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High-level visual cortex contains category-selective areas embedded within
larger-scale topographic maps like animacy and real-world size. Here, we
propose action as a key organizing factor shaping visual cortex topography
and assess the ability of topographic deep artificial neural networks (DANNSs) in
capturing this organization. Using fMRI, we examined responses to images of
body-parts and objects with different degrees of action properties. In left
lateral occipitotemporal cortex, we identified a topographically-organized
action gradient, with overlapping activations for bodies, hands, tools, and
manipulable objects along a dorsal-posterior to ventral-anterior axis, culmi-
nating at the intersection of body parts and objects exhibiting higher action
properties. Multivariate analyses confirmed action as a crucial organizing
principle, while shape and animacy dominated ventral occipitotemporal cor-
tex and DANNs, which exhibited no action-based organization. Our proposed
action dimension serves as a further organizing principle of object categories,

advancing understanding of visual cortex organization and its divergence
from DANN-based models.

Topography—the systematic, spatial organization in which neurons (or
voxels) with similar functional properties are located near one another
in the cortex'—is ubiquitous throughout the cortex, from the retino-
topy and pinwheels of primary visual cortex” to the complex somato-
topic organization of body parts in the so-called motor homunculus in
ML, In occipitotemporal cortex (OTC), a topographic organization of
functionally selective areas has been shown, with areas responding
preferentially to ethologically-relevant categories such as faces, body
parts, words, and scenes®’, mirrored along the ventral and lateral
OTC® and forming a consistent spatial arrangement across
participants’.

Several accounts have tried to explain this organization by high-
lighting the role of different features that map object space onto the
two-dimensional cortical sheet, leading to the emergence of func-
tionally selective areas. These features span from low-level principles
like eccentricity®°, to mid-level properties (e.g., curvature", aspect-
ratio'>”, texture'), and to semantic principles like animacy” and real-
world size'. Some of these dimensions appear to be repeated across
ventral and lateral OTC, explaining the mirrored organization of

category-selective areas”'’. Remarkably, the representational space of
higher-level layers in DANNSs trained on object recognition captures
the same object dimensions observed in the visual cortex (e.g.,
animacy®®, aspect-ratio”—but see ref. 21—-shape?, real-world size”).
Moreover, topographic DANNs—architectures that incorporate biolo-
gically inspired spatial constraints®***—develop category-selective
responses (e.g., for faces, bodies, and scenes) that mirror the topo-
graphic organization found in the visual cortex.

Notably, accumulating evidence suggests that despite the fact
that lateral and ventral OTC show a similar mirrored object topo-
graphy, their underlying representational space might be better
explained by different object dimensions”?®, For instance, the left
lateral OTC shows sensitivity to categories characterized by their
action-related properties, such as hands and tools®*~', whose under-
lying selectivity is spatially adjacent to, and partially overlaps with, one
another®’. Hands and tools differ in many visual and semantic prop-
erties, such as their shape and animacy; eccentricity and real-world size
accounts also cannot explain this pattern of results as this effect does
not extend to other object categories sharing similar eccentricity or
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Fig. 1| Stimulus set. Images were divided into 6 categories varying along two
dimensions, animacy and action. For inanimate objects, action was characterized
by two properties, action-effector (red) and graspability (orange). The three inan-
imate objects were matched for visual shape and orientation, to avoid confounds
based on the overall shape (e.g., the elongation) of the stimuli. All images in this
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figure have been replaced with photographs obtained from Unsplash (https://
unsplash.com), which provides images under a license allowing free commercial
use without permission. Images were selected to be visually similar to the original
stimuli. Face images were replaced with photographs of individuals who provided
explicit consent for publication.

real-world size®**. Instead, this evidence suggests that another

dimension plays a role in shaping the topographic organization of
visual cortex object space: action®.

The present study aims to investigate the principles underlying
the organization of functionally selective areas, with a focus on how
behaviorally relevant action properties of objects shape the spatial
organization and content of representations in ventral and lateral OTC.
We conducted an fMRI experiment where participants viewed images™®
of body parts and objects varying in their degree of action properties.

Using univariate and multivariate analyses on fMRI data, along
with representational predictions based on human similarity judg-
ments, we tested how action dimensions interact with other proposed
dimensions and compared results in human visual cortex with DANNs.
Our results show a dissociation between ventral and lateral OTC in
both topography and representational space. Action—alongside shape
and animacy—emerged as a key principle explaining the arrangement
of categories in lateral OTC, while animacy best explained topography
and representational content in ventral OTC and in DANNSs, which in
turn did not show any action-related organization. These results
demonstrate that action is a fundamental organizing dimension of
OTC, and that further developments are necessary for current com-
putational models to fully capture both topography and function of
high-level visual cortex.

Results

To investigate how action-related properties influence object topo-
graphy in visual cortex, we designed a stimulus set organized along
two dimensions: animacy (body parts vs. inanimate objects) and
action. Specifically, the three inanimate categories vary along two
action-related properties: action effector and graspability (Fig. 1).
Tools are both action effectors and graspable; manipulable objects are
graspable but not effectors; and non-manipulable objects are neither
effectors nor graspable. The three body parts also differed in action
relevance: low for faces, higher for bodies, and highest for hands.

Action-related properties for all categories were behaviorally validated
(see “Methods” for details).

To investigate the degree to which animacy and the two proper-
ties of the action dimension can predict the object topography in
visual cortex, we combined univariate (e.g., functional profile, overlap
analysis) and multivariate analyses of fMRI data to examine both the
large-scale spatial distribution and the underlying representational
content in lateral and ventral OTC. In parallel, we evaluated the ability
of DANNS s to capture this organization to assess where current models
align with, or diverge from, biological systems.

Action properties differentially shape object topography in
ventral and lateral OTC

To investigate object space organization in ventral and lateral OTC
(VOTC and LOTC, respectively), we first mapped the activation
response for each category (versus all others, t>3.5, p<0.05 FDR
corrected at the cluster level) onto the whole-brain surface (Fig. 2a).
Beyond replicating the known parallel organization of category-
selective responses in lateral and ventral OTC*, the whole-brain ana-
lysis confirmed a dissociation between the VOTC and LOTC in the left
hemisphere (Fig. 2a) based on the activation patterns for object classes
with varying degrees of action-related information. Whereas in VOTC
we found the typical medial-to-lateral animacy division with no overlap
between animate and inanimate categories’, in LOTC we observed
overlapping responses between animate and inanimate conditions
with a different degree of action properties. From dorsal-posterior to
ventral-anterior, we observed selective and partly overlapping activa-
tions for bodies, hands, tools, and manipulable objects, with a con-
vergence and high degree of overlap for the animate and the inanimate
categories, characterized by the highest degree of action properties:
hands and tools. The action-based organization was particularly evi-
dent when comparing activations of inanimate objects. Specifically, we
found a consistent action-related gradient in LOTC, with a smooth
transition across the cortical surface where the activation to object
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Fig. 2 | Action-related topography of occipitotemporal cortex. a Whole-brain
results. Response for each category (vs. all) was visualized on a freesurfer average
brain surface using BrainSurfer (https://www.mathworks.com/matlabcentral/
fileexchange/91485-brainsurfer), with a threshold of ¢ >3.5 (p < 0.05 FDR corrected
at the cluster level), excluding activations within early visual cortex (approximately
V1-V2-V3) to focus on the regions of interest in LOTC and VOTC. Color-coded
dashed lines indicate overlap between activations. The black dashed line indicates
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the mid-fusiform sulcus. b Category overlap visualization. The size of each circle
represents the approximate size of the category-selective cluster in VOTC and
LOTC in the left hemisphere. ¢ Single subject results on the unsmoothed native
surface of one representative participant (¢ > 3.5, FDR cluster corrected at p <0.05).
For all panels, VOTC Ventral Occipitotemporal Cortex, LOTC Lateral Occipito-
temporal Cortex, and red = faces; orange = bodies; yellow = hands; dark blue =
tools; blue = manipulable objects; light blue = non-manipulable objects.

categories characterized by different action properties changes sys-
tematically according to the two action-related properties. This gra-
dient was characterized by a large activation cluster for tools which are
both action-effector and graspable, a smaller cluster for manipulable
objects which are only graspable, and no significant activation for non-
manipulable objects which are neither action effector nor graspable;
the opposite pattern was observed in VOTC, with a larger cluster for
non-manipulable relative to manipulable objects, which in turn
revealed a larger activation relative to tools. The action-related topo-
graphic organization in LOTC was also observed at the level of indi-
vidual participants, without spatial normalization or smoothing (see
Fig. 2c for an example participant). Unlike the left hemisphere, the
right hemisphere did not show any action-related organization, as
neither tool nor object selectivity were observed (see Supplementary
Fig. 1 and Figs. 2 and 3 for right hemisphere results). In the remainder
of the paper, all analyses refer to the left hemisphere.

These results were further confirmed by the overlap analysis,
which allowed us to further assess the spatial relationship between
categories, with the underlying rationale that spatial proximity and
overlap in the cortex suggest shared features®”. We quantified the
extent of activation overlap between each category by calculating an
overlap index for each pairwise combination of regions, separately for
the ventral and lateral OTC (see “Methods”, Fig. 2b). The index repre-
sents the number of voxels common between the areas, varying from O
(no voxels in common) to 1 (the smaller area falls completely within the
larger). In LOTC, from dorsal-posterior to ventral-anterior a large
overlap could be observed between hands and bodies (0.68), between
hands and tools (0.45), and between tools and manipulable objects
(1.0, where manipulable objects fall completely within the larger tool
cluster), but no overlap could be observed for the other combinations.
On the contrary, in VOTC, no overlap could be observed between
animate and inanimate categories, nor between faces and hands;
inanimate objects, instead, presented a strong overlap with each other,

with tools falling completely within the manipulable object cluster
(1.0), and manipulable showing an extended overlap with non-
manipulable objects (0.88), thus further confirming the opposite
gradient in LOTC and VOTC for objects characterised by a different
degree of action properties. A schematic visualization of category
overlap is shown in Fig. 2b.

To further characterize the spatial and functional profile of the
different object topography observed in LOTC and VOTC, we plotted
the beta values for each condition extracted from a series of partially
overlapping spheres covering a broad region of visual cortex including
a wide portion of ventral and lateral OTC from the parahippocampal
cortex (PHC) to the transverse occipital sulcus (TOS) (see “Methods”,
and Fig. 3a). The vector of ROIs analysis confirmed that from lateral to
ventral OTC, the response profile for all inanimate objects follow a
similar activation trend but with an opposite response strength based
on action-related properties of objects: tools, which are both action
effectors and graspable, show the highest response peak in LOTC and
the lowest in VOTC; manipulable objects, which are graspable but do
not serve as effectors, show the intermediate response in both LOTC
and VOTC; and non-manipulable objects which are neither action
effectors nor graspable show the lowest response in LOTC but the
highest in VOTC (Fig. 3a).

Overall, these results indicate that the topography of objects in
lateral and ventral OTC is driven by their different degree of action
properties, as measured by their action-effector and grasp properties.
To verify this, we plot the peak response (1 sphere) for each condition
in ventral and lateral OTC (Fig. 3b). Results of pairwise paired two-
tailed t-tests confirm that, within the inanimate object cluster, tools
elicit the highest activation across all three LOTC object peaks (p < 0.01
for all contrasts; Bonferroni corrected for n=5 comparisons). In con-
trast, non-manipulable objects elicit the highest response across all
three VOTC object peaks (p < 0.001 for all contrasts), except in VOTC-
tool, where non-manipulable and manipulable did not differ from each
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Fig. 3 | Distinct object topographies in lateral and ventral OTC. a Vector-of-ROls
analysis. The vector was generated by fitting a spline (drawn black line) connecting
the PHC and the TOS and passing through a set of anchor points which coordinates
were based on classically defined category-selective areas (i.e., face, body, hand,
object) from previous studies. Partially overlapping spheres (n =34) were gener-
ated along this spline, and they correspond to the ROIs analysed. Standard uni-
variate analyses were performed on each of the ROIs (see “Methods” for details),
which are visualized in white with a surface projection using Surf Ice (https://www.
nitrc.org/projects/surfice/). Normalized activation (against the average of all cate-
gories) is plotted for each category as a function of the position of the vector along
the cortex. The x-axis corresponds to each sphere along the vector, with labels for
major anatomical landmarks; the y-axis corresponds to the normalized beta values.

The vector was broadly divided into a ventral component (pink shade) and a lateral
component (light blue shade). Error bars represent +1 SEM across participants
(n=18). b Beta values are plotted for each category’s peak activation (one sphere)
separately for the ventral occipitotemporal cortex (VOTC) and lateral occipito-
temporal cortex (LOTC). Error bars represent +1 SEM across subjects (n =18 par-
ticipants). Each data point reflects the beta value extracted from one subject’s ROI
at the category’s peak activation. PHC Parahippocampal Cortex, mFG medial
Fusiform Gyrus. IFG lateral Fusiform Gyrus, OTS Occipitotemporal Sulcus, alTG
anterior Inferior Temporal Gyrus, pITG posterior Inferior Temporal Gyrus, LOS
Lateral Occipital Sulcus, TOS Transverse Occipital Sulcus. For all panels, red = faces;
orange = bodies; yellow = hands; dark blue = tools; blue = manipulable objects; light
blue = non-manipulable objects. Source data are provided as a Source Data file.

other (p=0.41). Hands elicit the highest activation in the LOTC ani-
mate peaks (LOTC-hand, LOTC-face) compared to all other object
categories (p <0.001 for all contrasts) except for LOTC-body, where
bodies elicited the highest response (p<0.003 for all contrasts).
Finally, whereas faces show the typical selectivity in VOTC (VOTC-face
and VOTC-body: p < 0.001 for all contrasts), we also observed a small
but selective cluster for hands in the occipitotemporal sulcus, located
lateral to the face cluster, which shows significant higher activation for
hands than for all other categories including faces and bodies (VOTC-
hand: p <0.001 for all contrasts). This region likely corresponds to the
left counterpart of the fusiform body area®®, a region that has been also
called OTS-limbs®. Here, we report its selective activation for hands
specifically and not bodies in general, thus confirming the possibility
of dissociating the activation to hand stimuli from the one to whole
bodies not only in lateral” but also in ventral OTC (see also ref. 36).
Overall, these results support the conclusion that the parallel
object representations in LOTC and VOTC encode distinct object
properties, and specifically point to the presence of an opposite
organization within ventral and lateral OTC, with the latter being
sensitive to object categories that contains a different degree of action
information, as indexed by the consistent topographic organization

for objects and body parts with different action-related properties and
convergence between inanimate (tools) and animate (hands) cate-
gories that share effector properties.

Topographic DANNs successfully mimic animacy division in
VOTC but fail to replicate action-based topography in LOTC
The above results show that the lateral and ventral OTC are char-
acterized by a different topographic organization: whereas in VOTC
the animacy of objects strongly drives the organization of repre-
sentations giving rise to the well-documented animacy division, in
LOTC the topographic organization is driven by the degree of object
action properties with a gradient from posterior-superior to anterior-
inferior. Here, we test whether topographic deep artificial neural net-
works (TDANNS), a type of computational model developed to capture
the topographic organization of ventral visual cortex®®, can mimic the
action-related organization observed in lateral OTC. TDANNs allow
testing whether a model designed to capture general topographic
organization as a by-product of minimizing wiring-length® can
account for object topography in visual cortex, thus suggesting that
brain-like representations and their spatial organization can co-
emerge with biologically inspired spatial constraints.
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Fig. 4 | TDANNS replicates animacy but not action-related organization of OTC.
a Spatial distribution of each category (as defined by t-values) on the simulated
cortical space of the VTC-like layer of five random initializations of the TDANN.
Rows correspond to each of the five initializations. Stars represent the location of
the top-50 most selective units for that category. Category-selective units (positive
t values) are shown in red, while units not selective for that category (negative ¢
values) are shown in blue. b Overlap analysis. Statistical significance was assessed
using permutation tests (10,000 randomizations on the mean overlap score across
initializations). Stars represent statistical significance at the minimum resolvable p-
value (p=0.0001), corresponding to the 10,000 permutation limit. Error bars
correspond to +1 SEM across the random initializations. Black dashed line
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represents baseline (overlap of 0.5 means no correlation between the presence of
two categories). Each data point represents the value from a single TDANN initi-
alization (n =5 model initializations). ¢ Selectivity profile of the top-50 most
selective units for each category (red = faces; orange = bodies; yellow = hands; dark
blue = tools; blue = manipulable objects; light blue = non-manipulable objects),
based on the activation of the VTC-like layer (as in a). Each data point corresponds
to one TDANN model initialization (n =5 model initializations). Error bars indicate
+1 SEM across model initializations. A baseline overlap of 0.5 denotes chance-level
correspondence between category-selective units. Source data are provided as a
Source Data file.

The network architecture was based on a ResNet-18 backbone,
pre-trained with a self-supervised contrastive-learning object recog-
nition task*’. We tested five different random initializations of the
network’s weights. We fed the networks with the images from our
experiment and extracted the activation maps for each topographic
layer, selecting the last VTC-like layer for further analyses (consistent
with ref. 26). A unit was defined as selective if its response for a specific
category passed a set threshold (defined as ¢> 3.5, with a contrast of
category > all). This uncorrected threshold was chosen for visualiza-
tion purposes only (Fig. 4a). The subsequent functional selectivity
analysis was performed on the first 50 most selective units. To inves-
tigate whether TDANNS replicate the topography and functional pro-
file of category activations in visual cortex, we visualized their
respective spatial distribution in the simulated cortical space and
plotted the activation profiles for the 50 most selective units per
category. Results are shown in Fig. 4. Despite some variations between
the five initializations—especially in the clustering’s strength—two main
findings could be observed (Fig. 4a): first, in all networks, units selec-
tive for animate and inanimate objects formed separate clusters, such
that when a unit responded to a body-part it did not respond to an
inanimate object and vice versa; second, no organization based on
action properties was observed. Specifically, tools and hands did not
activate the same units, and no smooth overlap based on action
properties was found among the three object categories.

To quantify these observations and compare TDANNs with brain
results, we performed an overlap analysis (as in ref. 26). Specifically, we
measured the co-occurrence of units selective for each category by
using an overlap score ranging from O (the presence of one category
always predicts the absence of the other) to 0.5 (no relationship) to 1
(perfect co-occurrence). Statistical significance was tested via 10,000
permutation tests. Results (Fig. 4b) confirmed significant overlap
within animate (score: 0.68, p<0.001) and inanimate (score: 0.74,
p<0.001) categories relative to the between-category overlap (ani-
mate-inanimate, score: 0.51). In other words, units that responded to a
body part or an inanimate object also responded significantly to other

categories within the same superordinate class. Second, the overlap
score between action effector categories such as hands and tools
(score: 0.59) was not significantly higher than the overlap between
hands and other manipulable objects (score: 0.594, p = 0.37), as well as
the overlap between tools and manipulable objects (score: 0.79) was
not significantly larger relative to the overlap between tools and non-
manipulable objects (score: 0.72, p = 0.24), nor relative to the overlap
between manipulable and non-manipulable (score: 0.72, p = 0.33) thus,
showing no action-related organization in TDANNS.

Visual exploration of Fig. 4a suggests that, in addition to the
separation between animate and inanimate categories, there seem to
be additional differences in the organization of categories. Specifically,
whereas the spatial distribution of units selective for the different body
parts seem a bit scattered around, the inanimate objects mostly acti-
vated a similar portion of the cortical space. To investigate the func-
tional profile of the TDANN units, we extracted the activation profiles
for the 50 most selective units for each category and plotted the
results (Fig. 4c shows results averaged across the five initializations).
Here, the focus was not on unit selectivity per se (e.g., do tool units
respond to tools more than all other categories) but rather the degree
to which a unit that responds to one category also responds to other
categories (e.g., do tool units respond to other categories as well?).
Overall, the results show that while a certain degree of category-
selectivity could be found for the different body-parts, as different
units selectively activated for each body part independently from the
other body parts, the top-units for each inanimate object category
responded to the other inanimate objects to a similar degree. Indeed,
the selectivity of units chosen based on their response for faces,
bodies, and hands was significantly higher for their preferred category
compared to all other categories (for all contrasts, p <0.001; permu-
tation test n=10,000). In contrast, units selected for their response to
tools, manipulable and non-manipulable objects did not differ in
selectivity across other inanimate object categories (for all contrasts,
p > 0.05), while being more selective for their preferred category than
for the animate categories (for all contrasts, p <0.001; permutation
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test n=10,000). Thus, similar to what we observed in visual cortex,
TDANNSs units that respond to one inanimate object category do also
respond to the other inanimate object categories, but differently from
human VTC, we did not observe any differential response gradient
from high to low (tools > manipulable > non-manipulable) as observed
in LOTC or from low to high (non-manipulable > manipulable > tools)
as observed in VOTC. Finally, differently from visual cortex, units that
respond to tools did not seem to activate hand units, thus confirming
results from the TDANNSs overlap analysis.

Overall, these results show that TDANNs primarily distinguish
between animate from inanimate objects, with additional functional
selectivity for individual body-parts, and a weaker, or absent, distinc-
tion among inanimate object categories. These results mirror the
pattern of overlap found in VOTC, which also showed a separation
between animate and inanimate object categories, with further clus-
tering for hands and faces. However, no action gradient organization,
as found in LOTC, could be observed in TDANNS.

Altogether, these analyses on networks implementing biologically
inspired topographic constraints reveal their ability to capture visual
features important to distinguish animacy and to capture—to a certain
extent—the selectivity for body-parts, but cannot replicate the action-
related organization observed in visual cortex.

VOTC and LOTC support distinct object feature spaces

Our results reveal a different object organization in LOTC and VOTC
and that TDANNs are able to capture only part of visual cortex
topographic organization. Next, we employ multivariate analyses to
further investigate what properties underlie this object space. Spe-
cifically, we use representational similarity analysis (RSA*) to inves-
tigate how the action and animacy dimensions relate in both visual
cortex and DANNs. We created three models, each reflecting a dis-
tinct dimension: the action model capturing action-related infor-
mation for each object category; the animacy model capturing the
body-parts\inanimate objects divide; and the shape model capturing
the average aspect-ratio of each category (see “Methods”), added to
account for visual properties relevant in OTC'>. The animacy and
action models were generated from participants who judged a ran-
dom subset of stimuli (n=36) on each dimension (see “Methods”).
The models were orthogonal: animacy vs. action-effector (r=-0.08);
animacy vs. shape (r=0.08); action-effector vs. shape (r=-0.16).
Dissimilarity matrices (Fig. 5a) support our predictions: the animacy
model clearly separated body-parts from inanimate objects; the
action-effector model showed a graded continuum: as the action-
related properties of body parts and objects increased, their corre-
lation strengthened.

We assessed how these dimensions are represented across lateral
and ventral OTC, by correlating neural activity patterns in each vector-
of-ROIs sphere with the three models (Fig. 5a). Results showed that
while animacy was strongly represented across the entire swath of
cortex and reached the noise ceiling in ventro-medial regions of OTC,
the action dimension reached its highest peak within LOTC, specifi-
cally between posterior ITG and LOS and its lowest peak in VOTC, in
correspondence of the highest peak for animacy. Interestingly,
throughout both ventral and lateral OTC, the effect for object shape
closely followed the trend of the action model, suggesting that regions
encoding action-related properties of objects also represent their
shape properties. To quantify this trend, we perform pairwise corre-
lations between the effects of each model along the vector. Results
confirmed that shape and action did indeed show a small but sig-
nificant correlation along the vector (r=0.18, t37 = 3.2, p = 0.0044; for
all RSA results, Bonferroni correction for n = 3 comparisons; p < 0.016).
On the contrary, a significant negative correlation was observed
between the action and the animacy models (r=-0.4, tq7=-8.2,
p <0.001), whereas no correlation was found between shape and ani-
macy (r=-0.05, tq7y=-12, p=0.24).

We performed the same RSA analyses in the TDANNs and in two
non-topographic models, both based on the ResNet-50 architecture
but trained with different task objectives: object recognition with
ImageNet** (ResNet-object) and action recognition with Moments-in-
Time* (ResNet-action). This allowed us to test whether training
objectives influence the networks’ representational space and whether
action recognition training improves the representational correspon-
dence with LOTC.

The RSA analysis performed in DANNs revealed different results
compared to visual cortex. Across all networks, regardless of archi-
tecture (topographic or non-topographic) or training task (object or
action recognition), animacy was the dominant dimension, highly
significant throughout the network hierarchies and outperforming
other models in most layers (Fig. 5c). Shape was the second-best
model, with high correlations along the networks” hierarchy dropping
in the final layers, in line with previous reports®. The action model
never reached significance in any layer or model. Furthermore, dif-
ferently from what we observed in visual cortex, action and shape were
not significantly correlated across DANNs’ layers (Pearson r=-0.14;
p=0.34). Together, these results show that neither training task is
sufficient to produce a brain-like action-related organization in the
networks.

To further inspect the DANNs feature space, for each model we
projected the dissimilarity matrix of the last convolutional layer (layer
49) of the two ResNet and the VTC-like layer of the TDANN into a two-
dimensional plot by using multidimensional scaling (MDS; Fig. 5d).
Confirming the RSA results, the animacy division appears to be the
main dimension emerging in the representational space of all DANNs
with no evidence for any action gradient. In addition, an effect of shape
was observed in the arrangement of inanimate objects. That is, dif-
ferently from body parts, which show some clustering based on cate-
gory, objects that by design were matched for shape show an
arrangement based on visual properties such as aspect-ratio and
orientation.

Lateral OTC represents action-effector and (to a lesser extent)
grasping properties of objects

Up to now, we have shown that distinct object dimensions are repre-
sented in ventral and lateral OTC. Here, we further characterise the
specific action-related properties underlying this object space. To this
aim, we calculated two indices derived from the correlational matrices
obtained with multivariate analysis (see “Methods”): the action-
effector index and the grasp index. The indices measure distinct
properties of the object categories, specifically the possibility of an
object to be an end-effector (the action-effector index), which differ-
entiates tools (e.g., a pair of scissors or a knife) from other graspable
objects (e.g., a bottle or a glass) and is shared between hands and tools,
and the possibility of an object to be grasped (the grasp index), which
differentiates manipulable objects from large non-manipulable objects
that cannot be grasped (e.g., a building or a vehicle). The action-
effector index was calculated by taking the correlation between each
body-part with tools and from that subtracting the correlation
between each body-part and manipulable objects; the grasp index was
calculated by taking the correlation between each body-part with
manipulable objects and from that subtracting the correlation
between each body-part and non-manipulable objects (see “Meth-
ods”). Results are shown in Fig. 6.

This analysis revealed that the driving factor underlying the object
space in LOTC is the action-effector property of objects, followed by a
smaller but significant effect for object grasp. More specifically, the
action-effector index shows that across the whole LOTC, hands are
strongly associated with objects that are characterized by effector
properties, such as tools, compared to other manipulable objects
which share graspable properties with tools but do not serve as action
effectors (Fig. 6a, left). This effect is specific for hands, as whole bodies
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Inferior Temporal Gyrus, pITG posterior Inferior Temporal Gyrus, LOS Lateral
Occipital Sulcus, TOS Transverse Occipital Sulcus. ¢ RSA results for the three
DANNS. Statistical significance was assessed using permutation tests (10,000 ran-
dom shuffles of category labels). Color-coded lines on top of each graph indicate
the layers where each model reach statistical significance relative to baseline
(p<0.001). d MDS for the DANNs (ResNet-Object and ResNet-Action) last con-
volutional layer (layer 49) and the TDANN VTC-like layer. Results for the TDANN
refers to one of its initializations. (red = faces; orange = bodies; yellow = hands; dark
blue = tools; blue = manipulable objects; light blue = non-manipulable objects).
Source data are provided as a Source Data file.

do not show the same pattern and faces even show a negative index
(which indicates higher correlation with objects that are not action-
effectors). These results show that while the action-effector effect is
present throughout most LOTC, its strength follows closely the
response profile of hands, suggesting that univariate hand-selectivity
supports an object space with one of the main dimensions being
action-related. To directly test this relationship, we computed the
correlation between the effector index and the activation for the dif-
ferent object categories along the vector-of-ROIs. Throughout the
vector, the effector index was significantly correlated with the hand’s
response profile (rq7, = 0.38; ty7, =4.46, p<0.001; Bonferroni correc-
tion for n=6 comparisons; p<0.0083) but not with the response
profile for either faces, bodies, or tools (faces: rg7 =-0.09; bodies:
raz = 0.08; tools: rg7)=0.032;) and it was negatively correlated with
the response profile for manipulable and non-manipulable objects
(manipulable: rq7,=-0.2; tg7=-3.61, p=0.0022; non-manipulable:
raz = -0.28; taz= -4.7,p< 0.001).

The grasp index (Fig. 6a, right) reveals a smaller but significant
effect in some regions of LOTC, showing that hands are also associated

with manipulable objects more than to non-manipulable objects. This
effect was not observed for bodies and faces. Confirming the other
analyses, no significant grasp index was found in VOTC. Finally, in line
with the weaker grasp-related effect, only a modest relationship was
found between univariate selectivity for hands and the grasp index
(hands: r=0.22; p=0.031), which however, did not survive Bonferroni
correction for multiple comparisons (n=6; p > 0.0083).

Although DANNs do not show any action properties, for com-
pleteness and to test possible similarities or differences with visual
cortex we calculated the action-effector and grasp indices for all layers
and DANNs (Fig. 6b). In agreement with the above results, no network
shows either action-effector or grasp effects; the two indices did not
reach significance (p > 0.05) at any stage of the hierarchy of any of the
networks, except for a small effect in the first four layers of both non-
topographic networks for the grasp index.

Discussion
Our study identifies action as a fundamental dimension shaping the
topographic organization of the visual cortex. We demonstrate that
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reached significance (p < 0.001). In all panels, red = face indices; orange = body
indices; yellow = hand indices. Source data are provided as a Source Data file.

the left lateral occipitotemporal cortex (LOTC) exhibits a dorsal-
posterior to ventral-anterior gradient where body parts and inanimate
objects are topographically organized based on their action-related
properties. The combination of action effector and graspability con-
tributes to explain the spatial organization of voxels that show a pre-
ferential response to bodies*, hands*>%*, tools*’, and manipulable
objects*’. While DANNSs replicate aspects of ventral stream organiza-
tion (e.g., animacy), they entirely lack the action-related topography
observed in lateral OTC. Together, our results show that the action
dimension is an important organizing principle of lateral OTC and
highlight remaining gaps between biological and artificial systems.
Previous work emphasised how the combination of multiple
object dimensions and principles may result in the topography-by-
selectivity that is observed in high-level visual cortex”**™’, with
proposals stressing the role of shape, animacy, and real-world
size'*’***, among others. Previous studies have already shown the
relevance of action in explaining aspects of LOTC object space? .
For example, overlapping responses in left LOTC between tools and
hands, or tools and graspable food, might reflect shared end-effector
properties® and action-related affordances®. Our results are in line
with these previous findings and lift them up to a whole new level by
revealing that a large-scale topographic organization is responsible
for these earlier findings. More specifically, this approach enables us
to move beyond post-hoc interpretations of visual cortex category
organization (e.g., faces in lateral FG, tools in medial FG), allowing us
to generate novel predictions about the spatial organization of new
object categories—to be tested in future experiments—that share

similar action-related features. Based on where these categories fall
within a multidimensional feature space, we can predict their align-
ment within the topographic layout of OTC. For instance, as food
items share grasping properties with manipulable objects and are not
action effectors, we expect them to map along the same action-based
dimension and to partially overlap with manipulable objects, but not
with hands.

Furthermore, we demonstrate that lateral and ventral OTC
represent different object features, with their topographic organiza-
tion exhibiting opposing response patterns that depend on the degree
of action properties associated with objects. In left LOTC, the action-
based topography culminated at the intersection between animate
(hands) and inanimate (tools) as both being end-effectors. Dorsally
and posteriorly, hands overlap with bodies, and inferiorly and ante-
riorly, tools overlap with manipulable objects, which share with tools
grasping properties but not end-effector properties. This organization
is consistent across participants (even in unsmoothed, native surface)
and cannot be explained by differences in object size or shape as tools
and manipulable objects are matched for real-word size and all object
categories are controlled for their overall shape. The opposite object
pattern can be observed in VOTC, with higher and more extended
activation for non-manipulable than manipulable objects, and tools
being embedded within the manipulable object cluster in medial
VOTC. These findings challenge views that tool representations in
VOTC reflect action-related properties®’, suggesting instead that they
encode general object features—such as surface properties® or
weight®*—shared across manipulable and non-manipulable objects to
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support recognition of inanimate objects in general rather than tools
specifically®*®,

The opposite activation patterns observed in ventral and lateral
OTC aligns with the proposal of a third lateral pathway dedicated to
(inter)action recognition”**¢%¢” (see ref. 68 for a critical discussion).
The studies characterizing this pathway have proposed a posterior-to-
anterior organization, from perceptual to conceptual action-rela-
ted processing, and a medial-to-dorsal organization, from inanimate to
animate processing and from transitive to social actions??*%°”°, In this
framework, the anatomical location of the LOTC action-based topo-
graphy fall within a posterior and inferior region of the lateral visual
pathway, suggesting their contribution to perceptually based action-
related representations of objects.

But what is the origin of this action-based dimension? Although
our experiment does not directly address this question, two alter-
natives might be considered. First, the action dimension might be
perceptual in nature: for instance, hands and commonly used tools
often visually appear together, which may explain why they are closely
mapped in LOTC. According to the principle of minimizing wiring cost,
which shapes known organizational patterns in both visual"* and
motor cortices”, such visual co-activation may promote the proximity
of hand and tool populations in LOTC. Alternatively, this dimension
might be tied to motor experience with tools (e.g., learned associations
between hands and tools during object interaction), reflecting how we
engage with objects through action (but see ref. 34). Supporting this
view, evidence shows that LOTC is active not only when viewing body
parts or tools, but also during actual movements*>’2 It is also plausible
that multiple constraints might play a joint role in the emergence of
this action-based topography, originating both from bottom-up visual
factors (e.g., visual statistics) and top-down factors (e.g., behavioural
goals) to ultimately represent object properties useful to support
behaviour*,

Interestingly, studies have found that areas within the lateral
visual pathway shows higher sensitivity to dynamic than static
stimuli’”®’*. While the choice of static stimuli in the current study
allowed us to have higher control on possible confounding variables
(i.e., shape), future studies may employ dynamic stimuli such as short
video clips of people performing actions that may not only replicate
but even extend the relevance of behaviourally-relevant properties in
explaining the object space in LOTC”.

Univariate and multivariate results revealed interesting couplings
between object dimensions in visual cortex. Notably, object action and
object shape representations were closely intertwined in lateral OTC,
offering key insights into the functional organization of high-level
visual cortex. The coupling of shape and action in lateral OTC high-
lights how object shape directly informs interaction potential. For
instance, elongation—a mid-level shape property which characterizes
most tools—is known to drive responses in tool-selective cortex’.
Critically, however, our results go beyond these intrinsic associations
between object category and shape'””: even after controlling for
shape, we observed robust action-shape coupling in lateral OTC,
demonstrating that shape and action are distinct yet interacting
dimensions.

DANNS results revealed both convergence and divergence with
the functional and spatial organization of the visual cortex. Prior stu-
dies using topographic artificial neural networks*~ or self-organizing
maps”’ 7’ have shown that principles like minimization of wiring length
yield emergent macro- and mesoscale structures resembling those in
visual cortex, including clusters for faces, bodies, scenes, and objects,
and large-scale gradients of animacy and real-world size. Here, we
confirm that while these networks capture the large-scale clusters
based on animacy, and to a certain extent, the category clusters for
faces, bodies, and hands, they could not capture the action-based
object topography and the category clusters for the three inanimate
object categories.

This failure may stem from DANNs’ reliance on mid-level visual
features—such as shape and texture—that often correlate with object
category in natural datasets. While this works well for animate cate-
gories (possibly because of curvature features®), it breaks down for
inanimate categories when visual features are controlled, as in our
study. In these cases, DANNs default to encoding lower-level proper-
ties like orientation or aspect-ratio, leading to weak category-specific
clustering for inanimate objects (Fig. 5b—-d). Thus, a tight control of
visual features is especially important when comparing visual cortex
and DANNS, as the two systems may represent objects in an apparent
similar way but actually use different visual features that are con-
founded in the natural environment or uncontrolled stimulus sets**,

Neither differences in training regimes (supervised vs. self-
supervised) nor in computational objectives (e.g., object vs action
recognition) improved alignment with LOTC. While networks trained
on action recognition did show some differences, such as a separated
hand cluster compared to object-trained models (Fig. 5d), they still
failed to capture the action-related organization observed in LOTC.
Why do models trained on action recognition do not show any better
alignment with LOTC relative to standard object recognition models?
One possibility is that the action categories used during training are
too abstract. For instance, the label opening could refer to actions as
different as opening a box or opening one’s eyes*’, thereby failing to
isolate action-effector relationships that drive LOTC responses. More
generally, although these models are trained on short video clips,
rather than static images, they process actions as static patterns across
frames, lacking sensitivity to temporal dynamics, predictive proces-
sing, and temporal integration that humans naturally rely on®. Finally,
human action perception is shaped not only by motion but also by
social context and affordances®, factors that are entirely absent from
current DANN models®. For instance, the comparison between DANNs
and visual cortex is especially revealing when considering the case of
shape: while both systems are sensitive to aspects of shape, such as
elongation and aspect-ratio, shape information might be used for
different purposes: exclusively for categorization in DANNs, where
shape is indicative of category membership, and for more varied
behaviorally relevant goals in the brain, such as grasping, manipula-
tion, and functional use of objects. This divergence may arise because
DANNSs are trained on passive visual tasks (e.g., classification), whereas
biological vision is inherently linked to action planning and sensor-
imotor experience. A promising direction may involve training models
through reinforcement learning in embodied agents, where tasks are
grounded in action. For example, agents could learn to evaluate an
object’s graspability or identify the specific parts relevant for grasping
and functional use® or learning actions in social contexts while inter-
acting with humans®*. Overall, while TDANNSs represent a step forward
in modelling visual cortex organization, we point to the necessity of
using more ecological, varied tasks—beyond object or action classifi-
cation—and the inclusion of biological constraints® to fully model OTC
object space (but see ref. 87).

In summary, this study demonstrates the critical role of the action
dimension as an organizing principle of object representations in
LOTC. While artificial neural networks successfully replicated animacy-
based organization, they failed to capture the action-based topo-
graphy observed in the brain, despite their prominence in human
functional organization. These findings underscore the importance of
behaviorally relevant object properties in shaping the visual cortex’s
topography and advance our understanding of how multidimensional
representations support object vision in the human brain.

Methods

fMRI experiment and analyses

Participants. Nineteen participants took part in the fMRI experiment
(11 females, sex self-reported, mean age 25.6 years, standard deviation
6.06). Participants provided their sex/gender as part of a standard
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demographic questionnaire. However, sex/gender was not incorpo-
rated into the study, as we did not have hypotheses related to sex- or
gender-based differences and the sample size was too small to support
such analyses. One male participant was excluded due to head motion
exceeding one voxel. All participants were right-handed except one, all
had normal or corrected-to-normal vision, and no history of neurolo-
gical disorder. All participants gave informed consent and were
financially compensated. The Ethics Committee of the University of
Trento approved the procedure.

Stimuli. The stimulus set included 6 categories (Fig. 1). Part of the
images were used in ref. 35. The set comprised 3 body-parts (hands,
headless bodies, and faces), 3 inanimate object categories (tools,
manipulable objects, and non-manipulable objects), and chairs as a
control category. Each object category was associated with a different
degree of action-related properties. Tools were defined as hand-held
objects that are typically used to physically and directly act on another
object or surface (e.g., hammer); therefore, tools are not only grasp-
able and manipulable, but also serve as action-effectors, akin to our
hands®. Manipulable objects are objects that can be grasped, lifted,
and manipulated but are not usually used as action-effectors (e.g.,
glass). Finally, non-manipulable objects were defined as large objects
that cannot be grasped nor manipulated (e.g., bed). To control for low-
and mid-level visual features, the object categories were matched for
their perceived shape and orientation (Fig. 1). In addition, tools and
manipulable objects were matched for real-world size, ensuring that
any difference between the two categories cannot be attributed to
their actual size. Three additional categories (monkey faces, headless
monkey bodies, monkey hands) were part of the experimental design
but are not analysed for this report. Each category included 12 grey-
scale images with a white background of 400 x 400 pixels. Behavioral
ratings confirmed that hands and tools were perceived as carrying the
most action-related information, with mean scores of 6.3 and 5.7,
respectively, on a 1-7 Likert scale. Specifically, hands were rated as
conveying a higher level of action-related information than both
bodies (4.5) and faces (3.4). Similarly, tools received higher ratings
than both manipulable (3.3) and non-manipulable objects (2.9).

Scanning procedure. In the fMRI experiment, we collected 8 runs per
participant. Each run lasted 400s (200 volumes). Each image was
presented for 0.4 s, with an ISl of 0.266 s, in blocks of 8 s (i.e., 12 images
per block). For each subject and for each run, a fully randomized
sequence of all conditions was repeated 4 times, with a fixation block
of 16 s at the beginning, in the middle (between sequences), and at the
end of each run.

Stimuli were presented with the Psychophysics Toolbox
package®® in MATLAB (2021b) (The MathWorks). Images were pro-
jected onto a screen (8 x 8 degrees of visual angle) and shown to the
participants through a mirror mounted on the head coil. Participants
were instructed to fixate their gaze on the fixation cross in the middle
of the screen and press a button whenever the same image was repe-
ated twice in a row within each block. The repeating image appeared
once per block. Behavioral performance during the task was quantified
by calculating response accuracy (mean = 93%, SD =2.7%) and reaction
times (mean=0.6s, SD=0.02 s) for hits. Accuracy was defined as the
proportion of correctly identified target stimuli, with responses con-
sidered correct if made within two trials following the targets, taking
into account the fast presentation of the stimuli (0.4 s) and the reac-
tion time of participants.

Imaging parameters. The fMRI data was collected using a 3 T Siemens
scanner with a 64-channel head coil in the Center for Mind/Brain Sci-
ences at the University of Trento. MRI volumes were collected using
echo planar (EPI) T2*weighted sequence, with repetition time (TR) of
2s, echo time (TE) of 28 ms, flip angle (FA) of 75°, and field of view of

220 mm. Each volume contained 50 axial slices, covering the whole-
brain, with matrix size 200 x 200 mm and 3 x 3 x 3 mm voxel size. Sli-
ces were acquired with a multiband (multi-slice) sequence, with slice
acceleration factor = 3. Anatomical images were acquired using the T1-
weighted acquisition and MP-RAGE sequence, with a resolution
of 1x1x1mm.

Preprocessing. The preprocessing was conducted using the Statis-
tical Parametric Mapping software package (SPM12, Wellcome Trust
Centre for Neuroimaging, London) and MATLAB (R2021b, The
MathWorks). The following standard preprocessing steps were
applied to functional images: spatial realignment (to the first image)
to correct for head motion; slice-timing correction; coregistration of
functional and anatomical images; normalization to a Montreal
Neurological Institute’s ICMB152 template; and spatial smoothing by
convolution with a Gaussian kernel of 4 mm FWHM®. Following
exclusion criteria defined prior to preprocessing, runs in which the
head movement exceeded the size of one voxel (in either translation
or rotation) were excluded from subsequent analysis. Based on this
criterion, we excluded one participant; additionally, we excluded five
runs in total in three participants (two runs in two participants and
one in another participant).

The preprocessed signal was then modelled for each voxel, in
each participant, and for each condition using a general linear model
(GLM). The GLM included 7 regressors of interest, one for each
experimental condition, and 6 nuisance regressors corresponding to
the 6 motion correction parameters (x, y, z for translation and rota-
tion). Convolution of the haemodynamic response function with the
boxcar function was used to model the predictors’ time course.

Vector-of-ROls. To gain insights into the topographic organization of
body parts and objects with different degree of action properties in left
ventral and lateral occipitotemporal cortex (OTC), we used a vector-of-
ROIs approach’®*°. This analysis allows exploring, in an unbiased way,
how the topographic organization of objects, characterized by differ-
ent properties, changes along a large swath of cortex from lateral to
ventral OTC. We focused on the left hemisphere, as tool selectivity is
strongly left-lateralized and the hand-tool overlap is larger and more
robust in the left hemisphere*>” (see Supplementary Fig. 1 and
Figs. 2 and 3 for results in the right hemisphere). The vector-of-ROls
approach consists of the following steps: first, we defined two refer-
ence points (coordinates from ref. 18), located in a medial region in left
ventral OTC (around the parahippocampal cortex [PHC]) and in a
superior and posterior region in left lateral OTC (around the transverse
occipital sulcus [TOS]). Then, we build a vector connecting the two
points by fitting a spline. To make sure that the vector passes through
anatomical landmarks relevant for their selectivity profile, we defined
6 anchor points based on coordinates from previous studies. Three
were in the left ventral OTC: the medial fusiform gyrus previously
shown to respond to tools (mFG*°), the fusiform face area in the lateral
fusiform gyrus (IFG*), and a region that responds to small objects
around the occipitotemporal sulcus (OTSY); the other three were in
the left lateral OTC: the anterior portion of the inferior temporal gyrus
previously known to respond to small objects (alTG"), the hand-
selective inferior temporal gyrus (pITG*), and the body-selective
extrastriate body area within the lateral occipital sulcus (LOS’?). After
fitting the spline, along the vector, we generated a series of partially
overlapping spheres of 6 mm with a distance radius of 3 mm. The beta
values extracted from each sphere were employed to perform uni-
variate and multivariate analyses. Furthermore, to investigate how
each category-selective peak represents all object categories, we
selected the activation peak in the vector-of-ROIs for all categories
separately for ventral and lateral OTC and analysed their functional
profile. Results were tested with paired two-tailed ¢-tests and corrected
for multiple comparisons.
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Category overlap analysis. We measured the amount of voxel
overlap between the activation clusters for each condition, sepa-
rately for ventral and lateral OTC. To do that, we selected two masks
using a combination of functional and anatomical criteria; specifi-
cally, we used the Neuromorphometrics atlas (Neuromorpho-
metrics, Inc.) to define regions within ventral and lateral OTC;
ventral OTC included the fusiform gyrus and the parahippocampal
gyrus, whereas lateral OTC included the inferior and middle occi-
pital gyri and the inferior and middle temporal gyri; within these
anatomical regions we selected all the active voxels with a contrast
of all conditions vs. baseline with a liberal threshold (p<0.05
uncorrected); these masks, which contain only the voxels modu-
lated by visual information, were used for the subsequent analysis.
To compute the overlap analysis, we calculated the number of
active voxels within each of the two masks for each condition vs. all
remaining conditions (e.g., hands vs. all others) with a more con-
servative threshold (p <0.001 uncorrected at the voxel level and
p<0.05 FDR corrected at the cluster level). Applying a cluster
correction ensures that only contiguous voxels with a meaningful
minimum size are considered for the analysis. The resulting active
voxels were employed to compute the overlap index, which was
calculated pairwise for all possible combination of categories by
taking the number of voxels common to two clusters (for instance,
the voxels that are active for both hands and tools) and dividing it
by the number of voxels of the smaller of the two clusters. An index
of 0 indicated no overlap between two categories, whereas an index
of 1 indicates that the smaller cluster of a category falls completely
within the bigger cluster of the other category. Following previously
adopted approaches (e.g., ref. 93), we calculated the overlap at the
group level. Overlap analysis at the group level may introduce
smoothing that overestimate the amount of overlap between cate-
gories; however, previous comparisons of overlap analyses based
on single subjects vs. group analyses revealed little differences in
the results between the two’; moreover, the use of relatively con-
servative thresholds and the use of selective contrasts ensure the
control of overestimation of overlap effects.

Representational similarity analysis. From each sphere along the
vector, we extracted the patterns of activation for each condition and
correlated pairwise the patterns with each other to obtain a 6 x6
correlational matrix. Values in the resulting correlation matrices
represent how the pattern of activity for each category/stimulus cor-
relates with the remaining categories/stimuli, allowing us to investi-
gate how the representational space for the conditions changes from
ventral to lateral OTC along the vector of ROIls. Representational
similarity analysis (RSA*°) was used to correlate (via Pearson) the
matrix generated from each sphere along the vector-of-ROls with three
models capturing different properties of the stimuli: action, animacy,
and aspect-ratio.

The action and the animacy models were generated based on
ratings provided by an independent group of participants (n=22; 13
females, sex self-reported, mean age 23.3 years, SD =1.96; all partici-
pants gave informed consent and were financially compensated) that
judged a subset of 36 stimuli, chosen randomly among the entire
subset, using the inverse MDS procedure®. Specifically, to test action-
effector properties, we asked participants to arrange the objects
according to the degree to which an object or a body-part is typically
used to physically/directly act on another object or surface, similar to
the definition used in ref. 33. To test animacy, we asked participants to
arrange the stimuli according to their animacy properties. To measure
the overall shape of objects, a formula that captures aspect-ratio was
used to test the influence of visual features in explaining patterns of
activations for the inanimate objects, as most tools are elongated
objects as they must be grasped to fulfil their function. The model was
generated by calculating the aspect-ratio for all 72 stimuli using the

following formula (as in ref. 12):

2

P
0= — @
Aspect ratio ATA

Where Pis the perimeter of the object within the image and A is its area.

We generated the dissimilarity matrices for the models by com-
puting pairwise the Euclidean distance between each value for each
stimulus along the three dimensions. The three models are orthogonal
to each other (see “Results”), indicating that they are independent and
do not overlap in their predictions or dimensions. We calculated the
lower bound of the noise ceiling by iteratively correlating each subject
matrix with all the remaining subjects’ group-average matrix, leading
to afinal score that indicates the best possible fit to the neural data that
the model can achieve given the noise in the data’. Confirming the
high reliability of the data, the lower bound of the noise ceiling across
lateral and ventral OTC ranged from 0.8 t0 0.9 in VOTC and from 0.7 to
0.8 in LOTC (Fig. 5b), indicating a strong correspondence across par-
ticipants’ activity patterns.

Index analysis. The values of correlation matrices (as generated
above) were used to calculate two indices: the grasp index and the
action-effector index. These indices capture the degree to which the
representational content of each body part’s activity pattern is corre-
lated with the representational content capturing the action-effector
and graspability properties of objects. The action-effector index
measures the degree to which each body part relates to objects that
are characterized as being action effectors, a property that is specific
to tools (e.g., hammer) and not shared with other manipulable objects
(e.g., we can grasp and manipulate a glass, but we do not typically use it
to act on something else). The grasp index represents the degree to
which each body part relates to objects that can be grasped and held in
hands, a property common to both manipulable objects and tools
(e.g., a glass and a hammer are both graspable), but not to large non-
manipulable objects. To calculate the action-effector index, for each
participant, we took the correlation between each body-part with tools
and from that we subtracted the correlation between each body-part
and manipulable objects (e.g., body-tool minus body-manipulable). To
calculate the grasp index, for each participant, we took the correlation
between each body-part with manipulable objects and from that we
subtracted the correlation between each body-part and non-
manipulable objects (e.g., body-manipulable minus body-non-manip-
ulable). All results were corrected for multiple comparisons using
Bonferroni correction.

Deep artificial neural networks

We tested a series of deep artificial neural networks (DANNSs) to test the
possible convergence or divergence in the topographic organization
and representational profile between visual cortex and DANNs. We
selected three different models varying in architecture and training
task, which are described in detail below.

Non-topographic networks. We selected two non-topographic net-
works based on the ResNet-50 architecture®” trained either in object
recognition or action recognition. ResNet-object, trained in object
recognition with ImageNet*, has been shown to effectively capture
representations within category-selective areas in visual cortex®.
ResNet-action, trained in action recognition with Moments-in-Time*?,
was chosen to test the influence of a training task focused on action
recognition in capturing neural responses for action-related
categories.

Topographic networks. As these standard networks do not have
topographic constraints, we selected a further recently developed
family of models that implement some constraints within their
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architecture to mimic the topographic organization of visual cortex®.
These models—called Topographic Deep Artificial Neural Networks or
TDANNs—were based on a ResNet-18 architecture and were trained
with a self-supervised contrastive learning task*® on the ImageNet
dataset. Prior to training, a mapping of units is implemented within
each layer of the network, so that each unit has a corresponding 2D
coordinate that maps them into a 2D grid that represents their physical
distance. During training, a spatial loss function (together with the self-
supervised task loss) is introduced: this function constraints nearby
units to have correlated firing patterns to the same features within the
dataset, so that the units that have similar functional properties will fall
close in the simulated physical space. A parameter called a in the
spatial loss function indicates how much the neighbouring units must
be correlated with each other; following ref. 26, we used a value of
a=0.25, as it has been demonstrated to be the optimal value for the
emergence of VTC-like topographic organization. These networks
include 8 layers implementing topographic constraints, with different
surface areas across layers to simulate the hierarchy of the ventral
visual stream, from V1 to high-level VTC. We use five different random
initializations of the network weights.

Data analyses

Univariate. For the TDANN only, we performed simulated univariate
analysis by testing the topographic organization and selectivity profile
of the five different random initializations of the network in response
to our six object categories; most analyses were conducted on the last
layer that qualitatively showed the clearest clustering by categories,
which we called VTC-like layer (as in ref. 26). Specifically, we tested (1)
the clustering of units selective for the different object categories
within the simulated physical cortical space in the VTC-like layer and
(2) the selectivity profile of the top-50 most selective neurons for each
category in the VTC-like layer.

Overlap. To examine whether object categories in the VTC-like layer of
the TDANN exhibit a similar relationship to those found in the OTC, we
measured the overlap in selectivity between units across different
conditions. We followed the method introduced by ref. 26. Specifically,
the simulated cortical sheet was partitioned into 1 mm wide square
sections. In each section, we assessed the proportion of units that were
selective (¢ >3.5) for two categories (e.g., hands and tools, hands and
faces, etc.) in pairs. The overlap between these categories was deter-
mined by analysing the frequency of selectivity co-occurrence of the
two categories within each section. Essentially, if the selectivity fre-
quency for one category can predict the selectivity for the other, the
unit populations are considered to overlap. This overlap is measured
using an index that ranges from O to 1: a score of O means the presence
of units selective for one category (e.g., hands) always predicts the
absence of units selective for the other (e.g., tools); a score of 0.5
indicates no predictability between the two categories; and a score of
1signifies perfect overlap, where the presence of units selective for one
category always coincides with the presence of the other category.

Multivariate. For all networks, we presented our stimulus set and
extracted the feature activations from the convolutional and fully-
connected layers across the network hierarchy for the DANNs, and
from the eight topographic layers for the TDANN. We generated RDMs
for each layer by correlating pairwise the features extracted by the
networks for each stimulus. As for neural data, for each layer in each
network, we performed the RSA analysis testing three models (shape,
animacy, and action) and computed the action-effector and grasp
indices. Moreover, we computed multidimensional scaling on the
matrix of the last convolutional layer of the two ResNet and of the VTC-
like layer of the TDANN, to explore its multidimensional profile more in
detail. Statistical significance for all results was assessed via 10,000
permutation tests (p =0.0001).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The following publicly available resources were used for this work:
pretrained ResNet-action with Moments-in-Time and ResNet-object
with  ImageNet: https://github.com/zhoubolei/moments_models,
TDANNSs: https://github.com/neuroailab/TDANN. The single-subject
and group-level fMRI data generated in this study is available through
the Open Science Framework: https://osf.io/ctmbx/. Source data are
provided with this paper.

Code availability

Matlab code used to analyze the data is available on the Open Science
Framework at the following link: https://osf.io/ctmbx/. Matlab custom
scripts can also be found on the GitHub page of the corresponding
author at the following link: https://github.com/DavideCortinovis/
Action-topography-in-visual-cortex.
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