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The inflammatory path toward type 1
diabetes begins during pregnancy

Angelica P. Ahrens 1, Raquel Dias1, Tuulia Hyötyläinen 2, Matej Orešič 3,4,5,
Eric W. Triplett 1 & Johnny Ludvigsson 6

Type 1 diabetes (T1D) is increasing globally, yet the earliest biological deter-
minants remain poorly defined, particularly in general population studies. We
studied the Swedish population-based ABIS birth cohort (n = 16,683) to iden-
tify early-life risk factors. Olink proteomic analysis (n = 286 controls, n = 146
cases) of inflammatory signals at birth shows differential abundance years
before diagnosis (mean age 12.6 years), with proteins enriched for neutrophil
migration, cytotoxicity, extracellular matrix remodeling, and immune regula-
tion. Several markers remain significant in spite of prenatal and perinatal
factors including family history of diabetes, and are associated with differ-
ences in compounds like stearic acid, lysine, glutamine, and persistent,
environmental toxicants perfluorodecylethanoic acid and perfluorooctane
sulfonate (PFOS). Using machine learning, we identify a protein subset that
predicts T1D with high accuracy (AUC=0.89 ± 0.02), independently of HLA
genetic risk. These findings suggest that innate and tissue-remodeling path-
ways are perturbed at birth, possibly reflecting early β-cell vulnerability.
Identifying these disruptions at birth with a non-invasive method opens a
window for prevention, protecting β-cells before the inflammatory attack on
islets begins.

Type 1 diabetes (T1D) is a chronic autoimmune disease in which the β-
cells of the pancreas are destroyed, ultimately leading to insulin defi-
ciency. An estimated 8.4 million people worldwide live with T1D, with
prevalence projected to increase to 13.5–17.4 million in the next two
decades1. T1D can lead to acute and late complications. Environmental
factors are associated with increased incidence2,3, including childhood
enteroviral infections4–7, maternal respiratory or enteric infections
during pregnancy4, serious life events5,6, and psychological stress7,8.
The autoimmune process and risk of progression to clinical diabetes
are strongly linked to genetics, including human leukocyte antigen
(HLA) DR-DQ genotype. HLA genes, especially class II, contribute to
40–50% of genetic risk9,10, although less consequential if multiple
autoantibodies have already developed11.

T1D etiologymay be driven by autoimmunity and/or by increased
insulin demand, triggering glucotoxicity and the other events that
ultimately lead to β-cell destruction1,12,13 is not known. β-cells, com-
pared to α-cells, are more sensitive to inflammatory conditions, where
exposure to the immune system and cytokines causes significant gene
and protein expression changes. These changes include activation of
signal transducer and activatorof transcription 1, interferon regulatory
factor 1, and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) downstream pathways and adaptive, compensatory
mechanisms that are activated to help deal with the inflammatory
pressure12. Environmental risk factors for T1D continue to be explored,
but findings often vary across observational cohorts, complicating the
identification of specific triggers14. Issues such as selection bias in
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case-control studies and the limitations of autoantibody-based pre-
diction further challenge interpretation15. Ultimately, current evidence
suggests that immune tolerance is disrupted by varied and diverse
environmental triggers and exposures, leading to β-cell stress3.

HLA genetics16 and autoantibodies are useful in prediction17. Non-
invasive biomarkers, irrespective of genetic risk18 would be a major
advance. Proteomic studies in high-genetic-risk children19,20 have
revealed changes near seroconversion and before disease onset (after
autoimmunity)21, with notable temporal shifts just before autoanti-
body detection. While these findings lay important groundwork and
suggest contributors to beta-cell destruction, they are limited either by
small sample size or a focus on later disease stages, leaving the earliest
markers, such as those present at birth, unexplored22.

Hence, we investigate inflammatory birth proteomic markers in a
large, general population cohort. Proteomic signatures are identified,
suggesting that pathogenesis begins as early aspregnancy. Proteomics
may offer significant prediction potential in the general population,
without reliance on genetic screening, islet antibodies assays, or any
invasive procedure.

Results
The All Babies in Southeast Sweden (ABIS)23 general population, birth
cohort of 16,683 infants is used in this study and represents 78.6%of all
children born in Östergötland, Småland, Blekinge, and Öland counties
from Oct 1st 1997–Oct 1st 1999 (Fig. 1a). Physician diagnoses (ICD-10
code, E10) are obtained from the National Swedish Patient Register,
validated by theNational SwedishDrug PrescriptionRegister, inclusive
of all diagnosed cases up until Dec 2023. Cases included 167 ABIS
children are diagnosed T1D up until this time, with a cumulative inci-
dence of 1% and age at diagnosis ranging from 2 to 24.6 years
(mean± SD: 12.6 ± 6.1 years, median: 12.6 years, 95% CI [11.7, 13.5];
Fig. 1f). Here, controls are defined as ABIS individuals without any
future autoimmune disease (n = 15,732).

Proteomic profiling of cord blood from 1,204 children is per-
formed (Fig. 1b). As a number of these children had other diagnoses in
this period, their samples are used here only for environmental asso-
ciation. Machine learning (ML) models identify predictive proteins in
432 selected children, including controls and cases with future T1D
(Fig. 1c). Non-linear protein-metabolite-exogenous compound asso-
ciations are determined using Shapley Additive exPlanations24 (SHAP)
in 132 children with metabolomic data (Fig. 1d) and associations with
environmental factors assessed, irrespective of future disease. Several
key risk factors and proteins are significantly relevant to future disease
on the basis of these approaches (Fig. 1e).

Prenatal risk factors associated with future T1D
Birth questionnaires are assessed for association with future T1D
diagnosis, comparing 15,732 controls to 167 cases. A total of 44 vari-
ables are tested, including perinatal factors, family medical history,
parent factors, prenatal stressors, prenatal diet, and medications and
infections during pregnancy (Supplementary Data 1). The most sig-
nificant birth factors are those related to familymedical historyof (e.g.,
T1D, T2D, and asthma). However, also significant are (1) perinatal fac-
tors (e.g., caesarean section, placement in a newborn care unit); (2)
demographics; (3) stomach flu during pregnancy; (4) medications
taken during pregnancy (e.g., antibiotics and psychotropics); whether
time is spent with someone with insulin-dependent diabetes during
pregnancy; and to a limited extent, prenatal diet (Fig. 2a–c and Sup-
plementary Data 1).

These factors are carried into MLmodels for prediction. With the
ABIS cohort having the expected global T1D incidence of 1%, class-
weighted loss functions are employed to mitigate the effect on per-
formance and generalizability. However, the predictive performance
of logistic regression, eXtreme Gradient Boosting (XGBoost), Random
Forest, and Support Vector Machine (SVM)models using these factors

alone is limited, with area under the receiver operating characteristic
curve (AUC-ROC) values from 0.43 to 0.62 (Fig. 2d).

Cord blood proteomic analyses
Selected inflammatory and immune markers are analyzed from cord
blood samples spanning 146 cases and 286 controls, measured using
OLINK Explore 384 Inflammation 1 and 2 panels and the Target
Immune Response panel. Controls are defined as those individuals
having no future autoimmune diagnoses, psychiatric conditions, or
neurodevelopmental disorders, while cases had confirmed T1D diag-
noses (up to 22 years of age). Controls are selected at random from the
larger ABIS study. Given the significant class imbalance described
above, theminority andmajority classes are intentionally oversampled
and undersampled, respectively.

Consistent with the full ABIS study, individuals in the T1D pro-
teomic group are significantly more likely to have been placed in a
pediatric ward as newborns (odds ratio, OR = 2.1, p =0.015), with 13.9%
of the T1D group experiencing this compared to 6.6% of controls. As
expected, there is a higher likelihood of T1D among family members,
including themother (p <0.001), father (p = 0.003), and grandparents
(p = 0.014). Specifically, 29.5%of T1D individuals hada family historyof
T1D compared to only 10.5% of controls (p < 0.00001; OR = 3.6, 95%CI:
2.1–6.0, p <0.0001). No significant differences are observed between
groups in terms of biological sex, mode of delivery, gestational age,
birth weight, maternal BMI (both pre- and post-pregnancy), parental
age at birth, or other assessed environmental factors, including
infectionor smoking exposureduringpregnancyand severe life events
(Supplementary Data 2).

Groups are broadly representative relative to the overall ABIS
cohort, showing no major evidence of selection bias (Table 1 and
Supplementary Data 3). The only notable difference is a modest
overrepresentation of females among controls included in the Olink
subset (52.5%) versus those controls who are not (47.9%). Gestational
age is slightly higher in T1D subjects selected for Olink analysis
(39.7 ± 1.6 versus 38.4 ± 3.1 weeks). Nevertheless, the selection of
controls seen in the Olink case/control cohort is sufficient to ensure
that the Olink groups are broadly representative of the full ABIS study,
with no major evidence of selection bias (Table 1). NPX levels are
assessed across the entire case/control proteomics cohort (between
future T1D, n = 146, and controls, n = 286; Fig. 3) and then stratified by
HLA genetic risk for T1D (see below).

Global protein concentration differences by future diagnosis
Across the 386 proteins assessed (Supplementary Data 4), 32 are sig-
nificantly, differentially expressed after false discovery rate (FDR)
correction (Fig. 3a and Supplementary Data 5 and 6). Four proteins are
significantly higher in cases: HLA class II histocompatibility antigen, DR
alpha chain (HLA-DRA;p = 8.98e-19, q = 6.53e-16); iduronate 2-sulfatase
(IDS; p = 6.65e-13, q = 2.42e-10); secretoglobin family 3 A member 2
(SGB3A2; p =0.00031, q =0.014), and cathepsin C (CTSC;
p =0.00040, q = 0.017).

Among the 28 proteins significantly higher in controls after FDR
correction were: (1) tissue inhibitor of metalloproteinases 3 (TIMP3;
p = 3.68e-9, q = 8.91e-7); CD40 ligand (CD40LG; p = 1.44e-7, q = 2.61e-
5); matrix extracellular phosphoglycoprotein (MEPE; p = 1.09e-6,
q = 1.58e-4); adenosine deaminase (ADA; p = 2.51e-6, q = 2.98e-4);
neurotrophin-3 (NTF3; p = 2.87e-6, q = 2.98e-4); CD84molecule (CD84;
p = 5.34e-6,q = 4.85e-4); serineprotease inhibitor Kazal-type 2 (SPINT2;
p = 1.28e-5, q =0.0010); PDZ and LIM domain protein 7 (PDLIM7;
p = 7.72e-5, q =0.0056); and linker for activation of T cells (LAT;
p = 8.49e-5, q =0.0056). Strong correlations in proteins elevated in
controls are observed: lymphocyte-specific protein 1 (LSP1) and ADA
(R =0.59), tissue inhibitor of metalloproteinases 3 (TIMP3) and
CD40LG (R =0.5), and PDLIM7 and TBC1 domain family member 5
(TBC1D, R =0.79, p’s < 2.2e-16).
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To ensure balanced comparison, a 1:1 selection of cases and
controls is performed using propensity score matching (n = 280),
accounting for significant factors including family history of T1D (in
the mother), mode of delivery, sex of the child, week of delivery, vul-
nerability index, serious life events, and stomach flu during pregnancy.
Subsequent analysis, adjusted for confounders and corrected for
multiple comparisons, confirmed the same markers identified in the
global analysis, demonstrating that the observed effects persist

independently of family history (Fig. 2e). Notably, serine protease
prostasin (PRSS8) also emerged as significant.

Gene enrichment of T1D-associated proteins
Gene Set Enrichment Analysis (GSEA) showed that the T1D-associated
proteins serve as core components in pathways involving cytokine
signaling and immune responses. Involved in cytokine pathways are
HLA-DRA, CD40LG, and TIMP3, while others, such as CTSC, linker for

Article https://doi.org/10.1038/s41467-025-67712-6

Nature Communications |          (2026) 17:979 3

www.nature.com/naturecommunications


activation of T cells (LAT), CD40LG, CD84, and ADA, play central roles
in pathways related to immune system regulation, leukocyte function,
the Reactome, and both adaptive and innate immune signaling
(Fig. 3c–e). In the future T1D group, two gene sets, SWEET_-
LUNG_CANCER_KRAS_UP and GOCC_CELL_SURFACE, are upregulated.
In contrast, nine gene sets are downregulated, reflecting disruptions in
stress response, hydrolase regulation, and intracellular signaling
pathways (Supplementary Data 7). The enriched gene sets are asso-
ciated with notable core proteins: (1) TIMP3 and neurotrophin-3
(NTF3) with six of the nine downregulated gene sets; (2) forkhead box
protein O1 (FOXO1) with five; (3) caspase-2 (CASP2) and MAP2K6
(mitogen-activated protein kinase kinase) with four (Fig. 3c); and 4)
HLA-DRA shared between the two upregulated gene sets.

Protein concentration differences by age at diagnosis
Future cases are categorized by diagnosis at≤5 years, 6–10 years, 11–17
years, and 18–24 years. Each group is compared to controls (Fig. 4a–c
and Supplementary Fig. 1a), with results in Supplementary Data 8. The
most significant proteomic differences are observed among indivi-
duals diagnosed by age 5, with 114 significant proteins, 64 remaining
significant after FDR. Shared across at least three age groups are
reduced ADA, TIMP3, CD40LG, and signaling threshold-regulating
transmembrane adaptor 1 (SIT1), alongside increased HLA-DRA, IDS,
secretoglobin family 3 A member 2 (SCGB3A2), and CTSC. Unique to
newborns who developed T1D in adulthood (18–24 years) are
increased interleukin-20 (IL20) and C-C motif chemokine ligand 4
(CCL4)—also calledmacrophage inflammatory protein-1β, MIP-1β—and
decreased Wnt family member 9 A (WNT9A, Supplementary Fig. 1a).

Protein-protein association network and functional pathway
enrichment analyses25 of the FDR-corrected protein differences in
earliest-diagnosed cases (by age five) demonstrate significant inter-
action enrichment (protein-protein interaction (PPI) enrichment,
p = 2.03e-07, Supplementary Fig. 1b). Significant enrichments of
pathways related to toxoplasmosis; positive regulation of protein
serine/threonine kinase activity, transferase activity, and MAP kinase
activity; modulation of T-cell activation and inflammatory responses;
vitamin D in inflammatory disease; Yersinia infection; signaling of
RANKL/RANK, C-type lectin receptors, T-cell receptors, NF-κB, Ebstein-
Barr virus LMP1, and cell surface receptors wer found—all significant
after FDR (Fig. 4d–f and Supplementary Data 9).

Protein concentration differences stratified by HLA genetic risk
Next, future T1D cases (n = 146) are compared to two subsets of con-
trols (81 controls with genetic risk for T1D and 76 controls without risk;
Supplementary Data 10). HLA risk is defined by the presence MHC
Class II alleles DR4-DQ8 (DRB1-DQA103:01-DQB103:02) and/or DR3-
DQ2 (HLA-DRB103:01-DQA105:01-DQB1*02:01)23,26, seen in as many as
90% of T1D patients27,28, as these represent the primary risk factor for
islet autoimmunity29,30.

Comparing non-genetic risk controls (lacking DR4-DQ8 or DR3-
DQ2 alleles) versus future T1D (Fig. 5a), four proteins are significant
after FDR correction: HLA-DRA and IDS (higher in T1D) and TIMP3 and

NTF3 (higher in low-risk controls (Fig. 5a). Consistent with global T1D
results, the greatest differences are inHLA-DRAand IDS (higher in T1D)
and TIMP3 and NTF3 (higher in controls without DR4-DQ8 or
DR3-DQ2).

Next, future T1D cases are separated by HLA risk (decreased/
neutral, increased/high) and compared to controls with similar
genetics (Supplementary Data 10). Decreased/neutral HLA risk geno-
types are seen in 125 controls and 18 with future T1D, with 20 sig-
nificant proteins significant, with persistent higher levels of IDS
(Fig. 5b). HLA-DRA is also higher in future T1D without HLA genetic
risk, as is seen in global T1D comparisons (Fig. 5b), but not significant
after FDR, as are CCL4, C-C motif chemokine ligand 21 (CCL21), lym-
phocyte antigen 9 (LY9, also called SLAMF3), lymphocyte antigen 75
(LY75, also called DEC-205 or CD205), tumor necrosis factor (TNF)
receptor superfamily member 13B (TNFRSF13B, also called TACI),
CD70 molecule (also called TNF ligand superfamily member 7,
TNFSF7) CD70, signal regulatory protein beta 1 (SIRPB1), and Erb-B2
receptor tyrosine kinase 3 (ERBB3). Notably, TIMP3 is not significant
between cases and controls both lacking high-risk HLA for T1D.

Farmore differences are seenwhen comparing thosewith genetic
risk, even after FDR adjustment (Fig. 5c, d). When comparing all future
T1D to controls with either DR4-DQ8 or DR3-DQ2, four differential
proteins are identified, after FDR, including SCGB3A2, HLA-DRA, and
IDS (higher in T1D), as well as TIMP3 (higher in controls) (Fig. 5c). Next,
subsets of children with high/increased risk are compared (n = 76 T1D,
n = 44 controls). Eleven proteins are significantly different after FDR
(Fig. 5d), including: HLA-DRA, IDS, and SCGB3A2 (higher in high-risk
T1D) and TIMP3, LAT, CD40LG, ADA, PDLIM7, integral membrane
protein 2 A (ITM2A), and CD84 (higher in high-risk controls). In indi-
viduals lacking DR3-DQ2 (n = 53 T1D, n = 112 controls), with most T1D
cases carrying DR4-DQ8, numerous differences are observed (Fig. 6a,
b). The proteinsmost enriched in T1D after FDR are HLA-DRA, IDS, and
IL20. In contrast, proteins like ADA, aldehyde dehydrogenase 3 family
member A1 (ALDH3A1), CD40LG, LSP1, MEPE, NTF3, and TIMP3 are
more highly expressed in controls. Conversely, in the subset lacking
DR4-DQ8 (n = 24 T1D, n = 111 controls), fewer significant markers are
identified, not reaching significance after FDR correction (Supple-
mentary Fig. 2a, b).

Prediction of future T1D using proteomics at birth
By prioritizing proteins with high mutual information (MI) scores, T1D
prediction models are focused on proteins with the highest relative
influence on prediction, capturing meaningful and potentially com-
plex protein relationships. The mean relative concentration levels of
the top 40 proteins (Supplementary Fig. 3a), and their relative con-
tribution to case and control distinction (Supplementary Fig. 3b), are
assessed. Key contributors tested are HLA-DRA, IL16, PTH1R, GAL, and
IDS. The observed differences between future T1D and controls
aligned with previously identified markers such as HLA-DRA, IDS,
PDLIM7, SPINT2, ADA, TIMP3, and LAT (Supplementary Fig. 3c).

Diagnostic accuracy of XGBoost, Random Forest, Logistic
Regression, and SVM models is assessed using the top 40

Fig. 1 | Analytical framework for type 1 diabetes (T1D) risk in the ABIS Study.
a Overview of the All Babies in Southeast Sweden (ABIS) study, which enrolled
families between 1997 and 1998 at obstetric clinics in a six-county region of Swe-
den. Over 27 years of follow-up, the cumulative incidence of T1D is 1%. b Proteomic
profiling of cord blood from 1202 children is performed using Olink Explore 384,
Inflammation 1 and 2 panels, and the Target Immune Response panel. The full
dataset is analyzed to assess relationships between the top proteins (identified in
the case/control analysis) and birth-related factors. c Olink analysis aimed at
identifying group differences included 432 children (future T1D cases and con-
trols). Data are analyzed both globally and stratified by HLA risk groups using
Wilcoxon tests with false discovery rate (FDR) correction. Machine learning (ML)
models are developed, with eXtreme Gradient Boosting (XGBoost) as a base

estimator on recursive feature elimination (RFE)-selected proteins achieving the
highest accuracy after fivefold cross-validation. d SHapley Additive exPlanations
(SHAP)-based analysis of the most predictive proteins revealed non-linear asso-
ciations between proteins and metabolites in 132 children with available metabo-
lomic data. e An integrated model highlights key risk factors and proteins
associated with T1D pathogenesis, hypothesized to contribute to beta-cell stress
and damage, ultimately leading to T1D. f T1D diagnoses in the ABIS cohort,
depicting the median and 95% confidence interval of age at time of diagnosis. MI
mutual information, IDS iduronate 2-sulfatase, TIMP3 tissue inhibitor of metallo-
proteinases 3, HLA-DRA, human leukocyte antigen DR alpha chain, ADA adenosine
deaminase, CTSC cathepsin C. Created in BioRender. Ahrens, A. (2025) https://
BioRender.com/k05i837.
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(Supplementary Fig. 3d) and a refined set of 32 proteins (via the elbow
method; Supplementary Fig. 3e), to predict future T1D using MI scor-
ing. While Random Forest slightly outperformed in AUC-ROC,
XGBoost matched closely and delivered a more robust F1 score when
using 40 proteins, making it the preferred model for prediction. With
fivefold cross-validation, XGBoost achieved an AUC-ROC of
0.77 ± 0.04, with precision (0.63 ± 0.05), recall (0.69 ± 0.07), and a

strong F1 score (0.65 ± 0.04), all showing that the model is general-
izable and not overfitting. Prediction of future T1D, using these pro-
teins alone, achieved high accuracy (AUC =0.77).

Given the established association of DR4-DQ8 with early-onset
T1D31,32, we apply a separate predictive model in a restricted subset of
children, comparing controls to individuals who later developed T1D
but also carry DR4-DQ8 alleles (Supplementary Fig. 3f and
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Supplementary Fig. 4). Following hyperparameter tuning via Grid-
Search, the model achieves a mean AUC-ROC of 0.83 ±0.12 (Supple-
mentary Fig. 3g), further increasing prediction accuracy. It
demonstrated robust performance across classification metrics,
including an F1 score of 0.62 ±0.16, precision of 0.66 ±0.20, recall of
0.63 ± 0.20, and an overall accuracy of 0.84 ±0.07.

Finally, we apply a supervised ML approach using recursive fea-
ture elimination (RFE) on the full Olink case/control dataset (n = 432).
The data are split into training (80%) and testing (20%) sets, preserving
class proportions. RFE is applied to recursively select the top 30 most
predictive features, first excluding (Fig. 7a, b) and then including
(Fig. 7c, d) dosage of HLA high-risk alleles DR4DQ8 and DR3DQ2. We

Fig. 2 | Prenatal factors associated with future type 1 diabetes (T1D) diagnosis
in ABIS. a Distribution of family history of disease and b pregnancy and birth
factors significantly associated with future T1D diagnosis, based on 167 T1D cases
and 15,543 controls from the full All Babies in Southeast Sweden (ABIS) study.
Sample sizes for cases and controls are provided in Supplementary Data 1 for each
factor. c Odds ratios and 95% confidence intervals for dichotomous variables (i.e.,
with 1 degree of freedom). Statistics are provided in Supplementary Data 1, with
controls as the reference group. d Receiver operating characteristic (ROC) curve
analysis comparing the accuracy of traditional and machine learning models,
including logistic regression, eXtreme Gradient Boosting (XGBoost), Random
Forest, and Support Vector Machine (SVM) using these factors alone, highlighting
suboptimal predictive performance. Supplementary Data 1 provides chi-square
statistics and the case/control counts for parent-reported variables on the birth
questionnaire in the full ABIS cohort. e Proteins differentiating future T1D and

controls, after controlling for significant environmental factors bypropensity score
matching in a 1:1 ratio using nearest neighbor (n = 280). Only the proteins that are
significant after FDRcorrection formultiple comparions are indicated, withmedian
fold change >0 indicating proteins higher in abundance in T1D and <0 indicating
those higher in matched controls. ADAM23 disintegrin and metalloproteinase
domain-containing protein 23, ADA adenosine deaminase, C-section cesarean
section, CD40LG CD40 ligand, CTSC cathepsin C, DECR1 2,4-dienoyl-CoA reduc-
tase 1, FDR false discovery rate, HLA-DRA histocompatibility antigen, DR alpha
chain, IDS iduronate 2-sulfatase, LAMA4 laminin subunit alpha-4, MEPE matrix
extracellular phosphoglycoprotein, NTF3 neurotrophin-3, OR odds ratio, PLXNA4
plexin A4, PRSS8 serine protease 8, SCGB3A2 secretoglobin family 3A member 2,
SIT1 signaling threshold-regulating transmembrane adaptor 1, SPINT2 serine pro-
tease inhibitor, Kunitz type 2, T2D type 2 diabetes, TIMP3 tissue inhibitor of
metalloproteinases 3, XGBoost eXtreme Gradient Boosting.

Table 1 | Comparison of cohort characteristics by diagnostic group and inclusion in the proteomic analysis

Controls Future T1D

Controls—
no Olink

Controls—Olink T1D—no Olink T1D—Olink

Count (%) or Mean Count (%) p Count (%) or Mean Count (%) p

Sex Male 7889 (52.1%) 503 (47.5%) 0.004 12 (57.1%) 81 (55.5%) 0.886

Female 7251 (47.9%) 555 (52.5%) 9 (42.9%) 65 (44.5%)

The birth ended with a caesarean section No 13669 (90.1%) 961 (90.8%) 0.447 16 (76.2%) 125 (85.6%) 0.265

Yes 1500 (9.9%) 97 (9.2%) 5 (23.8%) 21 (14.4%)

Week of delivery 39.7 ± 1.8 39.8 ± 1.7 0.501 38.4 ± 3.1 39.7 ± 1.6 0.118

Inheritance, T1D (mother) No 15062 (99.3%) 1048 (99.1%) 0.373 19 (90.5%) 136 (93.2%) 0.657

Yes 107 (0.7%) 10 (0.9%) 2 (9.5%) 10 (6.8%)

Inheritance, T1D (father) No 15009 (98.9%) 1043 (98.6%) 0.269 20 (95.2%) 134 (91.8%) 0.58

Yes 160 (1.1%) 15 (1.4%) 1 (4.8%) 12 (8.2%)

Smoking during 30–32 pregnancy weeks non-smoker 4139 (90.2%) 255 (91.4%) 0.603 6 (85.7%) 38 (95%) 0.354

1–9 cig/day 350 (7.6%) 17 (6.1%) 1 (14.3%) 2 (5%)

10+ cig/day 99 (2.2%) 7 (2.5%) 0 (0%) 0 (0%)

Vulnerability index score 0 = lowest 5830 (41.2%) 405 (40.9%) 0.345 6 (33.3%) 70 (49.3%) 0.598

1 5450 (38.5%) 362 (36.6%) 8 (44.4%) 52 (36.6%)

2 1937 (13.7%) 151 (15.3%) 3 (16.7%) 14 (9.9%)

3 = highest 926 (6.5%) 72 (7.3%) 1 (5.6%) 6 (4.2%)

Did you smoke during your pregnancy? No 13132 (88.8%) 918 (88.9%) 0.977 17 (89.5%) 131 (91.6%) 0.756

Yes 1650 (11.2%) 115 (11.1%) 2 (10.5%) 12 (8.4%)

Severe life event during pregnancy Yes 1379 (9.4%) 91 (8.9%) 0.608 2 (11.1%) 14 (9.7%) 0.852

No 13355 (90.6%) 934 (91.1%) 16 (88.9%) 130 (90.3%)

Did the mother have stomach flu during
pregnancy?

Yes 4925 (33.6%) 323 (31.4%) 0.273 11 (57.9%) 56 (38.9%) 0.267

No 9395 (64.1%) 678 (65.9%) 8 (42.1%) 86 (59.7%)

Do not know 338 (2.3%) 28 (2.7%) 0 (0%) 2 (1.4%)

Education of mother Low 1274 (8.6%) 89 (8.6%) 0.496 2 (10.5%) 13 (9%) 0.374

Medium 8783 (59.4%) 632 (61.2%) 15 (78.9%) 95 (66%)

High 4719 (31.9%) 312 (30.2%) 2 (10.5%) 36 (25%)

Education of father Low 1965 (13.5%) 147 (14.5%) 0.319 5 (26.3%) 25 (17.5%) 0.105

Medium 8996 (61.8%) 638 (62.8%) 13 (68.4%) 79 (55.2%)

High 3594 (24.7%) 231 (22.7%) 1 (5.3%) 39 (27.3%)

To evaluate whether the subset with Olink proteomic data is representative of the full cohort, cohort characteristics were compared between participants included and not included in the Olink
analysis, stratified by T1D outcome. Chi-square and Wilcoxon rank-sum tests were used where appropriate. See also Supplementary Data 3.
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perform fivefold stratified cross-validation using these fixed selected
features within each fold to evaluate generalizability and maintain
interpretability. Both models, Olink-only and Olink +HLA, perform
similarly. The AUC-ROC is 0.89 ±0.02 without HLA dosage (Fig. 7a)
and 0.89 ± 0.03 with HLA dosage (Fig. 7c), indicating no improvement
from adding HLA genetic information. The Olink +HLA model yields
an F1 score of 0.70 ±0.06, precision of 0.76 ± 0.10, and recall of

0.67 ± 0.08. The Olink-only model has slightly better performance by
its F1 score of 0.73 ± 0.05 and recall of 0.71 ± 0.07, but precision of
0.74 ± 0.06. Feature selection by RFE demonstrates highly overlapping
predictive protein sets, with 27 of the same 29 proteins (93%) shared
betweenmodels (Fig. 7b, d). HLA-DRA and IDS are consistently ranked
the top two proteins. The median difference in protein abundance in
the RFE-selected proteins for the Olink +HLA model is presented for
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cases and controls in Fig. 7e. Given the similar predictive value of the
models, to explore redundancy between allele dosage and HLA-DRA
protein levels, an ANOVA test compares HLA-DRA abundance by
dosage groups, revealing a strong association (p = 1.12e-08, Fig. 7f).

Metabolites, exogenous toxic compounds (PFOS), and T1D-
linked proteins
Using non-parametric correlation methods in the 132 individuals with
both metabolomic and proteomic data, several proteins enriched in
controls—TIMP3 and PDLIM7—are significantly associated with cord
serummetabolites. PDLIM7 showedpositive correlationswithmultiple
metabolites, including aspartic acid, deoxynivalenol (DON), fumaric
acid, lysophospholipid lysophosphatidylethanolamine (lysoPE) 18:0,
and malic acid (FDR-adjusted p = 0.0055–0.032). TIMP3 shows
broader associations, including positive correlations with
3-indoleacetic acid, mycotoxin DON, glutamic acid, isocaproic acid,
isoleucine/leucine, isovaleric acid, lysine, proline, and tyrosine (FDR-
adjusted p =0.012–0.042). Although nonparametric and less sensitive
to extremes, the Spearman correlation is not entirely immune to out-
liers, which can still affect the rank order. To address this concern, we
repeated the analysis removing the most extreme 5% of samples
(lowest 2.5% and highest 2.5%), and results are largely consistent for
TIMP3 (Supplementary Fig. 5; FDR-adjusted p’s = 0.006–0.03), sug-
gesting that a small number of influential outliers did not sway the
results. However, for PDLIM7, only lysoPE 18:0 remains significant
(rho = 0.36, FDR-adjusted p =0.007), along with perfluorinated com-
pound perfluorooctanoic acid, branched isomer (PFOAbr, rho =0.32,
FDR-adjusted p =0.03).

Given that perfluorooctane sulfonate (PFOS) is a persistent
environmental contaminant with immunomodulatory and metabolic
effects, we next examine the correlation of circulating proteins with
PFOS-L, the linear isomer that is often the dominant form in environ-
mental samples. Using a nonparametric Spearman test, we observe
directional associations of PFOS with the following immune proteins:
IL18 (p = 0.003), SELPLG (p =0.016), TNFRSF4 (p =0.027), DAPP1
(p = 0.027), IL20 (p = 0.042), COLEC12 (p = 0.043), and ESM1
(p = 0.048) show negative correlations, while IL17A (p =0.020) and
ENPP5 (p = 0.038) are positively correlated (Fig. 8). Although these
trends do not survive FDR correction due to the smaller sample size
(n = 132), they highlight biologically plausible immune pathways that
may be influenced by PFOS exposure for future study.

To complement this univariate analyses, SHAP (Shapley Additive
exPlanations24) is applied to assess multivariate, non-linear associa-
tions between metabolites and exogenous compounds with the five
proteins most predictive of future T1D: HLA-DRA, IDS, and CTSC
(elevated in T1D), and ADA and TIMP3 (elevated in controls), as iden-
tified throughboth traditional (Figs. 3 and4) andMLapproaches (Fig. 7
and Supplementary Fig. 3). SHAP values revelead complex feature
interactions and non-linear patterns for each protein (Fig. 9a), with the

topmetabolites identifiedbyMI score (Fig. 9a–f). TIMP3 concentration
is positively associated with lysine and tauro-β-muricholic acid
(TbMCA) while negatively associated wtih stearic acid (Fig. 9b). For
ADA concentration, arachidic acid and PFOS-L are positively and
negatively associated, respectively (Fig. 9c). Stearic acid consistently
demonstrates a strong positive association with IDS and HLA-DRA
concentration (Fig. 6d, e), as does PFOS-L with HLA-DRA, although
clustering suggests non-linearity. Examples of negative contributors to
IDS and HLA-DRA concentration include LPE-16:0 and pyroglutamic
acid, respectively (Fig. 9f).

Prenatal/perinatal factors and T1D-associated proteins
In the full Olink dataset (n = 1202), associations are discovered
between the 65 proteinsmost significant acrossT1D and control global
comparisons (from Fig. 3). Wilcoxon statistics are run across these
proteins with respect to biological sex and several perinatal and pre-
natal factors on the birth questionnaires (Fig. 9g, h and Supplementary
Data 11). After FDR correction, three proteins higher in males, cor-
neodesmosin (CDSN), SH2 domain–containing protein 1 A (SH2D1A),
and cathepsin O (CTSO), remained significantly associated (Fig. 9g),
and another 24 proteins are associatedwithmode of delivery (Fig. 9h).
Protein associations with other environmental factors are found,
including smoking of themother,maternal stomachflu, and severe life
events during pregnancy, but none are significant after FDR and thus
are not presented.

Discussion
Although T1D is manageable with insulin, it requires meticulously
maintaining proper blood glucose levels33. Life-threatening complica-
tions areomnipresent. There remains a critical need for early screening
methods to predict future T1D prior to pancreatic β-cell destruction.
There is currently little guidance surrounding metabolomic screening
for pre-clinicial T1D34. This study offers necessary, preliminary evi-
dence that proteomicmarkers present at birth could serve as valuable
predictors in a general population, paving the groundwork for acces-
sible, cost-effective newborn screening tools. The proteins discovered
in our study effectively differentiate children who develop T1D from
those who do not, particularly in the first five years of life. This
proteomics-based approach could complement current practices,
allowing more refined and timely identification of children at risk of
T1D for follow-up autoantibody monitoring, based on these condi-
tions, which we hypothesize are prime for β-cell destruction prior to
autoimmunity. Mechanisms surrounding tissue repair/remodeling,
extracellular matrix (ECM) modeling, and immune activation are
shared in the network of these proteins, based on GSEA and STRING
analysis. High HLA-DRA could reflect an overactive antigen presenta-
tion at birth, even in childrenwithout significant T1D genetic risk. HLA-
DRA is involved in presenting peptides derived frompathogen-derived
peptides to T cells. In islet cells, IDS enhances glucose-induced insulin

Fig. 3 | Significantdifferences innormalizedprotein expression (NPX) in infants
with future type 1 diabetes (T1D). a Proteins differentiating future T1D (n = 146)
and controls (n = 286), based on log2fold change statistics. Controls are defined as
children without a future diagnosis of an autoimmune disease, psychiatric condi-
tion, or neurodevelopmental disorder. Annotatedproteins are significant after false
discovery rate (FDR) correction. b Wilcoxon statistics with a two-sided test for
group differences (controls and future T1D) for each of the top ten proteins. For
means, see Supplementary Data 4 and for full statistics, see Supplementary Data 5.
Boxplots show themedian (line) and interquartile range (box, 25th–75thpercentile)
to demonstrate the data distribution, future T1D (n = 146) and controls (n = 286).
Whiskers extend to themost extremevalueswithin 1.5 × interquartile range (IQR) of
the lower and upper quartiles; points beyond the whiskers are plotted as outliers.
Values are displayed as normalized protein expression (NPX) values. c T1D-
associated proteins identified as core proteins in Gene Set Enrichment Analysis
(GSEA) pathways, and those specifically related to: d cytokines and e the immune

system. ADA adenosine deaminase, ARHGEF12 Rho guanine nucleotide exchange
factor 12, CASP2 caspase-2, CD40LG CD40 ligand, CD84 CD84 molecule, DBNL
drebrin-like protein, DECR1 2,4-dienoyl-CoA reductase 1, EDAR ectodysplasin A
receptor, GOBP Gene Ontology Biological Process, GOCC Gene Ontology Cellular
Component, GOMF Gene Ontology Molecular Function, HLA-DRA histocompat-
ibility antigen, DR alpha chain, IDS iduronate 2-sulfatase, IL17C interleukin-17C,
ITM2A integral membrane protein 2A, LAMA4 laminin subunit alpha-4, LAP3 leu-
cine aminopeptidase 3, LSP1 lymphocyte-specific protein 1, MEPE matrix extra-
cellular phosphoglycoprotein, NTF3 neurotrophin-3, OMD osteomodulin, PDLIM7
PDZ and LIM domain protein 7, PLAUR plasminogen activator urokinase receptor,
PLXNA4 plexin A4, PRDX5 peroxiredoxin-5, PTH1R parathyroid hormone 1 recep-
tor, SKAP2 src kinase-associated phosphoprotein 2, SPINT2 serine protease inhi-
bitor, Kunitz type 2, SPRY2 sprouty RTK signaling antagonist 2, STX8 syntaxin-8,
TBC1D5 TBC1 domain family member 5, TIMP3 tissue inhibitor of
metalloproteinases 3.
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secretion through the exocytotic process. Importantly, this lysosomal
enzyme is expressed in pancreatic islets and its overexpression in
insulinoma-derived cell line (INS-1E) rat β-cells results in heightened
insulin secretion35. CTSC, a lysosomal cysteine protease higher in the
global T1D analysis, plays an important role in immune defenses,
apoptosis, antimicrobial activity, and pro-inflammatory responses36.
CTSC variants have been implicated in 120 human diseases37.

That protein abundance differences occur even in the absence of
HLA genetic risk suggests that the role of inflammation goes beyond
genetic predisposition. Both IDS and HLA-DRA are higher in future
T1D, irrespective of the presence of HLA risk alleles, while TIMP3 is
reduced, except in the subset with decreased or neutral HLA-mediated
T1D risk. Notably, our RFE-based prediction models perform similarly
whether or not DR4DQ8 and DR3DQ2 dosage is included. High-risk
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HLA dosage adds little predictive value beyond what is achieved by
HLA-DRA protein abundance. Associations with proteins involved
deterministically with T-helper lymphocytes supports the critical
hypothesis first linking β-cell and T-cytotoxic lymphocytes to envir-
onmental or autologous antigenic peptides27. After adjustment for
strong confounds like family history of T1D, protein differences per-
sist, with an additional marker emerging—PRSS8. This serine protease
is involved in glucose-dependent regulation of insulin secretion in
pancreaticβ-cells throughepidermal growth factor—epidermalgrowth
factor receptor (EGF–EGFR) signaling38 and modulates hepatic insulin
sensitivity via TLR4 signaling39.

Proteomic differences also point to potential disruptions of gly-
cosaminoglycans (GAG). The ECM is an active participant in regulating
inflammation in local tissues, whereby a healthy ECM supports β-cell
homeostasis and, conversely, inflammatory environments make the
islet ECM vulnerable to infiltration and, consequently, β-cell damage
and insulitis40. Evidence of insulitis associates with the progressive loss
of this tissue is supportedbybothhistologicfindings andexperimental
models41. Components, including a common glycosaminoglycan,
hyaluron/hyaluronic acid, have been investigated, as well as enzymes
promoting their degradation41,42. GAGs provide resilience, orchestrat-
ing immunity and interacting with growth factors and cytokines, and
maintain the structure, function, and hydration of various tissues,
influencing tissue repair. ECM remodeling rates are particularly high in
inflammatory conditions,with components fragmented anddeposited
in excess, resulting in a positive-feedback loop of recruitment of
immune cells for proper repair and recycling42. The fragments act as
chemoattractants for leukocytes, further implicating their role in
chronic inflammation. IDS forms complexes with other molecules to
bolster the ECM and is responsible for the degradation of heparan
sulfate and dermatan sulfatate, both of which are GAGs critical to the
ECMandproper cell signaling43. Enzymes involved in GAGdegradation
are upregulated during chronic inflammation, whereby GAG accumu-
lation can influence lysosomal activity. Remarkably, a recent study also
using Olink panels found significantly increased IDS in adult patients
with T1D for ten or more years44. In the same study, FXYD domain-
containing ion transport regulator 5 (FXYD5, also called dysadherin) is
significantly reduced in T1D patients with remaining C-peptide44; this
protein is also identified by our RFE gradient boosted model (reduced
in those with future T1D). Macrophage inflammatory proteins CCL3
and CCL4, which are proinflammatory and bind to heparan sulfate,
are found here to be higher in future T1D. Both are upregulated in

first-degree relatives of patients with T1D across the lifespan and are
also associated with the presence of multiple islet autoantibodies45.
Notably, impaired insulin-degrading enzyme (IDE) activity results in
the accumulation of these proteins46.

The starkest contrast is observed in children diagnosed prior to
age five (Fig. 4a–c). Functional pathway enrichment highlights path-
ways governing infection responses and NF-κB activation (an event
early in T1D pathogenesis47). Although rare, some of the significant
proteins are involved in Yersinia infection, which has been implicated
in autoimmune thyroid disease48 and pancreatitis49. The results here
do not necessarily indicate infection but rather underscore the
potential role of activation of similar pathways involved in B-cell
mitogenic activity50. Blockade of cytokine-induced activation of NF-κB
reduces nitric oxide free radicals and β-cell death51. The pathways
mediating apoptosis are complex, but NF-κB activation is a key event.
Higher in controls, MAP2K6 and inhibition of NF-κB kinase regulatory
subunit gamma52 (IKBKG) are common among the protein networks
identified. In response to cytokines and environmental stress53,
MAP2K6 activates the p38MAP kinase54, which regulates the uptake of
glucose induced by insulin51 and is involved inmany cellular processes,
including apoptosis.

Possibly indicative of protective effects, TIMP3, ADA, and LSP1 are
lower in controls. In streptozotocin diabetes-induced mice, the over-
expression of TIMP3, whichmaintains islet architecture and functions,
resulted in improved insulin secretion, vascularization, antioxidant
defense, and islet morphology, as well as reduced pro-inflammatory
cytokines TNF, pro-inflammatory cytokine interleukin 1 beta (IL-1β),
and cytokine interferon gamma (IFN-γ55). In human tissue cultures,
TIMP3 blocks the release of TNF, preventing spontaneous
inflammation56. ADA deaminates adenosine, an immunosuppressive
signal that prevents excess inflammatory response57. Its secretion by
macrophages and lymphocytes enhances autoantibody production58.
LSP1 facilitates transendothelial neutrophil migration59 and may help
prevent neutrophil accumulation in the pancreas60. Circulating neu-
trophil counts correlate with β-cell destruction in T1D, where NETosis,
the releaseof neutrophil extracellular traps (NET), has alsobeen shown
to damage tissue in a manner that is not yet understood61,62.

The SHAP-based protein-metabolite/exogeneous compound
analysis reveal non-linear relationships between metabolites, exogen-
ous comounds, and protein abundance in cord blood. In controls,
elevated protein expression is associated with metabolites and com-
pounds involved in amino acid metabolism (lysine, proline), bile acid

Fig. 4 | Significant differences in normalizedprotein abundanceby age at type 1
diabetes (T1D) diagnosis. a–d Differences in protein abundance among controls
(n = 286) and T1D stratified by groups based on age at T1D diagnosis: 0–5 years
(n = 23), 6–10 years (n = 34; >5–10 years), 11–17 years (n = 60; >10–17 years), and
18–24 years (n = 29; >17–24 years), with p values shown and asterisks indicating
significance from Wilcoxon tests using the Olink Analyze R package, after false
discovery rate (FDR) correction. For all significant proteins, see Supplementary
Data 8e–g) Pathways significantly enriched among proteins differing most in the
0–5 year group, identified using the STRING database (similarity threshold ≥0.8).
FDR-adjusted p-values are shown. e Wikipathways; f KEGG pathways; g Gene
Ontology: Biological Process. Functional enrichment results are provided in Sup-
plementary Data 9. Abbreviations for the proteins marked by asterisks in the plot
(p <0.05 after FDR correction): ADA adenosine deaminase, ACTN4 actinin alpha-4,
AMN amnionless, ARHGEF12 Rho guanine nucleotide exchange factor 12, ATP5IF1
ATP synthase inhibitory factor 1, AXIN1 axin-1, CASP2 caspase-2, CD40 CD40
molecule, CD40LG CD40 ligand, CD84 CD84 molecule, CDSN corneodesmosin,
CKMT1A_CKMT1B creatine kinase, mitochondrial 1A/1B, CLP2 caseinolytic mito-
chondrial matrix peptidase proteolytic subunit, CNAJA2 cochaperone Cdc37
homolog A2, COL9A1 collagen type IX alpha-1, CRKL CRK-like protein, CRLF1
cytokine receptor-like factor 1, CTSO cathepsin O, DBNL drebrin-like protein,
DECR1 2,4-dienoyl-CoA reductase 1, DGKZ diacylglycerol kinase zeta, FOXO1 fork-
head box protein O1, GMPRguanosinemonophosphate reductase, HLA-DRAmajor

histocompatibility complex, class II, DR alpha, HPCAL1 hippocalcin-like protein 1,
IDS iduronate 2-sulfatase, IKBKG inhibitor of kappa-B kinase regulatory subunit
gamma, IL5RA interleukin-5 receptor subunit alpha, IL17D interleukin-17D, IRAK1
interleukin-1 receptor–associated kinase 1, ISM1 ischemia-inducedmitogen 1, KYNU
kynureninase, LAMA4 laminin subunit alpha-4, LAT linker for activation of T cells,
LSP1 lymphocyte-specific protein 1, MAP2K6 mitogen-activated protein kinase
kinase 6, MEPE matrix extracellular phosphoglycoprotein, METAP1D methionine
aminopeptidase type 1D, MPIG6B megakaryocyte and platelet inhibitory receptor
G6b, MYO9B myosin-IXb, NCK2 NCK adaptor protein 2, NFATC1 nuclear factor of
activated T cells 1, NPPC natriuretic peptide C, NTF3, neurotrophin-3, OMD
osteomodulin, PDLIM7 PDZ and LIMdomain protein 7, PLXNA4plexinA4, PPP1R9B
protein phosphatase 1 regulatory subunit 9B, PRDX5 peroxiredoxin-5, PRKAB1
AMP-activated protein kinase subunit beta-1, PRKCQprotein kinase C theta, PSMG3
proteasome assembly chaperone 3, PTH1R parathyroid hormone 1 receptor, RAB37
RAB37 GTPase, SAMD9L sterile alpha motif domain–containing protein 9-like,
SH2D1A SH2 domain–containing protein 1A, SIT1 signaling threshold-regulating
transmembrane adapter 1, SKAP2 src kinase-associated phosphoprotein 2,
SPINT2 serine protease inhibitor, Kunitz type 2, SPRY2 sprouty RTK signaling
antagonist 2, STX8 syntaxin-8, TBC1D5TBC1domain familymember 5, TIMP3 tissue
inhibitor of metalloproteinases 3, TNFSF12 TNF superfamily member 12.
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derivatives (tauro-β-muricholic acid, 7-oxo-DCA), and lipidmetabolism
(palmitoleic acid, arachidic acid).Notably, ADA showsa strongpositive
association with itaconic acid, an immunomodulator63 that has anti-
microbial impacts and regulates macrophages and reactive oxygen
species64. ADA is inversely associated with arachidonic acid, a poly-
unsaturated fatty acid that is released after tissue injury and leads to
the formation of eicosanoids, contributing to inflammation and

peripheral nervous system excitation65, with both positive and nega-
tive effects on β-cell function depending on the context66. Elevated
arachidonic acid has been associated with future T1D autoimmunity in
a Finnish birth cohort67 as well as bipolar disorder in postmortem
studies, alongside stearic acid levels68.

Conversely, proteins elevated in future T1D show strong positive
associations with environmental contaminants (like perfluorinated
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environmental contaminant perfluorooctanesulfonate, linear, PFOS-L)
and saturated fatty acids (stearic acid), alongside varying influences
from bile acid metabolites and amino acids (e.g., glutamine). The
associationswith PFOS-L are of particular interest, wherewe see trends
between PFOS-L and immune-related proteins, including IL18,
TNFRSF4, and IL17A. Because they point to pathways involved in
inflammation, cytotoxicity, and immune regulation, these directional
associations suggest that even environmentally relevant PFOS expo-
suresmay subtlymodulate immune signaling69, consistent with known
immunomodulatory effects of PFOS, warranting further investigation
into potential impacts on health. These findings suggest that even low-
level environmental exposure may subtly influence immune signaling
as early as birth. Lower levels of stearic acid are seen in infants with the
highest expression of ADA and TIMP3. Stearic acid has been shown to
induce CD11c+ macrophage differentiation and to promote inflam-
mation via increased expression of the costimulatory molecules clus-
ter of differentiation 80 (CD80) and CD86 and of cytokines IL-6, TNF,
and IL-1β, in an epidermal fatty acid binding protein (E-FABP)-depen-
dent manner70. These fatty acid binding proteins are known to be
higher in T1D patients71. They are correlated with islet autoantibody
titer72 and are predictive of the progression of diabetic neuropathy
irrespective of stage of T1D73. Elevated stearic acid is found in one year
olds with future islet autoimmunity in the Trial to Reduce IDDM in the
Genetically at Risk (TRIGR) study, even after adjustment for HLA and
maternal T1D74. Environmental exposures, when combined with pro-
teomic changes,may contribute to disease development. In our study,
perfluorinated environmental contaminant compounds are positively
correlated with HLA-DRA and IDS, both significantly higher at birth in
infants with future T1D, regardless of genetic risk. Prior research has
shown that prenatal perfluorinated environmental contaminant
exposure can modulate phospholipids and bile acids and is linked to
increased risk of islet autoimmunity, especially in those with T1D-
associated HLA genotype, likely resulting fromdirect fetal exposure to
PFOS75.

Supervised ML prediction models perform well based on these
protein markers at birth, with the highest performance of AUC=0.89.
Gradient boosting hasbeen applied in severalMLareas, superior for its
ability to avoid overfitting and deal with complexity in disease
prediction76. Our results demonstrate robust prediction using pro-
teomics. Interestingly, the preponderance of the performance of these
models is not dependent on HLA genotype, indicating that the pre-
dictive value of the proteins extends beyond HLA. This finding is par-
ticularly important given ongoing debates about genetic screening
at birth.

Expanding the dataset and testing this model in a large indepen-
dent cohort will provide evidence of generalizability. While the ML

models performed well, further optimization is possible through
exploration of other non-HLA genetic and environmental factors, that
may influence inflamation and T1D risk. Also, the proteomic analysis is
performed here does not cover the entire proteome, leaving the pos-
sibility of key proteins or pathways being unaccounted for. While
efforts aremade to account for potential confounders, the influenceof
unmeasured factors cannotbe ruled out. As theABIS study is limited to
children born in Sweden between 1997 and 1999—a population that
may not represent broader demographic and environmental varia-
bility, the generalizability in other populations must be investigated.
Nonetheless, this study provides evidence to facilitate continued
research into the impacts of early inflammation during early
childhood.

Once childhood islet autoantibodies are detected, the inflamma-
tory attack destroying pancreatic islet cells is already in progress,
making effective interventions at this late stage more difficult. Inter-
vening prior to the appearance of islet autoantibodies is critical. Our
findings highlight the predictive potential of birth-associated proteins
involved in cell death, immune response, cytoskeletal dynamics, and
response to abiotic stress—suggesting that the prenatal inflammatory
environment may influence disease trajectory. Biomarkers centered
around the prenatal period could be transformative, offering the
opportunity to reduce inflammation and more potentially delay or
prevent the onset of insulin dependence.

Methods
Participants
The ABIS cohort follows, to present day, 16,683 children born between
October 1997 and 1999 in Southeastern Sweden. Families are recruited
from nine obstetric clinics across all hospitals in the counties of
Östergötland, Småland, Blekinge, and Öland. They receive oral and
written information and are invited to join the study. Out of the 21,700
children born in the region, 78.6% of families provided informed
consent for their child to participate. Cord blood samples were col-
lected from all ABIS children. Parents completed extensive ques-
tionnaires and diaries from the child’s birth through 13 years of age,
with ABIS individuals themselves answering questionnaires in addition
to parents at 8, 11–13, and then themselves at 17–19 and 23–26 years of
ages77. Only the birth questionnaire is analyzed in the present study,
focused on pregnancy and birth.

Biological sex (male/female) is collected in the ABIS study from
the birth questionnaire (reported by the parent) and is included in the
study design. Gender identity is not collected; therefore, all analyses
pertain solely to biological sex. The ABIS cohort shows a relatively
balanced distribution of biological sex (48.2% female, 51.8%male), and
the distribution of biological sex in the T1D case and control groups is

Fig. 5 | Proteomic differences in infants with future type 1 diabetes (T1D) and
controls, stratified by HLA genetic risk for T1D. Proteomic differences between
future cases and controls, stratified by HLA genetic risk types for T1D, based on
Wilcoxon tests using the Olink Analyze R package. Non-HLA genetic risk compar-
isons: a Significant differences in protein abundance comparing controls without
DR4-DQ8 or DR3-DQ2 alleles (n = 76), to all future T1D cases (n = 146); b Controls
with decreased or neutral risk (n = 125) compared to future T1D with decreased or
neutral risk (n = 18). HLA genetic risk comparisons; c Controls possessing either
DR4-DQ8orDR3-DQ2 (n = 81) compared to all futureT1Dcases (n = 146);dControls
with increased or high-risk (n = 44) compared to future T1D with increased or high-
risk (n = 76). Normalized protein expression (NPX) levels are shown, with sig-
nificance assessed usingWilcoxon statistics in theOlinkAnalyzeRpackage. P values
before and after false discovery correction (FDR) are indicated. ADA adenosine
deaminase, ALDH3A1 aldehyde dehydrogenase 3 family member A1, AMN
amnionless, ARHGEF12 Rho guanine nucleotide exchange factor 12, AXIN1 axin-1,
BTN3A2 butyrophilin subfamily 3 member A2, CASP2 caspase-2, CCL4 C-C motif
chemokine ligand 4, CCL7 C-C motif chemokine ligand 7, CCL21 C-C motif che-
mokine ligand 21, CD40LG CD40 ligand, CD70 CD70 molecule, CD84 CD84

molecule, CLEC4AC-type lectin domain family 4memberA,CRKLCRK-like protein,
CTSC cathepsin C, CXCL12 C-X-C motif chemokine ligand 12, DECR1 2,4-dienoyl-
CoA reductase 1, DGKZ diacylglycerol kinase zeta, ENAH enabled homolog, ERBB3
erb-b2 receptor tyrosine kinase 3, FOXO1 forkhead box proteinO1, HLA-DRAmajor
histocompatibility complex, class II, DR alpha, IL17C interleukin-17C, IL32 inter-
leukin-32, ISM1 ischemia-inducedmitogen 1, ITGA6 integrin subunit alpha-6, ITM2A
integral membrane protein 2A, KYNU kynureninase, LAMA4 laminin subunit alpha-
4, LSP1 lymphocyte-specific protein 1, LY9 lymphocyte antigen 9, LY75 lymphocyte
antigen 75, MEPEmatrix extracellular phosphoglycoprotein, NTF3 neurotrophin-3,
PDLIM7 PDZ and LIM domain protein 7, PLXNA4 plexin A4, RAB37 RAB37 GTPase,
SCGB1A1 secretoglobin family 1A member 1, SCGB3A2 secretoglobin family 3A
member 2, SERPINB8 serpin family B member 8, SIRPB1 signal-regulatory protein
beta-1, SPINT2 serine protease inhibitor, Kunitz type 2, STX8 syntaxin-8, TBC1D5
TBC1 domain family member 5, TIMP3 tissue inhibitor of metalloproteinases 3,
TNFRSF13B tumor necrosis factor receptor superfamily member 13B, VEGFA vas-
cular endothelial growth factor A. Created in BioRender. Ahrens, A. (2025) https://
BioRender.com/k05i837.
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Fig. 6 | Proteomic differences in type 1 diabetes (T1D) and controls, specifically
those lacking DR3-DQ2 HLA alleles. a Significant proteomic markers in infants
with future type 1 diabetes (T1D; n = 53) and controls (n = 112), all of whom lack the
DR3-DQ2 human leukocyte antigen (HLA) allele. Proteins that remain significant
after false discovery rate (FDR) correction are indicated with bold outlines;
b Boxplots showing the most significant proteins, with Wilcoxon p values with a
two-sided test indicated. Boxplots show the median (line) and interquartile range
(box, 25th–75th percentile) to demonstrate the data distribution. Whiskers extend
to the most extreme values within 1.5 × interquartile range (IQR) of the lower and
upper quartiles; points beyond the whiskers are plotted as outliers. Values are
displayed as normalized protein expression (NPX) values. ADA adenosine deami-
nase, ALDH3A1 aldehyde dehydrogenase 3 family member A1, ARHGEF12 Rho
guanine nucleotide exchange factor 12, AXIN4 axin family member 4, CCL3 C-C

motif chemokine ligand 3, CD40LG CD40 ligand, CD58 CD58 molecule, CRLF1
cytokine receptor-like factor 1, CTSC cathepsin C, DAPP1 dual adaptor of phos-
photyrosine and 3-phosphoinositides 1, DECR1 2,4-dienoyl-CoA reductase 1, ENAH
enabled homolog, FOXO1 forkhead box protein O1, GAL galanin peptide, IDS
iduronate 2-sulfatase, IL17C interleukin-17C, IL20 interleukin-20, IRAK1 interleukin-1
receptor-associated kinase 1, KYNU kynureninase, LAT linker for activation of T-
cells, LSP1 lymphocyte-specific protein 1, MEPE matrix extracellular phosphogly-
coprotein, MYO9B myosin-IXB, NTF3 neurotrophin-3, OMD osteomodulin, PRDX5
peroxiredoxin-5, RABGAP1L RAB GTPase-activating protein 1-like, SAMD9L sterile
alpha motif domain-containing protein 9-like, SCGB3A2 secretoglobin family 3A
member 2, SELPLG selectin P ligand, SPINT2 serine protease inhibitor, Kunitz type
2, TBC1D5 TBC1 domain family member 5, TIMP3 tissue inhibitor of metallopro-
teinases 3, TREM2 triggering receptor expressed on myeloid cells 2.
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broadly representative, but with a slight overrepresentation of females
among controls included in the Olink proteomics subset (52.5%)
compared with controls not included (47.9%). No socially constructed
or socially relevant variables, such as race, ethnicity, or socioeconomic
status, are collected in this study. TheABIS cohort consists primarily of
children born in Sweden to Swedish parents, and although data on
race, ethnicity, or ancestry are not gathered, the population is

expected to be relatively homogeneous. At enrollment, 89.2% of ABIS
children have both parents born in Sweden, 7.7% have one parent born
outside Sweden, and 3.1% have both parents born outside Sweden78.
These data come from self-report, and serve only to contextualize the
demographic structure of the cohort rather than classify participants
into sociocultural groups. Because these variables are not collected,
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we do not use race or ethnicity as proxies for any other social variable,
and no analyses rely on such constructs.

Diagnoses and study design
Diagnoses are obtained using International Classification of Diseases
(ICD) codes as reported in the SwedishNational Patient Register,which
includes records from specialist consultations in outpatient care from
public and private providers. Up to December 2020, a total of 167 ABIS
children had received a T1D diagnosis (ICD-10 code E10), with diag-
noses occurring at an average of 12.6 ± 6.1 years, ranging from2 to 24.6
years (median: 12.6 years) and a cumulative incidence of 1%. Controls
are defined as individuals without any autoimmune or neurodevelop-
mental diagnoses in their medical record, or according to the Swedish
National Patient Register.

This study uses observational human cohort data with no
experimental intervention. Group allocation (future T1D vs. control)
was determined independently through clinical follow-up using pre-
defined diagnostic criteria and not assigned by investigators. Blinding
was not applicable, as predefined clinical outcomes and standardized
laboratory measurements were used. Group status (future T1D vs.
control) was determined independently through clinical follow-up,
and all analyses were conducted using objective computational
methods without subjective assessment. No formal sample size cal-
culation was performed. This study leveraged all cord blood samples
from children who later developed T1D in the ABIS cohort available at
the time of analysis, along with eligible controls with sufficient mate-
rial. As this was an observational cohort study using existing biobank
material, sample sizes were determined by sample availability and are
consistent with prior multi-omic studies of early-life T1D risk.

Birth questionnaires
The psychosocial vulnerability index, as used in Ahrens et al. 78, is
derived from questions pertaining to the following: living conditions,
parental education levels, employment and income, stressful life
events, social support, and safety (Table 2).

Olink inflammatory and immune panels
Olink’s Explore 384 Inflammation 1 and 2 panels and Target Immune
Response panel are used to analyze cord serum samples (n = 1204) at
Olink’s headquarters in Uppsala, Sweden, encompassing 286 controls,
147 with future T1D, as well as samples from children with other con-
ditions in the future. Controls are identified as individuals without any
future diagnoses of autoimmune diseases, psychiatric disorders, or
neurodevelopmental conditions, whereas cases consisted of indivi-
duals with confirmed T1D diagnoses by 22 years of age. Control sub-
jects are randomly selected from the broader ABIS study population.
To address the notable class imbalance, oversampling of the minority

class and undersampling of the majority class are performed. Future
T1D case and control groups are broadly representative of the full ABIS
cohort, with no major evidence of selection bias (Table 1). The only
notable difference is a modest overrepresentation of females among
controls included in theOlink subset (52.5%) versus those controlswho
are not (47.9%).

The Olink Explore panels include 370 inflammatory protein
markers, with an additional 14 proteins for quality control. These
markers encompass a range of chemokines and cytokines, such as
interferon gamma, IL-1α, IL-6, IL-10, IL-12, IL-13, IL-15, IL-17, and
LTa. The Olink Target Immune Response panel comprises 92 protein
biomarkers, focusing on adaptive immune responses, viral responses,
andT-cell proliferation. The following assays donotmeetOlink’s batch
release quality control criteria and are therefore not included in this
project: BCL2L11, BID, LTA, GZMB, MGLL, FLI1, MPI, EBI3-IL27, and
ANGPTL7.

Quality control in proteomic analysis
Internal and external controls are run to ensure that the data does not
suffer from batch effects of other technical variations. Three internal
controls are added to each sample: the Incubation control, the
Extension Control, and the Amplification control. The Extension
Control is used for the generation of the NPX values. The Incubation
Control and the Amplification Control are used to monitor the quality
of assay performance, as well as the quality of individual samples. In
addition, three external controls are included in each run, the Plate
Control (healthy pooled plasma), Sample Control (healthy pooled
plasma), and Negative Control. The Plate Control is used for data
normalization, the Sample Control is used to assess potential variation
between runs and plates, and the Negative Control is used to calculate
Limit of Detection (LOD) for each assay and to assess potential con-
tamination of assays. To pass QC, there should be at least 500 average
matched counts (reads for each specific combination of sample and
assay). Also, the deviation of themedian of theNegative Controlsmust
be less or equal to 5 standard deviations from the set predefined value
for that assay, otherwise the assay receives awarning status. Twoof the
1204 samples do notmeet quality control, resulting in a final dataset of
1202 ABIS individuals.

Pre-processing of proteomic data
The proteomic data is presented as normalized protein expression
(NPX) values. The NPX is Olink’s relative protein quantification unit on
log2 scale. These values are calculated from the number of matched
counts, using Next Generation Sequencing as readout. Data values for
measurements below LOD are reported for all samples. All data are
intensity-normalized, with the exception of PNLIPRP2 and FOLR3,
which are plate control normalized because these assays showed a

Fig. 7 | Supervised machine learning (ML) models to predict type 1 diabetes
(T1D) from recursive feature elimination (RFE)-selected proteins, with and
without inclusionofhigh-riskHLAalleledosage. aPerformanceof theOlink-only
model (without HLA dosage), using eXtreme Gradient Boosting (XGBoost), based
on b the top 30 recursive feature elimination (RFE)-selected proteins using an 80%
training and 20% testing set from in the ABIS Olink case/control cohort (n = 432;
cases, n = 146; controls, n = 286). c Performance of the Olink + HLA machine
learning (ML) model, based on d the top 30 RFE-selected features. e Median dif-
ferenceof the RFE-selected proteins in theOlink +HLAmodel. fNormalized protein
expression (NPX) values ofHLA-DRAbyhigh-riskHLAallele dosage (0, 1, or 2 copies
of DR4DQ8 or DR3DQ2). Boxplots show the median (line) and interquartile range
(box, 25th–75th percentile) to demonstrate the data distribution. Whiskers extend
to the most extreme values within 1.5 × interquartile range (IQR) of the lower and
upper quartiles; points beyond the whiskers are plotted as outliers. AUC-ROC area
under the receiver operating characteristic curve, ALDH3A1 aldehyde dehy-
drogenase 3 familymemberA1, ARHGEF12Rho guanine nucleotide exchange factor

12, AXIN1 axis inhibition protein 1, BCR breakpoint cluster region protein, BTN3A2
butyrophilin subfamily 3 member A2, CASP2 caspase-2, CD48 CD48 molecule,
CD160 CD160molecule, CXCL14 C-X-Cmotif chemokine ligand 14, DNER delta and
notch-like epidermal growth factor-related receptor, FXYD5 FXYD domain-
containing ion transport regulator 5, GAL galanin and GMAP prepropeptide,
HLA_DRA major histocompatibility complex, class II, DR alpha, IDS iduronate 2-
sulfatase, IL1B interleukin-1 beta, IL13 interleukin-13, IL20RA interleukin-20 receptor
subunit alpha, IL22RA1 interleukin-22 receptor subunit alpha-1, IL1RL2 interleukin-1
receptor-like 2, LAIR1 leukocyte-associated immunoglobulin-like receptor 1, NME3
NME/NM23 family member 3, OSCAR osteoclast-associated receptor, PADI1 pep-
tidyl arginine deiminase 1, PADI2 peptidyl arginine deiminase 2, PTH1R parathyroid
hormone 1 receptor, SCGB3A2 secretoglobin family 3Amember 2, SERPINB8 serpin
family B member 8, SIT1 signaling threshold-regulating transmembrane adapter 1,
TIMP3 tissue inhibitor of metalloproteinases 3, TNFRSF14 tumor necrosis factor
receptor superfamily member 14, TNFSF12 tumor necrosis factor ligand super-
family member 12, TREM2 triggering receptor expressed on myeloid cells 2.
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Fig. 8 | Spearman correlations between circulating proteins and PFOS-L in
plasma (n = 132). a Spearman rank correlations between PFOS-L, the linear isomer
of perfluorooctane sulfonate, and circulating immune andmetabolic proteins (NPX
values). Only proteins with nominal p <0.05 are shown, with negative correlations

in blue and positive correlations in red. b Scatterplots illustrating the relationship
between PFOS-L and each protein for individual participants, highlighting direc-
tional trends. All correlations were assessed using a two-sided test.
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natural bimodal distribution. In >50% of the samples, 96% of the pro-
teins from the Explore 384 Inflammation are detected.

Metabolomic data
Cord serum samples are analyzed by lipidomics and hydrophilic
(water-soluble) metabolite profiling78. For lipidomic analysis, 10μL of
serum is mixed with internal standards and analyzed by ultra-high-

performance liquid chromatography quadrupole time-of-flight mass
spectrometry (UHPLC-QTOFMS from Agilent Technologies; Santa
Clara, CA, USA). For polar metabolites and exogenous compounds,
40μL of serum is mixed with internal standards and analyzed by the
Agilent 1290 Infinity LC system coupled with 6545 Q-TOF MS inter-
faced with a dual jet stream electrospray (dual ESI) ion source (Agilent
Technologies, Santa Clara, CA, USA). Quality controls include blanks,
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pure standards, extracted standards, and control plasma. Quantifica-
tion is performed78, using 7-point internal calibration curves with a
custom database based on the Metabolomics Standards Initiative and
lipid-class specific authentic standards. LIPID MAPS79, a comprehen-
sive classification framework for lipids developed by the International
Lipid Classification and Nomenclature Committee, is used to organize
lipids into eight classes. Categorization of triglycerides is based on the
fatty acid composition, distinguishing between saturated, mono-
unsaturated, and polyunsaturated species, and in cases where detailed
structure has not been determined, carbon and double bond sums are
used for the naming. Data are processed using MZmine 2.5380.

Association of prenatal risk factors with future T1D
Birth questionnaires are assessed by chi square for association with
futureT1Ddiagnosis, comparing 15,732 controls to 167 cases in Python.
Variables missing in 15% or more of the cases are excluded. The most
significant factors are carried into ML models for T1D diagnosis pre-
diction, training on 70% of the dataset and holding out 30% for testing,

with a random_state = 42 for reproducibility. ABIS individuals with
missing data at any single feature from the list of significant features
aredropped, resulting in afinal dataset ofn = 11,648 for theMLmodels.

We apply Stratified K-Fold Cross-Validation with 5 splits to eval-
uate the performance of Logistic Regression and three ML models:
eXtremeGradient Boosting (XGBoost), RandomForest, andSVM.Class
imbalance is addressed by assigning class weights (96:1) for the min-
ority class across all models. The top 18 features identified by MI
scoring are used as predictors. MI quantifies the strength of the asso-
ciation between two variables, measuring how much the value of one
reduces uncertainty about the other, without assuming linearity,which
traditional correlation-based methods may miss81. As MI is model-
agnostic82, it can be used as a dimension-reduction filter method
before any modeling type. For each fold, the models are trained using
the training set and tested on the validation set. Key performance
metrics, including Accuracy, Precision, Recall, F1 score, and AUC-ROC,
are calculated. Receiver Operating Characteristic (ROC) curves are
generated by interpolating True Positive Rates at fixed False Positive
Rate (FPR) intervals. The mean and standard deviation of each metric
are computed across folds to evaluate model stability. ROC curves for
each model are plotted, with shaded areas indicating ±1 standard
deviation. Mean AUC-ROC scores are reported.

Global analysis of proteomic markers, by future T1D diagnosis
Primary comparative case/control analysis is carried out using the
OlinkAnalyze R package83. Differentially expressed proteins are first
identified usingWelch 2-sample Mann–Whitney U tests on normalized
Olink data (NPX) at confidence 0.95 for every protein, with false dis-
covery rate (FDR) correction for multiple comparisons by the
Benjamini–Hochberg method. Gene Set Enrichment Analysis (GSEA) is
performed using OlinkAnalyze on the basis of these proteins.

To adjust for significant confounds of T1D risk, median fold-
change analysis is performed, but on a subset of controls, matching
cases and controls in a 1:1 ratio using propensity score matching by
nearest neighbor with thematchIt84 R package. This results in a dataset
of 140 futureT1D and 140matched controls, balanced on the following
factors: family history of T1D (in the mother), mode of delivery, gen-
der, week of delivery, vulnerability index, serious life event, and sto-
mach flu during pregnancy.

Protein concentration differences by age at T1D diagnosis
Future cases are categorized into four age groups: diagnosis at≤5 years
(n = 23), 6–10 years (n = 34), 11–17 years (n = 60), and 18–24 years
(n = 29), and each group is compared to the full set of controls.
Groupings correspond to >5 up to 10 years (label 6–10 years), >10up to

Fig. 9 | Associations between the cord blood metabolome, exogenous com-
pounds, pre and perinatal factors, and key type 1 diabetes (T1D)-associated
proteins.Metabolites measured in cord blood at birth (n = 132) are screened for
possible association with proteins, using mutual information (MI) scoring. The
elbow method sets the MI threshold for selecting significant metabolites. a For
tissue inhibitor of metalloproteinases 3 (TIMP3), the top 16metabolites are shown.
b–f SHAP (SHapley Additive exPlanations) values illustrate relationships between
these metabolites and the concentration levels of key T1D-associated proteins in
cord blood (n = 132). Metabolites linked to b TIMP3 and c adenosine deaminase
(ADA), which are both decreased in children who later develop T1D. Metabolites
linked to d iduronate 2-sulfatase (IDS), emajor histocompatibility complex, class II,
DR alpha (HLA-DRA), and f cathepsin C (CTSC), which are elevated in children who
later develop T1D. Protein abundances (normalized protein expression, NPX,
values) are shown, based on Wilcoxon and eXtreme Gradient Boosting (XGBoost)
analyses. Factors associated by two-sided test with concentrations of proteins
identified in Fig. 3c, d and Supplementary 4, including g) biological sex, h birth by
Caesarean section, all significant after FDR correction for multiple comparisons
(n = 1204). The boxplot (g) shows the median (line) and interquartile range (box,
25th–75th percentile) to demonstrate the data distribution. Whiskers extend to the

most extreme values within 1.5 × interquartile range (IQR) of the lower and upper
quartiles; points beyond thewhiskers areplotted asoutliers. Values aredisplayed as
normalized protein expression (NPX). 7-keto-DCA 7-ketodeoxycholic acid, 7-oxo-
DCA 7-oxodeoxycholic acid, C16-1 hexadecenoic acid, CCL22 C-Cmotif chemokine
22, CD40 cluster of differentiation 40, CD84 cluster of differentiation 84, CDSN
corneodesmosin, CTSO cathepsin O; DCA, deoxycholic acid; di-oxo-LCA, 3,12-
dioxo-lithocholic acid; FOXO1, forkheadboxproteinO1, GCAglycocholic acid, ISM1
immunoglobulin superfamily member 1, LAT linker for activation of T cells, LCA
lithocholic acid, LPC-16:0 lysophosphatidylcholine 16:0, LPC-17:0 lysopho-
sphatidylcholine 17:0, LPC-20:3 lysophosphatidylcholine 20:3, LPC-22:5 lysopho-
sphatidylcholine 22:5, LPE-16:0 lysophosphatidylethanolamine 16:0, MeFOSAA-put
methyl perfluorooctanesulfonamido acetic acid, putative, NPPCnatriuretic peptide
C, OMD osteomodulin, PFOS-L perfluorooctanesulfonate, linear, PFOA-br per-
fluorooctanoate, branched, PFOA-L perfluorooctanoate, linear, PLXNA4 plexin A4,
PTH1R parathyroid hormone 1 receptor, SH2D1A SH2 domain–containing protein
1A, SKAP2 srckinase-associatedphosphoprotein2, TaMCA tauro-α-muricholic acid,
TbMCA tauro-β-muricholic acid, TCA taurocholic acid, THDCA taurohyodeoxy-
cholic acid, TMCA isomer tauromuricholic acid isomer, UDCA
ursodeoxycholic acid.

Table 2 | Psychosocial Vulnerability Index in ABIS

Variable Coding

Living conditions 1 =flat in an apartment building

Father only elementary school 1 = Yes

Mother only elementary school 1 = Yes

Father: Unemployed 1 = Yes

Mother: Unemployed 1 = Yes

Both parents born abroad 1 = Yes

Mother single parent 1 = Yes

Serious stressful life event 1 = Yes

Mother received no support during
pregnancy

1 = Yes

Mother not feeling safe during
pregnancy

1 = Yes

Much worry for chronic illness in child 1 = Yes

Disposable household income yr 2000 1 = 10th lowest percentile

Disposable household income yr 2000 Swedish krona

Vulnerability index7 (sum of variables) 0–6 (6 most vulnerable)

Vulnerability index4 (sum of variables) 0–3 (3 most vulnerable = 95th
percentile)

Thepsychosocial vulnerability index is basedon 13 variables,with coding listed below.Scores of
3 on the vulnerability index 4 or 6 on the vulnerability index 7 indicate the highest vulnerability
(95th percentile) in the ABIS cohort.
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17 years (label 11–17 years), and >17 years (label 18–24 years). Sepa-
rately for each of the four analyses, a non-parametric Wilcoxon rank-
sum test is performed to compare NPX values between T1D cases and
controls.MedianNPX values are also calculated for both groupswithin
each assay. To provide an estimate of the magnitude of group differ-
ences, Cohen’s d is calculated for each assay. The sign of Cohen’s d is
adjusted to indicate the direction of the difference (negative if the
mean NPX is higher in controls). The p-values from the Wilcoxon tests
are adjusted for multiple comparisons using the Benjamini–Hochberg
(BH) method to control the FDR.

Functional pathway enrichment analysis is performed with the
STRING database25 (version 12.0), focused on the significant proteins
identified in the cases diagnosed by age five. The STRING database
curates PPIs, both physical and functional, and spans numerous criti-
cally assessed data sources, including Biocarta, BioCyc, GO, KEGG, and
Reactome databases. The scores are calculated by the probability of
two proteins interacting and corrected for the probability of a random
observation of occurrence85.

Protein concentration differences, stratified by HLA genetic risk
for T1D
Future T1D cases (n = 146) are compared to two subsets of controls (81
controlswith genetic risk for T1D and 76 controls without genetic risk).
HLA risk for T1D is defined by the presence MHC Class II HLA risk
alleles, includingDR4-DQ8 (DRB1-DQA103:01-DQB103:02) and/orDR3-
DQ2 (HLA-DRB103:01-DQA105:01-DQB1*02:01)23,26, seen in as many as
90% of T1D patients27,28, as these represent the primary risk factor for
islet autoimmunity29,30. Next, future T1D cases are separated by HLA
risk (decreased, neutral, increased, andhigh), basedon the presenceof
DR4-DQ8 and DR3-DQ226, and compared to controls with similar
genetics. Decreased or neutral HLA risk genotypes are seen in 125
controls and 18 with future T1D, while high or increased risk identified
in 44 controls and 76 with future T1D. For each of these analyses, NPX
values are compared by 2-sampleMann–WhitneyU at confidence 0.95
for every protein, again with FDR correction.

Protein differences unique to HLA subtypes are then explored,
first by individuals lacking DR3-DQ2 (n = 53 T1D, n = 112 controls), and
then by individuals lacking DR4-DQ8. This analysis is focused around a
specific HLA genetic background (e.g., excluding individuals with
certain genotypes). For the DR3-DQ2 −/− analysis, any case or control
possessing DR3-DQ2 is removed from the dataset (n = 53 cases, n = 112
controls), and for the DR4-DQ8 −/−- analysis, any case or control
possessing DR4-DQ8 is removed (n = 24 cases, n = 111 controls). Each
filtered dataset is passed through to a customWilcoxon rank-sum test
in the OlinkAnalyze R package, olink_wilcox(), with FDR correction by
the Benjamini–Hochberg method.

Prediction of future T1D using the inflammatory proteome
at birth
The diagnostic accuracy of several traditional and ML models—
XGBoost, Random Forest, Logistic Regression, and SVM—for predict-
ing future T1D based on the proteomic data is assessed in Python,
using Jupyter Notebooks for reproducibility. By prioritizing proteins
with high model-agnostic MI scores82, the T1D prediction models
focused on those proteins with the highest relative influence on pre-
diction, capturingmeaningful and potentially complex relationships in
the proteins. Two methods for feature selection are taken in parallel,
first using the top 40 proteins and then the set selected by the elbow
method, applying a threshold forMI score. For the latter,MI scores are
plotted on a histogram across different discretization levels and the
point where the curve leveled off indicating the optimal feature
selection, where additional information from other proteins does not
add significantly to the reduction in uncertainty.

Training is carried out with 70% of the dataset (n = 275) and
holding 30% for testing (n = 118), using as the selected protein NPX

values as predictors. For XGBoost, the baseline parameters are sca-
le_pos_weight=4.0, random_state = 42. Stratified k-fold cross-valida-
tion is employed to maintain the same class distribution as seen in the
original dataset (n_splits = 5, shuffle = True, random_state = 42). ROC
curves are averaged across folds using interpolation on fixed set of
FPRs. Performancemetrics of accuracy, precision, recall, F1 score, and
AUC-ROC are assessed. The best-performing model is identified and
hyperparameter tuning performed using grid search with cross-
validation. The following parameters are then tuned in the XGBoost
model: scale_pos_weight = 10, max_depth = 3. Stratified k-fold cross-
validation ensured balanced target distribution in eightfolds with a
fixed random seed for reproducibility. The mean ROC curve is calcu-
lated along with a 95% confidence region.

Given the impact of DR4-DQ8 on T1D and its sufficient allele dis-
tribution in ABIS, the performance of ML and traditional models pre-
dicting future T1D individuals specificallywithDR4-DQ8alleles (n = 68)
is assessed, in contrast to all controls (irrespective of HLA genotype,
n = 268). Again, training is performed with 70% of the dataset and
holding 30% for testing and a class weight multiplier of 4.2 (based on
68 T1D/286 controls). GridSearch is employed for hyperparameter
tuning.

ImprovedpredictionwithHLAand recursive feature elimination
To improve prediction, we implement another supervisedML pipeline
using XGBoost, handling class imbalance via internal weighting as
before by setting scale_pos_weight to mirror the ratio of controls to
cases within the training data. However, here, feature selection is
performed using recursive feature elimination (RFE) in scikit-learn,
with XGboost as the base estimator, and HLA dosage is taken into
account. RFE is optimal for optimizing feature selection in ensemble
models, ranking features by contribution to model performance. The
Olink case/control dataset (n = 432) is split into training (80%) and
testing (20%) sets, stratified byoutcome to preserve class proportions.
RFE is applied to select the top 30 most predictive features, first
excluding and then including HLA allele dosages (DR4DQ8 and
DR3DQ2), extracting feature importances to assess their relative con-
tributions. To evaluate model performance and generalizability while
avoiding data leakage, we conduct fivefold stratified cross-validation
using these same fixed selected features within each fold, preserving
interpretability by consistently using this set of fixed features to see
how they generalize throughout.

Metabolites and T1D-linked proteins based on SHAP analysis
For 132 ABIS individuals for whom both metabolomic and proteomic
data are available, non-linear protein-metabolite associations are
determined using Shapley Additive exPlanations24 (SHAP). For this
analysis, HLA-DRA, IDS, and CTSC (higher in T1D), and ADA and TIMP3
(higher in controls), are tested. For each protein, feature selection is
carried out by MI score for each of the proteins separately, by the
elbow method to prioritize the top metabolites. Preliminary metabo-
lite case/control differences are identified in prior analyses of the ABIS
cohort86,87. As an expanded case set are not available at the time of this
investigation to further evaluate these differences, differences are not
shown here. Instead, our focus is on integration with proteomic data.

Proteomic associations with environmental factors are analyzed
using a two-step approach. First, proteins are identified based on their
statistical significance (p < 0.05) in previous analyses conducted across
multiple age intervals (0–5, 6–10, 11–17, or 18–24 years), resulting in a
total of 65 unique proteins that are still significant after FDR correc-
tion. After filtering to include only these proteins, Wilcoxon rank-sum
tests are performed to evaluate associations between NPX levels for
each protein and selected items on the birth questionnaires (e.g.,
stomach flu, smoking, severe life events during pregnancy, mode of
delivery, and biological sex). For each protein, data are subsetted to
include non-missing values and ensure valid group comparisons.
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Medians of NPX levels for the two groups are calculated, and the
Wilcoxon rank-sum test is used to determine whether distributions
differed significantly. Multiple testing correction using the
Benjamini–Hochberg (BH) method is employed to adjust for the false
discovery rate (FDR). Results are compiled in a summary table,
including the protein name, group medians, test statistic, p-value, and
FDR-adjusted p-value. Proteins with FDR-adjusted p-values < 0.05 are
considered significant.

Ethical statement
All uses of human material have been approved. Ethical approval for
ABIS is obtained by Research Ethics Committees of Faculty of Health
Science at Linköping Univ., Ref. 1997/96287 and 2003/03-092 and the
Medical Faculty of Lund University (Dnr 99227, Dnr 99321) prolonga-
tion of ABIS 03/092 and follow-up of adults 2019-05227) and con-
nection to national registers (Dnr 03-513, 2018/380-32). All recruited
volunteers in ABIS provided written informed consent, with partici-
pating parent(s) providing informed consent and later, the ABIS indi-
viduals themselves. Multinational collaborations with the Univ. of
Florida are approved by the University of Florida’s Institutional Review
Board (IRB) as studies IRB201800903 and IRB202301239.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All processed proteomic, metabolomic, lipidomic, and associated
metadata generated in this study are provided in the Source Data file.
The raw metabolomic and lipidomic mass spectrometry data have
been deposited in the Mass Spectrometry Interactive Virtual Environ-
ment (MassIVE) [https://massive.ucsd.edu/] under dataset identifier
MSV000099985. These datasets constitute the minimum required
information to reproduce and verify the analyses presented in this
manuscript, while maintaining compliance with the ethical require-
ments governing human subjects research. Source Data are provided
with this paper Source data are provided with this paper.
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