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Machine learning interatomic potentials have been widely used to facilitate

large-scale molecular simulations with accuracy comparable to ab initio
methods. To ensure the reliability of the simulation, the training dataset is
iteratively expanded through active learning, where uncertainty serves as a
critical indicator for identifying and collecting out-of-distribution data. How-
ever, existing uncertainty quantification methods tend to involve either
expensive computations or compromise prediction accuracy. Here we show
an evidential deep learning framework for interatomic potentials with a
physics-inspired design. Our method provides uncertainty quantification
without significant computational overhead or decreased prediction accuracy,
consistently outperforming other methods across a variety of datasets. Fur-
thermore, we demonstrate applications in exploring diverse atomic config-
urations, using examples including water and universal potentials. These
results highlight the potential of our method as a robust and efficient alter-
native for uncertainty quantification in molecular simulations.

Molecular dynamics (MD) simulation provides atomic insights into
physical and chemical processes and has become an indispensable
research tool in computational physical science'”. Classical MD
simulation uses an empirical potential function to determine intera-
tomic forces*®, which is computationally efficient but not accurate
enough, especially when polarization or many-body interactions are
important®. In contrast, the ab initio approach for modeling atomic
interactions is based solely on fundamental physical principles, leading
to generally higher accuracy and transferability”®, but the high com-
putational cost limits the size of systems that can be simulated. To
achieve both efficiency and accuracy, machine learning interatomic
potentials (MLIPs) have been proposed’™, which allow to learn ab
initio interatomic potentials and performing MD simulations with
much lower computational cost. MLIPs have been successfully applied

in the study of amorphous solid”, catalysis", chemical reaction®,
and more.

One of the primary challenges to MLIP-based MD simulations lies
in the construction of the training dataset, which should include var-
ious configurations that may appear during the simulation. Inadequate
training data will lead to decreased accuracy or even failure of the
simulations'®". This challenge limits the application of MLIP-based MD
simulations. Active learning based on uncertainty quantification (UQ)
plays a crucial role in constructing training sets for MLIPS®®?, During
active learning, configurations with higher uncertainties are sampled
to enrich the training set. This process usually needs to be repeated
dozens or more times', and the computational cost required for UQ
could be considerable. Therefore, a robust yet efficient method for UQ
is desired.
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A variety of UQ methods have been developed for MLIPs. Moment
tensor potential”® uses an extrapolation parameter to estimate uncer-
tainty, but this method does not apply to deep neural network models.
Gaussian approximation potential® utilizes Gaussian process regres-
sion to provide UQ along with its predictions. However, the primary
limitation of the Gaussian approximation potential lies in its compu-
tational cost, which scales cubically with the dataset size. Ensemble
methods* are quite reliable for UQ, but also suffer from computational
burdens due to the training of multiple models. The computational
issue of the ensemble methods can be alleviated by weight-sharing. For
example, Kellner et al. proposed direct propagation of shallow
ensembles (DPOSE)*. However, this approximation may worsen the
known issue of ensemble overconfidence, especially in larger models™.
Single-model methods, such as Monte Carlo dropout”?, Gaussian
mixture models (GMM)*°, and mean-variance estimation (MVE)*,
mitigate the computational issue, but their performances are still not
satisfactory®’. The development of efficient UQ has been advanced by
methods such as loss trajectory analysis for uncertainty (LTAU)* and
last-layer prediction rigidity (LLPR)**. LTAU extracts uncertainty from
training trajectories. LLPR proposes a prediction rigidity formalism to
obtain uncertainties and employs several approximations to reduce
computational complexity.

Evidential deep learning®?® is a promising alternative, which
estimates uncertainty through a single forward pass and requires
minimal extra computational resources. Another advantage of evi-
dential deep learning is that it can estimate aleatoric and epistemic
uncertainties separately. Aleatoric uncertainty arises from intrinsic
noise in the data and cannot be evaded or reduced. In contrast, epis-
temic uncertainty reflects the fidelity of the model in its representation
of the data (excluding aleatoric effects) and decreases as the number
of training samples increases”. The ability of evidential deep learning
to distinguish between these two types of uncertainty is particularly
beneficial for active learning, where we want to sample data with high
epistemic uncertainty rather than aleatoric uncertainty. However,
recent attempts®>*® trying to integrate evidential deep learning with
MLIPs result in unsatisfactory performance. Failures may be attributed
to inappropriate design in model architecture.

In this work, we reexamine the uncertainty associated with MLIPs
from a physical perspective and propose a framework for UQ based on
evidential deep learning. We call this framework the evidential
interatomic potential (elP). The performance of elP is evaluated across
various datasets and benchmarked with other UQ methods, demon-
strating outstanding performance with minimal additional computa-
tional cost. We then extend the application of elP to uncertainty-driven
dynamics (UDD) simulations**, enabling the efficient exploration of
the diverse atomic configurations. This approach (UDD) modifies the
potential energy surface by assigning lower energies to high-
uncertainty configurations, thereby making them more accessible.
Lastly, we use elP to train a universal potential and demonstrate its
ability for concurrent UQ during simulations. While other UQ methods
can achieve this, elP offers advantages in efficiency and reliability.

Results

Preliminary

Machine learning interatomic potential (MLIP). MLIPs are used to
predict energy and forces within a given atomic configuration. For a
system comprising N atoms, MLIPs typically take the atomic species
Z e 7" and coordinates R ¢ R¥*3 as input and output the total
potential energy E. The forces F € RV*3 exerted on the atoms are
derived by calculating the negative gradient of £ with respect to the
coordinates. The primary distinction among various MLIPs lies in the
algorithm used to convert the input information into vectorized fea-
tures that represent the local atomic environments. These features are
designed to be invariant or equivariant under translation, rotation, and
permutation.

Aleatoric and epistemic uncertainty. Two categories of uncertainty
can be modeled in deep learning®. Aleatoric uncertainty arises from
inherent noise in data labels. In the context of MLIPs, data labels are
obtained from ab initio calculations. Although highly rigorous ab initio
calculations could limit the aleatoric uncertainty, they are often com-
putationally prohibitive in practice. As a result, MLIPs are often trained
on multiple datasets of varying quality, which introduces label noise.
For example, in the MPtrj dataset, aleatoric uncertainty may stem from
inconsistent Hubbard U correction or varying convergence criteria®.
In contrast, epistemic uncertainty is caused by a lack of knowledge,
typically due to insufficient data. This type of uncertainty can be
reduced by adding more training data, often through active learning.
For the sake of simplicity, the term uncertainty in the following results
refers to epistemic uncertainty, unless otherwise specified. We further
discuss aleatoric uncertainty in Supplementary Note 2.

Evidential deep learning. Evidential deep learning is an efficient
method to estimate the uncertainty of the results predicted by neural
networks. Starting from a maximum likelihood perspective, the targets
are assumed to be drawn from a Gaussian distribution but with
unknown mean and variance (u, °). A Gaussian prior is placed on the
unknown mean u and an Inverse-Gamma prior on the unknown var-
iance ¢ leading to the Normal Inverse-Gamma distribution with a set
of parameters m = (y, v, &, ). Neural networks are then trained to infer
m, and the prediction, aleatoric, and epistemic uncertainty are calcu-
lated as™:

Bz Flo= By var- u(aﬁ i) M
— —
prediction .
aleatoric epistemic

Framework of elP

As illustrated in Fig. 1, elP consists of an MLIP block for predicting
energy and force, and an evidential quantile regression block for UQ.
The elP framework extends a regular MLIP by feeding its equivariant
features into a lightweight network that outputs prior parameters m.
The loss function is central to elP. We used a mean absolute error
(MAE) loss for energy fitting, whereas force predictions are optimized
by a composite loss that combines negative log-likelihood (NLL) with a
regularization term. Further details are provided in the “Methods”
section. In designing elP, we considered the following points, which
are indispensable to achieving robust performances.

Locality. In most MLIPs, the potential energy is calculated as the sum
of atomic contributions, E=Y"" F; with the model learning the
mapping from the local environment of the atom i to £;. Therefore, we
estimate the uncertainty associated with E; rather than the total
potential energy E. However, we do not have the ground truth for E;.
Fortunately, we can adapt the atomic forces instead of £; to estimate
the uncertainty per atom.

Directionality. We attribute uncertainty in MLIP predictions to the
inadequate learning of the local atomic environment. Consequently,
this uncertainty is directionally dependent. Our model produces a
separate uncertainty value for each Cartesian component of the
atomic force, rather than a single value per atom or system. This is
illustrated using a three-atom toy system in Supplementary Note 1,
where the uncertainty varies with direction. Beyond MLIPs, the direc-
tional dependence is also crucial for predicting other non-scalar
properties, such as dipole moments, dielectric tensors, and Hamilto-
nians. In the following experiments, we employ the equivariant back-
bone PaiNN** to extract equivariant features and output the
parameters of the Normal Inverse-Gamma prior. We also apply elP to
other equivariant backbones to demonstrate the generality, and the
results are provided in Supplementary Note 5.
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Fig. 1| Framework of elP. a A typical equivariant interatomic potential model
extracting both invariant and equivariant features. The invariant features are used
to output the potential energy. b Evidential quantile regression. The equivariant
features are used to output the parameters for uncertainty quantification. The

model is optimized using a mean absolute error (MAE) loss for energy, and a
composite loss that combines negative log-likelihood (NLL) with a regularization
term for force.

Quantile regression. The original evidential deep learning framework
for regression® assumes that the targets are drawn from a Gaussian
distribution, which may not adequately describe the target distribu-
tion of MLIPs. To alleviate this limitation, we adopt the Bayesian
quantile regression framework® that combines evidential deep learn-
ing with quantile regression, enabling UQ without relying on Gaussian
assumptions. Unlike traditional regression that minimizes mean
squared error, our approach learns a specified quantile g of the force
distribution. This is achieved by employing an asymmetric Laplace
distribution, which is subsequently reformulated as a scale mixture of
Gaussians to facilitate Bayesian inference. The computational proce-
dure of Bayesian quantile regression is analogous to the original evi-
dential framework. The key difference lies in the loss functions, which
are specifically designed for quantile estimation. Our implementation
details are provided in the “Methods” section.

Experiments

ISO17 dataset. We started by assessing the performance of elP using
the ISO17 dataset, which comprises MD trajectories of C;0,H;¢ iso-
mers. This dataset is divided into in-distribution (ID) and out-of-
distribution (OOD) subsets, making it particularly suitable for
uncertainty quantification (UQ). In the ID scenario (known mole-
cules/unknown conformations), the test molecules are also present
in the training set. In contrast, the OOD scenario (unknown mole-
cules/unknown conformations) involves test molecules that are not
in the training set. The training set contains 400,000 conformations,
which is a substantial amount for such small molecules. Therefore,
we also explore the impact of training data volume. Specifically, we
train the model using 1%, 5%, 30%, and 100% of the training data,
respectively. Figure 2a-d shows the scatter plots that compare

uncertainties with force errors for different amounts of training data,
demonstrating positive correlations in both ID and OOD scenarios.
The mean uncertainty and mean absolute error (MAE) for force
predictions are shown in Fig. 2e, f, respectively. As expected, both
metrics decrease with an increase in the amount of training data.
Furthermore, we evaluated the reliability of UQ using additional
metrics, including Spearman’s rank correlation coefficient and the
area under the receiver operating characteristic curve (ROC-AUC),
whose definitions are provided in the “Methods” section. As shown in
Fig. 2g, h, both Spearman’s rank correlation coefficient and ROC-AUC
improve as the amount of training data grows. In the ID scenario,
Spearman’s rank correlation coefficients ranging from 0.74 to 0.86
and ROC-AUC values ranging from 0.86 to 0.93 indicate the strong
performance of elP. In the OOD scenario, although the test set
molecules are absent from the training set, the evaluation metrics
still provide reasonable uncertainty estimates.

Silica glass dataset. We then evaluate elP’s performance for more
complex systems using a silica glass dataset, which comprises large
bulk structures. Given the challenges in partitioning large structures
into ID and OOD datasets, we adopted the dataset partition scheme
consistent with the previous study®. We also compare elP with other
UQ methods, including ensemble, Monte Carlo dropout, Gaussian
mixture model (GMM), and Mean-variance estimation (MVE), whose
implementations are provided in Supplementary Note 6. Figure 3a
shows the scatter plots of uncertainties versus force errors and indi-
cates that all methods achieve positive correlations. Figure 3b presents
the computational efficiency analysis of the five methods. Despite the
good performance of the ensemble method, it incurs higher compu-
tational costs during both training and inference due to the need for
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Fig. 2 | Results on ISO17 dataset with increasing data volume. a-d Scatter plots
of uncertainties versus force errors using 1%, 5%, 30%, and 100% of the training data,
respectively. Each point corresponds to the averaged uncertainty/error in a
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molecule. e Mean uncertainty on the test set. f Force mean absolute errors (MAEs)
on the test set. g Spearman’s rank correlation coefficient between uncertainty and
force error. h ROC-AUC scores.
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glass dataset. a Hexbin plots of uncertainties versus atomic force errors.
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light blue dashed bar denotes the time cost of the expectation-maximization (EM)
algorithm. ¢ Force mean absolute errors (MAEs) and root mean square errors
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(RMSEs) on the test set. d Spearman’s rank correlation coefficient between
uncertainty and force error. e ROC-AUC scores. While all five methods achieve
strong Spearman’s rank correlations and ROC-AUC scores, ensemble, dropout, and
GMM require longer computation times; dropout and MVE exhibit much lower
accuracy in force prediction. Error bar denotes the standard deviation from 5
independent experiments. Source data are provided as a Source Data file.
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multiple independent MLIPs. Since our implementation uses four
independent models, training and inference times are approximately
four times longer than for a single model. It is worth noting that the
actual time cost is highly dependent on implementation. In practice,
the actual time required to train an ensemble can be less than the
number of models implies. The Monte Carlo dropout method requires
multiple inferences to obtain uncertainty, and the corresponding
computational cost is similar to the ensemble method. GMM quantifies
uncertainty through an iterative expectation-maximization algorithm
and therefore requires additional computation time. Both MVE and elP
have minimal training and inference times, comparable to those of a
normal MLIP. Regarding the force prediction accuracy shown in Fig. 3c,
ensemble, GMM, and elP achieve the lowest errors, while dropout and
MVE exhibit larger errors. Figure 3d, e further illustrate the comparison
of Spearman’s correlation and ROC-AUC, respectively. Notably, Fig. 3e
shows that elP performs even better than the ensemble method on the
ROC-AUC metric.

Applications
Active learning with elP. UQ plays a key role in active learning for
training set construction. The quality of the training set is particularly
crucial for MLIP, as the accuracy of MLIPs can significantly decrease
when encountering unseen atomic configurations, leading to the col-
lapse of simulations™. Figure 4a illustrates a typical active learning
workflow for MLIPs, where the data points with high uncertainty are
iteratively explored to enrich the training set. In addition, uncertainty-
driven dynamics (UDD) simulation® can be employed to enhance
sampling efficiency. In UDD simulations, the potential energy surface is
modified so that the atomic configurations with higher uncertainties
are assigned lower potential energies, and consequently, these struc-
tures become more accessible, as indicated in Fig. 4b. The imple-
mentation of UDD simulation with elP is provided in the “Methods”
section.

We demonstrate the active learning process with elP, using a
water dataset as an example. In each iteration, we performed standard
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Fig. 4 | Active learning with eIP. a Workflow. Potential energy and uncertainty are
calculated simultaneously by elP. b Illustration of uncertainty-driven dynamics
(UDD). The potential energy surface (PES) is adaptively modified according to
uncertainty, with the potential energy in high-uncertainty regions being reduced to
facilitate enhanced sampling. ¢ Simulation results in each generation. The evolution

of potential energy and uncertainty over time is shown for both conventional MD
and elP-UDD simulations. The uncertainty for each configuration is the mean
atomic uncertainty determined by Eq. (7). In MD simulations, the PES remains
unmodified, whereas in elP-UDD simulations, the PES is modified based on the
uncertainty from elP.
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Fig. 5 | Universal potential with elP. a Comparison of atomic forces between elP
prediction and ground truth. The model is trained on the Materials Project Tra-
jectory (MPtrj) dataset*®. b Hexbin plots of uncertainties versus atomic force errors.
The Spearman’s rank correlation coefficient is 0.76. ¢ ROC curve. The ROC-AUC
score is 0.914. d-f Simulation results of LiFePO,. g-i Simulation results of poly-
dimethylsiloxane (PDMS). The potential energy curves (d) and (g) indicate that

both MD and elP-UDD simulations are stable, demonstrating the effectiveness of
the universal potential. The uncertainty curves (e) and (h) reveal that elP-UDD
configurations exhibit higher uncertainty levels for both materials. The evolutions
of configurational entropy (f) and (i) further confirm that elP-UDD simulations
generate more diverse configurations than conventional MD simulations.

MD and UDD simulations using our elP model. We refer to the UDD
simulation driven by the uncertainty quantified by elP as the elP-UDD
simulation. Changes in uncertainty and energy over simulation time
are illustrated in Fig. 4c, where the uncertainty for each configuration
is the mean atomic uncertainty determined by Eq. (7). The initial
training set comprises 1000 configurations sampled from a classical
MD simulation trajectory generated using an empirical force field. The
abnormal energy fluctuations suggest that both the MD and elP-UDD
simulations collapse very early. After the first iteration, the MD simu-
lation remains stable for the full 50 ps. Although the elP-UDD simula-
tion collapses after 20 ps, the uncertainty increases over time,
indicating that more previously unseen configurations are explored
during the elP-UDD simulation. After the second iteration, both the MD
and the elP-UDD simulations remain stable for the full 50 ps. We also
observe that the uncertainty does not increase significantly, and this
may suggest that configurations are explored sufficiently around cer-
tain local minima. The UDD parameters can be adjusted to further

explore a broader configuration space. Details of the settings of UDD
parameters are provided in Supplementary Note 7 and Supplementary
Figs. 9-12.

Application of elP in universal MLIP. Finally, we explored the per-
formance of elP in universal MLIPs. To this end, we trained the model
on the Materials Project Trajectory (MPtrj) dataset*°. The hexibin plots
and the ROC curve in Fig. 5a-c demonstrate the performance of elP on
such a large dataset. We then conducted elP-UDD simulations to test
the performance of elP in enhanced sampling. We selected two distinct
materials as examples, namely lithium iron phosphate (LiFePO,4) and
polydimethylsiloxane (PDMS). LiFePO, is a mature commercial cath-
ode material for lithium-ion batteries, while PDMS is a widely applied
organosilicon polymer material. These materials serve as benchmarks
for evaluating the configurational sampling performance of elP-UDD
simulations for both inorganic crystalline and organic polymeric sys-
tems. To evaluate the diversity of the generated configurations, we
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calculated the configurational entropy for each trajectory, as detailed
in the “Methods” section. For each material, changes in potential
energy, uncertainty, and configurational entropy over simulation time
are shown in Fig. 5d-i. In Fig. 5d, the initial LiFePO, configuration was a
pre-optimized structure sourced from the Materials Project. No sig-
nificant decrease in potential energy was observed at the beginning of
the simulation. The brief rise in potential energy during the early stage
of the elP-UDD simulation occurs due to the modified potential energy
surface that forces the system to escape the original local minimum.
The initial PDMS configuration in Fig. 5g was built in-house (see
“Methods”) and not pre-relaxed. The decrease in potential energy
corresponds to the structural relaxation process. In Fig. 5e, h, the
trajectory of the elP-UDD simulation has a higher uncertainty than that
of the conventional MD simulation, as expected. The results of the
configurational entropy in Fig. 5f, i further prove that the elP-UDD
simulations have obtained more diverse configurations.

Discussions

UQ is a critical topic in various fields of machine learning, particularly
in scientific applications such as molecular simulations based on MLIP.
Conventional UQ methods suffer from either high computational costs
or decreased prediction accuracy. In this work, we propose a single-
model UQ method, called elP, which achieves both efficiency and
accuracy, as demonstrated by extensive experiments in various
applications. The elP framework incorporates locality, directionality,
and quantile regression, all of which are essential for achieving optimal
results. This is evident from the ablation study presented in Supple-
mentary Note 3, where the absence of any single component leads to a
noticeable decline in performance.

Although ensemble methods have been widely used in active
learning, they typically require training four or more models simulta-
neously. In practice, this process usually involves dozens or more
iterations and takes a significant amount of time and computational
resources to obtain a satisfactory training set. As a result, single-model
UQ methods, such as elP, have the potential to save several months in
applications, making elP a more efficient alternative when time con-
straints and computational resources are a significant concern. In
addition, for large-scale simulations, ensemble methods require a
significant amount of computation to evaluate the reliability of MLIP-
based MD simulations, while elP facilitates real-time assessment
without incurring noticeable additional costs.

Methods
Formulism of elP
We employ quantile regression with maximum likelihood estimation
to better model the uncertainty of MLIPs. Quantile regression is solved
by minimizing the tiled loss for a given quantile g:

L;=pgy(€;) = max(ge;, (q — ey, 2)
where €; denotes the residual for observation i.

The quantile g follows an asymmetric Laplace distribution
with mean g, variance o, and an asymmetrical parameter equal to
the quantile g*’. The likelihood function can be expressed as a
scalar mixture of Gaussians***’N'(u+1z,w0z), where t:ql(;—_zg),
© =gy 2~ X ().

We assume that the atomic forces F ¢ R¥*3 come from a Gaus-
sian distribution, but the mean and variance are unknown. For
instance, the x-component of the force on the atom i follows:

Sie ~ Ny + 72, 00 2;). 3)

By placing a Gaussian prior on the unknown mean ;. and an
Inverse-Gamma prior on the unknown variance 02, we obtain the

Normal-Inverse-Gamma (NIG) evidential prior p(u;,, 0;Jm;) with a set
of parameters My = Vi, Vo, Qi B> . As a result, y;, is equal to the
predicted force

Blpty]= / HoxP () d i = Vi @)
Hy=—00

and the x-component of epistemic uncertainty for the atom i is

A 2. By

Varlu)= [ pn) it — )= )
Hix =—00 AT

The y- and z-components are computed similarly. We define the
uncertainty g; associated with the atom i as

— :Bix ﬂly :Biz
%= (uix(aix - 1)) i (u,-ym,»y - 1)) i (m(a,-z - 1))' ©

The uncertainty for a configuration composed of N atoms is
determined by computing the average:

1 N
NZ @

It should be noted that averaging can lead to a loss of local
information. While the maximum uncertainty value is an alternative, it
is susceptible to intrinsic errors in uncertainty quantification. The
weighted quantile is a more robust choice, but it requires careful
selection of the weights.

The model is trained by maximizing the probability p(f,/m;o).
Marginalizing out the likelihood parameters u;, and 02

p(fb(lmix):/ , 0/ P ity 02D (Wi, O IMyy) dptd 07
0220 py=—co
®)

By placing the NIG prior on y; and o2, this integral has an ana-

lytical solution:

2B, A+ wvyz;y)

Vix®ix

P(filmy) =St <fix; Vix T2y, ) 2%«) , 9)

where St(f; us,, 0%, Us,) is the Student t-distribution evaluated at fwith
location parameter yis;, scale parameter 0%, and vs, degree of freedom.
We then obtain the negative log-likelihood (NLL) loss function*:

NLL _ true
Lix Im;,)

—log p(f i
%Iog( ) — a; log(Q)

<a1x + ) IOg( true - (ny + Tzix))zVix + Q) (10)

[(a;)
+ log <l'(al,(+%)> .

where Q=41+ wzyVi), 2, = 721, and I'(-) is the gamma function.
We use an evidence regularlzer so that the model tends to out-
put low confidence when the predictions are incorrect:
L= p,,(ftrue Vi) Py, a1
where ®;, = (21/“ +a;, + 2 is the model confidence®. When predic-
tions are inaccurate, the Thodel learns to reduce its confidence by
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outputting lower values for v and a, or a higher value for f. Conse-
quently, as demonstrated by the quantitative results in Supplementary
Table 1, this regularization term effectively mitigates overconfidence.
The y- and z-components are computed similarly. Finally, the
overall loss function, including the L1 loss for energy prediction, is:

N
w
LIE™ —El+ 55> > (Lo +ALg), (12)

i=1 ae{x,y,z}

where w and A are hyperparameters to adjust the weighting of each
term. The effects of these parameters on the results are discussed in
Supplementary Note 4.

The elP model in this work is implemented on the PaiNN** back-
bone as an example, but it is also applicable to other equivariant
backbones (see Supplementary Note 5). In contrast to the standard
PaiNN model, the elP model incorporates an additional evidential
block, which takes the equivariant features as input and produces the
output a, B, and v, as illustrated in Supplementary Fig. 7. Since the
evidential block is lightweight compared to the message-passing layers
in the backbone, the additional computational overhead is minimal.
The model parameters are trained by minimizing the overall loss
function Eq. (12).

Datasets

ISO17 dataset. The ISO17 dataset’® was obtained from http://quantum-
machine.org/datasets/. We adopted the original splitting strategy for
the training, validation, and test sets. For training sets of different
sizes, the smaller training sets were randomly sampled from the largest
training set, containing 400,000 conformations.

Silica glass dataset. The silica glass dataset is obtained from a pre-
viously published study®. It comprises 1691 configurations, each
containing 699 atoms (233 Si and 466 O atoms). These configurations
were generated through MD simulations with a force-matching
potential® under various conditions, followed by density functional
theory (DFT) calculations to obtain energies and forces. We adopted
the same dataset splitting scheme as described in the ref. 32. Parti-
tioning these structures into ID and OOD datasets is challenging, as it is
difficult to find configurations with atomic environments entirely dis-
tinct from one another. To reflect a more generalized evaluation under
more extreme conditions, the training set includes only structures
generated under low-temperature, low-deformation-rate conditions,
while the test set contains structures extracted from trajectories at
higher temperatures and higher deformation rates.

Water dataset. The initial water training set is taken from our previous
work". It comprises 1000 configurations sampled from classical MD
trajectories with the SPC/E force field*>. Each configuration contains
288 atoms with periodic boundary conditions. During active learning,
we ran UDD simulations at 300 K and sampled 1000 configurations for
each iteration. The energies and forces are determined using density
functional theory (DFT) calculations employing the cp2k software
package® with the PBE-PAW-DFT-D3 method**~°.

MPtrj dataset. The MPtrj dataset*® is a collection of MD trajectories
designed for training a universal potential. It comprises millions of
configurations covering 89 elements, and the energies and forces are
determined using DFT calculations. We adopted the original splitting
strategy with an 8:1:1 training, validation, and test ratio.

Evaluation metrics

Spearman’s rank correlation coefficient. Spearman’s rank correlation
is a non-parametric measure of the strength and direction of association
between two ranked variables. Unlike Pearson’s correlation, which
accesses linear relationships, Spearman’s rank correlation evaluates

how well the relationship between two variables can be described using
a monotonic function. We expect a larger error to be associated with a
higher uncertainty, and their correlation does not necessarily need to be
linear. Therefore, Spearman’s rank correlation coefficient was used to
assess the reliability of the uncertainty. A coefficient of 1 means perfect
correlation, and a coefficient of O indicates that there is no correlation
between the ranks of the two variables.

Area under the receiver operating characteristic curve. The receiver
operating characteristic (ROC) curve is a graphical representation of a
classifier’'s performance. The area under the ROC curve (ROC-AUC)
provides a complementary evaluation metric for UQ that avoids the
possible limitations of using Spearman’s rank correlation coefficient
alone. Following the approach of a previous study”, we designed a
classification task in which predictions with high errors are expected to
exhibit high levels of uncertainty. An error threshold (¢.) and an
uncertainty threshold (U,) are defined to classify data points. A data
point is classified as a true positive (TP) if both its true error and esti-
mated uncertainty exceed their respective thresholds (¢ > &.and U> U,);
afalse positive (FP) if the error is below its threshold but the uncertainty
is above (e<¢&. and U> U,); a true negative (TN) if both are below their
thresholds (e<&. and U< U,); and a false negative (FN) if the error is
above its threshold but the uncertainty is below (¢ >¢. and U< U,). We
set the threshold to be at the 20th percentile as in ref. 32. The ROC-AUC
score ranges from O to 1, with a score of 1 denoting a perfect classifier
and 0.5 indicating performance no better than random choice.

Configurational entropy. Configurational entropy*’~® quantifies the
number of ways that atoms in a system can be arranged. High entropy
indicates that the system is likely to take on many different arrange-
ments, whereas low entropy implies a more ordered, less random
state. We used configurational entropy as a metric to measure the
diversity of configurations obtained during MD and UDD simulations.
The configurational entropy is defined as the Shannon entropy>**°:

Sconf == Zpi lng,-, (13)
i

where p; is the probability of the system being in state i. We then
projected states onto a discretized order parameter grid and calcu-
lated the frequency of these order parameters within a simulation
trajectory. For LiFePQ,, the selected order parameters were the P-O-Fe
angle and the PO, tetrahedral distortion. For PDMS, we selected the
end-to-end distance and the radius of gyration as the order
parameters. To determine the probability distribution, the order
parameter space was discretized into an NexN. grid, and the
frequency of configurations within each grid cell was calculated. The
configurational entropy was normalized by dividing it by the maximum
possible entropy value, 2 log(N,), resulting in values between O and 1. A
larger grid size N, offers a finer resolution but may suffer from
statistical noise, while a smaller N, provides more robust statistics at a
lower resolution. We used N, =40 for all reported results. Varying the
value of N, does not significantly affect the results, as the configura-
tional space was sampled sufficiently in our simulations.

Molecular dynamics (MD) simulations

MD simulations were performed using the Atomic Simulations Envir-
onment (ASE) Python library®’. The simulations are set with a timestep
of 0.1fs in the canonical (NVT) ensemble. The Berendsen thermostat®
was used with a coupling temperature of 300 K and a decaying time
constant 7 of 100 fs. The atomic velocities were initialized according to
the Boltzmann distribution at 300 K. The initial water configuration
was selected from the water test set. The LiFePO, configuration was
obtained from the Materials Project, comprising 168 atoms in the unit
cell. The PDMS configuration was constructed using three polymer
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chains with a polymerization degree of 25 and a density 0f 0.97 g- cm™?,
containing 759 atoms in total. All systems were modeled with periodic
boundary conditions.

Uncertainty-driven dynamics (UDD) simulations

The UDD simulation technique utilizes a bias energy that favors con-
figurations with higher uncertainties. Kulichenko et al. introduce a bias
energy*’ defined as:

2
Epias(02)=A {exp (— %) - 1}, (14)

where the parameters A and B are chosen empirically. The bias force
Fuias is then determined by calculating the negative gradient of the bias
energy:

Foias = — V(Evias(07)) = — Eigs(0%) V. (15
By leveraging elP for UQ, the gradient of ¢ can be obtained through
automatic differentiation.

Notably, the bias force could become exceptionally large, leading
to the collapse of molecular simulations. We found that limiting the
magnitude of the bias forces using a clipping strategy proved not
effective. To prevent this issue, we incorporate a Gaussian term to limit
the magnitude of the bias force with two additional empirically chosen
parameters C and D:

2
Pl o 2 exp <—_Fb‘“) : (16)
V2nc 2C?

This adjustment of bias force implies a new bias energy formulation
and ensures more stable UDD simulations. Detailed discussions about
the empirical parameters A, B, C, and D are provided in the Supple-
mentary Note 6. Finally, the combined force F + Fimited js ysed to guide
the simulations toward configurations with higher uncertainties,
enhancing the sampling for more diverse atomic configurations.

Data availability

The ISO17 datasets are publicly available (see “Methods”). The Silica
Glass datasets are available at®. The raw data of error-uncertainty plots
and MD simulation trajectories generated in this study have been
deposited in figshare®. Source data are provided with this paper.

Code availability

The source code for reproducing the key findings in this work is
available at Zenodo (https://doi.org/10.5281/zenodo.17730621) and
GitHub (https://github.com/xuhan323/elP). It is licensed under
Apache License 2.0, which allows users to use, modify, and dis-
tribute the code freely, provided that proper attribution is given to the
original authors. This open source approach improves the reproduci-
bility of our results and facilitates further research in this area.
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