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ABSTRACT 

Genome wide association studies of schizophrenia reveal a complex polygenic risk 
architecture comprised of hundreds of risk variants; most are common in the population, 
non-coding, and act by genetically regulating the expression of one or more gene targets 
(“eGenes”). It remains unclear how the myriad genetic variants that are predicted to 
confer individually small effects combine to yield substantial clinical impacts in aggregate. 
Here, we demonstrate that convergence (i.e., the shared downstream transcriptomic 
changes with a common direction of effect), resulting from one-at-a-time perturbation of 
schizophrenia eGenes, influences the outcome when eGenes are manipulated in 
combination. In total, we apply pooled and arrayed CRISPR approaches to target 21 
schizophrenia eGenes in human induced pluripotent stem cell-derived glutamatergic 
neurons, finding that functionally similar eGenes yield stronger and more specific 
convergent effects. Points of convergence constrain additive relationships between 
polygenic risk loci: consistent with a liability threshold model, combinatorial perturbations 
of these same schizophrenia eGenes reveal that pathway-level convergence predicts 
when observed effects will fail to sum to levels predicted by an additive model. Targeting 
points of convergence as novel therapeutic targets may prove more efficacious than 
individually reversing the effects of multiple risk loci.  

 

KEYWORDS 

convergence; schizophrenia; psychiatric genomics; human induced pluripotent stem 
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INTRODUCTION  

The genetic architecture of schizophrenia is complex and polygenic. Highly penetrant rare 
mutations underlie only a fraction of cases1. Rather, genome wide association studies 
(GWAS) indicate that schizophrenia is predominantly associated with genetic variation 
that is common in the population2. These risk loci have small effect sizes, are typically 
found in non-coding regions, and regulate the expression of one or more genes3-5. 
Mapping GWAS loci to their target genes (termed “eGenes”, as defined by significant 
genetic regulation of expression) remains challenging, but is informed by expression 
quantitative trait loci (eQTL)6-9, chromatin accessibility10-12, enhancers13-16, and 3D 
chromatin architecture17-22. The regulatory activity of risk loci can be empirically evaluated 
using massively parallel reporter assays23-25 and pooled CRISPR screens26, and causal 
gene targets and functions definitively resolved by genetic engineering in human induced 
pluripotent stem cells (hiPSCs)10,11,17,27,28.  

Schizophrenia eGenes are particularly expressed during fetal cortical development29-31 
and in glutamatergic neurons (as well as medium spiny neurons, and certain 
interneurons)31-33. They are highly co-expressed in human brain tissue34 and cultured 
neurons17, show high connectivity in protein-protein interaction networks17,35-37, and are 
enriched for roles in synaptic function and gene regulation2,17,38-42. Likewise, 
transcriptomic studies of post-mortem brains from schizophrenia cases also identify 
aberrant expression of genes associated with synaptic function and chromatin dynamics 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

in neurons43-45. The mechanism by which hundreds of distinct eGenes lead to shared 
molecular pathology is unknown.  

We predicted that eGenes linked to schizophrenia would share substantial downstream 
transcriptomic changes with a common direction of effect (termed “convergence”). 
Although convergence has been described in the context of loss-of-function autism 
spectrum disorder risk genes46-56, these rare mutations almost never co-occur in the same 

individual. The convergent impact of common variants − which are frequently inherited 

together, and the impacts of which are apparent only in aggregate − remain unknown. 
We targeted twenty-one schizophrenia eGenes in hiPSC-derived induced glutamatergic 
neurons (iGLUTs) using pooled and arrayed CRISPR-based approaches, significantly 
perturbing seventeen (CALN1, CLCN3, DOC2A, FES, FURIN, GATAD2A, NAGA, PCCB, 
PLCL1, THOC7, TMEM219, SF3B1, SNAP91, SNCA, UBE2Q2L, ZNF823, ZNF804A), 
and resolving convergent impacts robust to experimental and donor effects. To test if 
convergence influenced the outcome when eGenes were inherited in combination (i.e. if 
eGene effects sum linearly according to the additive model26 ), we compared manipulation 
of eGenes one at a time and in groups defined by annotated functions at the synapse 
(“synaptic”: SNAP91, CLCN3, PLCL1, DOC2A, SNCA), or regulating transcription 
(“regulatory”: ZNF823, INO80E, SF3B1, THOC7, GATAD2A), or with un-related non-
synaptic, non-regulatory biology (“multi-function”: CALN1, CUL9, TMEM219, PCCB, 
FURIN), and random combinations thereof. Altogether, with broad relevance across 
complex polygenic disease57,58, our work begins to experimentally determine answers to 
the long-standing question of how risk variants interact in human neurons. 

 

RESULTS 

Convergence of downstream transcriptomic impacts across schizophrenia eGene 
perturbations. 

We27,59-61 and others11,62-68 demonstrated that iGLUTs are >95% glutamatergic neurons, 
robustly express glutamatergic genes, release neurotransmitters, produce spontaneous 
synaptic activity, and recapitulate the impact of psychiatric trait associated genes. iGLUTs 
express most schizophrenia eGenes, including all eGenes prioritized herein27.  

eGenes whose brain expression was predicted to be up-regulated by GWAS loci2 were 
prioritized for a pooled CRISPR activation (CRISPRa) experiment, which are currently 
restricted to one direction of effect. eGenes that were non-coding, located in the MHC 
locus, or poorly expressed in iGLUTs were excluded. First, transcriptome and epigenome 
imputation (EpiXcan69) of schizophrenia GWAS2 risk loci from post-mortem brain43,70 
prioritized seven schizophrenia eGenes (SCZ1: CALN1, FES, NAGA, NEK4, PLCL1, 
UBE2Q2L, and ZNF804A) (Table 1; Fig. 1A). Second, transcriptomic imputation 
(prediXcan71-73, p<6x10-6) of SCZ GWAS2 identified ~250 eGenes (SI Table 1), 
subsequently narrowed by considering colocalization (COLOC74,75, PP4 > 0.8) between 
schizophrenia GWAS2 and post-mortem brain expression quantitative loci (eQTL) peaks6, 
which identified 25 eGenes (SI Table 1). 22 eGenes overlapped between approaches, 
ten of which were coding genes associated with increased expression in schizophrenia 
(SCZ2: CALN1, CLCN3, CUL9, DOC2A, PLCL1, INO80E, SF3B1, SNAP91, TMEM219, 
ZNF823) (Table 2; Fig. 1A). Of note, our eGene selection, derived in bulk post-mortem 
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brain, is largely preserved using an excitatory neuron-specific PrediXcan analysis (ExN-
PrediXcan, Tables 1A and 1B). 

Pooled CRISPR screening combined single-cell RNA sequencing readouts and direct 
detection of sgRNAs76. Two independently designed, constructed, and validated pooled 
CRISPRa libraries (SCZ1 and SCZ2) were transduced into iGLUTs from two donors in 
independent experiments at unique developmental time-points (DIV7 or DIV21, SI Fig 
1F). Non-perturbed cells from both SCZ1 and SCZ2 demonstrated gene expression 
patterns that correlated with expression in the adult postmortem DLPFC in neurotypical 
controls (SI Fig. 12A-C) and cortical neurons. Specifically, these cells were most strongly 
correlated with fetal cells transitioning to neuronal fate, fetal excitatory neurons, and 
cortical adult neurons (SI Fig. 13). The large number of presumably wildtype neurons in 
the population expressing either a scramble gRNA or no detectable gRNA at all (>60% of 
all pooled cells, see SI Fig. 4A), mitigates the possibility that results were confounded by 
non-cell autonomous effects. Likewise, there was no significant difference in the degree 
of variance in maturity of the cell population between experiments and imputed cell 
fractions were not correlated with perturbation status (SI Fig. 2 and 3). An unsupervised 
framework, Weighted Nearest Neighbor Analysis77, assigned successful perturbations; in 
total, we resolved perturbations of six of seven SCZ1 eGenes (SCZ1: CALN1, FES, 
NAGA, PLCL1, UBE2Q2L, and ZNF804A; ten gRNAs each) and four of ten SCZ2 eGenes 
(SCZ2: CLCN3, SF3B1, TMEM219, ZNF823; three gRNAs each). For 5401 and 6352 
cells, respectively, we identified the sgRNA in each cell, the cis target gene with 
differential expression, and the downstream trans alterations to pathways resulting from 
initial cis up-regulation. Following QC, normalization, and removal of doublets (cells 
containing more than one sgRNA), an average of 316 cells per sgRNA were successfully 
perturbated (ranging from 93-552) for a total of 3640 perturbed cells and 210 scramble 
controls (SI Fig. 4-7). Upregulation of eGenes by CRISPRa ranged from 0.2 to 3 log2 
fold-change (Log2FC), comparable to the predicted effect sizes [SCZ1 (0.08 to 0.35); 
SCZ2 (0.2 to 0.77)] and eGene expression changes (Log2FC range 0.3-5.2) in the post-
mortem dorsolateral prefrontal cortex (Fig. 1B, C; SI Table 2,3; Fig. 8). Effects of different 
gRNAs targeting the same eGenes were highly concordant, even when the degree of 
perturbation varied (SI Fig. 15). Differentially expressed genes (DEGs, pFDR<0.05, 
Supplementary Data 2) were enriched for neuroactive ligand-receptor interaction, protein 
processing in the endoplasmic reticulum, proteasome, and spliceosome Gene Ontology 
and KEGG Pathways terms (Supplementary Data 3), suggesting that diverse eGenes 
might impact similar neural processes and pathways. 

We define “convergence” as the independent development of transcriptomic changes in 
the same direction resulting from all eGene perturbations. DEGs were meta-analyzed 
(using METAL78, p< 1.92x10-06), and “convergent” genes were defined as those with 
shared direction of effect across all eGene perturbations and with non-significant 
heterogeneity between eGenes (Cochran’s heterogeneity Q-test pHet > 0.05). Across all 
schizophrenia eGenes, 790 significantly down-regulated genes and 10 significantly up-
regulated genes were identified (Bonferroni meta p-value<=0.05) (Supplementary Data 
3), enriched for brain development, neuronal morphology, signaling, and transcriptional 
regulation (Supplementary Data 3).  

To identify groups of genes with similar expression patterns across eGene perturbations 
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we define “convergent networks” as relationships between genes that are co-regulated 
by shared biological mechanisms. Unsupervised Bayesian bi-clustering78 and gene co-
expression network reconstruction from the pooled CRISPRa single cell RNAseq (n=3850 
cells, 16851 genes, donor/batch corrected and normalized to adjust for covariates such 
as cell heterogeneity) identified high-confidence co-expressed gene networks. Across the 
pooled single-cell experiments, 1048 protein-coding source node genes (>5 edges) were 
identified, with a total network membership of 1869 genes that clustered together in at 
least 20% of the runs (Fig. 2A, Supplementary Data 3), and significant enrichments for 
gene targets of schizophrenia GWAS loci as well as transcription factors (AP4 (TFAP4)63, 
NFAT64, ERR165, and TCF479,80) and miRNAs (miR-30) that regulate schizophrenia 
GWAS loci (Fig. 2A, i-iii). The cross-target convergent network was enriched in biological 
pathways implicated in schizophrenia etiology (SI Fig. 9); over representation analysis 
revealed schizophrenia, bipolar disorder, intellectual disability, and autism spectrum 
disorder common and rare risk genes to be significantly over-represented in node genes 
shared across all eGene perturbations (Fig. 2A, i; Supplementary Data 3).  

To study the strength and composition of convergent networks, we define “network 
convergence” as the sum of the network connectivity score (i.e., networks with fewer 
nodes and more interconnectedness have increased convergence). We endeavored to 
identify the biological factors (e.g., number of eGenes, functional similarity of eGenes, 
and eGene co-expression) that influenced network convergence. eGene number tested 
the number of eGenes used to generate a convergent network. Functional similarity (i.e., 
the degree of shared biological functions amongst eGenes) was calculated two ways: 
Gene Ontology semantic similarity scoring (within biological pathway, cellular component, 
and molecular function)81, and synaptic/signaling score (proportion of eGenes with 
annotated function as either “signaling” for pooled or “synaptic” for arrayed). The brain 
expression correlation was calculated as the strength of the correlation of eGene 
expression in the post-mortem dorsolateral prefrontal cortex6 (see Methods, SI Fig. 10). 
Bayesian reconstruction82 was performed across all random combinations of eGene 
perturbations from the pooled experiment (1003 unique eGene-Convergent Network sets) 
and arrayed experiment described in the following section (32752 sets) and resolved 
distinct networks (Fig. 3B,E). Principal components analysis tested the effect of biological 
factors on the network convergence scores (Fig. 3C-D, F-G; SI Fig. 10-11). Only brain 
expression correlation and the proportion of synaptic/signaling genes were significantly 
positively correlated with network convergence across all sets in both the pooled [brain 
expression correlation: Pearson’s r=0.24, adj. p-value<0.001, signaling proportion: 
Pearson’s r=0.14, adj. p-value<0.01, n=826] and arrayed experiments [brain expression 
correlation: Pearson’s r=0.083, Bonferroni adjusted p-value<0.001, signaling proportion: 
Pearson’s r=0.25, adj. p-value<0.001, n=16319] (Fig. 3D,G). The average expression of 
perturbed eGenes was positively correlated with network convergence but was only 
significantly associated in the arrayed experiment (Fig. 3D, G). Finally, although SCZ1 
and SCZ2 pooled CRISPR screens were generated from distinct differentiation 
timepoints, the proportion of eGene perturbations by experiment did not correlate with the 
degree of network convergence, indicating that we have adequately controlled for 
variation in neuronal maturation (Fig. 3D; Pearson's r=0.062, Bonferroni p-value=1).  

Convergence constrains the total impact of combinatorial perturbations of schizophrenia 
eGenes.  
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We manipulated eGenes in combination to approximate the polygenic nature of 
schizophrenia and test if convergence between eGenes influences observed effects. 
Given that genes implicated in synaptic biology and epigenetic/transcriptional regulation 
are enriched for the schizophrenia risk2,17,38-42, we sought to generate three groups of 
eGenes, linked to synaptic biology, gene regulation, or neither (Fig. 1A, arrayed 
experiment). Unconstrained by the unidirectionality of pooled CRISPR screens, we did 
not restrict our list to eGenes with a single direction of effect. From the 18 coding genes 
prioritized by the intersection of transcriptomic imputation and colocalization, eGenes 
were separated into discrete functional categories based on gene ontology annotations. 
Our final gene list included five synaptic genes (SNAP91, CLCN3, PLCL1, DOC2A, 
SNCA), five regulatory genes (ZNF823, INO80E, SF3B1, THOC7, GATAD2A), and five 
genes with non-synaptic, non-regulatory functions, termed “multi-function” (CALN1, 
CUL9, TMEM219, PCCB, FURIN) (Table 2; Fig. 1A).  

We applied an arrayed design (i.e., distinct conditions in each well) to manipulate 
schizophrenia eGenes alone and in combination, allowing us to capture cell autonomous 
and non-cell autonomous effects in a manner not possible in the pooled design (Fig. 4, 
SI Table 4, SI Fig. 19). Endogenous expression was increased and decreased (via 
CRISPRa and shRNAs, respectively) in the direction associated with schizophrenia risk. 
CRISPRa and shRNA were specifically selected for perturbation due to the potential for 
simultaneous, bi-directional perturbation of target eGenes in joint perturbation conditions 
(see Methods). Three to five vectors per gene were tested in 7-day-old (D7) iGLUTs, 
identifying the single vector that best achieved the level of significant perturbation 
predicted by eQTL analyses as confirmed by qPCR (SI Fig. 1E). Each eGene was 
perturbed in 21-day-old (D21) iGLUTs for 72 hours (Fig. 1D, SI Fig. 1F-G, SI Fig. 19A, SI 
Fig. 21A), individually and jointly, including appropriate vector and scrambled controls, 
from two neurotypical donors with average polygenic risk scores (one experimental batch 
per donor). Three groups of five random genes, one group of ten random genes, and one 
group of all fifteen genes were also included. Significant (p<0.05) changes in eGene 
expression in iGLUTs were confirmed by RNAseq in 13/15 eGenes (SNAP91, CLCN3, 
PLCL1, DOC2A, SNCA, ZNF823, SF3B1, THOC7, GATAD2A, CALN1, TMEM219, 
PCCB, FURIN) (SI Fig. 1G, SI Fig. 19A); we validated the magnitude and direction of 
experimental eGene perturbation relative to the dosage effects of the top predicted causal 
SNPs (e.g. eQTL effect size) and predicted eGene expression changes (Fig. 1B, D; SI 
Tables 2,3,4). Across donors, donor status did not significantly impact the degree of 
eGene perturbation (SI Fig. 1H, p=0.75, paired t test). Single perturbation of eGenes by 
CRISPRa ranged from 0.07 to 0.44 log2 fold change and RNAi ranged from -0.22 to -0.87 
log2 fold change, comparable to EpiXcan effect sizes of 0.10 to 0.31 and -0.06 to -0.20 
and PrediXcan effect sizes of 0.22 to 0.77 and -0.17 and -0.38 for corresponding eGenes.  

Across the majority of the schizophrenia eGenes in our arrayed experiment, competitive 
gene-set enrichment analysis using 698 manually curated neural60 gene-sets (SI Fig. 
19B, C, SI Fig. 20A, Supplementary Data 1) resulted in DEGs (pFDR<0.05) that were 
strongly enriched for gene-sets related to rare and common psychiatric disorder risk 
genes (11/15) (SI Fig. 20B), pre-synaptic biology (10/15) (SI Fig. 20C), and glutamatergic 
neurotransmission (10/15) (SI Fig. 20D).  

Overall, we again observed robust convergence at the gene- (METAL78, p<1.92x10-06) 
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and network-level (Bayesian network reconstruction82) (Supplementary Data 3). A 
densely interconnected network of 255 genes (n=63 samples, 4/sgRNA or shRNA, 25487 
genes, and normalized to adjust for covariates such as donor) was significantly enriched 
for biological pathways implicated in schizophrenia etiology; over representation analysis 
revealed that target genes of schizophrenia, intellectual disability, and autism spectrum 
disorder common and rare variants were significantly over-represented in the network 
(Fig. 2B,i; Supplementary Data 3), as well as genes regulated by miRNAs and 
transcription factors implicated in schizophrenia etiology, such as hsa-miR-124a83 and 
NKX284 (Fig. 2B,ii-iii). Separation of schizophrenia eGenes based on either signaling (SI 
Fig. 9A) or regulatory (SI Fig. 9B) function resolved unique convergent networks with no 
overlap in node genes, suggesting that the functional similarity of schizophrenia eGenes 
affects downstream convergence. Each of these networks included neuropsychiatric risk 
genes as well as those annotated for synaptic and immune signaling function 
(Supplementary Data 3). Networks derived from arrayed and pooled experiments shared 
significant enrichments for targets of miRNAs and transcription factors associated with 
schizophrenia (Fig. 2C), although only nine node genes overlapped (Fig. 2D).  

Following combinatorial manipulation of schizophrenia eGenes, most genome-wide 
effects occurred as predicted by summing differential expression for single eGene 
perturbations (“expected additive” model, Box 1), yet 16.8% of the total transcriptome for 
synaptic eGenes and 20.2% for the regulatory eGenes did not (Fig. 4; SI Fig. 21-23; SI 
Table 4). We term these overwhelmingly sub-additive effects (SI. Fig. 21D) as “non-
additive” (Bayes moderated t-statistics, FDR p < 0.1) and report π1 synergy coefficients85 
of 43.86 (synaptic eGenes), 42.74 (regulatory eGenes), and 0.00 (multi-function eGenes). 
Non-additive genes resulting from combinatorial synaptic and regulatory eGene 
perturbations were significantly enriched for SZ risk genes as well as synaptic gene sets 
(Fig. 4C).  

Key controls demonstrate that non-additive effects did not result from technical limitations 
of our approach. Consistent with single cell level effects, observations were similar 
whether tested from independent expression vectors (Fig. 4), a single multiplexed vector 
expressing all gRNAs27 (SI Fig. 22A-F), or a polycistronic gRNA vector (SI Fig. 22G,H). 
Likewise, modified ECCITE-seq confirmed a high number of unique gRNA integrations at 
the single cell level (SI Fig. 22I). Non-additivity could not be attributed to differences in 
the magnitude of eGene perturbation between individual and combinatorial perturbations 
across both donors (SI Fig. 21B, combined donors p>0.05 Wilcoxon ranked sum test, 
individual donors p>0.05 2 way ANOVA), reduced fold-change of non-additive genes (SI 
Fig. 23C), or differences in baseline expression between non-additive and additive genes 
(SI Fig. 23D).  

Although increasing the number of eGenes perturbed increased the degree of interactive 
effects on transcription (compare joint perturbations of random sets of 5, 10 and 15 
eGenes, Fig. 4D, SI Fig 23A), our data suggested that specific eGenes may drive non-
additive effects; for example, log2FC of CLCN3 (synaptic) and INO80E (regulatory) are 
the most correlated with synergy coefficients (SI Fig. 16). When evaluated across all 
eGene sets, the proportion of synaptic (Pearson’s r=0.49) and regulatory (r=0.45) eGenes 
in a set positively correlated with non-additivity, while proportion of multifunctional eGenes 
was strongly negatively correlated (r=-0.94). 
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Given that >95% of non-additive genes (whether up- or down-regulated, FDR p < 0.1) 
showed less differential expression than predicted by the additive model (i.e., changes 
that were “less up” or “less down” than expected) (SI Fig. 21C), we queried whether 
overlapping downstream transcriptomic effects (e.g., convergence) constrain the total 
effects observed in combinatorial perturbation. 

Across all combinational perturbations, convergence was significantly correlated with the 
degree of non-additive effects seen (Fig. 5A, Pearson’s r2 = 0.6569, p=0.0147). The 
robust gene-level convergence observed for the synaptic (1070 genes) and regulatory 
(1070 genes) eGene groups was dramatically reduced in the multi-function eGene group 
(71 genes) (METAL78, p< 1.92 x10-06) (Fig. 5B-E; Supplementary Data 3). Convergent 
genes highly overlapped with non-additive genes (Fisher’s exact test, p<2.2x10-16 for both 
synaptic and regulatory eGene groups). 71% (761 of 1070) and 94% (1000 of 1070) of 
convergent genes downstream of synaptic and regulatory eGenes, were included in 
respective non-additive gene lists (Fig. 5C,D). Convergent effects of synaptic eGenes 
were enriched for synaptic function (e.g., mGluR5 interactors, p=1.64 x10-03) and brain 
disorder (e.g., schizophrenia GWAS, p=8.41x10-05) gene-sets (Fig. 5F); regulatory eGene 
convergence was also enriched for brain disorder gene-sets (e.g., bipolar disorder, 
p=9.92x10-06) (Fig. 5G). Taken together, these findings highlight convergent effects 
between schizophrenia eGenes on synaptic function and brain disorder risk.  

Convergent signatures represent plausible therapeutic targets. 

Individually targeting all eGenes with perturbed expression in each patient is an 
insurmountable challenge. If instead it was possible to reverse the impact of many 
schizophrenia eGenes by targeting a smaller number of shared downstream targets, 
convergent networks might represent important therapeutic targets. 

We identified drugs predicted to manipulate top node genes86. Across all eGene 
perturbations, reversers of convergent node signatures were enriched for mechanisms 
previously associated with psychiatric disorders, including HDAC inhibitors87 (normalized 
connectivity score (NCS)=-1.63; FDR adjusted pval<0.08), ATPase inhibitors88 (NCS=-
1.61; FDR<0.08), and sodium channel blockers89 (NCS=-1.59; FDR<0.08). Conversely, 
mimickers of convergent node signatures were enriched for pathways associated with 
stress response, including glucocorticoid receptor agonists (NCS=1.66, FDR<0.08) and 
NF-κB pathway inhibitors (NCS=1.60; FDR<0.2) (Supplementary Data 4). Finding only 
nominally significant enrichments in non-neuronal cell lines suggests these may be 
neuron-specific drug responses. 

Three drugs that opposed the transcription signatures of top convergent nodes 
specifically in neurons or neural progenitor cells (NPCs) were prioritized (see Methods, 
Box 2): anandamide (reverser of convergent network signature, NCS=-1.59, FDR=1 as 
well as CALN1 signature alone, NCS=-1.23, FDR=0.15), simvastatin (NCS=-1.31, 
FDR=1; TMEM219, NCS=-0.8823, FDR=0.25), and etomoxir (Convergence, NCS=-1.86, 
FDR<2.2e-16 ; CALN1, NCS=-1.42, FDR=0.0355; TMEM219, NCS=-1.09, FDR=0.0112) 
(Supplementary Data 4). These drugs were tested for their ability to reverse, or oppose, 
the effects of paired schizophrenia eGene perturbations in iGLUTs: CRISPRa for eGenes 
was followed by treatment with matched reverser drugs (CALN1: anandamide and 
etomoxir; TMEM219: simvastatin and etomoxir). Downstream transcriptomic (bulk RNA-
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seq) and phenotypic (high content imaging, multi-electrode array) assays were assessed 
to resolve eGene-drug effects on neuronal molecular, morphological, and physiological 
phenotypes (Fig. 6, SI Fig. 28-30). All drugs reversed or suppressed the transcriptomic 
impact of the CRISPRa perturbation alone. Notably, simvastatin ameliorated the 
transcriptomic impact of TMEM219 and blunted an increase in synaptic density caused 
by TMEM219 perturbation (2 way ANOVA, CRISPRa perturbation p<0.001; CRISPRa 
perturbation x drug treatment interaction p<0.05) (Fig 6A-B). Etomoxir limited the 
transcriptomic impact of perturbations of both CALN1 and TMEM219 (SI. Fig 28A-B). 
Thus, it may be possible to pharmacologically reverse convergent networks rather than 
targeting schizophrenia eGenes individually. 

 

DISCUSSION 

Shared downstream effects between target genes of schizophrenia GWAS loci were 
greatest when eGenes had shared biological functions, and enriched for psychiatric risk, 
brain development and synapse biology genes. Convergent signatures were 
experimentally robust, detected in three partially overlapping lists of schizophrenia 
eGenes, whether manipulated in arrayed or pooled experimental designs, and regardless 
of whether iGLUTs shared a common donor, cell type of origin, or developmental time 
point. Increased convergence between eGenes with shared biological function correlated 
to smaller than expected (“sub-additive”) effects following combinatorial perturbations of 
these same eGenes. Of note, beyond transcription, combinatorial eGene manipulations 
resulted in phenotypic changes that differed from the summed impacts of individual 
eGene perturbations (SI Fig. 25-27), reinforcing that polygenic risk cannot be extrapolated 
from experiments that test one risk gene at a time. Finally, we report that pharmacological 
manipulation of a convergent hub reversed the effects of multiple eGenes, suggesting 
that for polygenic disorders a preferred therapeutic approach may be to target shared 
downstream effects rather than individual risk loci.  

Altogether, the experimental eGene perturbations approximated the magnitude and 
direction of predicted eGene effect associated with schizophrenia, and generally resulted 
in downstream gene expression changes related to synaptic biology and psychiatric 
disorder risk. Nonetheless, further gene set enrichment analysis using 493 inflammation 
and cell death gene-sets47 revealed enrichments related to cell stress and 
neurodegenerative diseases across many perturbations (Supplementary Data 1). This 
enrichment was not seemingly associated with viral burden, being present whether single, 
combinatorial, or multiplexed vectors were applied. If our in vitro system, defined by 
repeated lentiviral transduction, antibiotic selection, eGene perturbation, and single cell 
dissociation, stressed human neurons more than accounted for by the scramble gRNA 
controls, this would represent a concern of relevance to all CRISPR experiments in 
human neurons. However, neither high content imaging nor multi-electrode array 
analyses indicated decreased cell survival or a cessation of neuronal activity (SI Fig. 26, 
27). Moreover, inflammation90 and oxidative stress91, and particularly fetal exposures to 
inflammation, stress, and hypoxia92,93 are indeed associated with schizophrenia risk.  

Mapping GWAS associations to eGene targets is challenging and can yield false 
positives. How well our three eQTL-based methods prioritized causal eGenes remains a 
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critical question, particularly in that they rely on tissue-specific eQTL data. There are 
frequent hotspots of multiple TWAS-associated genes in the same locus72, with co-
regulation known to underlie pleiotropic TWAS associations94. Here, three eGenes were 
linked to a single SNP (rs3814883) in schizophrenia-associated copy number variant at 
16p11.2, a locus that harbors the greatest excess of psychiatric common polygenic 
influences95. We posit that a causal GWAS SNP may co-regulate multiple adjacent and 
distal genes at this loci through chromatin contacts, but it is possible that one or more 
eGenes at this locus were misidentified. Other schizophrenia GWAS SNPs (e.g., 
rs2027349) likewise alter expression of multiple genes (VPS45, IncRNA AC244033.2 and 
a distal gene, C1orf54); indeed, combinatorial perturbation of these eGenes results in 
non-additive impacts on transcriptomic and cellular phenotypes28. 

Given the extent of polygenicity associated with schizophrenia, our conclusions are 
constrained by the small proportion of eGenes tested here relative to the total number of 
eGenes impacted by schizophrenia GWAS loci. Technical limitations in testing a larger 
set of SCZ eGenes include the number of GWAS loci with accurately mapped gene 
targets; prediction and validation of gRNAs that reliably achieve physiologically relevant 
gene perturbations across donors and cell types; and the sequencing costs necessary to 
achieve sufficient gRNA representation to resolve perturbations at scale. Moreover, given 
that we selected only those schizophrenia eGenes with the very strongest evidence of 
genetically regulated gene expression, the generalizability of our observations to all 
schizophrenia eGenes is unclear, particularly if there are non-linear responses to gradual 
changes in gene dosage96. Thus, future investigation to test across larger gene sets, 
graded changes in expression96, in vivo brain regions9 and in vitro cell types97, 
developmental timespans98, drug/environmental contexts99 and donor backgrounds100 
will inform the cell-type-specific and context-dependent nature of convergence and non-
additivity. Of course, all of this must be considered within the caveat that in vitro 
perturbations do not exactly recapitulate the physiological impact of possessing multiple 
genetic variants in human cases and controls. Despite this, it is worth noting that the 
limited number of perturbations used in our combinatorial conditions is still broadly 
relevant to studies of common variant interactions. When analyzing the full dataset of 105 
S-PrediXcan SCZ eGenes in the post-mortem adult DLPFC6, a median of ten and a 
maximum of 37 eGenes had outlying expression in the direction of risk association per 
individual (SI Fig. 17). Across the twenty-one SCZ eGenes targeted in either the pooled 
or arrayed experiments, a median of two and a maximum of eight eGenes had outlying 
expression in the direction of risk association per individual (SI Fig. 18). Of course, the 
present design also falls short of capturing nuances of pleiotropy, incomplete penetrance, 
and environmental factors. 

Whereas population genetics finds very little evidence of non-additive effects in 
phenotypic variation, molecular biology unequivocally demonstrates the occurrence of 
gene-gene interactions101. To resolve this seeming contradiction, recall that although the 
“liability threshold model” assumes that disease risk reflects the total sum of many 
additive genetic (and/or environmental) effects, the relationship between predisposition 
and clinical outcome is necessarily binary102. Indeed, the cumulative effect of risk SNPs 
can exceed observed phenotypic variation. Thus, epistasis at the gene level is consistent 
with additivity of complex traits103. Likewise, here we report that convergent perturbations 
at the pathway level correlated with predominantly sub-additive effects. Our findings 
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indicate that the cumulative effect of gene perturbations is additive only until a 
downstream pathway is maximally perturbed, after which, additional perturbations yield 
reduced marginal effects. Our results further suggest that a pathway can be manipulated 
to the point of saturation effect with only a handful of genes. We posit that there may be 
many combinations of variants that have the same impact on a pathway. This is supported 
by emerging evidence of pathway polygenic risk score (PRS) burden104, whereby 
pathway PRS provided higher prediction power of [disease] than overall genome-wide 
risk, even in cases with low overall genetic risk105. 

We further tested the extent that our in vitro studies of CRISPR perturbations inform the 
polygenic architecture of schizophrenia at the population level. First, transcriptomic 
imputation of brain eGene expression (see Methods,) revealed a dose-dependent effect: 
schizophrenia case-control status (p<0.01774, OR>1.10) was best predicted when three 
or more eGenes were perturbed (OR3 eGenes = 1.47 vs. OR1 eGene = 1.10) (SI Fig. 1A). 
Second, transcriptomic risk scores (see Methods) indicated that schizophrenia risk was 
better predicted from larger (p<2.2 x 10-16) (SI Fig. 1C) or more biologically diverse 
(R=0.19, p<2.2x10-16) (SI Fig. 1D) gene groups. Of note, there was a lack of individuals, 
either case or control, with strong imputed within-function perturbations, perhaps 
explaining why population-level schizophrenia risk increased with the number of genes 
and pathways impacted. Pathway-specific polygenic risk scores (PRSets106) that 
incorporate biological pathways, co-expression patterns, convergence, and/or non-
additivity may improve patient stratification or better predict drug response; consistent 
with this, non-additive PRSets performed as well as those curated from synaptic genes 
(SI Fig. 24). Altogether, these studies of transcriptomic imputation and polygenic risk 
scores suggest that our in vitro studies of CRISPR perturbations indeed inform the 
polygenic architecture of schizophrenia in vivo.  

How does our genetic analysis of convergence advance precision medicine for patients 
with psychiatric disorders? First, it may inform molecular subtypes of disease. For 
example, when we cluster individuals based on shared patterns of schizophrenia eGene 
up-regulation in the post-mortem DLPFC (SI Table 2), diagnosis of included individuals 
distinguished clusters (Pearson’s Chi-squared; X2=140, df=21, p-value=9.51e-20) (e.g., 
cluster 8, SCZ, X2=3.286; cluster 12, affective disorders (AFF), X2=5.57; cluster 16, 
control, X2=3.014) (SI Fig. 31-32). A diagnosis of affective disorder (AFF) was significantly 
associated with up-regulation of FES, NAGA, CALN1, CLCN3, SF3B1 and ZNF804A 
(cluster 12). Convergence analysis across these six eGenes in iGLUTs identified the 
central node gene ABCG2, which is a biomarker associated with increased negative 
symptoms107, down-regulated in a neuroimmune molecular subtype (SCZ Type II)108,109, 
and associated with SCZ treatment resistance110. Second, points of convergence 
represent novel therapeutic targets that might be shared across cases; reversing the 
effects of even a small number of genomic variants could make a substantial difference 
to an individual’s risk of developing schizophrenia111. We predicted drugs capable of 
reversing convergent transcriptomic signatures and demonstrated that pharmacological 
targeting of convergent hubs ameliorated the effects of multiple schizophrenia eGene 
perturbations. We highlight statins, particularly simvastatin, which crosses the blood brain 
barrier and shows promise as an add-on treatment in schizophrenia112. Two double-blind 
placebo-controlled trials of simvastatin highlighted the possibility that simvastatin may 
decrease negative symptoms in some patients113,114, potentially predictable based on 
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inflammatory profiles115 and treatment-induced changes in insulin receptor levels116. 
Targeted shared convergent hubs potentially obviate the need to individually reverse the 
effects of multiple distinct risk loci in each patient.  

That convergent genes were associated with a range of brain disorders indicated that 
convergent effects may partially explain shared features of psychiatric disorders and 
pleiotropy of risk. Consistent with this, common and rare risk variants for 
schizophrenia2,17,38-42,117-119, autism spectrum disorder120-122 and more broadly across the 
neuropsychiatric disorder spectrum30,123-125 are all highly enriched for genes involved in 
synaptic biology and gene regulation. Our findings support the hypothesis that common 
and rare psychiatric risk variants converge on the same biological pathways27. As recently 
demonstrated for autism126, by combining genetic and clinical data, it may be possible to 
resolve biologically distinct subtypes of schizophrenia. Our overarching goal is to advance 
the field towards an era of precision medicine127, whereby patient genetics, in conjunction 
with clinical evaluation, are used to more accurately predict diagnosis, disorder trajectory, 
and potential therapeutic interventions. 

 

METHODS 

Statement of Ethics 

Yale University Institutional Review Board waived ethical approval for this work. Ethical 
approval was not required because the hiPSC lines, lacking association with any 
identifying information and widely accessible from a public repository, are thus not 
considered to be human subjects research. Post-mortem data are similarly lacking 
identifiable information and are not considered human subjects research.  

Schizophrenia eGene Prioritization: eGenes are defined as genes with significant genetic 
regulation of gene expression levels. In total, across the pooled and arrayed analyses, 20 
unique eGenes were prioritized based on statistical and epigenetic evidence supporting 
genetic (dys)regulation of expression in schizophrenia (see Table 1), rather than GWAS 
or eQTL effect size; predicted direction and magnitude of eGene effect available in SI 
Table 1. 

i) SCZ1 eGenes: EpiXcan69 was used to impute brain transcriptomes from Psychiatric 
Genomics Consortium 3 (PGC3)-SCZ GWAS2 at the level of genes and isoforms from 
the PsychENCODE post-mortem datasets of genotyped individuals (brain homogenate, 
n=924)43,70; EpiXcan increases power to identify trait-associated genes under a causality 
model by integrating epigenetic annotation128 (from REMC129); transcriptomes were 
imputed at the gene and isoform levels and features with training cross-validation R2≥0.01 
were retained. The epigenetic imputation models were built with the PrediXcan73 method 
(using a 50kbp window instead of 1Mbp for transcripts) utilizing the recently described 
ChIPseq datasets21; summary-level imputation was performed with S-PrediXcan71. Peaks 
were assigned to genes with the ChIPseeker R package130. In addition, PrediXcan73 
imputed H3K27ac (brain homogenate, n=122; neuronal, n=191) and H3K4me3 (neuronal, 
n=163)21 to more confidently identify cis regulatory elements associated with risk for SCZ. 
Overall, SCZ eGenes were prioritized from GWAS based on: i) significant genetic up-
regulation of expression (z-score >6 for genes), ii) epigenetic support (imputed epigenetic 
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activity (p<0.01) across at least one of the three assays), iii) exclusion of non-coding 
genes or those located in the MHC locus, iv) robust expression in our hiPSC neuron 
RNAseq. Genes were ranked based on the association z-score for imputed gene 
expression. For pooled experiments (day 7 hiPSC-derived iGLUT), six top coding genes 
and one top pseudo-gene were selected: NEK4, PLCL1, UBE2Q2L, NAGA, FES, CALN1, 
and ZNF804 (Table 1). 

ii) SCZ2 eGenes: First, transcriptomic imputation (prediXcan71-73) identified ~250 
significant genes (p<6x10-6) with predicted differential expression between SCZ-cases 
and controls using SCZ GWAS2 and post-mortem CommonMind Consortium (CMC)6 data 
(623 samples). Second, colocalization (COLOC74,75) of fine-mapped PGC3-GWAS2 loci 
(65,205 cases and 87,919 controls) with post-mortem brain6 eQTL (537 EUR samples)6 
identified 25 loci with very strong evidence (high posterior probability that a single shared 
variant is responsible for both signals, PP4 > 0.874). There was significant overlap 
between the two analyses (binomial test p-value 3.03x10-112); of the 25 COLOC genes, 
22 were also significant by PrediXcan. For each eGene, the magnitude and direction of 
perturbation associated with SCZ risk was predicted, and expression confirmed in hiPSC 
neuron RNAseq27. eGenes were further separated into discrete functional categories 
based on gene ontology annotations (http://geneontology.org/). From these 22, we 
prioritized the top coding genes across three broad categories: synaptic, regulatory, and 
multifunction (defined as not synaptic, regulatory, and seemingly unrelated to each other). 
To complete selection of five genes from each category, three additional top-ranked 
synaptic genes from the prediXcan analysis were included: DOC2A75, CLCN375 and 
PLCL1125. Overall, 15 SCZ eGenes were prioritized from GWAS based on i) significant 
genetic regulation by COLOC and/or PrediXcan, ii) exclusion of non-coding genes and 
those located in the major histocompatibility complex (MHC) locus, iii) robust expression 
in our hiPSC neuron RNAseq.  

For arrayed experiments (day 21 NPC-derived iGLUT), our final gene list for combinatorial 
perturbations included five synaptic genes (SNAP91, CLCN3, PLCL1, DOC2A, SNCA), 
five regulatory genes (ZNF823, INO80E, SF3B1, THOC7, GATAD2A), and five genes 
with non-synaptic, non-regulatory functions, termed “multi-function” (CALN1, CUL9, 
TMEM219, PCCB, FURIN) (Table 2). For pooled experiments (day 21 NPC-derived 
iGLUT), the ten coding genes with significant genetic up-regulation were selected: 
CALN1, CLCN3, CUL9, DOC2A, PLCL1, INO8E0, SF3B1, SNAP91, TMEM219, ZNF823. 
This list was combined with our eGene set previously evaluated in hiPSC-neurons 27; one 
functionally validated gRNA was included for each of these three genes (SNAP91, 
TSNARE1, and CLCN3)27. 

gRNA design: CRISPRa gRNA design and cloning were conducted as described 
previously131, using the lentiGuide-Hygro-mTagBFP2 backbone (Addgene, No. 

99374). For the fifteen eGenes prioritized by a combination of COLOC and PrediXcan, 

we designed three gRNAs each. For the seven eGenes prioritized by EpiXcan and 
PrediXcan, we designed ten gRNAs each. For the three previously tested eGenes27 
(intended a positive control), we used one pre-validated gRNA each. All gRNA sequences 
and corresponding oligonucleotide sequences used for cloning of gRNA vectors and 
subsequent experimentation are listed in Supplementary Data 5. 

iGLUT induction from hiPSC-derived NPCs27,59-61 or hiPSCs66,132. 
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Validated control hiPSCs for eGene perturbation were selected from a previously reported 
case/control hiPSC cohort of childhood onset schizophrenia133. Informed consent was 
obtained from all fibroblast donors at the National Institute of Mental Health, under the 
review of the Internal Review Board of the NIMH. All hiPSC work was reviewed by the 
Internal Review Board of the Icahn School of Medicine at Mount Sinai. This work was 
also reviewed by the Embryonic Stem Cell Research Oversight Committee at the Icahn 
School of Medicine at Mount Sinai and Yale University. The following control hiPSC/NPCs 
were used: NSB553-S1-1 (male), NSB2607-2/NSB2607-1-4 (male), NSB690-2 (male). 
All fibroblast samples were genotyped by IlluminaOmni 2.5 bead chip genotyping134,135, 
PsychChip133, and exome sequencing133. Parental hiPSCs were validated by G-banded 
karyotyping (Wicell Cytogenetics), with ongoing genome stability monitored by Infinium 
Global Screening Array v3.0 (lllumina). Critically, SNP genotype is inferred from all 
RNAseq data using the Sequenom SURESelect Clinical Research Exome (CRE) and 
Sure Select V5 SNP lists to confirm that neuron identity matches donor. 

i) Validated control hiPSC-derived NPCs for CRISPRa/shRNA were selected from a 
previously reported case/control hiPSC cohort of childhood onset SCZ (COS)133: 
NSB553-S1-1 (male, average SCZ PRS, European ancestry), NSB2607-1-4 (male, 
average SCZ PRS, European ancestry). hiPSC-NPCs were generated via dual-SMAD 
inhibition (0.1µM LDN193189 and 10µM SB542431) followed by neural rosette selection 
and MACS-based purification and validated as previously described)133. hiPSC-NPCs 
were subsequently transduced with lentiviral vectors for dCas9-VPR-puro (Addgene, No. 
99373) and selected with 1 mg/mL puromycin (Sigma, no. P7255) as described 
previously133. hiPSC-NPCs expressing dCas9-VPR were cultured in hNPC media 
(DMEM/F12 (Life Technologies #10565), 1x N2 (Life Technologies #17502-048), 1x B27-
RA (Life Technologies #12587-010), 1x Antibiotic-Antimycotic, 20 ng/ml FGF2 (Life 
Technologies)) on Matrigel (Corning, #354230). 

At day -2, dCas9-VPR hiPSC-NPCs were seeded as 1.2x10^6 cells / well in a 12-well 
plate coated with Matrigel. At day -1, cells were transduced with rtTA (Addgene 20342) 
and NGN2 (Addgene 99378) lentiviruses. Medium was switched to non-viral medium four 
hours post infection. At day 0 (D0), 1 µg/ml dox was added to induce NGN2-expression. 
At D1, transduced hiPSC-NPCs were treated with antibiotics to select for lentiviral 
integration (300 ng/ml puromycin for dCas9-effectors-Puro, 1 mg/ml G-418 for NGN2-
Neo). At D3, NPC medium was switched to neuronal medium (Brainphys (Stemcell 
Technologies, #05790), 1x N2 (Life Technologies #17502-048), 1x B27-RA (Life 
Technologies #12587-010), 1 µg/ml Natural Mouse Laminin (Life Technologies), 20 ng/ml 
BDNF (Peprotech #450-02), 20 ng/ml GDNF (Peprotech #450-10), 500 µg/ml Dibutyryl 
cyclic-AMP (Sigma #D0627), 200 nM L-ascorbic acid (Sigma #A0278)) including 1 µg/ml 
Dox. 50% of the medium was replaced with fresh neuronal medium once every second 
day.  

For pooled analysis, on day 5, young hiPSC-NPC NGN2-neurons were replated onto 
matrigel-coated plates and cells were dissociated with Accutase (Innovative Cell 
Technologies) for 5-10 min, washed with DMEM/10%FBS, gently resuspended, counted 
and centrifuged at 1,000 g for 5 min. The pellet was resuspended at a concentration of 
1 106 cells/mL in neuron media [Brainphys (StemCell Technologies #05790), 1 N2 
(ThermoFisher #17502-048), 1 B27-RA (ThermoFisher #12587-010), 1 mg/ml Natural 
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Mouse Laminin (ThermoFisher #23017015), 20 ng/mL BDNF (Peprotech #450-02), 20 
ng/mL GDNF (Peptrotech #450-10), 500 mg/mL Dibutyryl cyclic-AMP (Sigma #D0627), 
200 nM L-ascorbic acid (Sigma #A0278)] with doxycycline, puromycin, G418 [4µM Ara-C 
(Sigma #C6645)] and 1 Thiazovivin (Sigma #420220). Cells were seeded 5 105 per 12-
well plate. For arrayed analysis, neurons were not replated, owing to the complexity of 
conditions involved.  

At D13, iGLUTs were treated with 200 nM Ara-C to reduce the proliferation of non-
neuronal cells in the culture, followed by half medium changes. At D18, Ara-C was 
completely withdrawn by full medium change while adding media containing individual 
shRNA/gRNA vectors or pools of mixed shRNA and gRNA vectors (Addgene 99374), 
either targeting eGenes or scramble controls. CRISPRa and shRNA vectors were 
specifically selected for perturbation due to the potential for simultaneous, bi-directional 
perturbation of target eGenes in joint perturbation conditions. shRNA knockdown was 
chosen over CRISPRi due to the difficulties in expressing multiple separate CRISPR 
effectors in the same cell lines (e.g. dCas9-VPR + dCas12a-KRAB). Control conditions 
were as follows: scramble gRNA vector (for comparing with target gRNA conditions), 
scramble shRNA vector (for comparing with target shRNA conditions) and scramble 
gRNA vector + scramble shRNA vector (for comparing with joint perturbation conditions). 
All control conditions were MOI-matched to their respective target condition. Medium was 
switched to non-viral medium four hours post infection. At D19, transduced iGLUTs were 
treated with corresponding antibiotics to the gRNA lentiviruses (1 mg/ml HygroB for 
lentiguide-Hygro/lentiguide-Hygro-mTagBFP2) followed by half medium changes until 
neurons were harvested at D21. 

ii) Clonal hiPSCs from two control donors of European ancestry (NSB690-2 (male, 
average SCZ PRS, European ancestry) and NSB2607-2 (male, average SCZ PRS, 
European ancestry)133 with lenti-EF1a-dCas9-VPR-Puro (Addgene #99373), pLV-TetO-
hNGN2-eGFP-Neo (Addgene #99378), and lentiviral FUW-M2rtTA (Addgene #20342) 
were maintained in StemFlex™ Medium (ThermoFisher #A3349401) and passaged with 
EDTA (Life Technologies #15575-020). On day 1, induction media (DMEM/F12 
(ThermoFisher #10565,), 1  N2 (ThermoFisher #17502-048), 1  B27-RA (ThermoFisher 
#12587-010), 1  Antibiotic-Antimycotic (ThermoFisher #15240096), and 1 µg/mL 
doxycycline) was prepared and dispensed 2 mL of suspension at 1.2 106 cells/well in 
induction media onto a 6-well plate coated with matrigel (Corning #354230). On day 3, 
media is replaced with induction medium containing 1 μg/mL puromycin and 1 
mg/mLG418. On day 5, split neurons were replated onto matrigel-coated plates and cells 
were dissociate with Accutase (Innovative Cell Technologies) for 5-10 min, washed with 
DMEM/10%FBS, gently resuspended, counted and centrifuged at 1,000 g for 5 min. The 
pellet was resuspended at a concentration of 1 106 cells/mL in neuron media [Brainphys 
(StemCell Technologies #05790), 1 N2 (ThermoFisher #17502-048), 1 B27-RA 
(ThermoFisher #12587-010), 1 mg/ml Natural Mouse Laminin (ThermoFisher 
#23017015), 20 ng/mL BDNF (Peprotech #450-02), 20 ng/mL GDNF (Peptrotech #450-
10), 500 mg/mL Dibutyryl cyclic-AMP (Sigma #D0627), 200 nM L-ascorbic acid (Sigma 
#A0278)] with doxycycline, puromycin, G418 [4µM Ara-C (Sigma #C6645)] and 
1 Thiazovivin (Sigma #420220). Cells were seeded 5 105 per 12-well plate. On day 7, 
neurons were harvested for scRNA sequencing. 
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Neuronal Pooled CRISPRa screens. Expanded CRISPR-compatible CITE-seq (ECCITE-
seq)76, combines Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-
seq) and Cell Hashing for multiplexing and doublet detection136 with direct detection of 
sgRNAs to enable single cell CRISPR screens with multi-modal single cell readout. By 
capturing pol III-expressed guide RNAs directly, this approach overcomes limitations of 
other single-cell CRISPR methods, which detect guide sequences by a proxy transcript, 
resulting in barcode switching and lower capture rates137-139. CRISPRa hiPSC iGLUT 
neurons (2607 (male) and 690 (male)) were transduced with the pooled gRNA at day -1. 
After maturation, 7-day-old iGLUT neurons were dissociated to single cell suspensions 
with papain, antibody-hashed136, and bar-coded single cell cDNA generated using 10X 
Genomics Chromium140. NPC-derived iGLUT neurons (2607 (male) and 553 (male)) were 
transduced with the mixed-pooled gRNA vectors (Addgene 99374) at day 17. At day 21, 
media was replaced by 0.5ml/well accutase containing 10 μm Rock inhibitor, THX 
(catalog no. 420220; Millipore) for 1 hour to dissociate neurons. Neurons were spun down 
(3 mins X 300g) and resuspended in DMEM/F12 + THX before proceeding to single cell 
sequencing.Analysis of single-cell CRISPRa screens in DIV 7 and DIV 21 iGLUT 
Neurons. mRNA sequencing reads were mapped to the GRCh38 reference genome 
using the Cellranger Software. To generate count matrices for HTO and GDO libraries, 
the kallisto indexing and tag extraction (kite) workflow were used. Count matrices were 
used as input into the R/Seurat package141 to perform downstream analyses, including 
QC, normalization, cell clustering, HTO/GDO demultiplexing, and DEG analysis76,142. 

Normalization and downstream analysis of RNA data were performed using the Seurat R 
package (v.2.3.0), which enables the integrated processing of multimodal single-cell 
datasets. Each ECCITE-seq experiment was initially processed separately. Cells with 
RNA UMI feature counts were filtered (200 < nFeature_RNA < 8000) and the percentage 
of all the counts belonging to the mitochondrial, ribosomal, and hemoglobin genes 
calculated using Seurat::PercentageFeatureSet. Hashtag and guide-tag raw counts were 
normalized using centered log ratio transformation, where counts were divided by the 
geometric mean of the corresponding tag across cells and log-transformed. For 
demultiplexing based on hashtag, Seurat::HTODemux function was used; and for guide-
tag counts Seurat::MULTIseqDemux function within the Seurat package was performed 
with additional MULTIseq semi-supervised negative-cell reclassification. In both 
experiments, 8-10% of retained cells contained multiple gRNAs and were assigned as 
doublets after de-multiplexing. To remove variation related to cell-cycle phase of 
individual cells, cell cycle scores were assigned using Seurat::CellCycleScoring which 
uses a list of cell cycle markers143 to segregate by markers of G2/M phase and markers 
of S phase. RNA UMI count data was then normalized, log-transformed and the percent 
mitochondrial, hemoglobulin, and ribosomal genes, batch, donor (HTO-maxID; as a 
biological replicate), cell cycle scores (Phase) regressed out using Seurat::SCTransform. 
The scaled residuals of this model represent a ‘corrected’ expression matrix, that was 
used for all downstream analyses. To ensure that cells assigned to a guide-tag identity 
class demonstrated successful perturbation of the target gene, we performed ‘weighted-
nearest neighbor’ (WNN) analysis, to assign clusters based on both guide-tag identity 
class and gene expression77. To identify successfully perturbed cells, we calculated a p-
value based on the Wilcox rank sum test and Area Under the Curve (AUC) statistic, which 
reflects the power of each gene (or gRNA) to serve as a marker of a given cluster using 
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Presto. WNN Clusters were then filtered based on two criteria (1) single gRNA-identity 
with an AUC statistic of >= 0.8 (where 1 means the gRNA is a perfect marker of a given 
cluster) and (2) a logFC >= 2 standard deviations of the mean or logFC > 0 and p-val > 
0.05, of the target gene (but no other target genes) compared to scramble (non-targeting 
sgRNAs) controls (SI Fig. 4-8). These clusters were then used for downstream 
analyses144. 

Of note, there was a lower representation of specific gRNAs and fewer gene perturbations 
resolved in SCZ2 than SCZ1. This likely reflected the use of a single pre-validated gRNA 
vector per gene from our arrayed experiments for SCZ2, rather than a pooled library 
comprised of multiple gRNAs targeting each eGene in SCZ1. 

Cell Fraction Imputation and Quantification of Heterogeneity in Composition of iGLUT 
neurons. Using CiberSortx, we imputed the cell-faction identity of randomly sampled 
scramble control cells from each experiment (n=100/exp) using the PsychEncode 
scRNAseq dataset as a reference (100 permutations). To determine if the level of 
heterogeneity of iGLUT neuron maturity and subtype was similar between DIV7 and 
DIV21 iGLUT neurons in the given experiments, we performed a non-parametric Levene’s 
Test for Homogeneity of Variance (LT-test) on the imputed cell fraction matrices. Although 
we observed heterogeneity in relative central and peripheral nervous system marker 
expression across the cell fractions, this heterogeneity was not due to gRNA identity and 
the level of variance in our data due to cellular heterogeneity was not significantly different 
by time-point. We were underpowered to compare gRNAs between cells with higher 
expression of different cell markers.  

Meta-analysis of gene expression across perturbations145. We performed a meta-analysis 
and Cochran’s heterogeneity Q-test (METAL78) using the p-values and direction of effects 
(t-statistic), weighted according to sample size across all sets of perturbations in both the 
arrayed and pooled assays (Target vs. Scramble DEGs). Genes were defined as 
“convergent” if they (1) had the same direction of effect across all 5, 10, or 15 target 
combinations, (2) were Bonferroni significant in our meta-analysis (Bonferroni adjusted p-
value <= 0.05), and (3) had a heterogeneity p-value = >0.05.  

Bayesian Bi-clustering to identify Target-Convergent Networks145. eGene-Convergent 
gene co-expression Networks (eGCN)82 were built using an unsupervised Bayesian 
biclustering model, BicMix146, on the log2CPM expression data from all the replicates 
across each of the 5-target sets and scramble gRNA jointly or all the cells across 10 
targets and scramble gRNA jointly for the arrayed and pooled assays respectively. To 
account for neuronal maturity differences in the single-cell screen, expression matrices 
were batch corrected and normalized and the scramble cells from both experiments 
(matched scramble gRNA across experiments) used as a single control population. To 
perform this as a joint analysis across two experiments, (1) Count matrices from each 
experiment were combined and RNA transcripts, mitochondrial, ribosomal, and 
hemoglobin genes were removed ([‘^MT-
|^RP[SL][[:digit:]]|^RPLP[[:digit:]]|^RPSA|^HB[ABDEGMQZ][[:digit:]]’) as well as genes 
that had at fewer than 2 read counts in 90% of samples, (2) and limma:voom 
normalization and transformation was used to compute the log2cpm counts from the 
effective library sizes of each cell (16851 genes). 40 runs of BicMix were performed on 
these data and the output from iteration 400 of the variational Expectation-Maximization 
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algorithm was used. The hyperparameters for BicMix were set based on previous 
extensive simulation studies147. Convergent networks were identified across all possible 
combinations of 2-14 as well as all 15 of the targets (n=32752 combinations) in the 
arrayed assay, and all possible combinations of 2,3,4,5,6,7 or 8 as well as all 10 of the 
targets (n=1003 combinations) in the pooled experiment. Network connections that did 
not replicate in more than 10% of the runs were excluded. Nodes with less than 5 edges 
or non-coding genes were removed from gene set enrichment analysis (GSEA). (The 
threshold of >5 edges is based on the likelihood of more than 5 edges being present by 
chance, with 10% being the percentage of runs where the connection was identified, 
see82,146. Duplication thresholds are network-dependent and a metric of confidence in the 
connections; including those with especially low duplication rates were not included in 
downstream analysis.) Of all random sets tested in the pooled experiment, 64.8% 
resolved a convergent network passing at least a 10% duplication threshold; of all random 
sets tested in the arrayed experiment, ~50% resolved a convergent network with a 5-255 
threshold of duplication depending on the node-edge connection. Using FUMAGWAS: 
GENE2FUNC, the protein-coding genes were functionally annotated and 
overrepresentation gene-set analysis for each network gene set was performed148. Using 
WebGestalt (WEB-based Gene SeT AnaLysis Toolkit)149, over-representation analysis 
(ORA) was performed on all convergent network gene sets against a curated list of 
common and rare variant target genes across ASD, BIP, SCZ, and ID27. Nodes were 
annotated using GeneCards150, MalaCards151, and GWAS Catalog152. Specific 
enrichments were observed with 1' de novo SCZ-CNV153, SCZ eQTLs154, SCZ brain hub 
gene107, downregulated in ASD/WS155, SCZ neurons156, and Sox21 neural patterning157.  

Influence of Functional Similarity on Convergence Degree. Functionally similarity scores 
across the eGenes represented in each set was calculated using three metrics: (1) Gene 
Ontology Scores: the average semantic similarity score based on Gene Ontology 
pathway membership (within Biological Pathway (BP), Cellular Component (CC), and 
Molecular Function (MF) between genes in a set81, (2) Brain expression correlation 
(B.E.C.) score: based on the strength of the correlation in gene expression in the CMC 
(n=991 after QC) post-mortem dorsolateral prefrontal cortex (DLPFC) gene expression 
data6, and (3) Signaling Score: based on the proportion of eGenes whose basic functional 
annotation was categorized as “signaling” (CALN1, CLCN3, FES, NAGA, PLCL1, 
TMEM219; with PLCL1 and CLCN3 further separated as specific synaptic genes) or four 
“epigenetic/regulatory” target genes (SF3B1, UBE2Q2L, ZNF823, ZNF804A; with 
ZNF823, ZNF804A as specific transcription factors) using FUMAGWAS: GENE2FUNC148 
(SI Fig. 10).  

Bi-clustering identifies co-expressed genes shared across the downstream transcriptomic 
impacts of any given set of eGene perturbations, thus, the resolved networks are the 
transcriptomic similarities between distinct perturbations (convergence). While bi-
clustering resolves convergent gene co-expression networks, the strength of 
convergence within a network can be defined by (i) the degree of network connectivity as 
define by two small-world network connectivity coefficients (edge density and average 
path length) and (ii) the degree of functional similarity or unity between genes represented 
within the network. Given this definition, (1) represents perturbations with no convergent 
downstream effects, (2) represents a network with a moderate degree of convergence 
because it (i) has resolved gene co-expression clusters that can be constructed into a 
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network, (ii) has a moderate degree of network connectivity and (ii) is enriched in 
biological pathways with some redundancy, while (3) represents a highly convergent 
network because the degree of network connectivity is stronger and there is greater 
uniformity in biological pathway gene membership. Overall, we quantify the strength or 
degree of convergence using the function in (4), where Cp is the edge density (the 
proportion of edges present given all possible edges) and Lp is the average path length 
(the mean of the shortest distance between each pair of nodes), MFsc is the average 
semantic similarity score between each pair of nodes in the network based on Molecular 
Function Gene Ontology, BPsc is the average semantic similarity score based on 
Biological Pathway Gene Ontology and CCsc is the average semantic similarity score 
based on Cellular Component Gene Ontology. Semantic similarity is based on the idea 
that genes with similar function have similar Gene Ontology annotations. Semantic 
similarity scores were calculated by aggregating four information content-based methods 
and one graph structure-based method with the R package GoSemSim. 

We assigned each network a “degree of convergence” based on (1) network connectivity 
and (2) similarity of network genes based on biological pathway membership. We 
performed a principal components analysis on the functional similarity scores and the 
degree of network convergence. PCA loadings determined the effect of the included 
variables on the variability across all resolvable sets (arrayed=16320, pooled=827, 
variables=6). To quantify this, we calculated two small world connectivity network 
coefficients: the cluster connectivity coefficient based on the proportion of edges present 
out of all possible edges (Cp) and the average path length (Lp)158. 

Here we define convergence as (1) increased connectivity of the resolved networks, and 
(2) functional similarity of genes within the network. Network connectivity was defined by 
the sum of the clustering coefficient (Cp) and the difference in average length path (Lp) 
from the maximum average length path resolved across all possible sets [(max)Lp-Lp]. 
Network functional similarity was scored by taking the sum of the mean semantic similarity 
scores between all genes in the network. Overall, convergence degree represented the 
sum of the network connectivity score and the network functional similarity score (1): 

 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =  𝐶𝑝 + [max(𝐿𝑝) − 𝐿𝑝] + ∑ 𝑀𝐹𝑠𝑒𝑚𝑠𝑖𝑚 + 𝐵𝑃𝑠𝑒𝑚𝑠𝑖𝑚 + 𝐶𝐶𝑠𝑒𝑚𝑠𝑖𝑚

𝑁

1

 

Convergent networks with matched patterns of gene expression in the post-mortem brain. 
We clarify that this approach asks how often eGenes are up-regulated together in 
individual post-mortem brains. To do this, we ran target-convergent network 
reconstruction in our scRNA-seq data, not the CMC bulk tissue data, for sets of eGenes 
defined by the clustering observed in the CMC bulk tissue data. We found zero individuals 
in the CMC data with significant upregulation of all ten risk eGenes. Instead of only 
evaluating convergence on the basis on eGene functional similarity as in the first portion 
of the manuscript, we define eGene pairings more broadly based on the signatures of 
these eGenes in the post-mortem DLPFC – increasing the relevancy to risk at the 
individual level. Target sets based on gene expression patterns in the CMC (n=991 after 
QC) post-mortem dorsa-lateral pre-frontal cortex (DLPFC). We performed K-means 
clustering to subset the data into clusters based on the Z-scored gene expression of the 
10 target genes. Although initial silhouette analysis identified the optimal number of 
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clusters as two, visualization by a scree plot suggested the optimal number to be between 
4-6 clusters. Given that data clustered by case/control status (2 clusters), and sub-
diagnosis of BP, SCZ, AFF, and Controls (4 clusters), to assess clustering based on 10 
eGenes, we tested the impact of using 10 clusters and 20 clusters (SI Fig. 32). 
Perturbation identities were assigned based on average positive Z-scores of >=0.5 within 
each cluster. We then assigned our single-cell data to clusters based on the overlap of 
perturbations and performed network reconstruction to replicate our convergent analysis 
using groups based on CMC post-mortem data. We retained clusters that resolved 
networks with at least 10% duplication rate and calculated convergence scores and 
performed GSEA using protein-coding network genes. Of the twenty clusters, networks 
were recovered for the combination of targets represented in cluster 4 (2 targets; 913 
cells; 15% duplication; 13 node genes), cluster 5 (3 targets; 1260 cells; 15% duplication; 
13 node genes), cluster 6 (6 targets; 2035 cells; 15% duplication; 34 node genes), cluster 
9 (6 targets, 1822 cells, 20% duplication, 108 node genes), cluster 11 (5 targets; 1640 
cells; 15% duplication; 25 node genes), cluster 12 (6 targets; 2357 cells; 20% duplication, 
152 node genes), cluster 13 (5 targets; 1741 cells; 17.5% duplication, 17 node genes), 
cluster 18 (6 targets; 1884 cells, 15% duplication, 25 nodes), cluster 19 (6 targets, 2327 
cells, 20% duplication, 153 nodes), cluster 20 (6 targets, 2015 cells, 20% duplication, 33 
nodes), while low confidence convergence was resolved for cluster 1 (5 targets, 1600 
cells; 7.5% duplication; 38 node genes), cluster 8 (3 targets, 1233 cells, 7.5% duplication, 
38 node genes), cluster 14 (3 targets, 1020 cells, 5% duplication, 23 nodes) and 16 (4 
targets, 1177 cells, 2.5% duplication, 16 nodes). To determine if convergent networks 
were distinct between diagnostic groups, we first performed a Pearson’s chi-squared test 
to determine whether there was a significant difference between the expected frequencies 
and the observed frequencies in diagnosis of AFF, BIP and SCZ within the clusters and 
then calculated Jaccard Similarity Indices between clusters based on convergent network 
gene membership. 

Drug prioritization based on perturbation signature reversal in LiNCs Neuronal Cell Lines: 
To identify drugs that could reverse the resolved convergent perturbation signature 
across all ten targets, and within each target individually, we used the Query tool from 
The Broad Institute’s Connectivity Map (Cmap) Server. Briefly, the tool computes 
weighted enrichment scores (WTCS) between the query set and each signature in the 
Cmap LINCs gene expression data (dose, time, drug, cell-line), normalizes the WRCS by 
dividing by signed mean w/in each perturbation (NCS), and computes FDR as fraction of 
“null signatures” (DMSO) where the absolute NCS exceeds reference signature159. We 
prioritized drugs that reversed signatures specifically in neuronal cells (either neurons 
(NEU) or neural progenitor cells (NPCs) with NCS <= -1.00) and filtered for (i) drugs that 
cross the blood-brain barriers, (ii) drugs that target genes expressed in iGLUT neurons 
based on bulk RNA-sequencing data from our lab and (ii) drugs that are currently 
launched or in clinical trial according to the cMAP Drug Repurposing database and 
without evidence of neurotoxicity (Box 2). 

CRISPRa/shRNA Validation27. At day -2, dCas9-VPR hiPSC-NPCs were seeded as 
0.6x10^6 cells / well in a 24-well plate coated with Matrigel. At day -1, cells were 
transduced with rtTA (Addgene 20342) and NGN2 (Addgene 99378) lentiviruses. Medium 
was switched to non-viral medium four hours post infection. At D0, 1 µg/ml dox was added 
to induce NGN2-expression. At D1, transduced hiPSC-NPCs were treated with 
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corresponding antibiotics to the lentiviruses (1 mg/ml G-418 for NGN2-Neo) in order to 
increase the purity of transduced hiPSC-NPCs. At D3, NPC medium was switched to 
neuronal medium (Brainphys (Stemcell Technologies, #05790), 1x N2 (Life Technologies 
#17502-048), 1x B27-RA (Life Technologies #12587-010), 1 µg/ml Natural Mouse 
Laminin (Life Technologies), 20 ng/ml BDNF (Peprotech #450-02), 20 ng/ml GDNF 
(Peptrotech #450-10), 500 µg/ml Dibutyryl cyclic-AMP (Sigma #D0627), 200 nM L-
ascorbic acid (Sigma #A0278)) including 1 µg/ml Dox. 50% of the medium was replaced 
with fresh neuronal medium once every second day. At D4 individual shRNA/gRNA 
vectors (Addgene 99374), either targeting eGenes or scramble controls. 3-5 vectors were 
tested per eGene. Medium was switched to non-viral medium four hours post infection. 
At D5, transduced iGLUTs were treated with corresponding antibiotics to the gRNA 
lentiviruses (1 mg/ml HygroB for lentiguide-Hygro/lentiguide-Hygro-mTagBFP2) before 
harvesting at D7 in order to assess eGene perturbation efficacy via qPCR. 

Real time-quantitative PCR. Real time qPCR was performed as previously described131. 
Specifically, cell cultures were harvested with Trizol and total RNA extraction was carried 
out following the manufacturer’s instructions. Quantitative transcript analysis was 
performed using a QuantStudio 7 Flex Real-Time PCR System with the Power SYBR 
Green RNA-to-Ct Real-Time qPCR Kit (all Thermo Fisher Scientific). Total RNA template 
(25 ng per reaction) was added to the PCR mix, including primers listed below. qPCR 
conditions were as follows; 48°C for 15 min, 95°C for 10 min followed by 45 cycles (95°C 
for 15 s, 60°C for 60 s). All qPCR data is collected from at least three independent 
biological replicates of one experiment. A one-way ANOVA with posthoc Dunnett’s 
multiple comparisons test was performed on data for the set of targeting vectors for each 
eGene relative to the scramble control vector. Data analyses were performed using 
GraphPad PRISM 6 software. For a list of primer sequences used for real time qPCR, 
see SI Table 5. 

Immunostaining and high-content imaging microscopy, neurite analysis. Immature 
iGLUTs were seeded as 1.5x104 cells/well in a 96-well plate coated with 4x Matrigel at 
day 3. iGLUTs were plated in media containing individual shRNA/gRNA vectors or pools 
of mixed shRNA and gRNA vectors (Addgene 99374), either targeting eGenes or 
scramble controls. Medium was switched to non-viral medium four hours post infection. 
At day 4, transduced iGLUTs were treated with corresponding antibiotics to the gRNA 
lentiviruses (1 mg/ml HygroB for lentiguide-Hygro/lentiguide-Hygro-mTagBFP2) followed 
by half medium changes until the neurons were fixed at day 7. At day 7, cultures were 
fixed using 4% formaldehyde/sucrose in PBS with Ca2+ and Mg2+ for 10 minutes at room 
temperature (RT). Fixed cultures were washed twice in PBS and permeabilized and 
blocked using 0.1% Triton/2% Normal Donkey Serum (NDS) in PBS for two hours. 
Cultures were then incubated with primary antibody solution (1:1000 MAP2 anti chicken 
(Abcam, ab5392) in PBS with 2% NDS) overnight at 4°C. Cultures were then washed 3x 
with PBS and incubated with secondary antibody solution (1:500 donkey anti chicken 
Alexa 647 (Life technologies, A10042) in PBS with 2% NDS) for 1 hour at RT. Cultures 
were washed a further 3x with PBS with the second wash containing 1 μg/ml DAPI. Fixed 
cultures were then imaged on a CellInsight CX7 HCS Platform with a 20x objective (0.4 
NA) and neurite tracing analysis performed using the neurite tracing module in the 
Thermo Scientific HCS Studio 4.0 Cell Analysis Software. 12-24 wells were imaged per 
condition across a minimum of 2 independent cell lines, with 9 images acquired per well 
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for neurite tracing analysis; each N therefore represents an average of hundreds of 
neurons per image. A one-way ANOVA with a post hoc Bonferroni multiple comparisons 
test was performed on data for neurite length per neuron using Graphpad Prism. 

Immunostaining and high-content imaging microscopy, synapse analyses: Commercially 
available primary human astrocytes (pHAs, Sciencell, #1800; isolated from fetal female 
brain) were seeded on D3 at 0.85x104 cells per well on a 4x Matrigel-coated 96 W plate 
in neuronal media supplemented with 2% fetal bovine serum (FBS). iGLUTs were seeded 
as 1.5x105 cells/well in a 96-well plate coated with 4x Matrigel at day 5. Half changes of 
neuronal media were performed twice a week until fixation. At day 13, iGLUTs were 
treated with 200 nM Ara-C to reduce the proliferation of non-neuronal cells in the culture. 
At day 18, Ara-C was completely withdrawn by full medium change while adding media 
containing individual shRNA/gRNA vectors or pools of mixed shRNA and gRNA vectors 
(Addgene 99374), either targeting eGenes or scramble controls. Medium was switched 
to non-viral medium four hours post infection. At day 19, transduced iGLUTs were treated 
with corresponding antibiotics to the gRNA lentiviruses (1 mg/ml HygroB for lentiguide-
Hygro/lentiguide-Hygro-mTagBFP2) followed by half medium changes until the neurons 
were fixed at day 21. At day 21, cultures were fixed and immunostained as described 
previously, with an additional antibody stain for Synapsin1 (primary antibody: 1:500 
Synapsin1 anti mouse (Synaptic Systems, 106 011); secondary antibody: donkey anti 
mouse Alexa 568 (Life technologies A10037)). Stained cultures were imaged and 
analyzed as above using the synaptogenesis module in the Thermo Scientific HCS Studio 
4.0 Cell Analysis Software to determine SYN1+ puncta number, area, and intensity per 
neurite length in each image. 20 wells were imaged per condition across a minimum of 2 
independent cell lines, with 9 images acquired per well for synaptic puncta analysis. A 
one-way ANOVA with a post hoc Bonferroni multiple comparisons test was performed on 
data for puncta number per neurite length using Graphpad Prism. For a list of antibodies 
used for immunostaining, see SI Table 6. 

Multiple Electrode array (MEA): Commercially available primary human astrocytes (pHAs, 
Sciencell, #1800; isolated from fetal female brain) were seeded on D3 at 1.7x104 cells 
per well on a 4x Matrigel-coated 48 W MEA plate (catalog no. M768-tMEA-48W; Axion 
Biosystems) in neuronal media supplemented with 2% fetal bovine serum (FBS). At D5, 
iGLUTs were detached, spun down, and seeded on the pHA cultures at 1.5x105 cells per 
well. Half changes of neuronal media supplemented with 2% FBS were performed twice 
a week until day 42. At day 13, co-cultures were treated with 200 nM Ara-C to reduce the 
proliferation of non-neuronal cells in the culture. At Day 18, Ara-C was completely 
withdrawn by full medium change. At day 25, a full media change was performed to add 
media containing individual shRNA/gRNA vectors or pools of mixed shRNA and gRNA 
vectors (Addgene 99374), either targeting eGenes or scramble controls. Medium was 
switched to non-viral medium four hours post infection. If drug treatments were included, 
D26 neurons were treated for 48hrs with either Anandamide (10µM), Etomoxir (10µM), 
Simvastatin (10µM), or matched vehicles. Electrical activity of iGLUTs was recorded at 
37°C twice every week from day 28 to day 42 using the Axion Maestro MEA reader (Axion 
Biosystems). Recording was performed via AxiS 2.4. Batch mode/statistic compiler tool 
was run following the final recording. Quantitative analysis of the recording was exported 
as Microsoft excel sheet. Data from 6-12 biological replicates were analyzed using 
GraphPad PRISM 6 software or R.  
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RNAseq: RNA Sequencing libraries were prepared using the Kapa Total RNA library prep 
kit. Paired-end sequencing reads (100bp) were generated on a NovaSeq platform. Raw 
reads were aligned to hg19 using STAR aligner160 (v2.5.2a) and gene-level expression 
were quantified by featureCounts161 (v1.6.3) based on Ensembl GRCh37.70 annotation 
model. Genes with over 10 counts per million (CPM) in at least four samples were 
retained. After filtering, the raw read counts were normalized by the voom162 function in 
limma and differential expression was computed by the moderated t-test implemented in 
limma163. Differential gene expression analysis was performed between each 
CRISPRa/shRNA target group and scramble control group. Bayes shrinkage 
(limma::eBayes) estimated modified t- and p- values and identified differentially 
expressed genes (DEGs) based on an FDR <= 0.05 (limma::TopTable)164. Gene 
Ontology/pathways were evaluated using Gene-set Enrichment Analysis (GSEA)165, with 
genes expressed in iGLUTs as our baseline comparison. In these analyses, the t-test 
statistics from the differential expression contrast were used to rank genes in the GSEA 
using the R package ClusterProfiler166. Permutations (up to 100,000 times) were used to 
assess the GSEA enrichment P value. Log2 fold changes in expression were calculated 
across all RNA-seq samples in our arrayed dataset. 

Analysis of additive and non-additive effects27. We applied our published approach to 
resolve distinct additive and non-additive transcriptomic effects after combinatorial 
manipulation of genetic variants and/or chemical perturbagens, developed27, applied59, 
and described in detail85. The expected additive effect was modeled through addition of 
the individual comparisons; the non-additive effect was modeled by subtraction of the 
additive effect from the combinatorial perturbation comparison. Fitting of this model for 
differential expression identifies genes that show a difference in the expected differential 
expression computed for the additive model compared to the observed combinatorial 
perturbation. Briefly, the non-additive effect between eGenes was identified using a 
limma’s linear model analysis. The coefficients, standard deviations and correlation matrix 
were calculated, using contrasts.fit, in terms of the comparisons of interest. Empirical 
Bayes moderation was applied using the eBayes function to obtain more precise 
estimates of gene-wise variability. P-values were adjusted for multiple hypotheses testing 
using false discovery rate (FDR) estimation, and differentially expressed genes were 
determined as those with FDR ≤ 10%, unless stated otherwise. Two methods were used 
to compare the extent of synergy between data sets. First, we calculated the fraction of 
synergistic genes (FDR<10%) measure the extent of synergy. Second, we calculated a 
synergy coefficient, π1, as the fraction of non-null synergistic P-values, to inform the 
existence of a synergistic component, even if the P-values themselves are not significant 
genome-wide. 

However, interpretation of the resulting DEGs depends on several factors, such as the 
direction of fold change (FC) in all three models. To identify genes whose magnitude of 
change is larger in the combinatorial perturbation vs. the additive model, we categorized 
all genes by the direction of their change in both models and their log2(FC) in the non-
additive model. First, log2(FC) standard errors (SE) were calculated for all samples. 
Genes were then grouped into ‘positive non-addition’ if their FC was larger than SE and 
‘negative non-addition’ if smaller than -SE. If the corresponding additive model log2(FC) 
showed the same or no direction, the gene was classified as more differentially expressed 
in the combinatorial perturbation than predicted. GSEA was performed on a curated 
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subset of the MAGMA collection using the limma package camera function, which tests if 
genes are ranked highly in comparison to other genes in terms of differential expression, 
while accounting for inter-gene correlation. Due to the small sample size in this study and 
moderate fold changes in some eGene perturbations, changes in gene expression may 
be small and distributed across many genes. However, powerful enrichment analyses in 
the limma package may be used to evaluate enrichment based on genes that are not 
necessarily genome-wide significant and identify sets of genes for which the distribution 
of t-statistics differs from expectation. Over-representation analysis (ORA) was performed 
when subsets of DEGs were of interest; genes of interests were ranked by –log10 (p-
value) and enrichment was performed against a background of all expressed genes using 
the WebGestaltR package. 

Dataset for population-level analysis of synergy: Individuals from the Sweden-SCZ 
Population-Based cohort were obtained from the database of Genotypes and 
Phenotypes, Study Accession: phs000473.v2.p2 (NCases = 5,232, NControls = 6,468)167. 

Pathway polygenic risk scores: Pathway-specific polygenic risk score (PRS) analyses 
were performed using PRSice-2 (v2.3.5) on individual genotype data for the Sweden-SCZ 
Population based cohort. A total of 4,834 individuals diagnosed with SCZ and 6,128 
controls were included after quality control. To calculate the scores, we used a version of 
the summary statistics from the PGC SCZ GWAS that excludes the Sweden-SCZ data to 
prevent inflation of results. SNPs were annotated to genes and pathways based on GTF 
files obtained from ENSEMBL (GRCh37.75). To include potential gene regulatory 
elements, gene coordinates were extended 35 kilobases (kb) upstream and 10 kb 
downstream of each gene. We excluded from analyses the MHC region (chr6:25Mb-
34Mb), ambiguous SNPs (A/T and G/C), and SNPs not present in both GWAS summary 
statistics and genotype data.  

To obtain empirical competitive P-values, that assess GWAS signal enrichment while 
accounting for pathway size, we performed the following permutation procedure: first, a 
background pathway containing all genic SNPs is constructed, and clumping is performed 
within this pathway. For each pathway with m SNPs, N=10,000 null pathways are 
generated by randomly selecting m SNPs from the background pathway. The competitive 
P-value can then be calculated as (2): 

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝑃 − 𝑣𝑎𝑙𝑢𝑒 =  
∑ 𝐼(𝑃𝑛

𝑁
𝑛=1 < 𝑃𝑜) + 1

𝑁 + 1
 

where I(.) is an indicator function, taking a value of 1 if the association P-value of the 
observed pathway (P0) is larger than the one obtained from the nth null pathway (Pn), and 
0 otherwise (see106 for additional details). 

Pathway-specific polygenic risk scores (PRS) (PRSet106) were calculated from non-
additive signatures from synaptic (4,306 genes in PRS; R2=0.0431), regulatory (5,249 
genes in PRS; R2=0.0419), all fifteen eGenes (4,988 genes in PRS, R2=0.0425), and 
genome-wide PRS (19,340 genes plus SNPs in regions outside gene annotations in 
genome-wide PRS, R2= 0.0925). For the analyses testing whether non-additive genes 
from synaptic/regulatory pathways explain larger R2 than the same number of non-
additive genes from random combinations (SI Fig. 24), we took 2,799 random genes from 
the non-additive synaptic and regulatory transcriptome, which corresponds to the number 
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of genes with non-additive effects in one of the random joint perturbations. For the GTF 
NULL permutation analyses, we selected n=2,799 random genes from the GTF file 
GRCh37.75. Pathway-specific PRS for each sample of 2,799 genes was calculated using 
PRSet106, as described above. This procedure was repeated 1000 times. 

Transcriptomic Risk Score (TRS) Analyses: In order to test the impact of non-additive 
genetic effects in silico, we used transcriptomic imputation methods to calculate 
genetically-regulated gene expression (GREX) for individuals from the Sweden-SCZ 
Population-Based cohort (SI Table 3). Brain GREX was calculated using PrediXcan73 with 
CMC dorsolateral prefrontal cortex (CMC-DLPFC) models6. Predicted GREX levels were 
calculated for the fifteen eGenes. An initial test of aberrant gene expression was 
performed by counting the number of genes with dysregulated GREX (defined as 
predicted GREX in the top or bottom decile of overall expression of that gene, defined in 
the direction of effect of that gene’s association with SCZ from S-PrediXcan analyses (top 
decile for positive effect, bottom decile for negative effect) for each of the five-gene groups 
(synaptic, regulatory, multi-function), and summed the number of aberrant genes present 
in each individual for each perturbed gene group (Synaptic, Regulatory, and Multi-
function). We then looked at the SCZ case/control proportion within each group of 
individuals with 3+, 1-2, and any genes with aberrant GREX. 

Association of Synaptic, Regulatory, and Multi-function gene-sets with SCZ: We tested 
for association of each of the fifteen eGene GREX individually with SCZ (SCZ ~ GREX), 
and then calculated composite scores of group GREX (Synaptic, Regulatory, and Multi-
function) using a Transcriptomic Risk Score (TRS), calculated as the sum of each GREX 
weighted by the direction of gene perturbation (1 for activation, -1 for inhibition) from in 
vivo experiments, divided by the total number of genes (N) in the gene-set (3): 

𝑇𝑅𝑆 =  
∑ 𝐺𝑅𝐸𝑋 ×  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑁

1

𝑁
 

We then tested for association of each TRS (Synaptic, Regulatory, and Multi-function) 
with SCZ status in the Swedish cohort.  

Permutation tests. We performed permutation tests to assess the impact of (1) the 
number of genes included in our TRS gene group and (2) the number of pathways 
impacted by those genes on SCZ case status. We used S-PrediXcan to find genes with 
CMC-DLPFC GREX associated with SCZ in a large SCZ cohort (NCases = 11,260, NControls 
= 24,542)39. From this resulting list of genes, we assigned genes to two groups: nominally-
significant genes (N=1,963, Bonferroni p<0.05), and tissue-specific significant genes 
(N=144, p<0.05/NGenes in CMC-DLPFC PrediXcan model). We created pathway sets affected by 
these genes using the overlap with Kyoto encyclopedia of genes and genomes (KEGG)168 
and gene ontology (GO)169,170. This gave us a sampling pool of 1,465 genes affecting 
8,324 pathway sets for the nominally-significant group, and 110 genes affecting 2,382 
pathway sets for the tissue-specific group. We then performed permutation sampling 
analyses (for nominally-significant and tissue-specific significant gene-pathway set pools) 
where we randomly sampled sets of five, ten, or fifteen genes from the sampling pool 
(adjusted for the size of each pathway set), calculated TRS from the sampled gene-set, 
and looked at the association of TRS with SCZ. We performed sampling 100,000 times 
for each gene-set size. For this analysis, TRS was calculated by taking the sum of each 
gene in the gene-sets GREX weighted by the direction of effect of the gene association 
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with SCZ from our S-PrediXcan analysis (1 or -1) (4): 

𝑇𝑅𝑆 =  
∑ 𝐺𝑅𝐸𝑋 ×  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑁

1

𝑁
 

We then looked at the overall association the number of pathways hit by each TRS (based 
on the annotated lists) with SCZ variance explained (SI Fig. 1A-C). To determine if the 
type of pathways hit by our perturbed genes was important to SCZ risk (i.e. is it more 
important to hit multiple, similar pathways or more diverse pathways to increase SCZ 
variance explained), we additionally assessed whether the similarity in make-up of 
pathways affected by the TRS was associated with SCZ. To do this, we used the R 
GeneOverlap package to calculate the average Jaccard Index of pathways for each TRS, 
and looked at the association of that index with SCZ. 

 

DATA AVAILABILITY 

All source donor hiPSCs have already been deposited at the Rutgers University Cell and 
DNA Repository (study 160; http://www.nimhstemcells.org/). All vectors are available at 
https://www.addgene.org/Kristen_Brennand/. Bulk and single cell-RNA sequencing data 
is available at the Gene Expression Omnibus under accession code GSE200774 
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200774]. Processed data can 
be accessed through Synapse under Synapse accession code syn27819129 
[https://www.synapse.org/Synapse:syn27819129/wiki/623524]. 

For the pooled and arrayed CRISPR analyses, all raw FASTQ Count files and 
corresponding processed data are available on the gene expression omnibus under GEO 
accession code GSE200774 
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200774]). Average 
expression count matrices and meta data following quality control and normalization of 
ECCITE-seq data as well as results of differential gene expression analysis and Target 
Network Reconstruction of Bayesian Bi-clustering are available on Synapse accession 
code syn27819129 [https://www.synapse.org/Synapse:syn27819129/wiki/623524. All 
corresponding code was uploaded to Synapse under accession code syn27819129 
[https://www.synapse.org/Synapse:syn27819129/wiki/623524]). DEGs, GSEA tables, 
synergy sub-categories, and synergy sub-category over-representation analysis for 
arrayed screen RNA-seq data; individual scRNA-seq perturbation DEGs and pathway 
enrichments from pooled experiments; reconstructed convergent networks and 
convergent network enrichment results (FUMA, ClusterProfiler, ORA of 
common/rare/variants) from arrayed and pooled screens; and CMAP drug prioritization 
queries and GSEA for 10 target and each individual perturbation signature used in CMAP 
query are available in Supplementary Data Files 1-4. 

CODE AVAILABILITY 

Code used for the convergence and additivity analyses presented in this manuscript can 
be accessed through Synapse under Synapse accession code syn27819129 
[https://www.synapse.org/Synapse:syn27819129/wiki/623524]. 
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FIGURE LEGENDS 

Figure 1. Prioritization and manipulation of synaptic, regulatory, and multi-function 
brain eGenes regulated by schizophrenia.  

A. Schematic of schizophrenia eGene identification and prioritization. Schizophrenia 
eGenes were prioritized by fine-mapping (COLOC), transcriptomic imputation 
(PrediXcan), and/or epigenomic imputation (EpiXcan) schizophrenia GWAS using post-
mortem brain expression data. B. Effect sizes of significant eGenes from either 
dorsolateral prefrontal cortex (DLPFC) EpiXcan (blue), DLPFC S-PrediXcan (green) or 
excitatory neuron (ExN) S-PrediXcan (purple) transcriptomic imputation studies. Size of 
circles corresponds with the -log10(adjusted p-value) C. Log2(fold change) of all eGenes 
in the arrayed experiment following single (teal) and joint perturbations across all 15 
eGenes (yellow) or functional (orange) or random (maroon) sets of 5 eGenes in D21 
hiPSC-NPC derived iGLUTs, using individual vectors. Size of circles corresponds with 
the -log(adjusted p-value) from a one-tailed t-test. D. Log2(fold change) of all eGenes in 
the pooled experiments SCZ1 and SCZ2 comparing all perturbed cells of one target 
eGene identity to all other cells of different eGene identities (blue) or compared to only 
Scramble gRNA (teal). Size of circles corresponds with the -log(adjusted p-value) from a 
one-way pairwise Wilcox Rank Sum. Created with BioRender.com. 

 

Figure 2. Downstream target-convergent networks identified by Bayesian bi-
clustering resolve distinct networks enriched for schizophrenia common and rare 
variant target genes and transcription factor binding motifs.  

A. Convergent networks resolved across the downstream transcriptomic impacts of all 
ten target perturbations in the pooled experiments SCZ1 and SCZ2 identified 1869 
convergent genes with enrichments for (i) brain-related GWAS genes, (ii) transcription 
factor binding sites of know schizophrenia-associated TFs (TFAP4, NFAT and ERR1), 
and (iii) common and rare variant target genes. B. Convergent networks resolved across 
the downstream transcriptomic impacts of all fifteen target perturbations in the arrayed 
assay identified 255 convergent genes with enrichments for (i) miRNA targets and (ii) 
transcription factor binding sites of know schizophrenia-associated TFs (TFAP4, NFAT 
and ERR1), and (iii) common and rare variant target genes. C. While largely distinct, the 
resolved convergent networks from the arrayed and pooled experiments shared 16 
significant enrichments for miRNA targets and 4 significant enrichments for TF targets – 
many of which are thought to play a role in regulation of schizophrenia-associated genes. 
2Ai, 2Bi: Overrepresentation analysis using one-tailed Fisher’s exact test for gene 
enrichment in curated disorder genelists with Benjamini-Hochberg FDR multiple testing 
correction. 2Aii-iii, 2Bii-iii, 2C: Geneset enrichment based on one-tailed hypergeometric 
test P-values with Benjamni-Hochberg FDR multiple testing correction using FUMA 
GENE2FUNC. D. Overlapping nodes between the two networks were often involved in 
neuronal proliferation, and differentiation. Created with BioRender.com. 

 

Figure 3. The degree of network convergence is influenced by functional similarity 
of target perturbations.  
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A. Defining convergence and calculating convergent network strength. Here we define 
convergence as the independent development of transcriptomic similarities between 
separate gene perturbations that move towards union or uniformity of biological function. 
B-G. Principal component analysis (PCA) of the convergence scores, the three Gene 
Ontology scores (Molecular Function, M.F.; Biological Process, B.P.; Cellular 
Component, C.C.), brain expression correlation (B.E.C), and sample size across all 
resolved networks in both the pooled and arrayed assays revealed that some functional 
scores have similar influence on variance as convergence (SI Fig. 19). B & E. Distribution 
of the degree of convergence (x-axis) of networks across all possible combinations of 2 
to 8 (y-axis; number of sets tested within each set) target perturbations from the single-
cell pooled experiment (B) and arrayed experiment (E) across all possible combinations 
of 2 to 14 target perturbations from the arrayed experiment show an influence of sample 
size on the ability to resolve a network. Data are represented as median values, lower 
and upper hinges correspond to the 1st and 3rd quartiles, upper and lower whiskers 
represent largest values within 1.5*IQR (inter-quartile range) from the first or third quartile. 
Each point represents convergence based on biclustering between 2-8 unique 
combinations of CRISPR perturbations. B: N = 4 replicates per condition (2 x donors, 2 x 
independent replicates per donor). E: N = 2 biological replicates, 10 gRNA replicates 
(SCZ1); N = 2 biological replicates, 2 technical replicates (sequencing batches) and 3 
gRNA replicates (SCZ2). C & F. For both the pooled (C) and the arrayed (F) experiment, 
PCs 1 (x-axis) and 2 (y-axis) explain ~62% of the variance between networks. PC 
loadings demonstrate the influence of each variable on the variance between networks; 
within the first two PCs the influence of brain expression correlation (B.E.C) and 
proportion of signaling genes perturbed (S.P) on PCs 1 and 2 on variance explained are 
more strongly related to convergence degree compared to other functional scores. Since 
degree of convergence is influenced by number of eGenes perturbed we ran PCA 
analysis within networks of the same set size and found that the pattern of influence of 
signaling proportion and brain expression correlation is maintained when convergence is 
ranked within set size shown in SI Fig. 20. D & G. This corresponds to an overall 
significant positive correlation between network convergence degree, signaling/synaptic 
proportion of perturbed genes in a set, and brain expression correlation between genes 
in a set (Bonferroni adjusted p-value of Pearson’s correlations: *<0.05, **<0.01, 
***<0.001. Created with BioRender.com. 

 
Figure 4. Perturbation of schizophrenia eGenes within functional categories results 
in non-additive effects on transcription impacting expression of genes linked to 
brain disorders and synaptic function.  

A. Schematic of differential expression analysis. Individual eGene perturbations, the 
implementation of the expected additive model based on the latter and the measured 
combinatorial perturbation permitting the detection of interactive effects through 
comparison with the additive model. B. Combinatorial perturbation of synaptic and 
regulatory eGenes resulted in non-additive effects on expression across 16.8% (synaptic) 
and 20.2% (regulatory) of the transcriptome. No significant non-additive effects were seen 
following joint perturbation of non-synaptic, non-transcriptional regulatory eGenes. Teal 
= proportion of genes showing significant non-additivity (two-tailed FDR<0.1); blue = 
proportion of genes showing no significant non-additivity. C. GSEA of non-additive genes 
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in the Synaptic eGene set demonstrated significant enrichment for genes relating to brain 
disorders and synaptic function. GSEA of non-additive genes in the Regulatory eGene 
set demonstrated significant enrichment for genes relating to brain disorders and synaptic 
function. SCZ = schizophrenia, CNV = copy number variant, FMRP = Fragile X Mental 
Retardation Protein, FDR = false discovery rate. D. Non-additive effects following 
combinatorial perturbation of sets of five, ten, and fifteen eGenes randomly assigned from 
the synaptic, regulatory, and multi-function eGene groups. The proportion of the 
transcriptome exhibiting significant non-additive effects increased with increasing 
numbers of perturbed eGenes (average of 5.1%, 10.0% and 19.2% of the transcriptome 
with non-additive FDR<0.1 after joint perturbations of five, ten, and fifteen eGenes 
respectively). 

Figure 5. Convergence accounts for non-additive effects within functional 
pathways. 
 
A-E. Meta-analysis of differentially expressed genes (DEGs) elicited by individual eGene 
perturbations for each five-gene grouping using METAL to identify DEGs that showed 
altered expression consistently in the same direction across all five eGene perturbation 
conditions for each set of eGenes. A. Convergence across individual eGene perturbations 
is correlated with the degree of non-additive effect seen in the corresponding joint 
perturbation condition. Two tailed Pearson’s r2 = 0.6569, p=0.0147. Teal = number of 
genes showing significant non-additivity (two-tailed FDR<0.1); yellow = no. of genes 
showing significant convergent effects (two-tailed FDR<0.1) for each perturbation set. B. 
For each joint eGene perturbation group, non-additive impacts on transcription were 
compared with genes showing significant convergence across individual perturbations for 
the same eGene set. C. Evidence of convergence was found in 1070 genes across the 
synaptic eGene perturbations, 761 of which also exhibited non-additive effects in the 
additive-combinatorial comparison for the same set. D. Evidence of convergence was 
found in 1070 genes across the regulatory eGene perturbations, 1000 of which also 
exhibited non-additive effects in the additive-combinatorial comparison for the same set. 
E. No significant non-additive effects and only minimal convergence could be seen in 
eGene perturbations across functional pathways. F. GSEA of convergent genes in the 
synaptic and regulatory eGene groups demonstrated significant enrichment for genes 
relating to brain disorders and synaptic function. SCZ = schizophrenia, CNV = copy 
number variant, FMRP = Fragile X Mental Retardation Protein, ID = intellectual disability, 
PPI = protein-protein interaction, KEGG = Kyoto Encyclopedia of Genes and Genomes, 
FDR = false discovery rate. 

 
Figure 6. In vitro validation identifies opposing effects of in silico drug predictions 
and top schizophrenia eGenes (related to Box 2). 
In vitro validation of drug-eGene phenotypic interactions. A. Effects of 48-hour treatment 
with 10µM simvastatin on synaptic puncta density in TMEM219 CRISPRa perturbed (teal) 
or non-perturbed (purple) iGLUT neurons. Syn1-positive puncta values are expressed 
relative to MAP2-positive neurite length in each well. Perturbation of TMEM219 
expression with CRISPRa significantly increased synaptic puncta density; this increase 
was partially ameliorated by 48hr treatment with 10µM simvastatin (2-way ANOVA; 
CRISPRa variation p<0.0001; CRISPRa x Drug treatment variation p<0.05). N = minimum 
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of 2 independent experiments across 2 donor lines with 12 technical replicates per 
condition. Values for each technical replicate in imaging experiments were averaged data 
from 9 separate images per single well. B. Treatment of cells perturbed with either 
TMEM219 CRISPRa with 10 µM Simvastatin reverses or suppresses the transcriptomic 
impacts of the schizophrenia eGene perturbations alone (SI Fig. 28-30). Treatment of 
cells with CRISPRa TMEM219-gRNA and 10µM Simvastatin over 48hrs opposes the 
transcriptomic impact observed in CRISPRa TMEM219-gRNA + Vehicle treated cells. 
Venn diagram of significant DEGs at an (top left) adjusted p-val <= 0.05 and at an (top 
right) unadjusted p-value of <= 0.05. (bottom) Dot plot demonstrating the logFC of each 
gene in either the TMEM219 + Vehicle (green) or TMEM219 + 10uM Simvastatin (yellow) 
condition, ordered by degree of logFC in the TMEM219 + Vehicle treated cells. Size of 
the points corresponds to the -log10 (adjusted p-value).  
 

 

 
 
 
 
Editorial Summary: 
Here the authors perturb genes linked to schizophrenia risk in human neurons. They find that single 
perturbations share common downstream effects on gene networks, while joint perturbations result in 
downstream effects being saturated. 
 
Peer review information: Nature Communications thanks the anonymous, reviewers for their 
contribution to the peer review of this work. A peer review file is available. 
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Table 1. Top PGC3 SCZ-GWAS eGenes, prioritized by EpiXcan and epigenetic 
annotation, as epigenetic/regulatory (NEK4, UBE2Q2L, ZNF804A) and signaling 
(PLC1, NAGA, FES, CALN1, SNAP91) for pathway studies. EpiXcan test: elastic net 
regression-based predictor model of methylation applied to genotype data to identify 
genetically regulated gene methylation, two-tailed, within tissue Bonnferonni multiple 
comparison correction. NEK4, PLCL1, UBE2Q2L, NAGA, FES, CALN1, and 
ZNF804A are present in the pooled screen SCZ1. 
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Table 2. Top PGC3 SCZ-GWAS eGenes, prioritized by COLOC and PrediXcan, as 
synaptic (SNAP91, SNCA, DOC2A, CLCN3, PLCL1), regulatory/epigenetic (ZNF823, 
INO80E, THOC7, SF3B1, GATAD2A), and unrelated multi-function (FURIN, CUL9, 
CALN1, PCCB, TMEM219). COLOC test: Approximate Bayes Factor method, two-
tailed, Benjamini-Hochberg multiple comparisons correction. PrediXcan test: elastic 
net regression-based predictor model of gene expression applied to genotype data to 
identify genetically regulated gene expression, two-tailed, within tissue Bonnferonni 
multiple comparison correction. CALN1, CLCN3, CUL9, DOC2A, PLCL1, INO80E, 
SF3B1, SNAP91, TMEM219, ZNF823 are present in the pooled screen SCZ2. All 15 
eGenes are present in the subsequent arrayed screen.  
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Gene Functional Role Rare Variants & Disorders Common Variants & Gene targets

ASCL1 Pioneer bHLH transcription factor (TF); 

role in neuronal differentiation

Schizophrenia, Microcephaly, 

Parkinson’s D isease, Pitt-Hopkins 

Syndrome, Neuropathy

SCZ (rs10860960, rs36104021, rs4764719), 

depressive symptom (rs17041417)

C1QL1 Predicted to act upstream of or within maintenance of synapse 

structure; motor learning; & neuron remodeling. 

Autosomal Recessive Deafness, 

High-intolerance CNV

insomnia (rs9894577), CFM (rs11871429, 

rs9908330)

CCDC117 Facilitates DNA repair, cell cycle progression, & cell proliferation 

through its interaction w/CIAO2B

SCZ colocalized brain eQTL (rs29299806; 

Liang et al. 2023 BioRx) 

CDKN2D Cell growth regulator; controls cell cycle G1 progression, 

participates in repressing neuronal proliferation

MAFF
Basic leucine zipper (bZIP) TF; lacks a transactivation domain. 

Binds promoter of oxytocin receptor (OTR) gene, enhances 

expression of the OTR during term pregnancy. Paralog of MAF.

MYH15 Predicted to enable ATP, actin filament, 

and calmodulin binding activity.

High-intolerance CNV, 

1' de Novo SCZ-associated CNV 

(Kirov et. al 2011), Autosomal 

Recessive Deafness

BP(rs1531188), depression (rs1531188), GAD 

(rs4855559), CFM (rs3860537), insomnia 

(rs62266174,rs6768511,rs6786515,rs6795280)

RBM7 RNA-binding subunit of the trimeric nuclear exosome targeting 

(NEXT) complex, NEXT functions as an RNA exosome cofactor.

Pontocerebellar hypoplasia 

(neurodegen); Ogden Syndrome 

(neurodevelopmental)

depressive symptom (rs77414181), conduct 

disorder (rs17116334), ulcerative colitis 

(rs200349593)

SLC4A4 Sodium bicarbonate cotransporter (NBC) involved in regulation of 

bicarbonate secretion/absorption & intracellular pH

Migraine, Familia Hemiplegic, 

Migraine Disorder, 2' FMRP-target 

(ID) 

Downregulated in clozapine-responsive SCZ 

neurons (Hribkova et al., 2022), SCZ brain hub 

gene (Li et al. 2022) 

SNX33 Reorganization of the cytoskeleton, endocytosis and cellular 

vesicle trafficking via its interactions w/WASL, DNM1 and DNM2. 
High-intolerance CNV ClinVar SCZ target

SOX21

Overexpression of SOX21 up-regulates the OPRM1 distal promoter 

activity in mor-expressing neurons. Regulates early forebrain fate 

in iPSC models and Involved in RA response (Kim et al. 202 

BioRx). 

ZNF185 Predicted to regulate cellular proliferation and/or differentiation.
Downregulated in ASD/WS patients (Niego & 

Benitez-Burraco 2020)

Autism Spectrum Disorder (ASD), Alzheimer's Diseases (AD), Bipolar disorder (BP), Cognitive Functional Measurement (CFM), Copy Number Variant (CNV), Fragile X mental 

retardation protein (FRMP), Generalized Anxiety Disorder (GAD), William’s Syndrome (WS), Schizophrenia (SCZ)
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