorporates locality, directionality,
and quantile regression, all of which are essential for achieving optimal
results. This is evident from the ablation study presented in Supple-
mentary Note 3, where the absence of any single component leads to a
noticeable decline in performance.

Although ensemble methods have been widely used in active
learning, they typically require training four or more models simulta-
neously. In practice, this process usually involves dozens or more
iterations and takes a significant amount of time and computational
resources to obtain a satisfactory training set. As a result, single-model
UQmethods, such as eIP, have the potential to save several months in
applications, making eIP a more efficient alternative when time con-
straints and computational resources are a significant concern. In
addition, for large-scale simulations, ensemble methods require a
significant amount of computation to evaluate the reliability of MLIP-
based MD simulations, while eIP facilitates real-time assessment
without incurring noticeable additional costs.

Methods
Formulism of eIP
We employ quantile regression with maximum likelihood estimation
to bettermodel the uncertainty ofMLIPs. Quantile regression is solved
by minimizing the tiled loss for a given quantile q:

Li =ρqðϵiÞ= maxðqϵi, ðq� 1ÞϵiÞ, ð2Þ

where ϵi denotes the residual for observation i.
The quantile q follows an asymmetric Laplace distribution

with mean μ, variance σ, and an asymmetrical parameter equal to
the quantile q47. The likelihood function can be expressed as a
scalar mixture of Gaussians48,49N ðμ+ τz,ωσzÞ, where τ = 1�2q

qð1�qÞ,
ω= 2

qð1�qÞ, z � exp 1
σ

� �
.

We assume that the atomic forces F 2 RN × 3 come from a Gaus-
sian distribution, but the mean and variance are unknown. For
instance, the x-component of the force on the atom i follows:

f ix � N ðμix + τzix ,ωσixzixÞ: ð3Þ

By placing a Gaussian prior on the unknown mean μix and an
Inverse-Gamma prior on the unknown variance σ2

ix , we obtain the

Normal-Inverse-Gamma (NIG) evidential prior p(μix, σix∣mix) with a set
of parameters mix = (γix, νix, αix, βix)

35,45. As a result, γix is equal to the
predicted force

E½μix �=
Z 1

μix =�1
μixpðμixÞdμix = γix , ð4Þ

and the x-component of epistemic uncertainty for the atom i is

Var ½μix �=
Z 1

μix =�1
μ2
ixpðμixÞdμix � ðE½μix �Þ2 =

βix

νixðαix � 1Þ : ð5Þ

The y- and z-components are computed similarly. We define the
uncertainty σi associated with the atom i as

σi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βix

νixðαix � 1Þ

� �
+

βiy

νiyðαiy � 1Þ

 !
+

βiz

νiz ðαiz � 1Þ

� �vuut : ð6Þ

The uncertainty for a configuration composed of N atoms is
determined by computing the average:

σ =
1
N

XN
i= 1

σi: ð7Þ

It should be noted that averaging can lead to a loss of local
information. While the maximum uncertainty value is an alternative, it
is susceptible to intrinsic errors in uncertainty quantification. The
weighted quantile is a more robust choice, but it requires careful
selection of the weights.

The model is trained by maximizing the probability p(fix∣mix).
Marginalizing out the likelihood parameters μix and σ2

ix :

pð f ix jmixÞ=
Z 1

σ2
ix =0

Z 1

μix =�1
pðf ix jμix , σ

2
ixÞpðμix ,σ

2
ix jmixÞdμixd σ2

ix :

ð8Þ

By placing the NIG prior on μix and σ2
ix , this integral has an ana-

lytical solution:

pð f ix jmixÞ= St f ix ; γix + τzix ,
2βixð1 +ωνixzixÞ

νixαix
, 2αix

� �
, ð9Þ

where Stðf ;μSt, σ
2
St, vStÞ is the Student t-distribution evaluated at fwith

locationparameterμSt, scale parameter σ2
St, and vSt degree of freedom.

We then obtain the negative log-likelihood (NLL) loss function45:

LNLL
ix = � logpðf true

ix jmixÞ

=
1
2
log

π
νix

� �
� αix logðΩÞ

+ αix +
1
2

� �
log ðf trueix � ðγix + τzixÞÞ

2
νix +Ω

� 	

+ log
ΓðαixÞ

Γðαix +
1
2Þ

 !
:

ð10Þ

where Ω = 4βix(1 +ωzixνix), zix =
βix

αix�1, and Γ(⋅) is the gamma function.
We use an evidence regularizer35 so that the model tends to out-

put low confidence when the predictions are incorrect:

LR
ix =ρqð f trueix � γixÞ �Φix , ð11Þ

where Φix = 2νix +αix +
1
βix

� 	
is the model confidence45. When predic-

tions are inaccurate, the model learns to reduce its confidence by
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outputting lower values for ν and α, or a higher value for β. Conse-
quently, as demonstrated by the quantitative results in Supplementary
Table 1, this regularization term effectively mitigates overconfidence.

The y- and z-components are computed similarly. Finally, the
overall loss function, including the L1 loss for energy prediction, is:

L= jEtrue � Ej+ w
3N

XN
i = 1

X
a2fx, y, zg

LNLL
ia + λLR

ia

� �
, ð12Þ

where w and λ are hyperparameters to adjust the weighting of each
term. The effects of these parameters on the results are discussed in
Supplementary Note 4.

The eIP model in this work is implemented on the PaiNN44 back-
bone as an example, but it is also applicable to other equivariant
backbones (see Supplementary Note 5). In contrast to the standard
PaiNN model, the eIP model incorporates an additional evidential
block, which takes the equivariant features as input and produces the
output α, β, and ν, as illustrated in Supplementary Fig. 7. Since the
evidential block is lightweight compared to themessage-passing layers
in the backbone, the additional computational overhead is minimal.
The model parameters are trained by minimizing the overall loss
function Eq. (12).

Datasets
ISO17dataset. The ISO17 dataset50 wasobtained fromhttp://quantum-
machine.org/datasets/. We adopted the original splitting strategy for
the training, validation, and test sets. For training sets of different
sizes, the smaller training setswere randomly sampled fromthe largest
training set, containing 400,000 conformations.

Silica glass dataset. The silica glass dataset is obtained from a pre-
viously published study32. It comprises 1691 configurations, each
containing 699 atoms (233 Si and 466 O atoms). These configurations
were generated through MD simulations with a force-matching
potential51 under various conditions, followed by density functional
theory (DFT) calculations to obtain energies and forces. We adopted
the same dataset splitting scheme as described in the ref. 32. Parti-
tioning these structures into IDandOODdatasets is challenging, as it is
difficult to find configurations with atomic environments entirely dis-
tinct fromone another. To reflect amore generalized evaluation under
more extreme conditions, the training set includes only structures
generated under low-temperature, low-deformation-rate conditions,
while the test set contains structures extracted from trajectories at
higher temperatures and higher deformation rates.

Water dataset. The initial water training set is taken fromour previous
work17. It comprises 1000 configurations sampled from classical MD
trajectories with the SPC/E force field52. Each configuration contains
288 atoms with periodic boundary conditions. During active learning,
we ranUDD simulations at 300K and sampled 1000 configurations for
each iteration. The energies and forces are determined using density
functional theory (DFT) calculations employing the cp2k software
package53 with the PBE-PAW-DFT-D3 method54–56.

MPtrj dataset. The MPtrj dataset46 is a collection of MD trajectories
designed for training a universal potential. It comprises millions of
configurations covering 89 elements, and the energies and forces are
determined using DFT calculations. We adopted the original splitting
strategy with an 8:1:1 training, validation, and test ratio.

Evaluation metrics
Spearman’s rank correlation coefficient. Spearman’s rank correlation
is a non-parametricmeasureof the strength anddirectionof association
between two ranked variables. Unlike Pearson’s correlation, which
accesses linear relationships, Spearman’s rank correlation evaluates

howwell the relationship between two variables can be described using
a monotonic function. We expect a larger error to be associated with a
higheruncertainty, and their correlationdoesnotnecessarily need tobe
linear. Therefore, Spearman’s rank correlation coefficient was used to
assess the reliability of the uncertainty. A coefficient of 1 means perfect
correlation, and a coefficient of 0 indicates that there is no correlation
between the ranks of the two variables.

Area under the receiver operating characteristic curve. The receiver
operating characteristic (ROC) curve is a graphical representation of a
classifier’s performance. The area under the ROC curve (ROC-AUC)
provides a complementary evaluation metric for UQ that avoids the
possible limitations of using Spearman’s rank correlation coefficient
alone. Following the approach of a previous study32, we designed a
classification task in which predictions with high errors are expected to
exhibit high levels of uncertainty. An error threshold (εc) and an
uncertainty threshold (Uc) are defined to classify data points. A data
point is classified as a true positive (TP) if both its true error and esti-
mateduncertainty exceed their respective thresholds (ε > εc andU >Uc);
a false positive (FP) if the error is below its threshold but the uncertainty
is above (ε ≤ εc and U >Uc); a true negative (TN) if both are below their
thresholds (ε ≤ εc and U ≤Uc); and a false negative (FN) if the error is
above its threshold but the uncertainty is below (ε > εc and U ≤Uc). We
set the threshold to be at the 20th percentile as in ref. 32. The ROC-AUC
score ranges from 0 to 1, with a score of 1 denoting a perfect classifier
and 0.5 indicating performance no better than random choice.

Configurational entropy. Configurational entropy57,58 quantifies the
number of ways that atoms in a system can be arranged. High entropy
indicates that the system is likely to take on many different arrange-
ments, whereas low entropy implies a more ordered, less random
state. We used configurational entropy as a metric to measure the
diversity of configurations obtained during MD and UDD simulations.
The configurational entropy is defined as the Shannon entropy59,60:

Sconf = �
X
i

pi logpi, ð13Þ

where pi is the probability of the system being in state i. We then
projected states onto a discretized order parameter grid and calcu-
lated the frequency of these order parameters within a simulation
trajectory. For LiFePO4, the selected order parameters were the P-O-Fe
angle and the PO4 tetrahedral distortion. For PDMS, we selected the
end-to-end distance and the radius of gyration as the order
parameters. To determine the probability distribution, the order
parameter space was discretized into an Ne ×Ne grid, and the
frequency of configurations within each grid cell was calculated. The
configurational entropywas normalizedbydividing it by themaximum
possible entropy value, 2 logðNeÞ, resulting in values between0 and 1. A
larger grid size Ne offers a finer resolution but may suffer from
statistical noise, while a smaller Ne provides more robust statistics at a
lower resolution. We used Ne = 40 for all reported results. Varying the
value of Ne does not significantly affect the results, as the configura-
tional space was sampled sufficiently in our simulations.

Molecular dynamics (MD) simulations
MD simulations were performed using the Atomic Simulations Envir-
onment (ASE) Python library61. The simulations are set with a timestep
of 0.1 fs in the canonical (NVT) ensemble. The Berendsen thermostat62

was used with a coupling temperature of 300K and a decaying time
constant τ of 100 fs. The atomic velocities were initialized according to
the Boltzmann distribution at 300K. The initial water configuration
was selected from the water test set. The LiFePO4 configuration was
obtained from the Materials Project, comprising 168 atoms in the unit
cell. The PDMS configuration was constructed using three polymer
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chainswith apolymerizationdegreeof 25 and adensity of0.97 g ⋅ cm−3,
containing 759 atoms in total. All systems were modeled with periodic
boundary conditions.

Uncertainty-driven dynamics (UDD) simulations
The UDD simulation technique utilizes a bias energy that favors con-
figurations with higher uncertainties. Kulichenko et al. introduce a bias
energy39 defined as:

Ebiasðσ2Þ=A exp � σ2

NB2

� �
� 1


 �
, ð14Þ

where the parameters A and B are chosen empirically. The bias force
Fbias is then determined by calculating the negative gradient of the bias
energy:

Fbias = � ∇ðEbiasðσ2ÞÞ= � Ebiasðσ2Þ0∇σ2: ð15Þ

By leveraging eIP for UQ, the gradient of σ can be obtained through
automatic differentiation.

Notably, the bias force could become exceptionally large, leading
to the collapse of molecular simulations. We found that limiting the
magnitude of the bias forces using a clipping strategy proved not
effective. To prevent this issue,we incorporate aGaussian term to limit
themagnitude of the bias forcewith two additional empirically chosen
parameters C and D:

F limited
bias = Fbias

Dffiffiffiffiffiffi
2π

p
C
exp

�F2
bias

2C2

 !
: ð16Þ

This adjustment of bias force implies a new bias energy formulation
and ensures more stable UDD simulations. Detailed discussions about
the empirical parameters A, B, C, and D are provided in the Supple-
mentaryNote 6. Finally, the combined force F + F limited

bias is used to guide
the simulations toward configurations with higher uncertainties,
enhancing the sampling for more diverse atomic configurations.

Data availability
The ISO17 datasets are publicly available (see “Methods”). The Silica
Glass datasets are available at32. The rawdata of error-uncertainty plots
and MD simulation trajectories generated in this study have been
deposited in figshare63. Source data are provided with this paper.

Code availability
The source code for reproducing the key findings in this work is
available at Zenodo (https://doi.org/10.5281/zenodo.17730621) and
GitHub (https://github.com/xuhan323/eIP). It is licensed under
Apache License 2.0, which allows users to use, modify, and dis-
tribute the code freely, provided that proper attribution is given to the
original authors. This open source approach improves the reproduci-
bility of our results and facilitates further research in this area.
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