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Recently, high-temperature superconductivity (HTSC) is found in the
LasNi,O,/SrLaAlO, ultrathin film with critical temperature T, above the

McMillan limit at ambient pressure (AP). It is eager to enhance T, of LasNi,O; at
AP. We propose that a perpendicular electric field strongly enhances T, in the
single-bilayer film of LazNi,O, at AP. Under electric field, the layer with lower
potential energy will accept electrons flowing from the other layer to fill in the

Ni-3d,._,. orbitals, as the nearly half-filled Ni-3d . orbital cannot accom-
modate more electrons. With the enhancement of the filling fraction in the
3d,._,. orbitals in this layer, the interlayer s-wave pairing is suppressed, but the
intralayer d-wave pairing in this layer is strongly enhanced. We numerically
verify this idea and yield that an imposed voltage of about 0.1 ~ 0.2 volt
between layers is enough to realize liquid-nitrogen-temperature HTSC in this
single bilayer at AP. Our results appeal for experimental verification.

The discovery of superconductivity (SC) with critical temperature T
above the boiling point of liquid nitrogen ( = 77K) in the pressurized
La;Ni, O, has attracted great interests'*™**, This discovery has sparked
the exploration of high-temperature SC (HTSC) in Ruddlesden-Popper
phase multilayer nickelates, resulting in the discovery of SC in the
pressurized LasNiz0,0**, which together with the previously synthe-
sized infinite-layer nickelates Nd;_,Sr,NiO,**™* have established a new
family of SC other than cuprates and iron-based superconductors.
However, the high pressure (HP) circumstance not only strongly hin-
ders the experimental detection of the samples but also brings diffi-
culties in the application of SC in industry. Very recently, the LasNi,O;
ultrathin film with a few layers of unit cell grown on the SrLaAlO,4 (SLAO)
substrate has been grown by two different groups independently and

SC with T, above the McMillan limit ( = 40 K) has been detected at
ambient pressure (AP)***, allowing various experimental investigation
of the pairing mechanism in this material, attracting a lot of
interests ', It is now eager to enhance the T of this material at AP.
Here we propose a viable approach to realize T, above the boiling point
of liquid nitrogen in the LasNi,O; single-bilayer film at AP.

Presently, the pairing mechanism in the LazNi,O-, either in the
bulk material under HP7#1001041081257128 op jn the ultrathin film at
APPSB810IE g still under debate. Density-functional-theory (DFT)
based first-principle calculations have suggested that the low-energy
orbitals are mainly Ni-3d,. and 3d,._,, which are nearly half- and
quarter- filled****°', Various experiments have revealed the strongly-
correlated characteristic of the material**'¢*>**2>2%3132 Particularly, the
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optical study reveals significant reduction of the electron kinetic
energy which places the system in the proximity of the Mott phase®;
the angle-resolved photoemission spectroscopy uncovers strong band
renormalization caused by electron correlation®™; the linearly
temperature-dependent resistivity suggests “strange-metal” behavior’.
Therefore, we take a strong-coupling view of the system. Under the
strong Hubbard repulsion, the nearly half-filled 3d,. electrons can
almost be viewed as localized spins. Therefore, the main carrier of SC
should be the 3d,._ electrons, which subject to the in-plane super-
exchange interaction just mimic the 50% hole-doped cuprates. How-
ever, it is a problem how HTSC can emerge under such a high doping
level. The key physics lies in the important role played by the 3d,.
orbitals. Through strong interlayer perpendicular superexchange, the
3d,. electrons form interlayer pairing. The interlayer perpendicular
superexchange or the interlayer pairing of the 3d,. electrons can be
transmitted to the 3d,. , electrons through the Hund’s
ruIe79,SO,82,87,92,93,95798,100,107,108 or the neal‘est-neighbor (NN)
hybridization or both. Under such view, the role of
pressure in enhancing the T lies in the enhancement of the interlayer
perpendicular superexchange, the inter-orbital hybridization, or both.

In this work, we propose an alternative approach to realize HTSC
with T, above the boiling point of liquid nitrogen in the ultrathin film of
La;Ni,O; at AP. Here we consider the thinnest limit, i.e. a single bilayer
film of La3Ni,05, and realize the goal by introducing charge transfer with
aperpendicular electric field, which let the electrons flow from the high-
energy layer to the low-energy layer, similar to the mechanism for the
spontaneous charge transfer in oxide heterostructures™™°. The
external electric field based approach avoids introducing disorder as in
chemical doping™ or exhibiting orbital selectivity based on
symmetry”?, demonstrating exceptional performance in the field of
twisted multilayer graphene materials™*™>, We can impose a perpen-
dicular electric field, say pointing upward, in this single bilayer, so that
electrons from the top layer will flow to the bottom layer. These elec-
trons will fill the 3d,._. orbitals in the bottom layer as the nearly half-
filled 3d,. orbitals there cannot accommodate more electrons. The
enhancement of the bottom-layer 3d,._,. electron number will first
suppress the interlayer s-wave SC due to mismatch of the electron
numbers between the two layers, similar with the case in which an
imposed Zeeman field acting on the spin leads to mismatch of the
electron numbers between the two spin species and thus suppresses
singlet pairing, and then promptly lead to the intra-bottom-layer d-wave
SC with strongly enhanced T.. To test this idea, we have performed a
combined simplified single orbital study and a comprehensive two
orbital study, which consistently yield that a voltage of experimentally
achievable levels (around 0.1 ~ 0.2 volt predicted by the mean-field

65,83,86,87,91,98,105,107,108

Fig. 1| Schematic diagrams of the model. a Schematic diagram for the dominant
hopping integrals and superexchange interactions between the £, orbitals in
La;sNi,O;. b Schematic diagram illustrating that the Hund’s rule coupling transmits

calculations) between the two layers is enough to induce d-wave SC with
T. above the boiling point of liquid nitrogen in the bottom layer. Intri-
guingly, the d-wave SC carried by the bottom layer 3d,._,. electrons
coexists with the interlayer s-wave pseudo gap carried by the 3d,.
electrons in the mixing ratio of 1: i, breaking time-reversal symmetry.
Our proposal potentially provides a viable approach to realize HTSC
with T, above the boiling point of liquid nitrogen in the single bilayer
film of LazNi,O;.

Results

Consideration and a simplified study

The LazNi,O ultrathin film grown on the SLAO substrate form a bilayer
square lattice ', As illustrated in Fig. 1a, the leading hopping inte-
grals are the interlayer hopping of the 3d,. electrons ¢, and the
intralayer NN hopping of the 3d,._j. electrons ¢;. Under strong Hub-
bard U, these hopping terms can induce the effective superexchange/,
and J; through J ~ %. Under the Hund'’s rule coupling J, the spins of
the two orbitals are inclined to be parallel aligned, as illustrated in
Fig. 1b, which partly transmits the interlayer perpendicular super-
exchange/, between the 3d,. orbitals to the 3d,._y, orbitalsas/, =a/,
with a € (0, 1) describing the efficiency of this process and related to
the strength of Hund’s coupling /. In addition, there exists intralayer
NN- hybridization t,, between the two orbitals. As shown in Fig. 2(a, b),
the nearly quarter-filled 3d,._,. electrons subject to J; and L form
interlayer-dominant pairing’’.

Now let us turn on the upward electric field &, forcing electrons
downward, as shown in Fig. 2(c, d). In the top layer, since the 3d,.
orbitals host larger density of state (DOS) than the 3d,._, orbitals, they
will donate more electrons. Most of these donated electrons will fill the
3d,._y orbitals in the bottom layer, as the nearly half-filled 3d . orbitals
there cannot accommodate more electrons. A minority of the donated
electrons can also be accepted by the top-layer 3d,._ orbitals.

Even with doped holes under &, the top-layer 3d,. electrons cannot
carry SC: Firstly, lacking pairing interaction, they cannot form intralayer
pairing. Secondly, although they can pair with the localized bottom-
layer 3d,. electrons, such pairs cannot coherently move, only resulting
in the pseudo-gap. Therefore, the SC under & can only be carried by the
3d,._y, orbitals. As the filling fractions of the 3d,._,. orbitals in the two
layers are different, their Fermi levels are relatively shift, leading to
mismatch of their Fermi surfaces (FSs), which will suppress their inter-
layer pairing. Here the perpendicular electric field acts as a “pseudo-
Zeeman field” acting on the layer index, just like the Zeeman field acting
on the spin degree of freedom. The bottom-layer 3d,._, orbitals will
form d-wave SC, mimicsing the cuprates, as shown in Fig. 2(d). When g is

strong enough so that the filling fraction of the bottom-layer 3d,._
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the interlayer perpendicular superexchange interaction /, between the 3d,. orbi-
tals to the effective one /, between the 3d,._ orbitals.
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Fig. 2 | Schematic diagrams of particle number and pairing configuration
before and after introducing perpendicular electric field. a Particle numbers of
the four £, orbitals within an unit cell without electric field. b The dominant pairing
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configuration for (a). ¢ Schematic diagram showing how the electrons flow under
the perpendicular electric field £ pointing upward. d The dominant pairing con-
figuration for (c).

orbitals is near that of the optimal doped cuprates, d-wave HTSC with
strongly enhanced T, will be achieved in this layer, and the top layer will
also acquire SC below T, through proximity.

Based on the above general consideration, we first conduct the
following simplified model study including only the 3d,._,.-orbital,
with the 3d,. orbital only viewed as a source which tunes the total
electron number. The following widely adopted single 3d,._,.-orbital
bilayer ¢t —J — J; model’®808292939596100 jg adopted,

H = -t ¥ P(czwcjug+h.c.)P+Zeunm
(iJ),p0 Lp

- @
2 SiSjut L2 Sie - S
(ij), 1 i

Here c,;w creates an electron at site i in the layer u (=top (¢)/bottom (b))
with spin g, P is a projection operator projecting out the double occu-
pancy of all site, and n;, or S;, denote the corresponding electron
number or spin operator. Only NN- bond (i, j) is considered in the
summation. The €, is introduced to control the filling fractions of the
two layers under &, with €, - €, = . However, as the total particle number
ofthe d,._,. electrons under given £ is unknown, we have to assume the
ratio r: 1 between the electron number flowing from the 3d,. orbitals
and that flowing from 3d,._, orbitals in the top layer when solving the
model with the standard slave-boson mean-field (SBMF) theory™®,
which demonstrates exceptional performance for La;Ni,O in previous
studies”*° that is qualitatively consistent with experimental data' and
theoretical studies using other numerical methods (like DMRG)%>?2%,
Due to reason of DOS, we assume this ratio to be 2: 1, with details
provided in the Supplementary Information (SI). Nevertheless, the
concrete value of this ratio turns out not to obviously affect the results
(see the SI). The filling fractions are fixed under this assumption in the
SBMF study. To capture the quantum fluctuation beyond mean-field,
the density matrix renormalization group (DMRG)"""** method is also
employed, whose results are qualitatively consistent with those of the

SBMF study, indicating that the SBMF theory can capture the main
features of this system. See details in the Methods and SI.

We set ¢, =1as the energy unit and J, = 0.4¢ in our study./, =(1 —
6.,) * 1.3/, is applied in our SBMF study. The results are shown in Fig. 3.
Figure 3(a) shows the amplitude and symmetry of the ground-state
pairing gap as function of the bottom-layer 3d,._,. electron number
npy, Whose value enhances with &. It is shown that when € or ng,
enhances, the pairing amplitude A decays first and then increases.
When ny, = 0.5, the ground state is confirmed to be interlayer s-wave
SC by comparing the energies of states with different symmetries (See
SI for more details). Then the s-wave pairing is suppressed by the
enhancement of € or ny, because of the mismatch of the FSs of the two
layers caused by ¢, similar to the case of a singlet pairing state placed
within a pair-breaking Zeeman field. Therefore, it is also possible that
this “pseudo Zeeman field” can drive pair density wave (PDW), just like
that the real Zeeman field can drive the Fulde-Ferrell-Larkin-
Ovchinnikov state. When ny, > 0.53, the ground state is an intralayer
d-wave SC, with the dominant pairing limited in the bottom layer. It is
inspiring that with the enhancement of n, in this regime, the A
enhances promptly, similar to the case in the overdoped cuprates,
wherein the enhancement of the filling fraction promptly enhances the
pairing strength. The pairing configurations of the two different pair-
ing symmetries are illustrated in Fig. 3(c, d).

The T, ~ npyis shown in Fig. 3(b). In the SBMF theory, the T, is given
as the lower one between the spinon-pairing temperature Ty, and the
holon-BEC temperature Tgec. The inset of Fig. 3(b) displays Tgec > Tpair,
rendering T = Tpair in the considered np, regime. Note that the T, here
is in the sense of Kosterlitz-Thouless transition. A comparison between
Fig. 3(b) and (a) suggests that T, scales with A, which is more clear
when the T - np, is well fitted by 0.42A ~ ny, for the d-wave and
0.9A ~ n,, for the s-wave in Fig. 3(b), consistent with the Bardeen-
Cooper-Schrieffer (BCS) theory. Inspiringly, for n,=>0.75, the
T. 2 0.02¢, = 80 K, suggesting the HTSC in the liquid nitrogen tem-
perature range.
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Fig. 3 | The SBMF results for the single-orbital model. a The pairing amplitude A
(in unit of ¢;) as function of the bottom-layer particle number per site n,,. Different
pairing symmetries are distinguished by color. b The T, as function of np,, in

comparison with 0.42A for the d-wave and 0.9A for the s-wave regime. Inset: the

d.
A?z() 'At

-Ag

Ap

spinon pairing temperature Ty, and the holon condensation temperature Tggc as
function of n,y. In (a, b), we set J; = 0.4t andJ, =(1 — 6,,) ¥ 1.3/,. ¢, d The pairing
configurations of the s-wave and d-wave, respectively.

On the above, we have adoptedJ, =a/, (1 — 6,,) with a = 1, where
6, denotes the hole density of the top-3d,. orbital. For the reduced a,
only the low-n,, regime accommodating the interlayer s-wave pairing in
Fig. 3(a, b) shrinks but the high-n,, regime accommodating the intralayer
d-wave SC is not affected because the intralayer pairing is blind to L.
Furthermore, assuming different ratios between the changes of the fill-
ing fractions of the two top-layer £, orbitals turns out to yield similar
results when expressed as functions of ng,, as the dominant pairing
under strong ¢ is the intra-bottom-layer pairing, which is blind to the
filling fraction of the top layer. See the SI for details.

We have further employed the DMRG approach, which can cap-
ture the quantum fluctuation beyond mean-field, to compute the
ground state of Hamiltonian (1) under different electric fields € and the
transferred electron-doping levels of the d,._. orbitals 6 =nn + np,—1.
For £ = 0, we have 6 = 0. When ¢ increases, it drives electrons from
d-orbitals in the top layer to d,._-orbitals in both layers, increasing
6. However, as the exact relationship between € and ¢ is unclear, we set
them as two independent variables in our DMRG study. The para-
meters ¢, and J; take the same values as the ones in the SBMF study
while /, =0.8/, is adopted in the DMRG study. To characterize the
pairing symmetry and strength, we analyze the interlayer pairing cor-
relation function @*(r) and the intra-bottom-layer pairing correlation
function @} (r). More details are provided in Methods.

Figure 4 (a) shows the pairing phase diagram with respect to 6
(=0,1/16,1/8) and £ ( € [0, 1.6¢]). Figure 4(b) shows the absolute value
of the intra-bottom-layer pairing correlation functions |(D}‘,(r)\ under
different electric fields € = 0, 0.4¢, 0.8¢), 1.2¢), L.6¢, for 6 = 0, and the
results for § = 1/16 are presented in Fig. 4(c). It turns out that |<Dﬂ,(r)|
exhibits algebraic decay under an non-zero external electric field with
the decaying power exponent to be Ksc, i.e. |d> (r)| o« r=%sc for large
enough r, implying the presence of pairing w1th|n the bottom layers.
Figure 4(d) and (e) depict \d) (r)| for different transferred d,._y.-elec-
tron-doping levels 6=0,1/16, 1/8 under £=0.4¢in (d) and £=0.8¢ in (e).
All the algebraic decay exponents Ksc are provided accordingly.

The results indicate that (i) With the enhancement of the per-
pendicular electric field ¢, and hence the transferred d,._.-electron-

doping level 6, the pairing symmetry changes from interlayer s-wave to
intra-bottom-layer d-wave (The criterion of the pairing symmetry is
provided in Methods); (ii) For all the transferred d,._,.-electron-doping
levels § tested, the enhancement of the perpendicular electric field €
leads to a reduction of Ks¢, suggesting the enhancement of the intra-
bottom-layer pairing; (iii) Under all the perpendicular electric field
strengths ¢ tested, the enhancement of the transferred d,._.-electron-
doping level 6 leads to a reduction of K¢, suggesting the enhancement
of the intra-bottom-layer pairing. From (ii) and (iii), it is clear that the
enhancement of ¢ and hence 6 will significantly enhance the intra-
bottom-layer pairing. These results are qualitatively consistent with
those of the SBMF study. More results are given in the SI.

Besides, we study the effect of interlayer Coulomb interaction.
Our results show that the interlayer Coulomb interaction slightly
promotes charge transfer between layers and the intra-bottom-layer
pairing, while suppressing the interlayer pairing. See SI for details.

The comprehensive two-orbital study

The above simplified single-orbital study has drawbacks: We cannot
determine the relationship between the electron-doping of the d,._,.
orbitals and the electric field. In the SBMF study, we have to assume the
ratio between the changes of the filling fractions of the two top-layer E,
orbitals. In addition, we do not know how the neglected 3d,. orbital
degree of freedom affects the pairing nature. To settle these puzzles,
we conduct a comprehensive two-orbital model'” to study with,

H=—t, ) P( - jux0+hc) -t Zﬁ(czmcibzﬂh.c.)f’

& p

—le ZP( inxo mw+(z<—>x)+hc)P+j” Zstux jpx
i @

+jJ_ Z Sltz ibz +-IJ_ Z Sztx ibx T €7 Z ntyzo e Z nl[lXU
iuo ipo
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Fig. 4 | The DMRG results. a The § - € phase diagram of the ground state. The red
region corresponds to the s-wave pairing and the blue region to the d-wave pairing.
The absolute value of the intra-bottom-layer pairing correlation functions |(D}‘,(r)|
under different electric fields =0, 0.4¢), 0.8¢, 1.2, 1.6¢, for 6=0in (b) and 6 =1/16
in (c). |d>2(r)| for different transferred dxz_yz-electron-doping levels 6 =0, 1/16, 1/8
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under € = 0.4¢ in (d) and £ = 0.8¢ in (e). The algebraic decay exponents Ksc are
written in the four figures as well, reflecting the decay rate of the pairing correlation
function with spatial distance, negatively correlated with the corresponding pairing
strength. In (a-e), 6 and ¢ are set as independent variables, since their exact rela-
tionship is unclear.
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Fig. 5 | The SBMF results for the two-orbital model. a The hole densities §,, for the three orbitals as functions of the strength of the electric field £. b The pairing gap
amplitude of the bottom-layer 3d,._y.-orbital as function of ¢. ¢, d The pairing configurations of the s-wave and the d(3d,._)+is(3d,.)-wave, respectively.

The operators Ciao Niuar Siua take the same meanings as those in
model (1) except for an extra index a = x/z labeling the orbital, and P is
a projection operator projecting out the double occupancy in the same
orbital of all sites. Note that S;,, for each orbital is spin-% operator. €,
denotes the on-site energy of the orbital . We adpot the tight-binding
(TB) parameters reported in ref. 141, i.e. f; = 0.445eV, ¢, = 0.221eV,
t; =0.503 eV and €, - €, = 0.367 eV. The superexchange interactions
are obtained through /, ~ 4t} /U and/, ~ 4t% /U, with U=10¢;. Finally
€ denotes the voltage between the two layers. Here, due to the weak
super-exchange interaction between the d. orbitals in the layer, we do
not consider this term in our model. In addition, the Hund’s coupling /,,
of La;Ni,Oy is generally considered to be in the range of 0.7eV to 1eV
in past studies®®’%”¢, which only slightly larger than the largest hopping
parameter ¢, = 0.503eV and thus does not satisfy the premise of the
Schriffer-Wolf transformation or perturbation theory, we do not apply
it here. More details are provided in Methods.

Our SBMF results of Eq. (2) (see Methods and the SI) are shown in
Fig. 5. Figure 5(a) shows the e-dependence of the hole densities 6q.
Obviously, the 6., enhances obviously with &, suggesting that the top-
3d,. orbital is donating electrons. These donated electrons flow to the
3d,._y, orbitals in both layers, with more of them flowing to the bot-
tom layer when £ > 0.1 eV while about half of them flow to the bottom
layer when £<0.1eV. Figure 5(b) shows the &-dependence of the
pairing symmetry and the pairing gap amplitude of the bottom-layer
3d,._y. orbital. At low £<0.03 eV, the pairing symmetry is s-wave,
whose pairing configuration is shown in Fig. 5(c), wherein the
3d.-orbital form interlayer s-wave pseudo-gap, while the 3d,.
orbital form s-wave SC with coexisting intralayer and interlayer pairing.
In this regime the interlayer pairing is suppressed by the enhancement
of £ while the intralayer pairing is enhanced. When € = 0, the interlayer
pairing gap is the largest. When ¢ is about 0.01 ~ 0.03 eV, the intralayer
pairing gap is slightly larger than the interlayer pairing gap. When
£>0.03 eV, the pairing symmetry is d(3d,._)+is(3d,), whose pairing
configuration is shown in Fig. 5(d). In this state, the 3d,. orbital form

interlayer s-wave pseudo-gap, while the bottom-layer 3d,._,. orbital
form intralayer d-wave SC. When ¢ enhances in this regime, the pairing
amplitude for the d-wave part enhances promptly. For € > 0.13 eV, the
pairing amplitude can go beyond 0.02 eV. Then from the relation T, ~
0.42A for the d-wave SC illustrated in Fig. 3(b), we have got HTSC with
7.2 80K!

The result shown in Fig. 5(b) for the comprehensive two-orbital
study and that shown in Fig. 3(b) for the simplified one-orbital study
look similar, except that in Fig. 5(b) the result is expressed as function
of the directly controllable quantity &. Actually, if we replace the x-axis
of Fig. 5(b) by the calculated ny, = 1 - 8y, the resulting curve nearly
coincides with Fig. 3(b), particularly in the large-ny, regime, see the SI.
The main reason for such similarity lies in that under strong &, the
dominant superconducting pairing is the intra-bottom-layer
3d,._ye-orbital pairing, which is insensitive to the 3d,. orbital. The
main new information obtained in the two-orbital study lies in that the
3d,. orbital form interlayer s-wave pseudo-gap which is mixed with the
intra-bottom-layer d-wave HTSC of the 3d,._,. orbital in the ratio of L.,
as shown in Fig. 5(d). This state breaks time-reversal symmetry,
although the experimentally detected superconducting gap is the
standard d-wave gap of the 3d,._j, orbital. This intriguing result is left
for experimental verification.

Discussion

In conclusion, we propose that an imposed strong perpendicular
electric field can drive HTSC with T, above the boiling point of liquid
nitrogen in the single-bilayer film of LasNi,O; at AP. The reason lies in
that under the strong electric field, the electrons in the layer with
higher potential energy will flow to the layer with lower potential
energy, to fill the 3d,._,. orbitals in the latter layer. When the imposed
electric field is weak, it acts as the "pseudo-Zeeman field" operating on
the layer index which supresses the interlayer SC, possibly indu-
cing the PDW state. With considerably enhanced filling fraction, the
3d,._y electrons in that layer just mimic the cuprates, which form
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Fig. 6 | lllustration of the zigzag path in DMRG calculation.

intralayer d-wave HTSC with strongly enhanced T.. Our combined one-
orbital and two-orbital studies consistently verify this idea.

Presently, while different groups have provided slightly different TB
parameters for the LasNi,O; ultrathin film grown on SLAO substrate at
AP, we have just adopted one set of these TB parameters to perform our
calculations. However, the strong-coupling calculations performed here
do not seriously rely on the accurate values of these parameters, because
the main physics here is clear and simple. Actually, the well consistency
between the result of the comprehensive two-orbital study and those of
the simplified one-orbital studies with assuming different input condi-
tions just verifies the robustness of our conclusion.

Moreover, we want to emphasize that the essence of introducing
the perpendicular electric field is breaking the symmetry of the two
layers by making their filling fractions different to each other. Actually,
the filling fractions of different NiO layers in the La3Ni,O- ultrathin film
grown on the SLAO substrate may different from each other because
of the existence of the substrate on one side of the film. This can be
considered as effective electric field. Thus, our work provides a pos-
sible way to understand the high T, of the LazNi,O- ultrathin film grown
on the SLAO substrate.

Methods

The one-orbital model

The SBMF theory is used to solve the one-orbital model(1). In the SBMF
approach, the superexchange terms are decomposed in y — 4 channel,
eg.S; - Sp=—3 (()(“>)(,.L +h.c.+ (A" Af +h.c.), yand A represents
hopping and pairing operators respectively. These MF parameters are
further solved in a self-consistent manner. The specific steps can be
referenced from prior work”'°”5¢ and SI.

We also employ the DMRG method”"*** to solve the ground state of
the Hamiltonian(1) as a comparison for the SBMF approach. The tensor
libraries TensorKit™’ and FiniteMPS'*° provide an implementation of the
required symmetry'*'%2, We study the model on a 2 x 2 x L, lattice with
the open boundary conditions in the x direction and choose L, = 64 for
calculations. The matrix product state is constructed as shown in Fig. 6.
We keep up to D = 12000 U(1)charge * SU(2)spin multiplets in DMRG
simulations and ensure the convergence accuracy of 107,

The interlayer and intralayer singlet pairing operators take the
form of

The considered correlation functions are defined as follow

dL(r)= <A,.“A+>,

Ol(r) = O¥(r)= <Al‘;Aj””> 4)
o (n)=(AlAY,),

where r = |i - j| is the distance between the sites i and j.

For a pairing channel whose absolute value of correlation function
decays algebraically with distance, following the form r—Xsc, the decay
exponent Ksc is associated with the Luttinger parameter specific to the
channel. K¢ < 2 signals a divergent superconducting susceptibility in
that channel. The channel with the lowest Ksc value is considered to
dominate the pairing behavior.

The dominant pairing channel is related to pairing symmetry. For
the case where interlayer pairing dominates, the pairing symmetry is
restricted to s-wave pairing; while for the case where intralayer pairing
in the bottom-layer dominates, we determine the pairing symmetry by
the sign function sgn [®) (r)®}Y (r)]. If sgn[®} (N ®}Y(r)] = — 1 holds for
all r, the ground state can be identified as the d-wave pairing SC state.
See SI for more details on DMRG.

The two-orbital model
Here we provide more technique details for the SBMF study on the
two -orbital model(2). The electron operator is decomposed as
Ww —fwm, e Where fis spinon operator and b is holon operator.
Since we have found that Tgec » Tq; in the considered n, regime and
Tpair is proportional to the zero-temperature spinon pairing gap, we
can get the critical temperature of superconductivity only by calcu-
lating the ground-state spinon pairing gap. Thus we only consider the
spinon Hamiltonian at zero temperature. The superexchange term is
also decomposed in x — 4 channel. The spinon Hamiltonian is descri-
bed as

H spinon

= m% 6 pux (f oo fjuxo h.c)
~tr/60x6r Yy oS iezo * Frezofjevo *hiC.)
01 ) e ) )

3 %( MX< ﬂX>+h‘°_<ALx><Aux>)
Y20 ) rhe - () ()
-3 Z(AH<AL>+hC <AZH><A§>>
(A e — A
53 Mitao =

©)

+ Z eaniyao+

£
£ Nipao-
inao iao

where 6, <bwbﬂm> since holon condense at zero temperature.
Under the electrlc field, we have 6, = 0 and 6, 6, and 6, are solved
in a self-consistent manner by adjustment to onsite energies ¢, (See

SI for more details). The mean-field order parameters are repre-

Li_ 1 (o o Pt n
Ai 2 <Cit¢cib¢ - Citlcim)' sented by
It _ AXt _ ¥ T T 4
Ay =4y = (CMCHX I CwCHx.m)’ (€ Xijpx = Zf}uxofjuxo'
yi_ 1 ekt
A= (CMCH)’ = mci+y.m)' X' = Zf;rszizbo, ©
T

Here, the subscripts i + X(i + y) represent the NN site of the site i in the y ﬂa =f ipat) juay -fi inay _I[laT’
x(y) direction. Figure 7 shows how the singlet pairing operators are fszlbu f:balfitaw
defined.
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Fig. 7 | lllustration of the singlet pairing operators A;", A,”; and Afﬂ
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