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Genome wide association studies of schizophrenia reveal a complex polygenic
risk architecture comprised of hundreds of risk variants; most are common in
the population, non-coding, and act by genetically regulating the expression of
one or more gene targets (“eGenes”). It remains unclear how the myriad
genetic variants that are predicted to confer individually small effects combine
to yield substantial clinical impacts in aggregate. Here, we demonstrate that
convergence (i.e., the shared downstream transcriptomic changes with a
common direction of effect), resulting from one-at-a-time perturbation of
schizophrenia eGenes, influences the outcome when eGenes are manipulated
in combination. In total, we apply pooled and arrayed CRISPR approaches to
target 21 schizophrenia eGenes in human induced pluripotent stem cell-
derived glutamatergic neurons, finding that functionally similar eGenes yield
stronger and more specific convergent effects. Points of convergence con-
strain additive relationships between polygenic risk loci: consistent with a
liability threshold model, combinatorial perturbations of these same schizo-
phrenia eGenes reveal that pathway-level convergence predicts when
observed effects will fail to sum to levels predicted by an additive model.
Targeting points of convergence as novel therapeutic targets may prove more
efficacious than individually reversing the effects of multiple risk loci.

The genetic architecture of schizophrenia is complex and polygenic. common in the population® These risk loci have small effect sizes, are
Highly penetrant rare mutations underlie only a fraction of cases'. typically found in non-coding regions, and regulate the expression of
Rather, genome-wide association studies (GWAS) indicate that schi- one or more genes® . Mapping GWAS loci to their target genes
zophrenia is predominantly associated with genetic variation that is (termed “eGenes”, as defined by significant genetic regulation of
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expression) remains challenging, but is informed by expression
quantitative trait loci (eQTL)*®, chromatin accessibility*,
enhancers”™®, and 3D chromatin architecture’ > The regulatory
activity of risk loci can be empirically evaluated using massively par-
allel reporter assays* and pooled CRISPR screens®, and causal gene
targets and functions definitively resolved by genetic engineering in
human induced pluripotent stem cells (hiPSCs)'*1172728,

Schizophrenia eGenes are particularly expressed during fetal
cortical development” and in glutamatergic neurons (as well as
medium spiny neurons, and certain interneurons)® . They are highly
co-expressed in human brain tissue®* and cultured neurons”, show
high connectivity in protein-protein interaction networks”***, and
are enriched for roles in synaptic function and gene regulation®’"/>5*,
Likewise, transcriptomic studies of post-mortem brains from schizo-
phrenia cases also identify aberrant expression of genes associated
with synaptic function and chromatin dynamics in neurons****, The
mechanism by which hundreds of distinct eGenes lead to shared
molecular pathology is unknown.

We predicted that eGenes linked to schizophrenia would share
substantial downstream transcriptomic changes with a common
direction of effect (termed “convergence”). Although convergence has
been described in the context of loss-of-function autism spectrum
disorder risk genes*>, these rare mutations almost never co-occur in
the same individual. The convergent impact of common variants—
which are frequently inherited together, and the impacts of which are
apparent only in aggregate—remains unknown. We targeted twenty-
one schizophrenia eGenes in hiPSC-derived induced glutamatergic
neurons (iGLUTs) using pooled and arrayed CRISPR-based approa-
ches, significantly perturbing seventeen (CALN1, CLCN3, DOC2A, FES,
FURIN, GATAD2A, NAGA, PCCB, PLCL1, THOC7, TMEMZ219, SF3B1,
SNAP91, SNCA, UBE2Q2L, ZNF823, ZNF804A), and resolving convergent
impacts robust to experimental and donor effects. To test if con-
vergence influenced the outcome when eGenes were inherited in
combination (i.e. if eGene effects sum linearly according to the addi-
tive model*®), we compared manipulation of eGenes one at a time and
in groups defined by annotated functions at the synapse (“synaptic”:
SNAP91, CLCN3, PLCLI, DOC2A, SNCA), or regulating transcription
(“regulatory”: ZNF823, INOSOE, SF3B1, THOC7, GATAD2A), or with un-
related non-synaptic, non-regulatory biology (“multi-function”: CALNI,
CUL9, TMEM219, PCCB, FURIN), and random combinations thereof.
Altogether, with broad relevance across complex polygenic
disease’*’, our work begins to experimentally determine answers to
the long-standing question of how risk variants interact in human
neurons.

Results
Convergence of downstream transcriptomic impacts across
schizophrenia eGene perturbations
We? %8760 and others™” demonstrated that iGLUTs are >95% gluta-
matergic neurons, robustly express glutamatergic genes, release
neurotransmitters, produce spontaneous synaptic activity, and reca-
pitulate the impact of psychiatric trait-associated genes. iGLUTs
express most schizophrenia eGenes, including all eGenes prioritized
herein”.

eGenes whose brain expression was predicted to be up-regulated
by GWAS loci* were prioritized for a pooled CRISPR activation (CRIS-
PRa) experiment, which is currently restricted to one direction of
effect. eGenes that were non-coding, located in the MHC locus, or
poorly expressed in iGLUTs were excluded. First, transcriptome and
epigenome imputation (EpiXcan®®) of schizophrenia GWAS? risk loci
from post-mortem brain***° prioritized seven schizophrenia eGenes
(SCZ1: CALNI1, FES, NAGA, NEK4, PLCL1, UBE2Q2L, and ZNFS804A)
(Table 1; Fig. 1A). Second, transcriptomic imputation (prediXcan’®7?,
p<6x107°) of SCZ GWAS’ identified -250 eGenes (SI Table 1),

subsequently narrowed by considering colocalization (COLOC™7*,
PP4 > 0.8) between schizophrenia GWAS? and post-mortem brain
expression quantitative loci (eQTL) peaks®, which identified 25 eGenes
(SI Table 1). 22 eGenes overlapped between approaches, ten of which
were coding genes associated with increased expression in schizo-
phrenia (SCZ2: CALNI1, CLCN3, CULS, DOC2A, PLCL1, INOSOE, SF3B1,
SNAP91, TMEM219, ZNF823) (Table 2; Fig. 1A). Of note, our eGene
selection, derived in bulk post-mortem brain, is largely preserved
using an excitatory neuron-specific PrediXcan analysis (ExN-Pre-
diXcan, Tables 1A, B).

Pooled CRISPR screening combined single-cell RNA sequencing
readouts and direct detection of sgRNAs”. Two independently
designed, constructed, and validated pooled CRISPRa libraries (SCZ1
and SCZ2) were transduced into iGLUTs from two donors in inde-
pendent experiments at unique developmental time-points (DIV7 or
DIV21, SI Fig. 1F). Non-perturbed cells from both SCZ1 and SCZ2
demonstrated gene expression patterns that correlated with expres-
sion in the adult postmortem DLPFC in neurotypical controls (SI
Fig. 12A-C) and cortical neurons. Specifically, these cells were most
strongly correlated with fetal cells transitioning to neuronal fate, fetal
excitatory neurons, and cortical adult neurons (SI Fig. 13). The large
number of presumably wildtype neurons in the population expressing
either a scramble gRNA or no detectable gRNA at all (>60% of all
pooled cells, see SI Fig. 4A), mitigates the possibility that results were
confounded by non-cell autonomous effects. Likewise, there was no
significant difference in the degree of variance in maturity of the cell
population between experiments and imputed cell fractions were not
correlated with perturbation status (SI Figs. 2 and 3). An unsupervised
framework, Weighted Nearest Neighbor Analysis’®, assigned successful
perturbations; in total, we resolved perturbations of six of seven SCZ1
eGenes (SCZ1: CALNI, FES, NAGA, PLCL1, UBE2Q2L, and ZNF804A; ten
gRNAs each) and four of ten SCZ2 eGenes (SCZ2: CLCN3, SF3BI,
TMEM219, ZNF823; three gRNAs each). For 5401 and 6352 cells,
respectively, we identified the sgRNA in each cell, the cis target gene
with differential expression, and the downstream trans alterations to
pathways resulting from initial cis up-regulation. Following QC, nor-
malization, and removal of doublets (cells containing more than one
sgRNA), an average of 316 cells per sgRNA were successfully perturbed
(ranging from 93 to 552) for a total of 3640 perturbed cells and 210
scramble controls (SI Fig. 4-7). Upregulation of eGenes by CRISPRa
ranged from 0.2 to 3 log2 fold-change (Log2FC), comparable to the
predicted effect sizes [SCZ1 (0.08-0.35); SCZ2 (0.2-0.77)] and eGene
expression changes (Log2FC range 0.3-5.2) in the post-mortem dor-
solateral prefrontal cortex (Fig. 1B, C; SI Tables 2,3; Fig. 8). Effects of
different gRNAs targeting the same eGenes were highly concordant,
even when the degree of perturbation varied (SI Fig. 15). Differentially
expressed genes (DEGs, prpr<0.05, Supplementary Data 2) were
enriched for neuroactive ligand-receptor interaction, protein proces-
sing in the endoplasmic reticulum, proteasome, and spliceosome Gene
Ontology and KEGG Pathways terms (Supplementary Data 3), sug-
gesting that diverse eGenes might impact similar neural processes and
pathways.

We define “convergence” as the independent development of
transcriptomic changes in the same direction resulting from all eGene
perturbations. DEGs were meta-analyzed (using METAL), and “con-
vergent” genes were defined as those with shared direction of effect
across all eGene perturbations and with non-significant heterogeneity
between eGenes (Cochran’s heterogeneity Q-test pHet > 0.05). Across
all schizophrenia eGenes, 363 convergent genes (Bonferroni meta p-
value<=0.05) were identified by meta-analysis, with 77 passing multi-
ple testing correction (SI Data 2).

To identify groups of genes with similar expression patterns
across eGene perturbations, we define “convergent networks” as
relationships between genes that are co-regulated by shared biological
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EpiXcan test: elastic net regression-based predictor model of methylation applied to genotype data to identify genetically regulated gene methylation, two-tailed, within tissue, Bonferroni multiple comparison correction. NEK4, PLCL1, UBE2Q2L, NAGA, FES,

CALNT, and ZNF804A are present in the pooled screen SCZ1.

mechanisms. Unsupervised Bayesian bi-clustering” and gene co-
expression network reconstruction from the pooled CRISPRa single
cell RNAseq (n=3850 cells, 16,851 genes, donor/batch corrected and
normalized to adjust for covariates such as cell heterogeneity) iden-
tified high-confidence co-expressed gene networks. Across the pooled
single-cell experiments, 1048 protein-coding source node genes (>5
edges) were identified, with a total network membership of 1869 genes
that clustered together in at least 20% of the runs (Fig. 2A, Supple-
mentary Data 3), and significant enrichments for gene targets of
schizophrenia GWAS loci as well as transcription factors (AP4
(TFAP4)*?, NFAT®, ERRI**, and TCF4’®’°) and miRNAs (miR-30) that
regulate schizophrenia GWAS loci (Fig. 2A, i-iii). The cross-target
convergent network was enriched in biological pathways implicated in
schizophrenia etiology (SI Fig. 9); overrepresentation analysis revealed
schizophrenia, bipolar disorder, intellectual disability, and autism
spectrum disorder common and rare risk genes to be significantly
over-represented in node genes shared across all eGene perturbations
(Fig. 2A, i; Supplementary Data 3).

To study the strength and composition of convergent net-
works, we define “network convergence” as the sum of the net-
work connectivity score (i.e., networks with fewer nodes and
more interconnectedness have increased convergence). We
endeavored to identify the biological factors (e.g., number of
eGenes, functional similarity of eGenes, and eGene co-expression)
that influenced network convergence. eGene number tested the
number of eGenes used to generate a convergent network.
Functional similarity (i.e., the degree of shared biological func-
tions amongst eGenes) was calculated in two ways: Gene Ontol-
ogy semantic similarity scoring (within biological pathway,
cellular component, and molecular function)®°, and synaptic/sig-
naling score (proportion of eGenes with annotated function as
either “signaling” for pooled or “synaptic” for arrayed). The brain
expression correlation was calculated as the strength of the cor-
relation of eGene expression in the post-mortem dorsolateral
prefrontal cortex® (see Methods, SI Fig. 10). Bayesian
reconstruction® was performed across all random combinations
of eGene perturbations from the pooled experiment (1003 unique
eGene-Convergent Network sets) and arrayed experiment
described in the following section (32,752 sets) and resolved
distinct networks (Fig. 3B, E). Principal components analysis tes-
ted the effect of biological factors on the network convergence
scores (Fig. 3C, D, F, G; SI Fig. 10-11). Only brain expression
correlation and the proportion of synaptic/signaling genes were
significantly positively correlated with network convergence
across all sets in both the pooled [brain expression correlation:
Pearson’s r=0.24, adj. p value<0.001, signaling proportion:
Pearson’s r=0.14, adj. p value<0.01, n=826] and arrayed
experiments [brain expression correlation: Pearson’s r=0.083,
Bonferroni adjusted p value <0.001, signaling proportion: Pear-
son’s r=0.25, adj. p value<0.001, n=16319] (Fig. 3D, G). The
average expression of perturbed eGenes was positively correlated
with network convergence but was only significantly associated in
the arrayed experiment (Fig. 3D, G). Finally, although SCZ1 and
SCZ2 pooled CRISPR screens were generated from distinct dif-
ferentiation timepoints, the proportion of eGene perturbations
by experiment did not correlate with the degree of network
convergence, indicating that we have adequately controlled for
variation in neuronal maturation (Fig. 3D; Pearson’s r=0.062,
Bonferroni p value =1).

Convergence constrains the total impact of combinatorial
perturbations of schizophrenia eGenes

We manipulated eGenes in combination to approximate the polygenic
nature of schizophrenia and test whether convergence between
eGenes influences observed effects. Given that genes implicated in
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Fig. 1| Prioritization and manipulation of synaptic, regulatory, and multi-
function brain eGenes regulated by schizophrenia. A Schematic of schizo-
phrenia eGene identification and prioritization. Schizophrenia eGenes were prior-
itized by fine-mapping (COLOC), transcriptomic imputation (PrediXcan), and/or
epigenomic imputation (EpiXcan) schizophrenia GWAS using post-mortem brain
expression data. B Effect sizes of significant eGenes from either dorsolateral pre-
frontal cortex (DLPFC) EpiXcan (blue), DLPFC S-PrediXcan (green) or excitatory
neuron (ExN) S-PrediXcan (purple) transcriptomic imputation studies. The size of
circles corresponds with the —loglO(adjusted p value). C Log2(fold change) of all

eGenes in the arrayed experiment following single (teal) and joint perturbations
across all 15 eGenes (yellow) or functional (orange) or random (maroon) sets of five
eGenes in D21 hiPSC-NPC derived iGLUTSs, using individual vectors. The size of
circles corresponds with the -log(adjusted p value) from a one-tailed ¢ test.

D Log2(fold change) of all eGenes in the pooled experiments SCZ1 and SCZ2,
comparing all perturbed cells of one target eGene identity to all other cells of
different eGene identities (blue) or compared to only Scramble gRNA (teal). The
size of circles corresponds with the —log(adjusted p value) from a one-way pairwise
Wilcox Rank Sum. Created with BioRender.com.
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2.10E-10

3.288414
-0.251158
-0.52838

6.353697
-7.297041

3.96E-13

7.256793
-7.214675

0.888092
0.858178

0.999943
0.953677
0.913966
0.906413
0.846736

SF3B1

197256700...199299078
18497024...20619093

1.10E-14
7.97E-14

rs2914983
rs1858999

rs4702

regulatory

2.94E-13

5.41E-13

GATAD2A
FURIN
CcuL9

19
15

regulatory

1.69E-18

-8.776284
5.052675
5.356091

7.60E-24

-10.06869
5.754229
5.547481

90414642...92426654

42150013...44192158

2.15E-23
2.29E-1

proprotein convertase

4.36E-07

0.1981526
0.1714315

8.70E-09
2.90E-08

rs113113059
rs2944821

ubiquitination

8.50E-08
1.55E-15

1.19E-1

CALN1
PCCB

70244499...72912040

1.90E-09
5.32E-15

calcium signaling

-0.238932
0.3585781

COLOC test: approximate Bayes Factor method, two-tailed, Benjamini-Hochberg multiple comparisons correction. PrediXcan test: elastic net regression-based predictor model of gene expression applied to genotype data to identify genetically regulated gene

-7.973074
expression, two-tailed, within tissue, Bonferroni multiple comparison correction. CALN1, CLCN3, CUL9, DOC2A, PLCL1, INO8OE, SF3B1, SNAP91, TMEM219, ZNF823 are present in the pooled screen SCZ2. All 15 eGenes are present in the subsequent arrayed screen.

6.781431

4.44E14

-7.547429
6.291546

134969406...137055316
28952638...30984212

rs7432375

metabolism

3.14E-10

TMEM219

rs3814883 8.82E-15

16

signaling

synaptic biology and epigenetic/transcriptional regulation are enri-
ched for the schizophrenia risk*”"7***, we sought to generate three
groups of eGenes, linked to synaptic biology, gene regulation, or nei-
ther (Fig. 1A, arrayed experiment). Unconstrained by the uni-
directionality of pooled CRISPR screens, we did not restrict our list to
eGenes with a single direction of effect. From the 18 coding genes
prioritized by the intersection of transcriptomic imputation and
colocalization, eGenes were separated into discrete functional cate-
gories based on gene ontology annotations. Our final gene list inclu-
ded five synaptic genes (SNAP91, CLCN3, PLCL1, DOC2A, SNCA), five
regulatory genes (ZNF823, INOSOE, SF3B1, THOC7, GATAD2A), and five
genes with non-synaptic, non-regulatory functions, termed “multi-
function” (CALN1, CUL9, TMEM219, PCCB, FURIN) (Table 2; Fig. 1A).
We applied an arrayed design (i.e., distinct conditions in each well)
to manipulate schizophrenia eGenes alone and in combination,
allowing us to capture cell autonomous and non-cell autonomous
effects in a manner not possible in the pooled design (Fig. 4, SI Table 4,
SI Fig. 19). Endogenous expression was increased and decreased (via
CRISPRa and shRNAs, respectively) in the direction associated with
schizophrenia risk. CRISPRa and shRNA were specifically selected for
perturbation due to the potential for simultaneous, bi-directional
perturbation of target eGenes in joint perturbation conditions (see
Methods). Three to five vectors per gene were tested in 7-day-old (D7)
iGLUTs, identifying the single vector that best achieved the level of
significant perturbation predicted by eQTL analyses as confirmed by
qPCR (SI Fig. 1E). Each eGene was perturbed in 21-day-old (D21) iGLUTs
for 72 hours (Fig. 1D, SI Fig. 1F, G, 19A, and 21A), individually and jointly,
including appropriate vector and scrambled controls, from two neu-
rotypical donors with average polygenic risk scores (one experimental
batch per donor). Three groups of five random genes, one group of ten
random genes, and one group of all fifteen genes were also included.
Significant (p <0.05) changes in eGene expression in iGLUTs were
confirmed by RNAseq in 13/15 eGenes (SNAP91, CLCN3, PLCL1, DOC2A,
SNCA, ZNF823, SF3B1, THOC7, GATAD2A, CALN1, TMEMZ219, PCCB,
FURIN) (SI Fig. 1G, SI Fig. 19A); we validated the magnitude and direc-
tion of experimental eGene perturbation relative to the dosage effects
of the top predicted causal SNPs (e.g., eQTL effect size) and predicted
eGene expression changes (Fig. 1B, D; SI Table 2-4). Across donors,
donor status did not significantly impact the degree of eGene pertur-
bation (SI Fig. 1H p = 0.75, paired t test). Single perturbation of eGenes
by CRISPRa ranged from 0.07 to 0.44 log2 fold change, and RNAi
ranged from -0.22 to -0.87 log2 fold change, comparable to EpiXcan
effect sizes of 0.10 to 0.31 and -0.06 to —0.20 and PrediXcan effect
sizes of 0.22 to 0.77 and —0.17 and —0.38 for corresponding eGenes.
Across the majority of the schizophrenia eGenes in our arrayed
experiment, competitive gene-set enrichment analysis using 698
manually curated neural® gene-sets (SI Fig. 19B, C, SI Fig. 20A, Sup-
plementary Data 1) resulted in DEGs (prpgr < 0.05) that were strongly
enriched for gene-sets related to rare and common psychiatric dis-
order risk genes (11/15) (SI Fig. 20B), pre-synaptic biology (10/15) (SI
Fig. 20C), and glutamatergic neurotransmission (10/15) (SI Fig. 20D).
Overall, we again observed robust convergence at the gene-
(METAL”, p<192x10°) and network-level (Bayesian network
reconstruction®”) (Supplementary Data 3). A densely interconnected
network of 255 genes (n=63 samples, 4/sgRNA or shRNA, 25,487
genes, and normalized to adjust for covariates such as donor) was
significantly enriched for biological pathways implicated in schizo-
phrenia etiology; over representation analysis revealed that target
genes of schizophrenia, intellectual disability, and autism spectrum
disorder common and rare variants were significantly over-
represented in the network (Fig. 2B, i; Supplementary Data 3), as well
as genes regulated by miRNAs and transcription factors implicated in
schizophrenia etiology, such as hsa-miR-124a® and NKX2 * (Fig. 2B,
ii—iii). Separation of schizophrenia eGenes based on either signaling (SI
Fig. 9A) or regulatory (SI Fig. 9B) function resolved unique convergent
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Fig. 2 | Downstream target-convergent networks identified by Bayesian bi-
clustering resolve distinct networks enriched for schizophrenia common and
rare variant target genes and transcription factor binding motifs. A Convergent
network resolved across the downstream transcriptomic impacts of all 10 target
perturbations in the pooled experiments SCZ1 and SCZ2 identified 1869 con-
vergent genes with enrichments for (i) brain-related GWAS genes, (ii) transcription
factor binding sites of known schizophrenia-associated TFs (TFAP4, NFAT and
ERRI), and (iii) common and rare variant target genes. B Convergent networks
resolved across the downstream transcriptomic impacts of all fifteen target per-
turbations in the arrayed assay identified 255 convergent genes with enrichments
for (i) miRNA targets and (ii) transcription factor binding sites of known

schizophrenia-associated TFs (TFAP4, NFAT and ERRI), and (iii) common and rare
variant target genes. C While largely distinct, the resolved convergent networks
from the arrayed and pooled experiments shared 16 significant enrichments for
miRNA targets and 4 significant enrichments for TF targets — many of which are
thought to play a role in the regulation of schizophrenia-associated genes. Ai, 2Bi
Overrepresentation analysis using one-tailed Fisher’s exact test for gene enrich-
ment in curated disorder gene lists with Benjamini-Hochberg FDR multiple testing

test P values with Benjamini-Hochberg FDR multiple testing correction using FUMA
GENE2FUNC. D Overlapping nodes between the two networks were often involved
in neuronal proliferation and differentiation. Created with BioRender.com.
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networks with no overlap in node genes, suggesting that the functional
similarity of schizophrenia eGenes affects downstream convergence.
Each of these networks included neuropsychiatric risk genes as well as
those annotated for synaptic and immune signaling function (Sup-
plementary Data 3). Networks derived from arrayed and pooled
experiments shared significant enrichments for targets of miRNAs and
transcription factors associated with schizophrenia (Fig. 2C), although
only nine node genes overlapped (Fig. 2D).

Following combinatorial manipulation of schizophrenia eGenes,
most genome-wide effects occurred as predicted by summing differ-
ential expression for single eGene perturbations (“expected additive”
model, Box 1), yet 16.8% of the total transcriptome for synaptic eGenes
and 20.2% for the regulatory eGenes did not (Fig. 4; SI Figs. 21-23; SI
Table 4). We term these overwhelmingly sub-additive effects (SI
Fig. 21D) as “non-additive” (Bayes moderated t-statistics, FDR p <0.1)
and report 1l synergy coefficients® of 43.86 (synaptic eGenes), 42.74
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(regulatory eGenes), and 0.00 (multi-function eGenes). Non-additive
genes resulting from combinatorial synaptic and regulatory eGene
perturbations were significantly enriched for SZ risk genes as well as
synaptic gene sets (Fig. 4C).

Key controls demonstrate that non-additive effects did not result
from technical limitations of our approach. Consistent with single-cell
level effects, observations were similar whether tested from indepen-
dent expression vectors (Fig. 4), a single multiplexed vector expressing
all gRNAs? (SI Fig. 22A-F), or a polycistronic gRNA vector (SI Fig. 22G,
H). Likewise, modified ECCITE-seq confirmed a high number of unique
gRNA integrations at the single cell level (SI Fig. 22I). Non-additivity
could not be attributed to differences in the magnitude of eGene
perturbation between individual and combinatorial perturbations
across both donors (SI Fig. 21B, combined donors p >0.05 Wilcoxon
ranked sum test, individual donors p > 0.05 two-way ANOVA), reduced
fold-change of non-additive genes (SI Fig. 23C), or differences in
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Fig. 3 | The degree of network convergence is influenced by the functional
similarity of target perturbations. A Defining convergence and calculating
convergent network strength. Here, we define convergence as the independent
development of transcriptomic similarities between separate gene perturbations
that move towards union or uniformity of biological function. B-G Principal
component analysis (PCA) of the convergence scores, the three Gene Ontology
scores (Molecular Function, M.F.; Biological Process, B.P.; Cellular Component,
C.C.), brain expression correlation (B.E.C), and sample size across all resolved
networks in both the pooled and arrayed assays revealed that some functional
scores have similar influence on variance as convergence (SI Fig. 19). B, E Distribu-
tion of the degree of convergence (x axis) of networks across all possible combi-
nations of 2-8 (y axis; number of sets tested within each set) target perturbations
from the single-cell pooled experiment (B) and arrayed experiment (E) across all
possible combinations of 2-14 target perturbations from the arrayed experiment
show an influence of sample size on the ability to resolve a network. Data are
represented as median values, lower and upper hinges correspond to the 1st and
3rd quartiles, upper and lower whiskers represent the largest values within 1.5*IQR
(inter-quartile range) from the first or third quartile. Each point represents

convergence based on biclustering between 2-8 unique combinations of CRISPR
perturbations. B N =4 replicates per condition (2 x donors, 2 x independent
replicates per donor). E N = 2 biological replicates, 10 gRNA replicates (SCZ1); N=2
biological replicates, 2 technical replicates (sequencing batches) and 3 gRNA
replicates (SCZ2). C, F For both the pooled (C) and the arrayed (F) experiment, PCs
1 (x axis) and 2 (y axis) explain ~62% of the variance between networks. PC loadings
demonstrate the influence of each variable on the variance between networks;
within the first two PCs, the influence of brain expression correlation (B.E.C) and
proportion of signaling genes perturbed (S.P) on PCs 1 and 2 on variance explained
is more strongly related to convergence degree compared to other functional
scores. Since degree of convergence is influenced by number of eGenes perturbed,
we ran PCA analysis within networks of the same set size and found that the pattern
of influence of signaling proportion and brain expression correlation is maintained
when convergence is ranked within set size shown in SI Fig. 20. D, G This corre-
sponds to an overall significant positive correlation between network convergence
degree, signaling/synaptic proportion of perturbed genes in a set, and brain
expression correlation between genes in a set (Bonferroni adjusted p value of
Pearson’s correlations: *<0.05, **<0.01, ***<0.001. Created with BioRender.com.

baseline expression between non-additive and additive genes (SI
Fig. 23D).

Although increasing the number of eGenes perturbed increased
the degree of interactive effects on transcription (compare joint per-
turbations of random sets of 5, 10 and 15 eGenes, Fig. 4D, SI Fig. 23A),
our data suggested that specific eGenes may drive non-additive
effects; for example, log2FC of CLCN3 (synaptic) and INOSOE (reg-
ulatory) are the most correlated with synergy coefficients (SI Fig. 16).
When evaluated across all eGene sets, the proportion of synaptic
(Pearson’s r=0.49) and regulatory (r = 0.45) eGenes in a set positively
correlated with non-additivity, while proportion of multifunctional
eGenes was strongly negatively correlated (r=-0.94).

Given that >95% of non-additive genes (whether up- or down-
regulated, FDR p <0.1) showed less differential expression than pre-
dicted by the additive model (i.e., changes that were “less up” or “less
down” than expected) (SI Fig. 21C), we queried whether overlapping
downstream transcriptomic effects (e.g., convergence) constrain the
total effects observed in combinatorial perturbation.

Across all combinational perturbations, convergence was sig-
nificantly correlated with the degree of non-additive effects seen
(Fig. 5A, Pearson’s r* = 0.6569, p=0.0147). The robust gene-level con-
vergence observed for the synaptic (1070 genes) and regulatory (1070
genes) eGene groups was dramatically reduced in the multi-function
eGene group (71 genes) (METAL”, p <1.92 x107°) (Fig. 5B-E; Supple-
mentary Data 3). Convergent genes highly overlapped with non-
additive genes (Fisher’s exact test, p <2.2 x 107 for both synaptic and
regulatory eGene groups). 71% (761 of 1070) and 94% (1000 of 1070) of
convergent genes downstream of synaptic and regulatory eGenes,
were included in respective non-additive gene lists (Fig. 5C, D). Con-
vergent effects of synaptic eGenes were enriched for synaptic function
(e.g., mGIuRS5 interactors, p=1.64x10"%) and brain disorder (e.g.,
schizophrenia GWAS, p=8.41x10"%) gene-sets (Fig. 5F); regulatory
eGene convergence was also enriched for brain disorder gene-sets
(e.g., bipolar disorder, p=9.92 x107°) (Fig. 5G). Taken together, these
findings highlight convergent effects between schizophrenia eGenes
on synaptic function and brain disorder risk.

Convergent signatures represent plausible therapeutic targets
Individually targeting all eGenes with perturbed expression in each
patient is an insurmountable challenge. If instead it were possible to
reverse the impact of many schizophrenia eGenes by targeting a
smaller number of shared downstream targets, convergent networks
might represent important therapeutic targets.

We identified drugs predicted to manipulate top node genes®.
Across all eGene perturbations, reversers of convergent node sig-
natures were enriched for mechanisms previously associated with

psychiatric disorders, including HDAC inhibitors®® (normalized con-
nectivity score (NCS)=-1.63; FDR adjusted p val<0.08), ATPase
inhibitors®” (NCS =-1.61; FDR < 0.08), and sodium channel blockers®®
(NCS =-1.59; FDR < 0.08). Conversely, mimickers of convergent node
signatures were enriched for pathways associated with stress
response, including glucocorticoid receptor agonists (NCS=1.66,
FDR<0.08) and NF-kB pathway inhibitors (NCS=1.60; FDR<0.2)
(Supplementary Data 4). Finding only nominally significant enrich-
ments in non-neuronal cell lines suggests these may be neuron-specific
drug responses.

Three drugs that opposed the transcription signatures of top
convergent nodes specifically in neurons or neural progenitor cells
(NPCs) were prioritized (see Methods, Box 2): anandamide (reverser
of convergent network signature, NCS=-1.59, FDR=1 as well as
CALNI signature alone, NCS =-1.23, FDR = 0.15), simvastatin (NCS =
-1.31, FDR=1; TMEMZ219, NCS =-0.8823, FDR =0.25), and etomoxir
(Convergence, NCS=-1.86, FDR<22e-16; CALNI, NCS=-142,
FDR = 0.0355; TMEM219, NCS =-1.09, FDR = 0.0112) (Supplementary
Data 4). These drugs were tested for their ability to reverse, or
oppose, the effects of paired schizophrenia eGene perturbations in
iGLUTSs: CRISPRa for eGenes was followed by treatment with matched
reverser drugs (CALNI: anandamide and etomoxir; TMEM219: sim-
vastatin and etomoxir). Downstream transcriptomic (bulk RNA-seq)
and phenotypic (high content imaging, multi-electrode array) assays
were assessed to resolve eGene-drug effects on neuronal molecular,
morphological, and physiological phenotypes (Fig. 6 and SI
Figs. 28-30). All drugs reversed or suppressed the transcriptomic
impact of the CRISPRa perturbation alone. Notably, simvastatin
ameliorated the transcriptomic impact of TMEM219 and blunted an
increase in synaptic density caused by TMEM219 perturbation (two-
way ANOVA, CRISPRa perturbation p < 0.001; CRISPRa perturbation
x drug treatment interaction p < 0.05) (Fig. 6A, B). Etomoxir limited
the transcriptomic impact of perturbations of both CALNI and
TMEM219 (SI Fig. 28A, B). Thus, it may be possible to pharmacolo-
gically reverse convergent networks rather than targeting schizo-
phrenia eGenes individually.

Discussion

Shared downstream effects between target genes of schizophrenia
GWAS loci were greatest when eGenes had shared biological functions,
and enriched for psychiatric risk, brain development and synapse
biology genes. Convergent signatures were experimentally robust,
detected in three partially overlapping lists of schizophrenia eGenes,
whether manipulated in arrayed or pooled experimental designs, and
regardless of whether iGLUTs shared a common donor, cell type of
origin, or developmental time point. Increased convergence between
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Fig. 4 | Perturbation of schizophrenia eGenes within functional categories
results in non-additive effects on transcription, impacting the expression of
genes linked to brain disorders and synaptic function. A Schematic of differ-
ential expression analysis. Individual eGene perturbations, the implementation of
the expected additive model based on the latter and the measured combinatorial
perturbation permit the detection of interactive effects through comparison with
the additive model. B Combinatorial perturbation of synaptic and regulatory
eGenes resulted in non-additive effects on expression across 16.8% (synaptic) and
20.2% (regulatory) of the transcriptome. No significant non-additive effects were
seen following joint perturbation of non-synaptic, non-transcriptional regulatory
eGenes. Teal = proportion of genes showing significant non-additivity (two-tailed
FDR < 0.1); blue = proportion of genes showing no significant non-additivity.

Joint perturbation of
random set of 10 eGenes

m Genes with non-
additive FDR > 0.1

W Genes with non-
additive FDR < 0.1

90.0% 10.0% 80.8% 19.2%

Joint perturbation of all 15
eGenes

C GSEA of non-additive genes in the Synaptic eGene set demonstrated significant
enrichment for genes relating to brain disorders and synaptic function. GSEA of
non-additive genes in the Regulatory eGene set demonstrated significant enrich-
ment for genes relating to brain disorders and synaptic function. SCZ schizo-
phrenia, CNV copy number variant, FMRP Fragile X Mental Retardation Protein,
FDR false discovery rate. D Non-additive effects following combinatorial pertur-
bation of sets of five, ten, and fifteen eGenes randomly assigned from the synaptic,
regulatory, and multi-function eGene groups. The proportion of the transcriptome
exhibiting significant non-additive effects increased with increasing numbers of
perturbed eGenes (average of 5.1%,10.0% and 19.2% of the transcriptome with non-
additive FDR < 0.1 after joint perturbations of 5, 10, and 15 eGenes, respectively).

eGenes with shared biological function correlated to smaller than
expected (“sub-additive”) effects following combinatorial perturba-
tions of these same eGenes. Of note, beyond transcription, combina-
torial eGene manipulations resulted in phenotypic changes that
differed from the summed impacts of individual eGene perturbations
(SI Figs. 25-27), reinforcing that polygenic risk cannot be extrapolated
from experiments that test one risk gene at a time. Finally, we report
that pharmacological manipulation of a convergent hub reversed the
effects of multiple eGenes, suggesting that for polygenic disorders, a
preferred therapeutic approach may be to target shared downstream
effects rather than individual risk loci.

Altogether, the experimental eGene perturbations approximated
the magnitude and direction of predicted eGene effect associated with
schizophrenia, and generally resulted in downstream gene expression

changes related to synaptic biology and psychiatric disorder risk.
Nonetheless, further gene set enrichment analysis using 493 inflam-
mation and cell death gene-sets*® revealed enrichments related to cell
stress and neurodegenerative diseases across many perturbations
(Supplementary Data 1). This enrichment was not seemingly associated
with viral burden, being present whether single, combinatorial, or
multiplexed vectors were applied. If our in vitro system, defined by
repeated lentiviral transduction, antibiotic selection, eGene perturba-
tion, and single cell dissociation, stressed human neurons more than
accounted for by the scramble gRNA controls, this would represent a
concern of relevance to all CRISPR experiments in human neurons.
However, neither high content imaging nor multi-electrode array
analyses indicated decreased cell survival or a cessation of neuronal
activity (SI Figs. 26 and 27). Moreover, inflammation® and oxidative
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Fig. 5 | Convergence accounts for non-additive effects within functional
pathways. A-E Meta-analysis of differentially expressed genes (DEGs) elicited by
individual eGene perturbations for each five-gene grouping using METAL to
identify DEGs that showed altered expression consistently in the same direction
across all five eGene perturbation conditions for each set of eGenes.

A Convergence across individual eGene perturbations is correlated with the degree
of non-additive effect seen in the corresponding joint perturbation condition. Two-
tailed Pearson’s r* = 0.6569, p = 0.0147. Teal number of genes showing significant
non-additivity (two-tailed FDR < 0.1); yellow no. of genes showing significant con-
vergent effects (two-tailed FDR < 0.1) for each perturbation set. B For each joint
eGene perturbation group, non-additive impacts on transcription were compared
with genes showing significant convergence across individual perturbations for the
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same eGene set. C Evidence of convergence was found in 1070 genes across the
synaptic eGene perturbations, 761 of which also exhibited non-additive effects in
the additive-combinatorial comparison for the same set. D Evidence of con-
vergence was found in 1070 genes across the regulatory eGene perturbations,
1000 of which also exhibited non-additive effects in the additive-combinatorial
comparison for the same set. E No significant non-additive effects and only mini-
mal convergence could be seen in eGene perturbations across functional path-
ways. F GSEA of convergent genes in the synaptic and regulatory eGene groups
demonstrated significant enrichment for genes relating to brain disorders and
synaptic function. SCZ schizophrenia, CNV copy number variant, FMRP Fragile X
Mental Retardation Protein, ID intellectual disability, PPI protein-protein interac-
tion, KEGG Kyoto Encyclopedia of Genes and Genomes, FDR false discovery rate.
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Fig. 6 | In vitro validation identifies opposing effects of in silico drug predic-
tions and top schizophrenia eGenes (related to Box 2). In vitro validation of
drug-eGene phenotypic interactions. A Effects of 48-hour treatment with 10 uM
simvastatin on synaptic puncta density in TMEMZ219 CRISPRa perturbed (teal) or
non-perturbed (purple) iGLUT neurons. Synl-positive puncta values are expressed
relative to MAP2-positive neurite length in each well. Perturbation of TMEM219
expression with CRISPRa significantly increased synaptic puncta density; this
increase was partially ameliorated by 48 hr treatment with 10 uM simvastatin (two-
way ANOVA; CRISPRa variation p < 0.0001; CRISPRa x Drug treatment variation
p <0.05). N minimum of two independent experiments across 2 donor lines with 12
technical replicates per condition. Values for each technical replicate in imaging
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experiments were averaged from nine separate images per single well. B Treatment
of cells perturbed with either TMEM219 CRISPRa with 10 uM Simvastatin reverses or
suppresses the transcriptomic impacts of the schizophrenia eGene perturbations
alone (SI Figs. 28-30). Treatment of cells with CRISPRa TMEMZ219-gRNA and 10 uM
Simvastatin over 48 hours opposes the transcriptomic impact observed in CRISPRa
TMEMZ219-gRNA + Vehicle-treated cells. Venn diagram of significant DEGs at an (top
left) adjusted p val <0.05 and at an (top right) unadjusted p value of <0.05. (bot-
tom) Dot plot demonstrating the logFC of each gene in either the TMEM219 +
Vehicle (green) or TMEM219 +10uM Simvastatin (yellow) condition, ordered by
degree of logFC in the TMEM2I9 + Vehicle-treated cells. Size of the points corre-
sponds to the -loglO (adjusted p value).

stress’, and particularly fetal exposures to inflammation, stress, and

hypoxia”** are indeed associated with schizophrenia risk.

Mapping GWAS associations to eGene targets is challenging and
can yield false positives. How well our three eQTL-based methods
prioritized causal eGenes remains a critical question, particularly in
that they rely on tissue-specific eQTL data. There are frequent hotspots
of multiple TWAS-associated genes in the same locus”, with co-
regulation known to underlie pleiotropic TWAS associations’’. Here,
three eGenes were linked to a single SNP (rs3814883) in schizophrenia-
associated copy number variant at 16pll.2, a locus that harbors the
greatest excess of psychiatric common polygenic influences™. We
posit that a causal GWAS SNP may co-regulate multiple adjacent and
distal genes at this locus through chromatin contacts, but it is possible
that one or more eGenes at this locus were misidentified. Other schi-
zophrenia GWAS SNPs (e.g., rs2027349) likewise alter expression of
multiple genes (VPS45, IncRNA AC244033.2 and a distal gene, Clorf54);
indeed, combinatorial perturbation of these eGenes results in non-
additive impacts on transcriptomic and cellular phenotypes®.

Given the extent of polygenicity associated with schizophrenia,
our conclusions are constrained by the small proportion of eGenes
tested here relative to the total number of eGenes impacted by schi-
zophrenia GWAS loci. Technical limitations in testing a larger set of
SCZ eGenes include the number of GWAS loci with accurately mapped
gene targets; prediction and validation of gRNAs that reliably achieve
physiologically relevant gene perturbations across donors and cell
types; and the sequencing costs necessary to achieve sufficient gRNA
representation to resolve perturbations at scale. Moreover, given that
we selected only those schizophrenia eGenes with the very strongest
evidence of genetically regulated gene expression, the generalizability
of our observations to all schizophrenia eGenes is unclear, particularly
if there are non-linear responses to gradual changes in gene dosage”.
Thus, future investigation to test across larger gene sets, graded

changes in expression®, in vivo brain regions’ and in vitro cell types’,
developmental timespans®’, drug/environmental contexts’® and donor
backgrounds” will inform the cell-type-specific and context-
dependent nature of convergence and non-additivity. Of course, all
of this must be considered within the caveat that in vitro perturbations
do not exactly recapitulate the physiological impact of possessing
multiple genetic variants in human cases and controls. Despite this, it is
worth noting that the limited number of perturbations used in our
combinatorial conditions is still broadly relevant to studies of common
variant interactions. When analyzing the full dataset of 105 S-PrediXcan
SCZ eGenes in the post-mortem adult DLPFC®, a median of ten and a
maximum of 37 eGenes had outlying expression in the direction of risk
association per individual (SI Fig. 17). Across the twenty-one SCZ
eGenes targeted in either the pooled or arrayed experiments, a median
of two and a maximum of eight eGenes had outlying expression in the
direction of risk association per individual (SI Fig. 18). Of course, the
present design also falls short of capturing nuances of pleiotropy,
incomplete penetrance, and environmental factors.

Whereas population genetics finds very little evidence of non-
additive effects in phenotypic variation, molecular biology unequi-
vocally demonstrates the occurrence of gene-gene interactions'®. To
resolve this seeming contradiction, recall that although the “liability
threshold model” assumes that disease risk reflects the total sum of
many additive genetic (and/or environmental) effects, the relationship
between predisposition and clinical outcome is necessarily binary'®.
Indeed, the cumulative effect of risk SNPs can exceed observed phe-
notypic variation. Thus, epistasis at the gene level is consistent with the
additivity of complex traits'>. Likewise, here we report that con-
vergent perturbations at the pathway level correlated with pre-
dominantly sub-additive effects. Our findings indicate that the
cumulative effect of gene perturbations is additive only until a down-
stream pathway is maximally perturbed, after which, additional
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perturbations yield reduced marginal effects. Our results further sug-
gest that a pathway can be manipulated to the point of saturation
effect with only a handful of genes. We posit that there may be many
combinations of variants that have the same impact on a pathway. This
is supported by emerging evidence of pathway polygenic risk score
(PRS) burden'®, whereby pathway PRS provided higher prediction
power of [disease] than overall genome-wide risk, even in cases with
low overall genetic risk'*.

We further tested the extent to which our in vitro studies of
CRISPR perturbations inform the polygenic architecture of schi-
zophrenia at the population level. First, transcriptomic imputa-
tion of brain eGene expression (see Methods,) revealed a dose-
dependent effect: schizophrenia case-control status (p <0.01774,
OR >1.10) was best predicted when three or more eGenes were
perturbed (OR3 egenes =1.47 VS. OR; egene =1.10) (SI Fig. 1A). Sec-
ond, transcriptomic risk scores (see Methods) indicated that
schizophrenia risk was better predicted from larger
(p<2.2x107) (SI Fig. 1C) or more biologically diverse (R=0.19,
p<2.2x107%) (SI Fig. 1D) gene groups. Of note, there was a lack of
individuals, either case or control, with strong imputed within-
function perturbations, perhaps explaining why population-level
schizophrenia risk increased with the number of genes and
pathways impacted. Pathway-specific polygenic risk scores
(PRSets'”) that incorporate biological pathways, co-expression
patterns, convergence, and/or non-additivity may improve
patient stratification or better predict drug response; consistent
with this, non-additive PRSets performed as well as those curated
from synaptic genes (SI Fig. 24). Altogether, these studies of
transcriptomic imputation and polygenic risk scores suggest that
our in vitro studies of CRISPR perturbations indeed inform the
polygenic architecture of schizophrenia in vivo.

How does our genetic analysis of convergence advance precision
medicine for patients with psychiatric disorders? First, it may inform
molecular subtypes of disease. For example, when we cluster indivi-
duals based on shared patterns of schizophrenia eGene up-regulation
in the post-mortem DLPFC (SI Table 2), diagnosis of included indivi-
duals distinguished clusters (Pearson’s Chi-squared; X> =140, df =21, p
value =9.51e-20) (e.g., cluster 8, SCZ, X*=3.286; cluster 12, affective
disorders (AFF), X?=5.57; cluster 16, control, X?=3.014) (SI
Figs. 31and 32). A diagnosis of affective disorder (AFF) was significantly
associated with up-regulation of FES, NAGA, CALNI1, CLCN3, SF3BI and
ZNF804A (cluster 12). Convergence analysis across these six eGenes in
iGLUTSs identified the central node gene ABCG2, which is a biomarker
associated with increased negative symptoms'®®, down-regulated in a
neuroimmune molecular subtype (SCZ Type II)'7'%, and associated
with SCZ treatment resistance'®. Second, points of convergence
represent novel therapeutic targets that might be shared across cases;
reversing the effects of even a small number of genomic variants could
make a substantial difference to an individual’s risk of developing
schizophrenia'®, We predicted drugs capable of reversing convergent
transcriptomic signatures and demonstrated that pharmacological
targeting of convergent hubs ameliorated the effects of multiple
schizophrenia eGene perturbations. We highlight statins, particularly
simvastatin, which crosses the blood-brain barrier and shows promise
as an add-on treatment in schizophrenia™. Two double-blind placebo-
controlled trials of simvastatin highlighted the possibility that sim-
vastatin may decrease negative symptoms in some patients">'?,
potentially predictable based on inflammatory profiles™ and
treatment-induced changes in insulin receptor levels'™. Targeted
shared convergent hubs potentially obviate the need to individually
reverse the effects of multiple distinct risk loci in each patient.

That convergent genes were associated with a range of brain
disorders indicated that convergent effects may partially explain
shared features of psychiatric disorders and pleiotropy of risk. Con-
sistent with this, common and rare risk variants for

2,7,17,38-41,116-118 119-121

schizophrenia , autism spectrum disorder and more
broadly across the neuropsychiatric disorder spectrum®*'?7?* are all
highly enriched for genes involved in synaptic biology and gene reg-
ulation. Our findings support the hypothesis that common and rare
psychiatric risk variants converge on the same biological pathways”.
As recently demonstrated for autism'”, by combining genetic and
clinical data, it may be possible to resolve biologically distinct subtypes
of schizophrenia. Our overarching goal is to advance the field towards
an era of precision medicine'”®, whereby patient genetics, in conjunc-
tion with clinical evaluation, are used to more accurately predict
diagnosis, disorder trajectory, and potential therapeutic interventions.

Methods

Statement of ethics

Yale University Institutional Review Board waived ethical approval for
this work. Ethical approval was not required because the hiPSC lines,
lacking association with any identifying information and widely
accessible from a public repository, are thus not considered to be
human subjects research. Post-mortem data are similarly lacking
identifiable information and are not considered human subjects
research.

Schizophrenia eGene prioritization. eGenes are defined as genes with
significant genetic regulation of gene expression levels. In total, across
the pooled and arrayed analyses, 20 unique eGenes were prioritized
based on statistical and epigenetic evidence supporting genetic (dys)
regulation of expression in schizophrenia (see Table 1), rather than
GWAS or eQTL effect size; predicted direction and magnitude of
eGene effect available in SI Table 1.

i) SCZ1 eGenes: EpiXcan®® was used to impute brain tran-
scriptomes from Psychiatric Genomics Consortium 3 (PGC3)-SCZ
GWAS? at the level of genes and isoforms from the PsychENCODE post-
mortem datasets of genotyped individuals (brain homogenate,
n=924)**° EpiXcan increases power to identify trait-associated genes
under a causality model by integrating epigenetic annotation'”’ (from
REMC'); transcriptomes were imputed at the gene and isoform levels
and features with training cross-validation R? > 0.01 were retained. The
epigenetic imputation models were built with the PrediXcan’ method
(using a 50kbp window instead of 1Mbp for transcripts), utilizing the
recently described ChIPseq datasets”; summary-level imputation was
performed with S-PrediXcan’. Peaks were assigned to genes with the
ChiPseeker R package'”. In addition, PrediXcan’ imputed H3K27ac
(brain homogenate, n=122; neuronal, n=191) and H3K4me3 (neuro-
nal, n=163)" to more confidently identify cis-regulatory elements
associated with risk for SCZ. Overall, SCZ eGenes were prioritized from
GWAS based on: i) significant genetic up-regulation of expression (z-
score >6 for genes), ii) epigenetic support (imputed epigenetic activity
(p<0.01) across at least one of the three assays), iii) exclusion of non-
coding genes or those located in the MHC locus, iv) robust expression
in our hiPSC neuron RNAseq. Genes were ranked based on the asso-
ciation z-score for imputed gene expression. For pooled experiments
(day 7 hiPSC-derived iGLUT), six top coding genes and one top pseudo-
gene were selected: NEK4, PLCL1, UBE2Q2L, NAGA, FES, CALNI, and
ZNF804 (Table 1).

ii) SCZ2 eGenes: First, transcriptomic imputation (prediXcan’®7?)
identified ~250 significant genes (p <6 x107%) with predicted differ-
ential expression between SCZ-cases and controls using SCZ GWAS?
and post-mortem CommonMind Consortium (CMC)® data (623 sam-
ples). Second, colocalization (COLOC™*) of fine-mapped PGC3-
GWAS? loci (65,205 cases and 87,919 controls) with post-mortem
brain® eQTL (537 EUR samples)® identified 25 loci with very strong
evidence (high posterior probability that a single shared variant is
responsible for both signals, PP4 > 0.87%). There was significant over-
lap between the two analyses (binomial test p value 3.03 x 10™2); of the
25 COLOC genes, 22 were also significant by PrediXcan. For each
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eGene, the magnitude and direction of perturbation associated with
SCZ risk were predicted, and expression confirmed in hiPSC neuron
RNAseq”. eGenes were further separated into discrete functional
categories based on gene ontology annotations (http://geneontology.
org/). From these 22, we prioritized the top coding genes across three
broad categories: synaptic, regulatory, and multifunctional (defined as
not synaptic, regulatory, and seemingly unrelated to each other). To
complete the selection of five genes from each category, three addi-
tional top-ranked synaptic genes from the prediXcan analysis were
included: DOC2A™, CLCN3™* and PLCLI™. Overall, 15 SCZ eGenes were
prioritized from GWAS based on i) significant genetic regulation by
COLOC and/or PrediXcan, ii) exclusion of non-coding genes and those
located in the major histocompatibility complex (MHC) locus, iii)
robust expression in our hiPSC neuron RNAseq.

For arrayed experiments (day 21 NPC-derived iGLUT), our final
gene list for combinatorial perturbations included five synaptic genes
(SNAP91, CLCN3, PLCL1, DOC2A, SNCA), five regulatory genes (ZNF823,
INOSOE, SF3B1, THOC7, GATAD2A), and five genes with non-synaptic,
non-regulatory functions, termed “multi-function” (CALNI, CUL9,
TMEM219, PCCB, FURIN) (Table 2). For pooled experiments (day 21
NPC-derived iGLUT), the ten coding genes with significant genetic up-
regulation were selected: CALNI, CLCN3, CUL9, DOC2A, PLCL1, INOSEO,
SF3B1, SNAP91, TMEM219, ZNF823. This list was combined with our
eGene set previously evaluated in hiPSC-neurons”; one functionally
validated gRNA was included for each of these three genes (SNAP9I,
TSNARE1, and CLCN3)”.

dgRNA design. CRISPRa gRNA design and cloning were conducted as
described previously™, using the lentiGuide-Hygro-mTagBFP2 back-
bone (Addgene, No. 99374). For the fifteen eGenes prioritized by a
combination of COLOC and PrediXcan, we designed three gRNAs each.
For the seven eGenes prioritized by EpiXcan and PrediXcan, we
designed ten gRNAs each. For the three previously tested eGenes”
(intended as a positive control), we used one pre-validated gRNA each.
All gRNA sequences and corresponding oligonucleotide sequences
used for cloning of gRNA vectors and subsequent experimentation are
listed in Supplementary Data 5.

iGLUT induction from hiPSC-derived NPCs”*%%° or hiPSCs® ',
Validated control hiPSCs for eGene perturbation were selected from a
previously reported case/control hiPSC cohort of childhood onset
schizophrenia™. Informed consent was obtained from all fibroblast
donors at the National Institute of Mental Health under the review of
the Internal Review Board of the NIMH. All hiPSC work was reviewed by
the Internal Review Board of the Icahn School of Medicine at Mount
Sinai. This work was also reviewed by the Embryonic Stem Cell
Research Oversight Committee at the Icahn School of Medicine at
Mount Sinai and Yale University. The following control hiPSC/NPCs
were used: NSB553-S1-1 (male), NSB2607-2/NSB2607-1-4 (male),
NSB690-2 (male). All fibroblast samples were genotyped by Illumi-
naOmni 2.5 bead chip genotyping™"*, PsychChip’, and exome
sequencing™. Parental hiPSCs were validated by G-banded karyotyp-
ing (Wicell Cytogenetics), with ongoing genome stability monitored by
Infinium Global Screening Array v3.0 (Illumina). Critically, SNP geno-
type is inferred from all RNAseq data using the Sequenom SURESelect
Clinical Research Exome (CRE) and Sure Select V5 SNP lists to confirm
that neuron identity matches the donor.

i) Validated control hiPSC-derived NPCs for CRISPRa/shRNA were
selected from a previously reported case/control hiPSC cohort of
childhood onset SCZ (COS)"% NSB553-S1-1 (male, average SCZ PRS,
European ancestry), NSB2607-1-4 (male, average SCZ PRS, European
ancestry). hiPSC-NPCs were generated via dual-SMAD inhibition
(0.1uM LDNI193189 and 10 uM SB542431) followed by neural rosette
selection and MACS-based purification and validated as previously
described)®. hiPSC-NPCs were subsequently transduced with

lentiviral vectors for dCas9-VPR-puro (Addgene, No. 99373) and
selected with 1 mg/mL puromycin (Sigma, no. P7255) as described
previously®. hiPSC-NPCs expressing dCas9-VPR were cultured in
hNPC media (DMEM/F12 (Life Technologies #10565), 1x N2 (Life
Technologies #17502-048), 1x B27-RA (Life Technologies #12587-010),
1x Antibiotic-Antimycotic, 20 ng/ml FGF2 (Life Technologies)) on
Matrigel (Corning, #354230).

At day -2, dCas9-VPR hiPSC-NPCs were seeded as 1.2 x 10° cells/
well in a 12-well plate coated with Matrigel. At day -1, cells were
transduced with rtTA (Addgene 20342) and NGN2 (Addgene 99378)
lentiviruses. Medium was switched to non-viral medium four hours
post-infection. At day 0 (DO), 1 ug/ml dox was added to induce NGN2-
expression. At D1, transduced hiPSC-NPCs were treated with anti-
biotics to select for lentiviral integration (300 ng/ml puromycin for
dCas9-effectors-Puro, 1mg/ml G-418 for NGN2-Neo). At D3, NPC
medium was switched to neuronal medium (Brainphys (Stemcell
Technologies, #05790), 1x N2 (Life Technologies #17502-048), 1x B27-
RA (Life Technologies #12587-010), 1ug/ml Natural Mouse Laminin
(Life Technologies), 20 ng/ml BDNF (Peprotech #450-02), 20 ng/ml
GDNF (Peprotech #450-10), 500 ug/ml Dibutyryl cyclic-AMP (Sigma
#D0627), 200 nM L-ascorbic acid (Sigma #A0278)) including 1 ug/ml
Dox. 50% of the medium was replaced with fresh neuronal medium
once every second day.

For pooled analysis, on day 5, young hiPSC-NPC NGN2-neurons
were replated onto matrigel-coated plates and cells were dissociated
with Accutase (Innovative Cell Technologies) for 5-10 min, washed
with DMEM/10%FBS, gently resuspended, counted and centrifuged at
1000 x g for 5 min. The pellet was resuspended at a concentration of
1x10° cells/mL in neuron media [Brainphys (StemCell Technologies
#05790), 1 N2 (ThermoFisher #17502-048), 1 B27-RA (ThermoFisher
#12587-010), 1mg/ml Natural Mouse Laminin (ThermoFisher
#23017015), 20 ng/mL BDNF (Peprotech #450-02), 20 ng/mL GDNF
(Peptrotech #450-10), 500 mg/mL Dibutyryl cyclic-AMP (Sigma
#D0627), 200 nM L-ascorbic acid (Sigma #A0278)] with doxycycline,
puromycin, G418 [4uM Ara-C (Sigma #C6645)] and 1 Thiazovivin
(Sigma #420220). Cells were seeded 5x10° per 12-well plate. For
arrayed analysis, neurons were not replated, owing to the complexity
of the conditions involved.

At D13, iGLUTs were treated with 200 nM Ara-C to reduce the
proliferation of non-neuronal cells in the culture, followed by half
medium changes. At D18, Ara-C was completely withdrawn by full
medium change while adding media containing individual shRNA/
gRNA vectors or pools of mixed shRNA and gRNA vectors (Addgene
99374), either targeting eGenes or scramble controls. CRISPRa and
shRNA vectors were specifically selected for perturbation due to the
potential for simultaneous, bi-directional perturbation of target
eGenes in joint perturbation conditions. shRNA knockdown was cho-
sen over CRISPRi due to the difficulties in expressing multiple separate
CRISPR effectors in the same cell lines (e.g., dCas9-VPR + dCasl2a-
KRAB). Control conditions were as follows: scramble gRNA vector (for
comparing with target gRNA conditions), scramble shRNA vector (for
comparing with target shRNA conditions) and scramble gRNA vector +
scramble shRNA vector (for comparing with joint perturbation con-
ditions). All control conditions were MOI-matched to their respective
target condition. Medium was switched to non-viral medium four
hours post-infection. At D19, transduced iGLUTs were treated with
corresponding antibiotics to the gRNA lentiviruses (1 mg/ml HygroB
for lentiguide-Hygro/lentiguide-Hygro-mTagBFP2), followed by half
medium changes until neurons were harvested at D21.

i) Clonal hiPSCs from two control donors of European ancestry
(NSB690-2 (male, average SCZ PRS, European ancestry) and NSB2607-
2 (male, average SCZ PRS, European ancestry)"*” with lenti-EF1a-dCas9-
VPR-Puro (Addgene #99373), pLV-TetO-hNGN2-eGFP-Neo (Addgene
#99378), and lentiviral FUW-M2rtTA (Addgene #20342) were main-
tained in StemFlex™ Medium (ThermoFisher #A3349401) and
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passaged with EDTA (Life Technologies #15575-020). On day 1,
induction media (DMEM/F12 (ThermoFisher #10565), 1 N2 (Thermo-
Fisher #17502-048), 1 B27-RA (ThermoFisher #12587-010), 1 Antibiotic-
Antimycotic (ThermoFisher #15240096), and 1ug/mL doxycycline)
was prepared and dispensed 2 mL of suspension at 1.2 x 10 cells/well
in induction media onto a 6-well plate coated with Matrigel (Corning
#354230). On day 3, media is replaced with induction medium con-
taining 1 pg/mL puromycin and 1 mg/mLG418. On day 5, split neurons
were replated onto matrigel-coated plates and cells were dissociated
with Accutase (Innovative Cell Technologies) for 5-10 min, washed
with DMEM/10%FBS, gently resuspended, counted and centrifuged at
1000 x g for 5 min. The pellet was resuspended at a concentration of
1x10° cells/mL in neuron media [Brainphys (StemCell Technologies
#05790), 1 N2 (ThermoFisher #17502-048), 1 B27-RA (ThermoFisher
#12587-010), 1mg/ml Natural Mouse Laminin (ThermoFisher
#23017015), 20 ng/mL BDNF (Peprotech #450-02), 20 ng/mL GDNF
(Peptrotech #450-10), 500 mg/mL Dibutyryl cyclic-AMP (Sigma
#D0627), 200 nM L-ascorbic acid (Sigma #A0278)] with doxycycline,
puromycin, G418 [4uM Ara-C (Sigma #C6645)] and 1 Thiazovivin
(Sigma #420220). Cells were seeded 5 x 10° per 12-well plate. On day 7,
neurons were harvested for scRNA sequencing.

Neuronal pooled CRISPRa screens. Expanded CRISPR-compatible
CITE-seq (ECCITE-seq)”, combines Cellular Indexing of Tran-
scriptomes and Epitopes by sequencing (CITE-seq) and Cell Hashing
for multiplexing and doublet detection™ with direct detection of
sgRNAs to enable single cell CRISPR screens with multi-modal single
cell readout. By capturing pol Ill-expressed guide RNAs directly, this
approach overcomes limitations of other single-cell CRISPR methods,
which detect guide sequences by a proxy transcript, resulting in bar-
code switching and lower capture rates™*"*, CRISPRa hiPSC iGLUT
neurons (2607 (male) and 690 (male)) were transduced with the
pooled gRNA at day -1. After maturation, 7-day-old iGLUT neurons
were dissociated into single-cell suspensions with papain, antibody-
hashed"™, and bar-coded single-cell cDNA generated using 10X Geno-
mics Chromium™. NPC-derived iGLUT neurons (2607 (male) and 553
(male)) were transduced with the mixed-pooled gRNA vectors
(Addgene 99374) at day 17. At day 21, media was replaced by 0.5 ml/
well Accutase containing 10 um Rock inhibitor, THX (catalog no.
420220; Millipore) for 1hour to dissociate neurons. Neurons were
spun down (3minsx300g) and resuspended in DMEM/FI12 + THX
before proceeding to single cell sequencing. Analysis of single-cell
CRISPRascreens in DIV 7 and DIV 21iGLUT Neurons. mRNA sequencing
reads were mapped to the GRCh38 reference genome using the Cell-
ranger Software. To generate count matrices for HTO and GDO
libraries, the kallisto indexing and tag extraction (kite) workflow was
used. Count matrices were used as input into the R/Seurat package'*°
to perform downstream analyses, including QC, normalization, cell
clustering, HTO/GDO demultiplexing, and DEG analysis”"*.,
Normalization and downstream analysis of RNA data were per-
formed using the Seurat R package (v.2.3.0), which enables the inte-
grated processing of multimodal single-cell datasets. Each ECCITE-seq
experiment was initially processed separately. Cells with RNA UMI
feature counts were filtered (200 <nFeature_RNA <8000), and the
percentage of all the counts belonging to the mitochondrial, riboso-
mal, and hemoglobin genes calculated using Seurat::PercentageFea-
tureSet. Hashtag and guide-tag raw counts were normalized using
centered log ratio transformation, where counts were divided by the
geometric mean of the corresponding tag across cells and log-
transformed. For demultiplexing based on hashtag, Seur-
at:HTODemux function was used; and for guide-tag counts Seur-
at:MULTIseqgDemux function within the Seurat package was
performed with additional MULTIseq semi-supervised negative-cell
reclassification. In both experiments, 8-10% of retained cells contained
multiple gRNAs and were assigned as doublets after de-multiplexing.

To remove variation related to the cell-cycle phase of individual cells,
cell cycle scores were assigned using Seurat::CellCycleScoring, which
uses a list of cell cycle markers'*? to segregate by markers of G2/M
phase and markers of S phase. RNA UMI count data were then nor-
malized, log-transformed, and the percent mitochondrial, hemoglo-
bulin, and ribosomal genes, batch, donor (HTO-maxID; as a biological
replicate), and cell cycle scores (Phase) were regressed out using
Seurat::SCTransform. The scaled residuals of this model represent a
‘corrected’ expression matrix, that was used for all downstream ana-
lyses. To ensure that cells assigned to a guide-tag identity class
demonstrated successful perturbation of the target gene, we per-
formed ‘weighted-nearest neighbor’ (WNN) analysis, to assign clusters
based on both guide-tag identity class and gene expression’. To
identify successfully perturbed cells, we calculated a p value based on
the Wilcox rank sum test and Area Under the Curve (AUC) statistic,
which reflects the power of each gene (or gRNA) to serve as a marker of
a given cluster using Presto. WNN Clusters were then filtered based on
two criteria (1) single gRNA-identity with an AUC statistic of > 0.8
(where 1 means the gRNA is a perfect marker of a given cluster) and (2)
a logFC = 2 standard deviations of the mean or logFC > 0 and p-val >
0.05, of the target gene (but no other target genes) compared to
scramble (non-targeting sgRNAs) controls (SI Fig. 4-8). These clusters
were then used for downstream analyses'*.

Of note, there was a lower representation of specific gRNAs and
fewer gene perturbations resolved in SCZ2 than SCZ1. This likely
reflected the use of a single pre-validated gRNA vector per gene from
our arrayed experiments for SCZ2, rather than a pooled library com-
prised of multiple gRNAs targeting each eGene in SCZ1.

Cell fraction imputation and quantification of heterogeneity in the
composition of iIGLUT neurons. Using CiberSortx, we imputed the
cell-faction identity of randomly sampled scramble control cells from
each experiment (n=100/exp) using the PsychEncode scRNAseq
dataset as a reference (100 permutations). To determine if the level of
heterogeneity of iGLUT neuron maturity and subtype was similar
between DIV7 and DIV21 iGLUT neurons in the given experiments, we
performed a non-parametric Levene’s Test for Homogeneity of Var-
iance (LT-test) on the imputed cell fraction matrices. Although we
observed heterogeneity in relative central and peripheral nervous
system marker expression across the cell fractions, this heterogeneity
was not due to gRNA identity, and the level of variance in our data due
to cellular heterogeneity was not significantly different by time-point.
We were underpowered to compare gRNAs between cells with higher
expression of different cell markers.

Meta-analysis of gene expression across perturbations'*. We per-
formed a meta-analysis and Cochran’s heterogeneity Q-test (METAL”")
using the p values and direction of effects (t-statistic), weighted
according to sample size across all sets of perturbations in both the
arrayed and pooled assays (Target vs. Scramble DEGs). Genes were
defined as “convergent” if they (1) had the same direction of effect
across all 5, 10, or 15 target combinations, (2) were Bonferroni sig-
nificant in our meta-analysis (Bonferroni adjusted p value < 0.05), and
(3) had a heterogeneity p value =>0.05.

Bayesian Bi-clustering to identify target-convergent networks'*.
eGene-Convergent gene co-expression Networks (eGCN)*' were built
using an unsupervised Bayesian biclustering model, BicMix'*, on the
log2CPM expression data from all the replicates across each of the
5-target sets and scramble gRNA jointly or all the cells across 10 targets
and scramble gRNA jointly for the arrayed and pooled assays, respec-
tively. To account for neuronal maturity differences in the single-cell
screen, expression matrices were batch corrected and normalized, and
the scramble cells from both experiments (matched scramble gRNA
across experiments) were used as a single control population. To
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perform this as a joint analysis across two experiments, (1) Count
matrices from each experiment were combined and RNA transcripts,
mitochondrial, ribosomal, and hemoglobin genes were removed
([“MT- | "RP[SLI[[:digit:]]|"RPLP[[:digit:]]"RPSA | "HB[ABDEGMQZ]
[[:digit:]I) as well as genes that had at fewer than 2 read counts in 90% of
samples, (2) and limma:voom normalization and transformation was
used to compute the log2cpm counts from the effective library sizes of
each cell (16851 genes). 40 runs of BicMix were performed on these
data, and the output from iteration 400 of the variational Expectation-
Maximization algorithm was used. The hyperparameters for BicMix
were set based on previous extensive simulation studies'®. Convergent
networks were identified across all possible combinations of 2-14 as
well as all 15 of the targets (n = 32752 combinations) in the arrayed assay,
and all possible combinations of 2,3,4,5,6,7 or 8 as well as all 10 of the
targets (n=1003 combinations) in the pooled experiment. Network
connections that did not replicate in more than 10% of the runs were
excluded. Nodes with fewer than 5 edges or non-coding genes were
removed from gene set enrichment analysis (GSEA). (The threshold of
>5 edges is based on the likelihood of more than 5 edges being present
by chance, with 10% being the percentage of runs where the connection
was identified, see refs. 81,145. Duplication thresholds are network-
dependent, and a metric of confidence in the connections, including
those with especially low duplication rates, was not included in down-
stream analysis.) Of all random sets tested in the pooled experiment,
64.8% resolved a convergent network passing at least a 10% duplication
threshold; of all random sets tested in the arrayed experiment, ~50%
resolved a convergent network with a 5-255 threshold of duplication
depending on the node-edge connection. Using FUMAGWAS: GENE2-
FUNC, the protein-coding genes were functionally annotated, and
overrepresentation gene-set analysis for each network gene set was
performed”’. Using WebGestalt (WEB-based Gene SeT Analysis
Toolkit)"*®, over-representation analysis (ORA) was performed on all
convergent network gene sets against a curated list of common and rare
variant target genes across ASD, BIP, SCZ, and ID”. Nodes were anno-
tated using GeneCards'’, MalaCards™°, and GWAS Catalog"'. Specific
enrichments were observed with 1" de novo SCZ-CNV*?, SCZ eQTLs">,
SCZ brain hub gene'’, downregulated in ASD/WS"*, SCZ neurons™’, and
Sox21 neural patterning™®.

Influence of Functional Similarity on Convergence Degree. Func-
tionally similarity scores across the eGenes represented in each set was
calculated using three metrics: (1) Gene Ontology Scores: the average
semantic similarity score based on Gene Ontology pathway member-
ship (within Biological Pathway (BP), Cellular Component (CC), and
Molecular Function (MF) between genes in a set*°, (2) Brain expression
correlation (B.E.C.) score: based on the strength of the correlation in
gene expression in the CMC (n=991 after QC) post-mortem dorso-
lateral prefrontal cortex (DLPFC) gene expression data®, and (3) Sig-
naling Score: based on the proportion of eGenes whose basic
functional annotation was categorized as “signaling” (CALN1, CLCN3,
FES, NAGA, PLCL1, TMEM219; with PLCLI and CLCN3 further separated
as specific synaptic genes) or four “epigenetic/regulatory” target genes
(SF3B1, UBE2Q2L, ZNF823, ZNFS804A; with ZNF823, ZNF804A as specific
transcription factors) using FUMAGWAS: GENE2FUNC' (SI Fig. 10).
Bi-clustering identifies co-expressed genes shared across the
downstream transcriptomic impacts of any given set of eGene per-
turbations, thus, the resolved networks are the transcriptomic simila-
rities between distinct perturbations (convergence). While bi-
clustering resolves convergent gene co-expression networks, the
strength of convergence within a network can be defined by (i) the
degree of network connectivity as defined by two small-world network
connectivity coefficients (edge density and average path length) and
(ii) the degree of functional similarity or unity between genes repre-
sented within the network. Given this definition, (1) represents per-
turbations with no convergent downstream effects, (2) represents a

network with a moderate degree of convergence because it (i) has
resolved gene co-expression clusters that can be constructed into a
network, (ii) has a moderate degree of network connectivity and (ii) is
enriched in biological pathways with some redundancy, while (3)
represents a highly convergent network because the degree of net-
work connectivity is stronger and there is greater uniformity in bio-
logical pathway gene membership. Overall, we quantify the strength or
degree of convergence using the function in (4), where Cp is the edge
density (the proportion of edges present given all possible edges) and
Lp is the average path length (the mean of the shortest distance
between each pair of nodes), MFsc is the average semantic similarity
score between each pair of nodes in the network based on Molecular
Function Gene Ontology, BPsc is the average semantic similarity score
based on Biological Pathway Gene Ontology and CCsc is the average
semantic similarity score based on Cellular Component Gene Ontol-
ogy. Semantic similarity is based on the idea that genes with similar
function have similar Gene Ontology annotations. Semantic similarity
scores were calculated by aggregating four information content-based
methods and one graph structure-based method with the R package
GoSemSim.

We assigned each network a “degree of convergence” based on (1)
network connectivity and (2) similarity of network genes based on
biological pathway membership. We performed a principal compo-
nents analysis on the functional similarity scores and the degree of
network convergence. PCA loadings determined the effect of the
included variables on the variability across all resolvable sets
(arrayed=16320, pooled=827, variables=6). To quantify this, we calcu-
lated two small-world connectivity network coefficients: the cluster
connectivity coefficient based on the proportion of edges present out
of all possible edges (Cp) and the average path length (Lp)™’.

Here, we define convergence as (1) increased connectivity of the
resolved networks and (2) functional similarity of genes within the
network. Network connectivity was defined by the sum of the clus-
tering coefficient (Cp) and the difference in average length path (Lp)
from the maximum average length path resolved across all possible
sets [(max)Lp-Lp]. Network functional similarity was scored by taking
the sum of the mean semantic similarity scores between all genes in
the network. Overall, convergence degree represented the sum of the
network connectivity score and the network functional similarity
score (1):

N
convergence=Cp+[max(Lp) — Lp] + Z MFsemsim
1
+ BPsemsim + CCsemsim

Convergent networks with matched patterns of gene expression in
the post-mortem brain. We clarify that this approach asks how
often eGenes are up-regulated together in individual post-
mortem brains. To do this, we ran target-convergent network
reconstruction in our scRNA-seq data, not the CMC bulk tissue
data, for sets of eGenes defined by the clustering observed in the
CMC bulk tissue data. We found zero individuals in the CMC data
with significant upregulation of all ten risk eGenes. Instead of
only evaluating convergence on the basis of eGene functional
similarity as in the first portion of the manuscript, we define
eGene pairings more broadly based on the signatures of these
eGenes in the post-mortem DLPFC, increasing the relevance to
risk at the individual level. Target sets based on gene expression
patterns in the CMC (n =991 after QC) post-mortem dorsolateral
prefrontal cortex (DLPFC). We performed K-means clustering to
subset the data into clusters based on the Z-scored gene
expression of the 10 target genes. Although initial silhouette
analysis identified the optimal number of clusters as two, visua-
lization by a scree plot suggested the optimal number to be
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between 4 and 6 clusters. Given that data clustered by case/
control status (2 clusters), and sub-diagnosis of BP, SCZ, AFF, and
Controls (4 clusters), to assess clustering based on 10 eGenes, we
tested the impact of using 10 clusters and 20 clusters (SI Fig. 32).
Perturbation identities were assigned based on average positive
Z-scores of 20.5 within each cluster. We then assigned our single-
cell data to clusters based on the overlap of perturbations and
performed network reconstruction to replicate our convergent
analysis using groups based on CMC post-mortem data. We
retained clusters that resolved networks with at least a 10%
duplication rate, calculated convergence scores, and performed
GSEA using protein-coding network genes. Of the twenty clusters,
networks were recovered for the combination of targets repre-
sented in cluster 4 (2 targets; 913 cells; 15% duplication; 13 node
genes), cluster 5 (3 targets; 1260 cells; 15% duplication; 13 node
genes), cluster 6 (6 targets; 2035 cells; 15% duplication; 34 node
genes), cluster 9 (6 targets, 1822 cells, 20% duplication, 108 node
genes), cluster 11 (5 targets; 1640 cells; 15% duplication; 25 node
genes), cluster 12 (6 targets; 2357 cells; 20% duplication, 152 node
genes), cluster 13 (5 targets; 1741 cells; 17.5% duplication, 17 node
genes), cluster 18 (6 targets; 1884 cells, 15% duplication, 25
nodes), cluster 19 (6 targets, 2327 cells, 20% duplication, 153
nodes), cluster 20 (6 targets, 2015 cells, 20% duplication, 33
nodes), while low confidence convergence was resolved for
cluster 1 (5 targets, 1600 cells; 7.5% duplication; 38 node genes),
cluster 8 (3 targets, 1233 cells, 7.5% duplication, 38 node genes),
cluster 14 (3 targets, 1020 cells, 5% duplication, 23 nodes) and 16
(4 targets, 1177 cells, 2.5% duplication, 16 nodes). To determine if
convergent networks were distinct between diagnostic groups,
we first performed a Pearson’s chi-squared test to determine
whether there was a significant difference between the expected
frequencies and the observed frequencies in the diagnosis of AFF,
BIP and SCZ within the clusters and then calculated Jaccard
Similarity Indices between clusters based on convergent network
gene membership.

Drug prioritization based on perturbation signature reversal in
LiNCs Neuronal Cell Lines. To identify drugs that could reverse the
resolved convergent perturbation signature across all ten targets, and
within each target individually, we used the Query tool from The Broad
Institute’s Connectivity Map (Cmap) Server. Briefly, the tool computes
weighted enrichment scores (WTCS) between the query set and each
signature in the Cmap LINCs gene expression data (dose, time, drug,
cell-line), normalizes the WRCS by dividing by the signed mean w/in
each perturbation (NCS), and computes FDR as fraction of “null sig-
natures” (DMSO) where the absolute NCS exceeds reference
signature™®. We prioritized drugs that reversed signatures specifically
in neuronal cells (either neurons (NEU) or neural progenitor cells
(NPCs) with NCS < -1.00) and filtered for (i) drugs that cross the blood-
brain barriers, (ii) drugs that target genes expressed in iGLUT neurons
based on bulk RNA-sequencing data from our lab and (ii) drugs that are
currently launched or in clinical trial according to the cMAP Drug
Repurposing database and without evidence of neurotoxicity (Box 2).

CRISPRa/shRNA validation®. At day -2, dCas9-VPR hiPSC-NPCs were
seeded as 0.6 x 10° cells/well in a 24-well plate coated with Matrigel. At
day -1, cells were transduced with rtTA (Addgene 20342) and NGN2
(Addgene 99378) lentiviruses. Medium was switched to non-viral
medium four hours post infection. At DO, 1ug/ml dox was added to
induce NGN2-expression. At D1, transduced hiPSC-NPCs were treated
with the corresponding antibiotics to the lentiviruses (1 mg/ml G-418
for NGN2-Neo) in order to increase the purity of transduced hiPSC-
NPCs. At D3, NPC medium was switched to neuronal medium (Brain-
phys (Stemcell Technologies, #05790), 1x N2 (Life Technologies
#17502-048), 1x B27-RA (Life Technologies #12587-010), 1pg/ml

Natural Mouse Laminin (Life Technologies), 20 ng/ml BDNF (Pepro-
tech #450-02), 20ng/ml GDNF (Peptrotech #450-10), 500 pg/ml
Dibutyryl cyclic-AMP (Sigma #D0627), 200 nM L-ascorbic acid (Sigma
#A0278)) including 1 ug/ml Dox. 50% of the medium was replaced with
fresh neuronal medium once every second day. At D4, individual
shRNA/gRNA vectors (Addgene 99374) were used, either targeting
eGenes or scramble controls. 3-5 vectors were tested per eGene.
Medium was switched to non-viral medium four hours post-infection.
At D5, transduced iGLUTSs were treated with corresponding antibiotics
to the gRNA lentiviruses (1 mg/ml HygroB for lentiguide-Hygro/lenti-
guide-Hygro-mTagBFP2) before harvesting at D7 in order to assess
eGene perturbation efficacy via qPCR.

Real time-quantitative PCR. Real-time qPCR was performed as pre-
viously described™. Specifically, cell cultures were harvested with
Trizol, and total RNA extraction was carried out following the manu-
facturer’s instructions. Quantitative transcript analysis was performed
using a QuantStudio 7 Flex Real-Time PCR System with the Power SYBR
Green RNA-to-Ct Real-Time qPCR Kit (all Thermo Fisher Scientific).
Total RNA template (25 ng per reaction) was added to the PCR mix,
including primers listed below. qPCR conditions were as follows; 48 °C
for 15 min, 95 °C for 10 min followed by 45 cycles (95 °C for 15, 60 °C
for 60s). All qPCR data is collected from at least three independent
biological replicates of one experiment. A one-way ANOVA with post
hoc Dunnett’s multiple comparisons test was performed on data for
the set of targeting vectors for each eGene relative to the scramble
control vector. Data analyses were performed using GraphPad PRISM
6 software. For a list of primer sequences used for real-time qPCR, see
SI Table 5.

Immunostaining and high-content imaging microscopy, neurite
analysis. Immature iGLUTs were seeded as 1.5 x 10* cells/well in a 96-
well plate coated with 4x Matrigel at day 3. iGLUTs were plated in
media containing individual shRNA/gRNA vectors or pools of mixed
shRNA and gRNA vectors (Addgene 99374), either targeting eGenes or
scramble controls. Medium was switched to non-viral medium four
hours post-infection. At day 4, transduced iGLUTs were treated with
corresponding antibiotics to the gRNA lentiviruses (1 mg/ml HygroB
for lentiguide-Hygro/lentiguide-Hygro-mTagBFP2) followed by half
medium changes until the neurons were fixed at day 7. At day 7, cul-
tures were fixed using 4% formaldehyde/sucrose in PBS with Ca®* and
Mg?* for 10 minutes at room temperature (RT). Fixed cultures were
washed twice in PBS and permeabilized and blocked using 0.1% Triton/
2% Normal Donkey Serum (NDS) in PBS for two hours. Cultures were
then incubated with primary antibody solution (1:1000 MAP2 anti-
chicken (Abcam, ab5392) in PBS with 2% NDS) overnight at 4 °C. Cul-
tures were then washed 3x with PBS and incubated with secondary
antibody solution (1:500 donkey anti chicken Alexa 647 (Life Tech-
nologies, A10042) in PBS with 2% NDS) for 1 hour at RT. Cultures were
washed a further 3x with PBS, with the second wash containing 1 pg/ml
DAPI. Fixed cultures were then imaged on a Celllnsight CX7 HCS
Platform with a 20x objective (0.4 NA), and neurite tracing analysis was
performed using the neurite tracing module in the Thermo Scientific
HCS Studio 4.0 Cell Analysis Software. 12-24 wells were imaged per
condition across a minimum of 2 independent cell lines, with 9 images
acquired per well for neurite tracing analysis; each N therefore repre-
sents an average of hundreds of neurons per image. A one-way ANOVA
with a post hoc Bonferroni multiple comparisons test was performed
on data for neurite length per neuron using Graphpad Prism.

Immunostaining and high-content imaging microscopy, synapse
analyses. Commercially available primary human astrocytes (pHAs,
Sciencell, #1800; isolated from fetal female brain) were seeded on D3
at 0.85x10* cells per well on a 4x Matrigel-coated 96 W plate in neu-
ronal media supplemented with 2% fetal bovine serum (FBS). iGLUTs
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were seeded as 1.5x10° cells/well in a 96-well plate coated with 4x
Matrigel at day 5. Half changes of neuronal media were performed
twice a week until fixation. At day 13, iGLUTSs were treated with 200 nM
Ara-C to reduce the proliferation of non-neuronal cells in the culture.
At day 18, Ara-C was completely withdrawn by full medium change
while adding media containing individual shRNA/gRNA vectors or
pools of mixed shRNA and gRNA vectors (Addgene 99374), either
targeting eGenes or scramble controls. Medium was switched to non-
viral medium four hours post-infection. At day 19, transduced iGLUTs
were treated with corresponding antibiotics to the gRNA lentiviruses
(Img/ml HygroB for lentiguide-Hygro/lentiguide-Hygro-mTagBFP2)
followed by half medium changes until the neurons were fixed at day
21. At day 21, cultures were fixed and immunostained as described
previously, with an additional antibody stain for Synapsinl (primary
antibody: 1:500 Synapsinl anti-mouse (Synaptic Systems, 106 011);
secondary antibody: donkey anti-mouse Alexa 568 (Life Technologies
A10037)). Stained cultures were imaged and analyzed as above using
the synaptogenesis module in the Thermo Scientific HCS Studio 4.0
Cell Analysis Software to determine SYNI1+ puncta number, area, and
intensity per neurite length in each image. 20 wells were imaged per
condition across a minimum of 2 independent cell lines, with 9 images
acquired per well for synaptic puncta analysis. A one-way ANOVA with
a post hoc Bonferroni multiple comparisons test was performed on
data for puncta number per neurite length using Graphpad Prism. For a
list of antibodies used for immunostaining, see SI Table 6.

Multiple Electrode array (MEA). Commercially available primary
human astrocytes (pHAs, Sciencell, #1800; isolated from fetal female
brain) were seeded on D3 at 1.7 x 10* cells per well on a 4x Matrigel-
coated 48 W MEA plate (catalog no. M768-tMEA-48W; Axion Biosys-
tems) in neuronal media supplemented with 2% fetal bovine serum
(FBS). At D5, iGLUTs were detached, spun down, and seeded on the
pHA cultures at 1.5x10° cells per well. Half changes of neuronal
media supplemented with 2% FBS were performed twice a week until
day 42. At day 13, co-cultures were treated with 200 nM Ara-C to
reduce the proliferation of non-neuronal cells in the culture. At Day
18, Ara-C was completely withdrawn by full medium change. At day
25, a full media change was performed to add media containing
individual shRNA/gRNA vectors or pools of mixed shRNA and gRNA
vectors (Addgene 99374), either targeting eGenes or scramble con-
trols. Medium was switched to non-viral medium four hours post-
infection. If drug treatments were included, D26 neurons were trea-
ted for 48 hours with either Anandamide (10 uM), Etomoxir (10 uM),
Simvastatin (10 uM), or matched vehicles. Electrical activity of
iGLUTs was recorded at 37 °C twice every week from day 28 to day 42
using the Axion Maestro MEA reader (Axion Biosystems). Recording
was performed via AxiS 2.4. The batch mode/statistic compiler tool
was run following the final recording. Quantitative analysis of the
recording was exported as a Microsoft Excel sheet. Data from 6 to 12
biological replicates were analyzed using GraphPad PRISM
6 software or R.

RNAseq. RNA Sequencing libraries were prepared using the Kapa
Total RNA library prep kit. Paired-end sequencing reads (100 bp)
were generated on a NovaSeq platform. Raw reads were aligned
to hgl9 using STAR aligner™ (v2.5.2a) and gene-level expression
was quantified by featureCounts®® (v1.6.3) based on Ensembl
GRCh37.70 annotation model. Genes with over 10 counts per
million (CPM) in at least four samples were retained. After filter-
ing, the raw read counts were normalized by the voom™ function
in limma and differential expression was computed by the mod-
erated t-test implemented in limma'®’, Differential gene expres-
sion analysis was performed between each CRISPRa/shRNA target
group and the scramble control group. Bayes shrinkage

(limma::eBayes) estimated modified ¢ and p values and identified
differentially expressed genes (DEGs) based on an FDR<0.05
(limma:TopTable)'®>. Gene Ontology/pathways were evaluated
using Gene-set Enrichment Analysis (GSEA)'®*, with genes
expressed in iGLUTs as our baseline comparison. In these ana-
lyses, the ¢ test statistics from the differential expression contrast
were used to rank genes in the GSEA using the R package
ClusterProfiler'®, Permutations (up to 100,000 times) were used
to assess the GSEA enrichment P value. Log2 fold changes in
expression were calculated across all RNA-seq samples in our
arrayed dataset.

Analysis of additive and non-additive effects”. We applied our
published approach to resolve distinct additive and non-additive
transcriptomic effects after combinatorial manipulation of genetic
variants and/or chemical perturbagens, developed”, applied®®, and
described in detail®*. The expected additive effect was modeled
through the addition of the individual comparisons; the non-additive
effect was modeled by the subtraction of the additive effect from the
combinatorial perturbation comparison. Fitting of this model for
differential expression identifies genes that show a difference in the
expected differential expression computed for the additive model
compared to the observed combinatorial perturbation. Briefly, the
non-additive effect between eGenes was identified using limma’s
linear model analysis. The coefficients, standard deviations and
correlation matrix were calculated, using contrasts.fit, in terms of the
comparisons of interest. Empirical Bayes moderation was applied
using the eBayes function to obtain more precise estimates of gene-
wise variability. P values were adjusted for multiple hypothesis test-
ing using false discovery rate (FDR) estimation, and differentially
expressed genes were determined as those with FDR <10%, unless
stated otherwise. Two methods were used to compare the extent of
synergy between data sets. First, we calculated the fraction of
synergistic genes (FDR<10%) to measure the extent of synergy.
Second, we calculated a synergy coefficient, 11, as the fraction of
non-null synergistic P values, to inform the existence of a synergistic
component, even if the P values themselves are not significant
genome-wide.

However, interpretation of the resulting DEGs depends on sev-
eral factors, such as the direction of fold change (FC) in all three
models. To identify genes whose magnitude of change is larger in the
combinatorial perturbation vs. the additive model, we categorized all
genes by the direction of their change in both models and their
log,(FC) in the non-additive model. First, log,(FC) standard errors
(SE) were calculated for all samples. Genes were then grouped into
‘positive non-addition’ if their FC was larger than SE and ‘negative
non-addition’ if smaller than -SE. If the corresponding additive model
log,(FC) showed the same or no direction, the gene was classified as
more differentially expressed in the combinatorial perturbation than
predicted. GSEA was performed on a curated subset of the MAGMA
collection using the limma package camera function, which tests if
genes are ranked highly in comparison to other genes in terms of
differential expression, while accounting for inter-gene correlation.
Due to the small sample size in this study and moderate fold changes
in some eGene perturbations, changes in gene expression may be
small and distributed across many genes. However, powerful
enrichment analyses in the limma package may be used to evaluate
enrichment based on genes that are not necessarily genome-wide
significant and identify sets of genes for which the distribution of
t-statistics differs from expectation. Over-representation analysis
(ORA) was performed when subsets of DEGs were of interest; genes
of interest were ranked by -loglO (p value), and enrichment was
performed against a background of all expressed genes using the
WebGestaltR package.
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Dataset for population-level analysis of synergy. Individuals from
the Sweden-SCZ Population-Based cohort were obtained from the
database of Genotypes and Phenotypes, Study Accession:
phs000473.v2.p2 (Ncases = 5232, Ncontrols = 6468)™°.

Pathway polygenic risk scores. Pathway-specific polygenic risk score
(PRS) analyses were performed using PRSice-2 (v2.3.5) on individual
genotype data for the Sweden-SCZ population-based cohort. A total of
4,834 individuals diagnosed with SCZ and 6,128 controls were included
after quality control. To calculate the scores, we used a version of the
summary statistics from the PGC SCZ GWAS that excludes the Sweden-
SCZ data to prevent inflation of results. SNPs were annotated to genes
and pathways based on GTF files obtained from ENSEMBL
(GRCh37.75). To include potential gene regulatory elements, gene
coordinates were extended 35 kilobases (kb) upstream and 10 kb
downstream of each gene. We excluded from analyses the MHC region
(chr6:25Mb-34Mb), ambiguous SNPs (A/T and G/C), and SNPs not
present in both GWAS summary statistics and genotype data.

To obtain empirical competitive P values, that assess GWAS signal
enrichment while accounting for pathway size, we performed the fol-
lowing permutation procedure: first, a background pathway contain-
ing all genic SNPs is constructed, and clumping is performed within
this pathway. For each pathway with m SNPs, N =10,000 null pathways
are generated by randomly selecting m SNPs from the background
pathway. The competitive P value can then be calculated as (2):

- SN KPP <P, +1
competitive P — value = =N

where /() is an indicator function, taking a value of 1 if the association P
value of the observed pathway (Py) is larger than the one obtained
from the nth null pathway (P,), and O otherwise (see ref. 105 for
additional details).

Pathway-specific polygenic risk scores (PRS) (PRSet'”) were cal-
culated from non-additive signatures from synaptic (4306 genes in
PRS; R?=0.0431), regulatory (5249 genes in PRS; R*=0.0419), all fif-
teen eGenes (4988 genes in PRS, R? = 0.0425), and genome-wide PRS
(19,340 genes plus SNPs in regions outside gene annotations in
genome-wide PRS, R* = 0.0925). For the analyses testing whether non-
additive genes from synaptic/regulatory pathways explain larger R?
than the same number of non-additive genes from random combina-
tions (SI Fig. 24), we took 2799 random genes from the non-additive
synaptic and regulatory transcriptome, which corresponds to the
number of genes with non-additive effects in one of the random joint
perturbations. For the GTF NULL permutation analyses, we selected
n=2799 random genes from the GTF file GRCh37.75. Pathway-specific
PRS for each sample of 2799 genes was calculated using PRSet'”, as
described above. This procedure was repeated 1000 times.

Transcriptomic risk score (TRS) analyses. In order to test the impact
of non-additive genetic effects in silico, we used transcriptomic
imputation methods to calculate genetically-regulated gene expres-
sion (GREX) for individuals from the Sweden-SCZ Population-Based
cohort (SI Table 3). Brain GREX was calculated using PrediXcan’® with
CMC dorsolateral prefrontal cortex (CMC-DLPFC) models®. Predicted
GREX levels were calculated for the fifteen eGenes. An initial test of
aberrant gene expression was performed by counting the number of
genes with dysregulated GREX (defined as predicted GREX in the top
or bottom decile of overall expression of that gene, defined in the
direction of effect of that gene’s association with SCZ from
S-PrediXcan analyses (top decile for positive effect, bottom decile for
negative effect) for each of the five-gene groups (synaptic, regulatory,
multi-function), and summed the number of aberrant genes present in
each individual for each perturbed gene group (Synaptic, Regulatory,
and Multi-function). We then looked at the SCZ case/control

proportion within each group of individuals with 3+, 1-2, and any
genes with aberrant GREX.

Association of synaptic, regulatory, and multi-function gene-sets
with SCZ. We tested for association of each of the fifteen eGene GREX
individually with SCZ (SCZ ~ GREX), and then calculated composite
scores of group GREX (Synaptic, Regulatory, and Multi-function) using
a Transcriptomic Risk Score (TRS), calculated as the sum of each GREX
weighted by the direction of gene perturbation (1 for activation, -1 for
inhibition) from in vivo experiments, divided by the total number of
genes (N) in the gene-set (3):

zf’ GREX x direction of perturbation
TRS= N

We then tested for the association of each TRS (Synaptic, Reg-
ulatory, and Multi-function) with SCZ status in the Swedish cohort.

Permutation tests. We performed permutation tests to assess the
impact of (1) the number of genes included in our TRS gene group and
(2) the number of pathways impacted by those genes on SCZ case
status. We used S-PrediXcan to find genes with CMC-DLPFC GREX
associated with SCZ in a large SCZ cohort (Ncases=11,260,
Ncontrols = 24,542)*°. From this resulting list of genes, we assigned
genes to two groups: nominally-significant genes (N =1963, Bonferroni
p <0.05), and tissue-specific significant genes (N =144, p < 0.05/Ngenes
in CMC-DLPFC Predixcan model)- W€ created pathway sets affected by these
genes using the overlap with Kyoto encyclopedia of genes and gen-
omes (KEGG)'*” and gene ontology (GO)'**'%°. This gave us a sampling
pool of 1465 genes affecting 8324 pathway sets for the nominally-
significant group, and 110 genes affecting 2382 pathway sets for the
tissue-specific group. We then performed permutation sampling ana-
lyses (for nominally-significant and tissue-specific significant gene-
pathway set pools) where we randomly sampled sets of five, ten, or
fifteen genes from the sampling pool (adjusted for the size of each
pathway set), calculated TRS from the sampled gene-set, and looked at
the association of TRS with SCZ. We performed sampling 100,000
times for each gene-set size. For this analysis, TRS was calculated by
taking the sum of each gene in the gene-sets GREX weighted by the
direction of effect of the gene association with SCZ from our
S-PrediXcan analysis (1 or -1) (4):

Zf’ GREX x direction of perturbation
TRS= N

We then looked at the overall association of the number of
pathways hit by each TRS (based on the annotated lists) with SCZ
variance explained (SI Fig. 1A-C). To determine if the type of pathways
hit by our perturbed genes was important to SCZ risk (i.e., is it more
important to hit multiple, similar pathways or more diverse pathways
to increase SCZ variance explained), we additionally assessed whether
the similarity in make-up of pathways affected by the TRS was asso-
ciated with SCZ. To do this, we used the R GeneOverlap package to
calculate the average Jaccard Index of pathways for each TRS, and
looked at the association of that index with SCZ.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All source donor hiPSCs have already been deposited at the Rutgers
University Cell and DNA Repository (study 160; http://www.
nimhstemcells.org/). All vectors are available at https://www.
addgene.org/Kristen_Brennand/. Bulk and single-cell RNA sequencing
data are available at the Gene Expression Omnibus under accession
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code GSE200774. Processed data can be accessed through Synapse
under Synapse accession code syn27819129 [https://www.synapse.org/
Synapse:syn27819129/wiki/623524]. For the pooled and arrayed
CRISPR analyses, all raw FASTQ Count files and corresponding pro-
cessed data are available on the Gene Expression Omnibus under GEO
accession code GSE200774). Average expression count matrices and
metadata following quality control and normalization of ECCITE-seq
data, as well as results of differential gene expression analysis and
Target Network Reconstruction of Bayesian Bi-clustering are available
on Synapse accession code syn27819129 [https://www.synapse.org/
Synapse:syn27819129/wiki/623524. All corresponding code was
uploaded to Synapse under accession code syn27819129 [https://www.
synapse.org/Synapse:syn27819129/wiki/623524]). DEGs, GSEA tables,
synergy sub-categories, and synergy sub-category over-representation
analysis for arrayed screen RNA-seq data; individual scRNA-seq per-
turbation DEGs and pathway enrichments from pooled experiments;
reconstructed convergent networks and convergent network enrich-
ment results (FUMA, ClusterProfiler, ORA of common/rare/variants)
from arrayed and pooled screens; and CMAP drug prioritization
queries and GSEA for 10 targets and each individual perturbation sig-
nature used in CMAP query are available in Supplementary Data
Files 1-4.

Code availability

Code used for the convergence and additivity analyses presented in
this manuscript can be accessed through Synapse under Synapse
accession code syn27819129 [https://www.synapse.org/Synapse:
syn27819129/wiki/623524].
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