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Plasma protein profiling predicts cancer in
patients with non-specific symptoms
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Cancer detection is challenging, especially in patients with diffuse symptoms
that overlap with non-malignant conditions. Here we show that plasma protein
profiling can identify cancer among patients with non-specific symptoms.
Using proximity extension assay-based proteomics of 1463 plasma proteins
from 456 patients presenting with non-specific symptoms sampled prior to
cancer diagnostic work-up and diagnosis, we identify 29 proteins associated
with new cancer diagnoses. We develop a model able to stratify 160 cancer
cases and 296 non-cancer cases with an area under the curve of 0.80, main-
taining performance (0.82) in an independent replication cohort of 238
patients. The model also distinguishes cancer from autoimmune, inflamma-
tory and infectious diseases. Designed as a triage tool, our model based on

a blood test could help prioritize patients at higher cancer risk for rapid

and highly sensitive diagnostic modalities such as positron emission
tomography-computed tomography. These findings emphasize the potential
of blood proteome profiling to support timely diagnosis and transform clinical
medicine.

Early detection of cancer is key to reduce cancer-related mortality and
morbidity’. However, early diagnosis is challenging in patients present-
ing with non-specific symptoms’ as these patients are not entitled to one
of the organ-specific cancer diagnostic pathways. Cancer screening
programs furthermore primarily target a limited number of cancer
types, such as breast, cervical and colorectal cancer*. To avoid diag-
nostic delay in this patient group, several countries have therefore
initiated fast-track diagnostic pathways for patients with non-specific
symptoms suggestive of an underlying cancer**”. Referral of all patients

with non-specific symptoms to fast-track diagnostic pathways would,
however, strain the healthcare system and expose patients to potentially
harmful and unnecessary investigations. Minimally invasive and easily
accessible blood-based biomarkers discriminating between patients at
high risk of cancer and those without cancer could aid in selecting
patients that would benefit the most from an accelerated and targeted
cancer diagnostic work-up and possibly enable earlier diagnosis.
Pan-cancer blood biomarkers have been the focus of extensive
research®?°. While a handful of pan-cancer blood biomarkers have
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been evaluated in patient cohorts with non-specific symptoms prior to
cancer diagnosis, such as soluble urokinase plasminogen activator
receptor”, cfDNA methylation patterns® and markers of neutrophil
extracellular traps®, the vast majority of pan-cancer blood biomarkers
are first explored in patient cohorts with known cancer®* or are limited
by the use of healthy control groups®®"'52°* which do not reflect the
clinical setting in which pan-cancer blood biomarkers are intended to
be implemented. This lack of real-world settings during the discovery
phase of cancer biomarkers likely contributes to low accuracy in
detecting early-stage cancers and hinders their successful integration
into clinical practice®.

Given the vast heterogeneity of cancer, identifying unique pan-
cancer blood biomarkers is challenging. Therefore, integrating multi-
ple biomarkers or biomarker candidates into a combined cancer test is
an attractive strategy to enhance accuracy. Plasma proteomics is a
rapidly expanding field, and recent technological advancements
enable quantification of thousands of proteins using minute amounts
of plasma in large cohorts®.

Here, we used the proximity extension assay-based proteomics
analysis of 1463 proteins to explore the proteomic signature in blood
samples collected from 456 patients presenting with non-specific
symptoms prior to extensive cancer diagnostic workup. We identified
a core set of proteins associated with a new cancer diagnosis. This
protein signature was able to discriminate between patients later
diagnosed with cancer and patients diagnosed with non-malignant
autoimmune and inflammatory disorders, which are disease entities
especially difficult to distinguish from malignancies”. We confirmed
the ability of the protein signature to discriminate between cancer and
non-cancer in an independent cohort of 238 patients presenting with
similar non-specific symptoms and referred to a comparable fast-track
diagnostic pathway at a different domestic hospital. Our findings
indicate that cancer-specific signatures, identified through next-
generation protein profiling, can be leveraged in a blood test to
detect patients with non-specific symptoms who are at elevated risk of
an underlying malignancy. Rather than replacing highly sensitive
diagnostic work-ups, such a test could help distinguish cancer from
non-malignant inflammatory conditions in heterogeneous, real-world
populations, and enable clinicians to prioritize those most likely to
benefit from timely, resource-intensive investigations, including
advanced imaging and biopsies where appropriate.

Results

Discovery cohort

For the discovery of cancer-specific proteomic signatures in patients
presenting with non-specific symptoms, we characterized the plasma
proteome of 456 patients (55% female, median age 71.0 [IQR 60-78])
referred to the fast-track multidisciplinary cancer diagnostic pathway
at Danderyd Hospital, Stockholm, Sweden (the MEDECA cohort;
NCT06355245%). Referrals to this pathway were based on non-specific
symptoms such as general malaise, extreme fatigue, reduced appetite,
unintentional weight loss, prolonged fever, unexplained pain, patho-
logical laboratory values, increased number of healthcare contacts, or
radiological findings suggestive of metastasis without an apparent
primary tumor. All study patients underwent a standardized and
extensive cancer diagnostic work up (i.e., fast-track pathway), includ-
ing an expanded panel of biochemical analyses, diagnostic tissue
biopsies and imaging. Among these 456 patients, 160 were diagnosed
with cancer during the follow-up period of six months (Supplementary
Table S1, Fig. 1). The most common cancer types were hematologic
malignancies (28%), pancreas, gall bladder and bile duct adenocarci-
nomas (11%) and lung adenocarcinomas (8%) (Supplementary
Table S2). Metastatic disease was diagnosed in 102 out of 115 patients
with solid tumors. Fifty-five of the patients not diagnosed with cancer
were diagnosed with a non-malignant autoimmune disease, 19 with an
inflammatory disease, and 32 with an infectious disease. One hundred

and thirty-eight patients received no diagnosis, and 52 patients
received a non-inflammatory, non-autoimmune or non-infectious
diagnosis (Supplementary Table S3). Patients categorized as “no
diagnosis” were either given a functional or a non-somatic diagnosis,
were diagnosed with a benign tumor condition that did not explain
their symptoms or had symptoms and/or pathological findings that
remained unexplained following the diagnostic work-up.

Replication cohort

To replicate the plasma proteomic signature and validate the perfor-
mance of the classification model in an independent patient cohort, we
characterized the plasma proteome of 238 patients (50% female,
median age 72 [IQR 61-78]) admitted to a similar fast-track multi-
disciplinary cancer diagnostic pathway for patients presenting with
non-specific symptoms at Orebro University Hospital, Orebro, Sweden
(the ALLVOS cohort). Referrals to this pathway were based on similar
criteria as above with the exception of a radiological sign of malig-
nancy without an apparent primary site. All study patients underwent a
standardized and extensive cancer diagnostic work up as described
above. A total of 35 patients were diagnosed with cancer during the six
month follow-up period in this cohort (Supplementary Table S1, Fig. 1).
The most common cancer types were hematologic malignancies
(20%), squamous cell carcinoma in lung (12%) and neuroendocrine
tumors (9%) (Supplementary Table S2). Metastatic disease was diag-
nosed in 12 out of 26 patients with solid tumors. Twenty-six of the
patients not diagnosed with cancer were diagnosed with an auto-
immune disease, 18 with an inflammatory disease, and 23 with an
infectious disease. Eighty-three patients received no diagnosis, and 53
patients received a non- inflammatory, non-autoimmune or non-
infectious diagnosis (Supplementary Table S4).

Differential plasma protein expression patterns characterize
patients later diagnosed with cancer as compared to non-cancer
in patients with non-specific symptoms of cancer

Samples collected before diagnostic work-up and diagnosis from a
total of 694 patients from the two cohorts were analyzed, where all but
one sample passed quality control (from the discovery cohort, Fig. 1).
Additionally, we observed a high inter-panel correlation for assays
used as technical controls, with correlation coefficients of 0.97-0.99
for IL6, 0.97-0.99 for CXCL8 and 0.95-0.96 for TNF (Supplemen-
tary Fig. S1).

To identify proteins significantly associated with a new cancer
diagnosis, we conducted a differential expression analysis by per-
forming a cancer to non-cancer comparison within the discovery
cohort (Fig. 2A). In total, 28 proteins were differentially expressed
between patients later diagnosed with cancer and non-cancer patients
with an adjusted p-value<0.05 and log fold change (logFC)>0.5.
Strikingly, among these, 22 proteins were upregulated in patients later
diagnosed with cancer also in the replication cohort (Fig. 2A). Logistic
regression models adjusted for age and sex confirmed that elevated
levels of these 22 proteins were significantly associated with increased
cancer risk, reflected by significant odds ratios (ORs) per 1 NPX
increase greater than 1 (Fig. 2B, Supplementary Table S5). Several of
these 22 proteins have been proposed to be cancer-related according
to the Human Protein Atlas (v24.proteinatlas.org) (Fig. 2B), but only
four are reported as secreted and one as tissue enriched. The plasma
protein levels for the seven proteins with the lowest adjusted p-value
are shown in Fig. 2C and were upregulated in patients later diagnosed
with cancer relative to non-cancer patients in both the discovery
cohort and the replication cohort.

To further explore the separation of patients later diagnosed
with cancer and non-cancer, we conducted principal component
analysis (PCA) based on the proteins differentiated in both cohorts
(n=22). The first two principal components (PC1 and PC2) were
examined to understand the underlying structure of the data among
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Fig. 1| Study populations and biomarker discovery workflow. Overview of A study participants in the discovery and replication cohorts, B plasma proteome profiling

workflow and C biomarker discovery workflow. NGS Next Generation Sequencing.

three distinct groups: patients later diagnosed with cancer, non-
malignant diagnoses (including autoimmune, infectious, and
inflammatory diagnoses, among others) (Supplementary Tables S3,
S4), and patients receiving no diagnosis (Fig. 3A). Most of the varia-
tion was explained by PCl, accounting for 65% and 48% of the var-
iation in the discovery and the replication cohorts, respectively.
Notably, we observed a left-right separation between the groups
along PC1, from no diagnosis to other non-malignant diagnoses to
cancer diagnoses. The loading scores for PC1 for the separate pro-
teins were similar across both cohorts (Fig. 3B) and the Normal
Protein eXpression (NPX) values were higher for several of these
proteins in cancer compared to both no diagnosis and other diag-
noses across both cohorts (Fig. 3C). These findings illustrate that the
expression of these proteins exhibit variation across disease entities,
emphasizing their potential in diagnostics.

Development and validation of a proteomics-derived multi-
variate pan-cancer classification model for patients with non-
specific symptoms of cancer

Starting with the discovery cohort, we developed a multivariate pena-
lized logistic regression model to predict cancer in patients with non-
specific symptoms based on the proteomics data. Patients were ran-
domly divided (70/30) into a training and test set (Fig. 4A). Within the
training set, we applied three initial filtering criteria to reduce the num-
bers of features prior to model fitting, where a protein needed to meet at
least one: (i) a mean NPX difference greater than 1, (i) an adjusted p-
value <1E-6 from a t-test, or (jii) an area under the receiver operating
curve (AUC)>0.7 for individual proteins. This selection process

identified 29 proteins (Fig. 4B), which we combined into a feature set
used as input to a penalized logistic regression model (lasso) (Fig. 4A,
bottom).

With this approach, we identified several new candidate bio-
markers for pan-cancer detection (Fig. 4C). All proteins contributed
positively, consistent with only upregulated proteins in the differential
expression analyses. The developed model performed with an AUC of
0.80 in the discovery cohort, with a similar performance with an AUC
of 0.82 when applied to the replication cohort (Fig. 4D). The prob-
ability distributions for both cohorts are summarized in Fig. 4E. The
results were robust across 50 different seeds (Supplementary Fig. S2),
with negligible multicollinearity between the proteins (Supplemen-
tary Fig. S3).

To further investigate model performance, we divided patients
not diagnosed with cancer in the discovery and replication cohorts
into subgroups representing clinical entities as follows: no diagnosis
(n=141), infectious disease (n =32), autoimmune disease (n=155), and
inflammatory disease (n=19) for the discovery cohort and no diag-
nosis (n = 83), infectious disease (n =23), autoimmune disease (n =26)
and inflammatory disease (n =18) for the replication cohort. Patients
receiving a diagnosis outside these disease entities were excluded
from this analysis due to heterogeneity in this group. We observed a
gradient from moderate (AUC 0.67) to high (AUC 0.86) discrimination
between cancer and inflammatory disease, cancer and autoimmune
disorders, cancer and infectious disorders and cancer and no diagnosis
in the discovery cohort, and high discrimination between cancer and
all these disease entities in the replication cohort (AUC ranging from
0.82 to 0.84) (Fig. 5). Although this analysis is limited by the small
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sample sizes and substantial heterogeneity within each group, these
findings suggest that the model captures biologically relevant differ-
ences between cancer and other clinical conditions.

Discussion
Screening for cancer using minimally invasive and easily accessible
blood samples is an attractive approach with the advantage of high
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throughput, cost effective and objective assessments. However, due
to inherent challenges such as tumor heterogeneity and study
designs that do not accurately reflect real life settings, no such tests
are currently available for pan-cancer screening. In this study, we
developed a cancer prediction model for patients presenting with
non-specific cancer symptoms using plasma levels of 1463 proteins
quantified by proximity extension assay-based proteomics in pre-
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Fig. 2 | Differential expression analyses comparing patients later diagnosed
with cancer to non-cancer in patients with non-specific symptoms of cancer.
A Volcano plot summarizing differential expression results comparing cancer and
non-cancer patients in the discovery cohort (n =456, cancer =160, non-cancer =
296). Proteins upregulated also in the replication cohort are colored in red. P-
values were derived from two-sided moderated ¢-tests from limma linear models
and adjusted for multiple testing using the Benjamini-Hochberg method. B Left:
Forest plot displaying odds ratios (ORs) per 1 NPX increase and 95% confidence
intervals (log scale) from logistic regression models adjusted for age and sex, for
proteins differentially expressed between cancer and non-cancer patients. Error
bars represent the 95% confidence intervals, and data are centered on the estimated
OR. Corresponding p-values are listed in Supplementary Table S5. Right:

Characterization of the differentially expressed proteins according to whether they
are cancer-related, secreted or tissue enriched according to the Human Protein
Atlas annotation (v24.proteinatlas.org), or associated with pan-cancer according to
Alvez et al.”. C Protein levels of the top significant differentially expressed proteins
in the discovery cohort, presented in the discovery (n =456, cancer =160, non-
cancer = 296) and replication cohorts (n =238, cancer = 35, non-cancer = 203). Box
plots display the median (center line), interquartile range (box bounds), and
whiskers representing the 1.5x interquartile range. Statistical analyses were per-
formed on data derived from independent biological samples. No technical repli-
cates were included. Sample sizes (n) indicate the number of individuals included in
each analysis.

B Value i | C Category No diagnosis Other diseases E] Cancer
Category e Cancer Other diseases No diagnosis o w o
°ce°ee° Discovery Replication
Discovery cohort Discovery cohort 7.5
MAD1L1 5.0
DPY30 o
T ELOA 25 2
EIF4G1 8
4 . ZBTB17 0.0 o4 ¥e o
METAP1D -
¢ . ° GRPEL1 -2.5_]
g . o FKBP4 7.57] H
2 ] L . PSIP1 .
g2 werkTe e PARP1 5.0 %
<
& N 2SI B PRDX3 =
8 WITN e RRM2 2.5 g
< O 0. M e ® o . g
2 o . ;,;.,' e . APEX1 o
g L A . KRT18 0.0 - — e
2 R Y . . PTS = J
o o, .: . BAIAP2
S
N o - A R HDGF
o~ L s STCH 6]
. KRT19 =
o S100A12 i m
. AGR2 8 : 5
-4 ° PAEP NN 0 55 5 G
T T 1 -
0 ) 10 00 010 020 o v
PC1 (65.36% variance explained) Value E 34
Replication cohort Replication cohort 2
DPy3o ] 2
MAD1L1 [ 0] - 9: 2
/ FKBP4 = e =
METAP1D -1
GRPEL1
ZBTB17 -2
. PRDX3 6
=) PSIP1
£ 257 -t APEX1 4 o
S ELOA o] 2
e o EIF4G1 m
2 o RRM2 0 ppik - & 8 [
£ 004 y e PARP1
g ¢ . BAIAP2 -2
2 i HDGF
5 . et o PTS
2 LA KRT18 5.0 :
§-25- . . KRT19 1 LN
o . STC1 2.5 o}
. S100A12 | g
PAEP 0.0 %
| ° AGR2 : - - - o
-5.0 T T T T T T 1
-5 0 5 10 00 01 02
PC1 (47.77% variance explained) Value

Fig. 3 | PCA based on the differentially expressed proteins (n =22) in the dis-
covery and replication cohorts. A PCA visualizations in the discovery and replica-
tion cohorts. B Loading scores of individual proteins contributing to PC1. C Boxplots
showing protein expression across patient groups of selected proteins in the dis-
covery cohort (no diagnosis =141, other diseases =155, cancer =160) and replication
cohort (no diagnosis = 83, other diseases =120, cancer = 35). Patients with ‘no

diagnosis’ were either given a functional or non-somatic diagnosis, were diagnosed
with a benign tumor, or had unexplained symptoms after evaluation. Box plots display
the median (center line), interquartile range (box bounds), and whiskers representing
the 1.5x interquartile range. All statistical analyses were performed on data derived
from independent biological samples. No technical replicates were included. Sample
sizes (n) indicate the number of individuals included in each analysis.

diagnostic samples. This model not only distinguished between
patients later diagnosed with cancer and non-cancer symptomatic
controls, but also differentiated patients later diagnosed with cancer
from non-cancer symptomatic patients later diagnosed with auto-
immune, inflammatory and infectious diseases. Remarkably, the

model maintained its performance in an independent replication
cohort prior to diagnostic work-up. Although this classification
model does not meet the demands of clinical implementation yet, it
surpasses previous pan-cancer screening attempts and is a promising
lead for further investigations.
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The majority of circulating cancer biomarker candidates never
enter clinical practice?®”. Developing cancer biomarkers distinguish-
ing cancer patients from patients with non-malignant inflammation is
an even greater challenge, and one of the major strengths of this study
is the use of two independent cohorts comprising symptomatic con-
trols with inflammatory and autoimmune diseases. The control group
in the current study presented with similar symptoms as patients
diagnosed with cancer during the follow-up time and these patients
were diagnosed with other non-malignant diseases, such as auto-
immune, inflammatory and infectious diagnoses which are disease
entities that can be difficult to distinguish from cancer. Another key
strength of this study is the prospective cohort design with samples
collected before cancer diagnostic work-up, cancer diagnosis, and
treatment. Accordingly, while previously studied biomarkers’ dis-
played higher AUC in predicting (pan-)cancer as compared to the
current study, this may be a consequence of study design and control
group composition.

Our model furthermore demonstrated a robust ability to dif-
ferentiate between patients later diagnosed with cancer and patients
later diagnosed with the various non-malignant disease entities,
including autoimmune, inflammatory, infectious diseases and

symptomatic patients with no diagnosis. As expected, AUC was
highest for cancer vs no diagnosis (0.86), followed by an AUC value
of 0.76 for cancer vs infectious disease, 0.75 for cancer vs auto-
immune disease and 0.67 for cancer vs inflammatory disease. These
results highlight the model’s strong discriminatory power, particu-
larly in distinguishing patients later diagnosed with cancer from
patients later diagnosed with non-malignant infectious and auto-
immune diseases. The slightly lower AUC for discriminating patients
later diagnosed with cancer and patients later diagnosed with
inflammatory diseases suggests a need for further refinement in this
area and supports the evidence of crosstalk between cancer and
inflammation, highlighting the challenges in distinguishing between
these two conditions?.

Several of the proteins identified by the machine learning model
have been implicated in various tumor types. The six most important
proteins according to the lasso model include Anterior gradient 2
(AGR2), Cytokeratin 19 (KRT-19), Carcinoembryonic antigen-related
cell adhesion molecule 5 (CEACAMS), Ribonucleotide reductase sub-
unit M2 (RRM2), Poly ADP-ribose polymerase 1 (PARP1) and PC4 and
SFRSI interacting protein 1 (PSIP1). AGR2, which plays a role in several
cellular processes such as migration, differentiation and proliferation,
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Fig. 5 | Performance of the pan-cancer classification model to discriminate
between cancer and different disease entities in patients presenting with non-
specific symptoms of cancer. The model’s ability to differentiate patients later
diagnosed with cancer from patients with no diagnosis, infectious, autoimmune,
and inflammatory disease is illustrated using ROC curves in the discovery (no
diagnosis = 141, infectious = 32, autoimmune =55, and inflammatory disease =19)
(A) and replication cohort (no diagnosis = 83, infectious = 23, autoimmune =26,
and inflammatory disease =18) (B). The distribution of model probabilities and the
five most important proteins in the model for discovery cohort (no diagnosis =141,
infectious = 32, autoimmune =55, inflammatory disease =19, and cancer n =160 (C)
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and replication cohort (no diagnosis = 83, infectious = 23, autoimmune =26,
inflammatory disease =18, and cancer n =35 (D). The dashed lines represent the
median cancer probability. Patients categorized as “no diagnosis” include those
with functional or non-somatic diagnoses, benign tumor conditions that did not
explain their symptoms or cases with unexplained symptoms/pathological findings
after the diagnostic work-up. Box plots display the median (center line), inter-
quartile range (box bounds), and whiskers representing the 1.5x interquartile range.
All statistical analyses were performed on data derived from independent biolo-
gical samples. No technical replicates were included. Sample sizes (n) indicate the
number of individuals included in each analysis.

has been identified as a pro-oncogenic protein that inhibits p53-
activity. It has been observed in several solid tumors such as pan-
creatic, breast, lung, ovarian, prostate and colorectal cancer®’. KRT-19
is expressed in epithelial tissues and is predominantly found in

proliferating regions in the gastrointestinal tract and has been shown
to be overexpressed in radio-resistant colon tumors®. CEACAMS, also
known as CEA, is a member of the CEA-family and is localized in gas-
trointestinal tract, cervix, sweat glands and prostate®. It plays
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important roles in cell adhesion, intra- and intercellular signaling as
well as cancer progression, inflammation, angiogenesis and metas-
tasis. CEACAMS is used for disease monitoring in colorectal, lung,
breast, gastric, pancreatic and liver cancer but has also been associated
with gallbladder, urinary bladder, mucinous ovarian and endometrium
carcinomas®. RRM2 is an enzyme involved in DNA synthesis and repair
and has been associated with poor prognosis in patients with lung
adenocarcinoma®. PARP1, a nuclear enzyme involved in DNA repair
and gene transcription, is present in a variety of tumor tissues and is
targeted by inhibitors used for treatment of several cancer types such
as ovarian, breast, pancreatic and prostate cancers™. PSIP1, a tran-
scriptional coactivator, has been associated with increased tumor-
genicity in breast cancer®.

Notably, all proteins were found to be consistently upregulated
using the selected cutoffs in the differential expression analyses in
both cohorts. One reason for this could be that the plasma pro-
teomics assay used in this study primarily captures changes in the
circulatory blood proteome, which limits its ability to detect the
down- or upregulation of other proteins, such as intracellular com-
partments or membrane-associated proteins often hallmarking
cancer’* ™,

The most common cancer type identified in our cohort was
hematologic malignancies, which reflects the nature of the study
population that includes patients with non-specific symptoms who are
not eligible for organ-specific diagnostic pathways. Patients presenting
with organ-specific symptoms, such as a breast lump or rectal bleed-
ing, or radiological signs suggestive of organ-specific cancers are
typically referred directly to corresponding pathways and were
therefore not included in this study. As a result, our cohort, recruited
from a fast-track diagnostic out-patient clinic for unspecific cancer
symptomes, includes a higher proportion of diagnostically challenging
cancers, such as hematologic malignancies, for which the initial clinical
presentation lacks clear organ-specific indicators. This explains the
overrepresentation of certain cancer types compared to the general
population and underscores the clinical complexity of the target group
addressed by our model.

There are several limitations worth addressing. Firstly, this study
is limited by the large proportion of patients later diagnosed with
metastatic disease, hampering generalizability in cohorts with a larger
proportion of localized disease. Secondly, the replication cohort has a
lower proportion of patients later diagnosed with cancer because it
does not include patients with radiological findings of metastases
without an identifiable primary tumor. However, the model’s ability to
perform with equal performance in the replication cohort despite this
difference is a great advantage. Thirdly, the sensitivity of the proteins
to pre-analytical variation should also be considered for further
investigations. Finally, direct comparison with commercial pan-cancer
tests, such as Galleri (GRAIL)" and Cancerguard (formerly
CancerSEEK)®, was not performed and could therefore not be used as a
benchmark. However, our model was specifically designed for triage in
symptomatic individuals, which differs from the early screening focus
of currently available commercial pan-cancer tests evaluated in
asymptomatic populations.

Establishing blood-based diagnostic biomarkers that exceed or
match the effectiveness of conventional cancer diagnostics, such as
radiology and biopsy, poses a great challenge due to the high level of
accuracy these reference methods provide. While the current model
does not rival the precision of established advanced imaging such as
positron emission tomography-computed tomography scan, it
demonstrates promising performance (AUC 0.80-0.82 in both dis-
covery and replication cohorts) and is designed to support earlier
clinical decision-making, particularly in primary care. Patients pre-
senting with vague or non-specific symptoms often fall outside organ-
specific cancer pathways, and referring all such individuals for
advanced imaging would place unsustainable demands on healthcare

resources while exposing patients to unnecessary radiation and inva-
sive procedures. By incorporating proteomic profiles into a triage
framework, our model could help identifying patients at higher risk of
malignancy and guide timely diagnostic work-up, including imaging
and biopsy, where appropriate.

This triage approach is particularly valuable for general practi-
tioners, who frequently face the challenge of differentiating between
malignant and benign causes of symptoms such as fatigue, weight loss,
or pain. The model’s “rule-in” utility is supported by the predicted
probability distributions shown in Fig. 5, where cancer patients cluster
toward the higher end of the probability scale in both cohorts. This
suggests that the model is well suited for identifying patients likely to
benefit from a rapid evaluation, especially those who may not initially
qualify for specialized diagnostic pathways. While the current study
was conducted in a high-prevalence cohort, future validation in lower-
prevalence primary care populations is essential to assess general-
izability. Overall, leveraging validated protein biomarker profiles into
actionable proteomic risk scores could aid in streamlining referral
decisions and reducing missed cancers. As research advances, we
believe that the clinical application of proteomic risk scores is poised
to revolutionize cancer management, offering a powerful tool for
clinicians in the fight against cancer by identifying patients who could
benefit from a rapid diagnostic work-up using orthogonal methods.

Looking ahead, several steps are needed to support clinical
translation and broader implementation of this approach. Firstly,
validation in primary care populations with lower cancer prevalence
will be crucial to assess generalizability and clinical utility in real-world
decision-making. Secondly, direct comparison with other diagnostic
blood test based platforms, including commercial pan-cancer tests
such as GRAIL’s Galleri" and Cancerguard (formerly CancerSEEK)® will
be important to contextualize performance and added value. Addi-
tionally, the development of a simplified protein panel based on a
smaller number of high-performing biomarkers, quantified using
absolute protein concentrations to facilitate clinical implementation,
would be of great value. Finally, validation of the model in healthy
population cohorts will help to evaluate the performance in asymp-
tomatic individuals. Together, these future efforts will provide critical
insights for refining the model and advancing its clinical applicability in
early cancer detection and diagnostic triage.

In summary, our study identifies several plasma proteins that can
distinguish cancer from other inflammatory conditions using samples
collected from patients before cancer diagnostic work-up and cancer
diagnosis. Furthermore, we developed a model which discriminates
cancer from infectious, autoimmune, and inflammatory diseases and
confirm its capacity in an independent cohort also presenting with
unspecific symptoms. Although further studies are needed in clinical
settings with a lower prevalence of cancer, this study emphasizes the
potential of blood proteome profiling to transform clinical medicine.

Methods

Both MEDECA (discovery cohort) and ALLVOS (replication cohort)
studies comply with the Declaration of Helsinki and all patients
provided written informed consent. The MEDECA study was
approved by the regional ethical review board in Stockholm and the
Swedish Ethical Review Authority (dnr 2017/2160-31/1, 2019-00677,
2020-00186, 2021-02939 and 2023-07877-02) while the ALLVOS
study was approved by the regional ethical review board in Uppsala
and the Swedish Ethical Review Authority (dnr 2018/082, 2022-
05947-02, 2023-07972-02).

Study population

The MEDECA study. A total of 872 patients were admitted to the fast-
track multidisciplinary diagnostic pathway at the Diagnostic center at
Danderyd Hospital, Stockholm Sweden, between March 2018 and
September 2020. During this timeframe, 502 patients were enrolled in
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the study, with temporary pauses during vacation periods and in the
initial phase of the covid-19 pandemic. Forty-six patients were exclu-
ded from further analyses, either due to confirmed active cancer prior
to inclusion (n=21), lost to follow-up (n=4), withdrawal of consent
(n=2), insufficient plasma samples (n=18) or identified as outliers
(n=1, outlier in majority of measured proteins, likely due to large
monoclonal IgG paraprotein). No statistical method was used to pre-
determine sample size. Inclusion criteria were either Non-specific
Signs and Symptoms of Cancer (NSSC) or radiological sign of malig-
nancy without an apparent primary site and therefore not eligible for
entrance into an organ-specific pathway. NSSC onset was required to
be 6 months or less prior to referral and without any other obvious
explanation. They were defined as any of the following symptoms:
general malaise, extreme fatigue, reduced appetite, unintentional
weight loss of more than 5kg, prolonged fever, unexplained pain,
pathological laboratory values (such as anemia, elevated alkaline
phosphatase, erythrocyte sedimentation rate or calcium levels),
increased contacts to health system or increased use of medications.
Patients presenting with organ-specific symptoms are typically refer-
red directly to corresponding fast-track diagnostic pathways and, as
such, are admitted to the diagnostic out-patient clinic and therefore
not included in this study. All study patients underwent a standardized
and extensive cancer diagnostic work up (i.e., fast-track pathway),
including an expanded panel of biochemical analyses, diagnostic tis-
sue biopsies and imaging such as computed tomography, magnetic
resonance or ®F fluorodeoxyglucose positron emission tomography/
computed tomography investigations. Demographic data, comorbid-
ity, cancer diagnosis and other diagnoses were obtained from hospital
records.

The ALLVOS study. A total of 280 patients admitted to the fast-track
pathway for patients with unspecific cancer symptoms at Orebro
University Hospital between October 2018 and December 2022 were
asked to participate in the study. During this timeframe, 248 patients
accepted and were enrolled in the study. Inclusion criteria were
identical with the MEDECA study but did not include patients with
radiological sign of malignancy without an apparent primary site.
Patients with confirmed active cancer at inclusion (n = 2), insufficient
plasma samples (n=7) and lost to follow up (n=1) were excluded
from further analyses. No statistical method was used to pre-
determine sample size. Clinical data was obtained from hospital
records.

Outcome

Patients were followed for six months from study inclusion regarding
new cancer diagnosis. Diagnoses were obtained from individual
medical records. Basal cell carcinoma diagnosis was not classified
as cancer as it does not share the metastatic features of other
cancers.

Measurement of protein levels

Venous blood samples were collected at enrolment at the first visit to
the Diagnostic center (i.e. before cancer diagnostic work-up). For
MEDECA, EDTA plasma samples were centrifugated for 20 min at
2000 x g at room temperature immediately following sampling and
were stored at —80 °C until further analysis. For ALLVOS, EDTA plasma
samples were centrifuged for 7 min at 2400 x g at room temperature
and frozen at —80 °C until further analysis within 4 h of sampling.
Protein levels were analyzed using the proximity extension assay (PEA)
by Olink at SciLifeLab Affinity Protemics Uppsala (54). In PEA, matched
pairs of oligonucleotide-labeled antibodies will bind to their target
antigens in a pairwise manner. Upon antibody binding, the matched
oligonucleotides are brought into proximity and with the use of a DNA
polymerase, a PCR target sequence is created, amplified, detected, and
quantified using NGS. The Olink Explore 1536 panel used in this study is

comprised of four sub panels: Olink Explore 384 Cardiometabolic (LOT
number B0O4413), the Explore 384 Inflammation (LOT number B04411),
Olink Explore 384 Oncology (LOT number B04412) and Explore 384
Neurology (LOT number B04414). In total, 3.7 ul plasma per sample
was used.

Following sequencing on an Illumina NovaSeq 6000, the Olink
Explore platform generated raw count data where each assay/sample
pair was assigned an integer value representing the number of
detected DNA barcode copies. These raw counts were converted to
Normalized Protein eXpression (NPX) values, which are relative
quantification values on a log2 scale and used for downstream ana-
lyses. The NPX calculation involved two main steps. First, the assay-
specific counts for each sample and assay block were normalized to
the corresponding Extension Control signal and subsequently log2-
transformed. The Extension Control consists of a matched antibody
pair tagged with complementary DNA oligonucleotides that are
always in proximity, independent of antigen binding. It provides a
stable reference for controlling variation in the extension and
amplification steps. Additional internal controls, including the Incu-
bation Control and Amplification Control, were used to monitor
other aspects of the assay workflow but were evaluated separately as
part of quality control (QC) and not included in the actual NPX
calculation.

Because samples were fully randomized across plates, it was
assumed that majority of proteins were not differentially expressed
between plates. Therefore, Intensity Normalization was applied as a
between-plate normalization method. In this approach the median
NPX per assay across all QC-passed, non-control samples on each
plate is centered to zero. This zero-centered value then serves as the
reference for aligning NPX distributions across plates, effectively
removing systematic intensity differences and enabling compar-
ability across the dataset. Higher NPX equals relatively higher protein
abundance, negative NPX equals lower than the reference level and a
difference of one NPX means a doubling for the protein concentra-
tion. All data processing and normalization steps were performed
using Olink’s proprietary software package NPX Explore HT
and 3072.

Additional quality control of the dataset included removing
samples where more than 50% of the proteins failed quality control,
excluding individual protein measurements that failed quality control,
and retaining one assay for proteins measured across all four panels
(TNF, IL-6, and CXCLS).

Statistical analyses

Statistical analyses were performed in R version 4.2.1*%. Differential
expression analyses were performed using the limma package (ver-
sion 3.54.0)%, including age and sex as covariates, using a log fold
change (logFC) cut-off of 0.5. Resulting p-values were corrected for
multiple hypothesis testing using the Benjamini-Hochberg method**
and a p-value of 0.05 was used as threshold for significance. The
tidymodels (version 1.0.0)* package was used for PCA visualization
and for model development. Logistic regression models adjusted for
age and sex were used to estimate the association between individual
protein levels and cancer risk, implemented using the glm engine.
Multivariate regression models with lasso regularization were used
to identify predictive protein signatures, implemented via the glmnet
engine. For these analyses, the input data from the discovery cohort
was split into a training and test set in a 70/30 ratio. Within the
training set, we applied three initial filtering criteria to reduce the
numbers of features prior to model fitting, where a protein needed to
meet at least one: (i) a mean NPX difference greater than 1, (ii) an
adjusted p-value <1E-6 from a t-test, or (iii) an area under the
receiver operating curve (AUC)>0.7 for individual proteins. The
model-based feature selection and hyperparameter optimization
were performed using the training set data within a 10-fold cross
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validation scheme. The performance of the generated model was
estimated in the test set as well as an independent replication cohort
using the area under the ROC curve (AUC) metrics. Protein impor-
tance is defined by the protein estimates in the lasso model, which
were scaled from O to 1 and are referred to as “scaled protein
importance.” Data visualization was performed using ggplot2 (ver-
sion 3.4.0)*°, ggbeeswarm (version 0.7.1)", ggforestplot (version
0.1.0)*, ggrain (version 0.0.3)* ggrepel (version 0.9.2)*° ggridges
(version 0.5.4)"' patchwork (version 1.1.2)*%, and pheatmap (version
1.0.12)* R packages. The figures were assembled in Affinity designer 2
(version 2.5.0).

Statistics and reproducibility

All statistical analyses were performed in R version 4.2.1*. Associations
between plasma protein levels and cancer diagnosis were assessed
using logistic regression models adjusted for age and sex, and multi-
variate regression models with lasso regularization were used to
identify predictive protein signatures. Model performance was eval-
uated using ROC curves and AUC values.

The discovery cohort included 456 prospectively enrolled
patients, with validation in an independent similar cohort of 238
patients. No statistical method was used to predetermine sample
size. Patients were excluded due to pre-existing cancer (n=23),
lost to follow-up (n =5), withdrawal of consent (n =2), insufficient
plasma (n=25), or outlier (n=1). Samples were randomized
across plates, and analyses were performed on independent bio-
logical samples without technical replicates. Results were repro-
ducible across both cohorts.

142

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data set generated in this study contains pseudonymized (coded)
personal data derived from human participants. A key code allowing
re-identification is held by the health care provider. According to the
EU General Data Protection Regulation (GDPR) and the conditions of
the Swedish Ethical Review Authority approval, these data cannot be
publicly shared. Access to the data is restricted to ensure compliance
with GDPR and Swedish ethical and legal requirements. Data may be
made available only for non-commercial research purposes to
researchers, and only under a data access agreement that ensures
protection of personal data and compliance with institutional and
ethical guidelines. Requests for access can be sent to the corre-
sponding author or Data Protection Officer at Danderyd Hospital
(dso.ds@regionstockholm.se), who will assess eligibility, manage the
legal/ethical review, and coordinate secure data transfer if approved.
Requests will be reviewed as promptly as possible. The data will remain
available for at least 10 years post publication to comply with the
Swedish Archive Law.

Code availability
All generated code is available at https://github.com/buenoalvezm/
MEDECA>*.
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