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ABSTRACT

Genome wide association studies of schizophrenia reveal a complex polygenic risk
architecture comprised of hundreds of risk variants; most are common in the population,
non-coding, and act by genetically regulating the expression of one or more gene targets
(“eGenes”). It remains unclear how the myriad genetic variants that are predicted to
confer individually small effects combine to yield substantial clinical impacts in aggregate.
Here, we demonstrate that convergence (i.e., the shared downstream transcriptomic
changes with a common direction of effect), resulting from one-at-a-time perturbation of
schizophrenia eGenes, influences the outcome when eGenes are manipulated in
combination. In total, we apply pooled and arrayed CRISPR approaches to target 21
schizophrenia eGenes in human induced pluripotent stem cell-derived glutamatergic
neurons, finding that functionally similar eGenes yield stronger and more specific
convergent effects. Points of convergence constrain additive relationships between
polygenic risk loci: consistent with a liability threshold model, combinatorial perturbations
of these same schizophrenia eGenes reveal that pathway-level convergence predicts
when observed effects will fail to sum to levels predicted by an additive model. Targeting
points of convergence as novel therapeutic targets may prove more efficacious than
individually reversing the effects of multiple risk loci.
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INTRODUCTION

The genetic architecture of schizophrenia is complex and polygenic. Highly penetrant rare
mutations underlie only a fraction of cases!. Rather, genome wide association studies
(GWAS) indicate that schizophrenia is predominantly associated with genetic variation
that is common in the population?. These risk loci have small effect sizes, are typically
found in non-coding regions, and regulate the expression of one or more genes3®.
Mapping GWAS loci to their target genes (termed “eGenes”, as defined by significant
genetic regulation of expression) remains challenging, but is informed by expression
guantitative trait loci (eQTL)®9, chromatin accessibility'®-1?, enhancers'36, and 3D
chromatin architecture!’-?2, The regulatory activity of risk loci can be empirically evaluated
using massively parallel reporter assays?3>2?° and pooled CRISPR screens?, and causal
gene targets and functions definitively resolved by genetic engineering in human induced
pluripotent stem cells (hiPSCs)10.11.17.27.28

Schizophrenia eGenes are particularly expressed during fetal cortical development?°-31
and in glutamatergic neurons (as well as medium spiny neurons, and certain
interneurons)3'-33, They are highly co-expressed in human brain tissue3* and cultured
neurons!’, show high connectivity in protein-protein interaction networks!”-3>-37 and are
enriched for roles in synaptic function and gene regulation?173842 | ikewise,
transcriptomic studies of post-mortem brains from schizophrenia cases also identify
aberrant expression of genes associated with synaptic function and chromatin dynamics



in neurons**-*5, The mechanism by which hundreds of distinct eGenes lead to shared
molecular pathology is unknown.

We predicted that eGenes linked to schizophrenia would share substantial downstream
transcriptomic changes with a common direction of effect (termed “convergence”).
Although convergence has been described in the context of loss-of-function autism
spectrum disorder risk genes?*¢-°¢, these rare mutations almost never co-occur in the same
individual. The convergent impact of common variants — which are frequently inherited
together, and the impacts of which are apparent only in aggregate — remain unknown.
We targeted twenty-one schizophrenia eGenes in hiPSC-derived induced glutamatergic
neurons (iIGLUTSs) using pooled and arrayed CRISPR-based approaches, significantly
perturbing seventeen (CALN1, CLCN3, DOC2A, FES, FURIN, GATAD2A, NAGA, PCCB,
PLCL1, THOC7, TMEM219, SF3B1, SNAP91, SNCA, UBE2Q2L, ZNF823, ZNF804A),
and resolving convergent impacts robust to experimental and donor effects. To test if
convergence influenced the outcome when eGenes were inherited in combination (i.e. if
eGene effects sum linearly according to the additive model?® ), we compared manipulation
of eGenes one at a time and in groups defined by annotated functions at the synapse
(“synaptic’: SNAP91, CLCN3, PLCL1, DOC2A, SNCA), or regulating transcription
(“regulatory”. ZNF823, INO8OE, SF3B1, THOC7, GATAD2A), or with un-related non-
synaptic, non-regulatory biology (“multi-function”. CALN1, CUL9, TMEM219, PCCB,
FURIN), and random combinations thereof. Altogether, with broad relevance across
complex polygenic disease®’:%8, our work begins to experimentally determine answers to
the long-standing question of how risk variants interact in human neurons.

RESULTS

Convergence of downstream transcriptomic impacts across schizophrenia eGene
perturbations.

We?"59-61 and others!! 6268 demonstrated that iGLUTs are >95% glutamatergic neurons,
robustly express glutamatergic genes, release neurotransmitters, produce spontaneous
synaptic activity, and recapitulate the impact of psychiatric trait associated genes. iGLUTs
express most schizophrenia eGenes, including all eGenes prioritized herein?’.

eGenes whose brain expression was predicted to be up-regulated by GWAS loci? were
prioritized for a pooled CRISPR activation (CRISPRa) experiment, which are currently
restricted to one direction of effect. eGenes that were non-coding, located in the MHC
locus, or poorly expressed in IGLUTs were excluded. First, transcriptome and epigenome
imputation (EpiXcan®®) of schizophrenia GWAS? risk loci from post-mortem brain*370
prioritized seven schizophrenia eGenes (SCZ1: CALN1, FES, NAGA, NEK4, PLCL1,
UBE2Q2L, and ZNF804A) (Table 1; Fig. 1A). Second, transcriptomic imputation
(prediXcan’*73, p<6x10°) of SCZ GWAS? identified ~250 eGenes (S| Table 1),
subsequently narrowed by considering colocalization (COLOC#75, PP4 >0.8) between
schizophrenia GWAS? and post-mortem brain expression quantitative loci (eQTL) peaks®,
which identified 25 eGenes (Sl Table 1). 22 eGenes overlapped between approaches,
ten of which were coding genes associated with increased expression in schizophrenia
(SCZz2: CALN1, CLCNS3, CUL9, DOC2A, PLCL1, INO8OE, SF3B1, SNAP91, TMEM219,
ZNF823) (Table 2; Fig. 1A). Of note, our eGene selection, derived in bulk post-mortem



brain, is largely preserved using an excitatory neuron-specific PrediXcan analysis (ExN-
PrediXcan, Tables 1A and 1B).

Pooled CRISPR screening combined single-cell RNA sequencing readouts and direct
detection of sgRNAs’®. Two independently designed, constructed, and validated pooled
CRISPRa libraries (SCZ1 and SCZ2) were transduced into iGLUTs from two donors in
independent experiments at unique developmental time-points (DIV7 or DIV21, Sl Fig
1F). Non-perturbed cells from both SCZ1 and SCZ2 demonstrated gene expression
patterns that correlated with expression in the adult postmortem DLPFC in neurotypical
controls (Sl Fig. 12A-C) and cortical neurons. Specifically, these cells were most strongly
correlated with fetal cells transitioning to neuronal fate, fetal excitatory neurons, and
cortical adult neurons (Sl Fig. 13). The large number of presumably wildtype neurons in
the population expressing either a scramble gRNA or no detectable gRNA at all (>60% of
all pooled cells, see Sl Fig. 4A), mitigates the possibility that results were confounded by
non-cell autonomous effects. Likewise, there was no significant difference in the degree
of variance in maturity of the cell population between experiments and imputed cell
fractions were not correlated with perturbation status (S| Fig. 2 and 3). An unsupervised
framework, Weighted Nearest Neighbor Analysis’’, assigned successful perturbations; in
total, we resolved perturbations of six of seven SCZ1 eGenes (SCZ1: CALN1, FES,
NAGA, PLCL1, UBE2Q2L, and ZNF804A; ten gRNAs each) and four of ten SCZ2 eGenes
(SCZz2: CLCN3, SF3B1, TMEM219, ZNF823; three gRNAs each). For 5401 and 6352
cells, respectively, we identified the sgRNA in each cell, the cis target gene with
differential expression, and the downstream trans alterations to pathways resulting from
initial cis up-regulation. Following QC, normalization, and removal of doublets (cells
containing more than one sgRNA), an average of 316 cells per sgRNA were successfully
perturbated (ranging from 93-552) for a total of 3640 perturbed cells and 210 scramble
controls (Sl Fig. 4-7). Upregulation of eGenes by CRISPRa ranged from 0.2 to 3 log2
fold-change (Log2FC), comparable to the predicted effect sizes [SCZ1 (0.08 to 0.35);
SCZz2 (0.2 to 0.77)] and eGene expression changes (Log2FC range 0.3-5.2) in the post-
mortem dorsolateral prefrontal cortex (Fig. 1B, C; S| Table 2,3; Fig. 8). Effects of different
gRNAs targeting the same eGenes were highly concordant, even when the degree of
perturbation varied (S| Fig. 15). Differentially expressed genes (DEGs, prpr<0.05,
Supplementary Data 2) were enriched for neuroactive ligand-receptor interaction, protein
processing in the endoplasmic reticulum, proteasome, and spliceosome Gene Ontology
and KEGG Pathways terms (Supplementary Data 3), suggesting that diverse eGenes
might impact similar neural processes and pathways.

We define “convergence” as the independent development of transcriptomic changes in
the same direction resulting from all eGene perturbations. DEGs were meta-analyzed
(using METAL'®, p< 1.92x10), and “convergent” genes were defined as those with
shared direction of effect across all eGene perturbations and with non-significant
heterogeneity between eGenes (Cochran’s heterogeneity Q-test pret > 0.05). Across all
schizophrenia eGenes, 790 significantly down-regulated genes and 10 significantly up-
regulated genes were identified (Bonferroni meta p-value<=0.05) (Supplementary Data
3), enriched for brain development, neuronal morphology, signaling, and transcriptional
regulation (Supplementary Data 3).

To identify groups of genes with similar expression patterns across eGene perturbations



we define “convergent networks” as relationships between genes that are co-regulated
by shared biological mechanisms. Unsupervised Bayesian bi-clustering’® and gene co-
expression network reconstruction from the pooled CRISPRa single cell RNAseq (h=3850
cells, 16851 genes, donor/batch corrected and normalized to adjust for covariates such
as cell heterogeneity) identified high-confidence co-expressed gene networks. Across the
pooled single-cell experiments, 1048 protein-coding source node genes (>5 edges) were
identified, with a total network membership of 1869 genes that clustered together in at
least 20% of the runs (Fig. 2A, Supplementary Data 3), and significant enrichments for
gene targets of schizophrenia GWAS loci as well as transcription factors (AP4 (TFAP4)83,
NFAT®, ERR1%, and TCF47°%80) and miRNAs (miR-30) that regulate schizophrenia
GWAS loci (Fig. 2A, i-iii). The cross-target convergent network was enriched in biological
pathways implicated in schizophrenia etiology (Sl Fig. 9); over representation analysis
revealed schizophrenia, bipolar disorder, intellectual disability, and autism spectrum
disorder common and rare risk genes to be significantly over-represented in node genes
shared across all eGene perturbations (Fig. 2A, i; Supplementary Data 3).

To study the strength and composition of convergent networks, we define “network
convergence” as the sum of the network connectivity score (i.e., networks with fewer
nodes and more interconnectedness have increased convergence). We endeavored to
identify the biological factors (e.g., number of eGenes, functional similarity of eGenes,
and eGene co-expression) that influenced network convergence. eGene number tested
the number of eGenes used to generate a convergent network. Functional similarity (i.e.,
the degree of shared biological functions amongst eGenes) was calculated two ways:
Gene Ontology semantic similarity scoring (within biological pathway, cellular component,
and molecular function)®, and synaptic/signaling score (proportion of eGenes with
annotated function as either “signaling” for pooled or “synaptic” for arrayed). The brain
expression correlation was calculated as the strength of the correlation of eGene
expression in the post-mortem dorsolateral prefrontal cortex® (see Methods, Sl Fig. 10).
Bayesian reconstruction® was performed across all random combinations of eGene
perturbations from the pooled experiment (1003 unique eGene-Convergent Network sets)
and arrayed experiment described in the following section (32752 sets) and resolved
distinct networks (Fig. 3B,E). Principal components analysis tested the effect of biological
factors on the network convergence scores (Fig. 3C-D, F-G; Sl Fig. 10-11). Only brain
expression correlation and the proportion of synaptic/signaling genes were significantly
positively correlated with network convergence across all sets in both the pooled [brain
expression correlation: Pearson’s r=0.24, adj. p-value<0.001, signaling proportion:
Pearson’s r=0.14, adj. p-value<0.01, n=826] and arrayed experiments [brain expression
correlation: Pearson’s r=0.083, Bonferroni adjusted p-value<0.001, signaling proportion:
Pearson’s r=0.25, adj. p-value<0.001, n=16319] (Fig. 3D,G). The average expression of
perturbed eGenes was positively correlated with network convergence but was only
significantly associated in the arrayed experiment (Fig. 3D, G). Finally, although SCZ1
and SCZ2 pooled CRISPR screens were generated from distinct differentiation
timepoints, the proportion of eGene perturbations by experiment did not correlate with the
degree of network convergence, indicating that we have adequately controlled for
variation in neuronal maturation (Fig. 3D; Pearson's r=0.062, Bonferroni p-value=1).

Convergence constrains the total impact of combinatorial perturbations of schizophrenia
eGenes.




We manipulated eGenes in combination to approximate the polygenic nature of
schizophrenia and test if convergence between eGenes influences observed effects.
Given that genes implicated in synaptic biology and epigenetic/transcriptional regulation
are enriched for the schizophrenia risk?173842 we sought to generate three groups of
eGenes, linked to synaptic biology, gene regulation, or neither (Fig. 1A, arrayed
experiment). Unconstrained by the unidirectionality of pooled CRISPR screens, we did
not restrict our list to eGenes with a single direction of effect. From the 18 coding genes
prioritized by the intersection of transcriptomic imputation and colocalization, eGenes
were separated into discrete functional categories based on gene ontology annotations.
Our final gene list included five synaptic genes (SNAP91, CLCN3, PLCL1, DOC2A,
SNCA), five regulatory genes (ZNF823, INO8S8OE, SF3B1, THOC7, GATAD2A), and five
genes with non-synaptic, non-regulatory functions, termed “multi-function” (CALNL1,
CUL9, TMEM219, PCCB, FURIN) (Table 2; Fig. 1A).

We applied an arrayed design (i.e., distinct conditions in each well) to manipulate
schizophrenia eGenes alone and in combination, allowing us to capture cell autonomous
and non-cell autonomous effects in a manner not possible in the pooled design (Fig. 4,
S| Table 4, Sl Fig. 19). Endogenous expression was increased and decreased (via
CRISPRa and shRNAs, respectively) in the direction associated with schizophrenia risk.
CRISPRa and shRNA were specifically selected for perturbation due to the potential for
simultaneous, bi-directional perturbation of target eGenes in joint perturbation conditions
(see Methods). Three to five vectors per gene were tested in 7-day-old (D7) iGLUTS,
identifying the single vector that best achieved the level of significant perturbation
predicted by eQTL analyses as confirmed by gPCR (Sl Fig. 1E). Each eGene was
perturbed in 21-day-old (D21) iGLUTSs for 72 hours (Fig. 1D, Sl Fig. 1F-G, Sl Fig. 19A, SI
Fig. 21A), individually and jointly, including appropriate vector and scrambled controls,
from two neurotypical donors with average polygenic risk scores (one experimental batch
per donor). Three groups of five random genes, one group of ten random genes, and one
group of all fifteen genes were also included. Significant (p<0.05) changes in eGene
expression in iIGLUTs were confirmed by RNAseq in 13/15 eGenes (SNAP91, CLCN3,
PLCL1, DOC2A, SNCA, ZNF823, SF3B1, THOC7, GATAD2A, CALN1, TMEMZ219,
PCCB, FURIN) (Sl Fig. 1G, SI Fig. 19A); we validated the magnitude and direction of
experimental eGene perturbation relative to the dosage effects of the top predicted causal
SNPs (e.g. eQTL effect size) and predicted eGene expression changes (Fig. 1B, D; Sl
Tables 2,3,4). Across donors, donor status did not significantly impact the degree of
eGene perturbation (Sl Fig. 1H, p=0.75, paired t test). Single perturbation of eGenes by
CRISPRa ranged from 0.07 to 0.44 log?2 fold change and RNAi ranged from -0.22 to -0.87
log2 fold change, comparable to EpiXcan effect sizes of 0.10 to 0.31 and -0.06 to -0.20
and PrediXcan effect sizes of 0.22 to 0.77 and -0.17 and -0.38 for corresponding eGenes.

Across the majority of the schizophrenia eGenes in our arrayed experiment, competitive
gene-set enrichment analysis using 698 manually curated neural®® gene-sets (S| Fig.
19B, C, Sl Fig. 20A, Supplementary Data 1) resulted in DEGs (prpor<0.05) that were
strongly enriched for gene-sets related to rare and common psychiatric disorder risk
genes (11/15) (Sl Fig. 20B), pre-synaptic biology (10/15) (Sl Fig. 20C), and glutamatergic
neurotransmission (10/15) (S| Fig. 20D).

Overall, we again observed robust convergence at the gene- (METAL"®, p<1.92x107)



and network-level (Bayesian network reconstruction®) (Supplementary Data 3). A
densely interconnected network of 255 genes (n=63 samples, 4/sgRNA or shRNA, 25487
genes, and normalized to adjust for covariates such as donor) was significantly enriched
for biological pathways implicated in schizophrenia etiology; over representation analysis
revealed that target genes of schizophrenia, intellectual disability, and autism spectrum
disorder common and rare variants were significantly over-represented in the network
(Fig. 2B,i; Supplementary Data 3), as well as genes regulated by miRNAs and
transcription factors implicated in schizophrenia etiology, such as hsa-miR-124a2% and
Fig. 9A) or regulatory (Sl Fig. 9B) function resolved unique convergent networks with no
overlap in node genes, suggesting that the functional similarity of schizophrenia eGenes
affects downstream convergence. Each of these networks included neuropsychiatric risk
genes as well as those annotated for synaptic and immune signaling function
(Supplementary Data 3). Networks derived from arrayed and pooled experiments shared
significant enrichments for targets of miRNAs and transcription factors associated with
schizophrenia (Fig. 2C), although only nine node genes overlapped (Fig. 2D).

Following combinatorial manipulation of schizophrenia eGenes, most genome-wide
effects occurred as predicted by summing differential expression for single eGene
perturbations (“expected additive” model, Box 1), yet 16.8% of the total transcriptome for
synaptic eGenes and 20.2% for the regulatory eGenes did not (Fig. 4; Sl Fig. 21-23; Sl
Table 4). We term these overwhelmingly sub-additive effects (SI. Fig. 21D) as “non-
additive” (Bayes moderated t-statistics, FDR p < 0.1) and report 11 synergy coefficients®®
of 43.86 (synaptic eGenes), 42.74 (regulatory eGenes), and 0.00 (multi-function eGenes).
Non-additive genes resulting from combinatorial synaptic and regulatory eGene
perturbations were significantly enriched for SZ risk genes as well as synaptic gene sets
(Fig. 4C).

Key controls demonstrate that non-additive effects did not result from technical limitations
of our approach. Consistent with single cell level effects, observations were similar
whether tested from independent expression vectors (Fig. 4), a single multiplexed vector
expressing all gRNAs?’ (Sl Fig. 22A-F), or a polycistronic gRNA vector (Sl Fig. 22G,H).
Likewise, modified ECCITE-seq confirmed a high number of uniqgue gRNA integrations at
the single cell level (SI Fig. 22I). Non-additivity could not be attributed to differences in
the magnitude of eGene perturbation between individual and combinatorial perturbations
across both donors (Sl Fig. 21B, combined donors p>0.05 Wilcoxon ranked sum test,
individual donors p>0.05 2 way ANOVA), reduced fold-change of non-additive genes (Sl
Fig. 23C), or differences in baseline expression between non-additive and additive genes
(Sl Fig. 23D).

Although increasing the number of eGenes perturbed increased the degree of interactive
effects on transcription (compare joint perturbations of random sets of 5, 10 and 15
eGenes, Fig. 4D, Sl Fig 23A), our data suggested that specific eGenes may drive non-
additive effects; for example, log2FC of CLCN3 (synaptic) and INO8OE (regulatory) are
the most correlated with synergy coefficients (Sl Fig. 16). When evaluated across all
eGene sets, the proportion of synaptic (Pearson’s r=0.49) and regulatory (r=0.45) eGenes
in a set positively correlated with non-additivity, while proportion of multifunctional eGenes
was strongly negatively correlated (r=-0.94).



Given that >95% of non-additive genes (whether up- or down-regulated, FDR p < 0.1)
showed less differential expression than predicted by the additive model (i.e., changes
that were “less up” or “less down” than expected) (Sl Fig. 21C), we queried whether
overlapping downstream transcriptomic effects (e.g., convergence) constrain the total
effects observed in combinatorial perturbation.

Across all combinational perturbations, convergence was significantly correlated with the
degree of non-additive effects seen (Fig. 5A, Pearson’s r?> = 0.6569, p=0.0147). The
robust gene-level convergence observed for the synaptic (1070 genes) and regulatory
(1070 genes) eGene groups was dramatically reduced in the multi-function eGene group
(71 genes) (METAL'8, p< 1.92 x10°) (Fig. 5B-E; Supplementary Data 3). Convergent
genes highly overlapped with non-additive genes (Fisher’s exact test, p<2.2x101¢ for both
synaptic and regulatory eGene groups). 71% (761 of 1070) and 94% (1000 of 1070) of
convergent genes downstream of synaptic and regulatory eGenes, were included in
respective non-additive gene lists (Fig. 5C,D). Convergent effects of synaptic eGenes
were enriched for synaptic function (e.g., mGIuR5 interactors, p=1.64 x10%) and brain
disorder (e.g., schizophrenia GWAS, p=8.41x10%) gene-sets (Fig. 5F); regulatory eGene
convergence was also enriched for brain disorder gene-sets (e.g., bipolar disorder,
p=9.92x10%) (Fig. 5G). Taken together, these findings highlight convergent effects
between schizophrenia eGenes on synaptic function and brain disorder risk.

Convergent signatures represent plausible therapeutic targets.

Individually targeting all eGenes with perturbed expression in each patient is an
insurmountable challenge. If instead it was possible to reverse the impact of many
schizophrenia eGenes by targeting a smaller number of shared downstream targets,
convergent networks might represent important therapeutic targets.

We identified drugs predicted to manipulate top node genes®. Across all eGene
perturbations, reversers of convergent node signatures were enriched for mechanisms
previously associated with psychiatric disorders, including HDAC inhibitors®” (normalized
connectivity score (NCS)=-1.63; FDR adjusted pval<0.08), ATPase inhibitors® (NCS=-
1.61; FDR<0.08), and sodium channel blockers®® (NCS=-1.59; FDR<0.08). Conversely,
mimickers of convergent node signatures were enriched for pathways associated with
stress response, including glucocorticoid receptor agonists (NCS=1.66, FDR<0.08) and
NF-kB pathway inhibitors (NCS=1.60; FDR<0.2) (Supplementary Data 4). Finding only
nominally significant enrichments in non-neuronal cell lines suggests these may be
neuron-specific drug responses.

Three drugs that opposed the transcription signatures of top convergent nodes
specifically in neurons or neural progenitor cells (NPCs) were prioritized (see Methods,
Box 2): anandamide (reverser of convergent network signature, NCS=-1.59, FDR=1 as
well as CALN1 signature alone, NCS=-1.23, FDR=0.15), simvastatin (NCS=-1.31,
FDR=1; TMEM219, NCS=-0.8823, FDR=0.25), and etomoxir (Convergence, NCS=-1.86,
FDR<2.2e-16 ; CALN1, NCS=-1.42, FDR=0.0355; TMEM219, NCS=-1.09, FDR=0.0112)
(Supplementary Data 4). These drugs were tested for their ability to reverse, or oppose,
the effects of paired schizophrenia eGene perturbations in iGLUTs: CRISPRa for eGenes
was followed by treatment with matched reverser drugs (CALN1: anandamide and
etomoxir; TMEM219: simvastatin and etomoxir). Downstream transcriptomic (bulk RNA-



seq) and phenotypic (high content imaging, multi-electrode array) assays were assessed
to resolve eGene-drug effects on neuronal molecular, morphological, and physiological
phenotypes (Fig. 6, SI Fig. 28-30). All drugs reversed or suppressed the transcriptomic
impact of the CRISPRa perturbation alone. Notably, simvastatin ameliorated the
transcriptomic impact of TMEM219 and blunted an increase in synaptic density caused
by TMEM219 perturbation (2 way ANOVA, CRISPRa perturbation p<0.001; CRISPRa
perturbation x drug treatment interaction p<0.05) (Fig 6A-B). Etomoxir limited the
transcriptomic impact of perturbations of both CALN1 and TMEM219 (SI. Fig 28A-B).
Thus, it may be possible to pharmacologically reverse convergent networks rather than
targeting schizophrenia eGenes individually.

DISCUSSION

Shared downstream effects between target genes of schizophrenia GWAS loci were
greatest when eGenes had shared biological functions, and enriched for psychiatric risk,
brain development and synapse biology genes. Convergent signatures were
experimentally robust, detected in three partially overlapping lists of schizophrenia
eGenes, whether manipulated in arrayed or pooled experimental designs, and regardless
of whether iGLUTs shared a common donor, cell type of origin, or developmental time
point. Increased convergence between eGenes with shared biological function correlated
to smaller than expected (“sub-additive”) effects following combinatorial perturbations of
these same eGenes. Of note, beyond transcription, combinatorial eGene manipulations
resulted in phenotypic changes that differed from the summed impacts of individual
eGene perturbations (SI Fig. 25-27), reinforcing that polygenic risk cannot be extrapolated
from experiments that test one risk gene at a time. Finally, we report that pharmacological
manipulation of a convergent hub reversed the effects of multiple eGenes, suggesting
that for polygenic disorders a preferred therapeutic approach may be to target shared
downstream effects rather than individual risk loci.

Altogether, the experimental eGene perturbations approximated the magnitude and
direction of predicted eGene effect associated with schizophrenia, and generally resulted
in downstream gene expression changes related to synaptic biology and psychiatric
disorder risk. Nonetheless, further gene set enrichment analysis using 493 inflammation
and cell death gene-sets*’ revealed enrichments related to cell stress and
neurodegenerative diseases across many perturbations (Supplementary Data 1). This
enrichment was not seemingly associated with viral burden, being present whether single,
combinatorial, or multiplexed vectors were applied. If our in vitro system, defined by
repeated lentiviral transduction, antibiotic selection, eGene perturbation, and single cell
dissociation, stressed human neurons more than accounted for by the scramble gRNA
controls, this would represent a concern of relevance to all CRISPR experiments in
human neurons. However, neither high content imaging nor multi-electrode array
analyses indicated decreased cell survival or a cessation of neuronal activity (S| Fig. 26,
27). Moreover, inflammation® and oxidative stress®, and particularly fetal exposures to
inflammation, stress, and hypoxia®2% are indeed associated with schizophrenia risk.

Mapping GWAS associations to eGene targets is challenging and can vyield false
positives. How well our three eQTL-based methods prioritized causal eGenes remains a



critical question, particularly in that they rely on tissue-specific eQTL data. There are
frequent hotspots of multiple TWAS-associated genes in the same locus’?, with co-
regulation known to underlie pleiotropic TWAS associations®. Here, three eGenes were
linked to a single SNP (rs3814883) in schizophrenia-associated copy number variant at
16p11.2, a locus that harbors the greatest excess of psychiatric common polygenic
influences®. We posit that a causal GWAS SNP may co-regulate multiple adjacent and
distal genes at this loci through chromatin contacts, but it is possible that one or more
eGenes at this locus were misidentified. Other schizophrenia GWAS SNPs (e.g.,
rs2027349) likewise alter expression of multiple genes (VPS45, IncRNA AC244033.2 and
a distal gene, Clorf54); indeed, combinatorial perturbation of these eGenes results in
non-additive impacts on transcriptomic and cellular phenotypes?®.

Given the extent of polygenicity associated with schizophrenia, our conclusions are
constrained by the small proportion of eGenes tested here relative to the total number of
eGenes impacted by schizophrenia GWAS loci. Technical limitations in testing a larger
set of SCZ eGenes include the number of GWAS loci with accurately mapped gene
targets; prediction and validation of gRNAs that reliably achieve physiologically relevant
gene perturbations across donors and cell types; and the sequencing costs necessary to
achieve sufficient gRNA representation to resolve perturbations at scale. Moreover, given
that we selected only those schizophrenia eGenes with the very strongest evidence of
genetically regulated gene expression, the generalizability of our observations to all
schizophrenia eGenes is unclear, particularly if there are non-linear responses to gradual
changes in gene dosage®. Thus, future investigation to test across larger gene sets,
graded changes in expression®, in vivo brain regions® and in vitro cell types?’,
developmental timespans®, drug/environmental contexts®® and donor backgroundsi®
will inform the cell-type-specific and context-dependent nature of convergence and non-
additivity. Of course, all of this must be considered within the caveat that in vitro
perturbations do not exactly recapitulate the physiological impact of possessing multiple
genetic variants in human cases and controls. Despite this, it is worth noting that the
limited number of perturbations used in our combinatorial conditions is still broadly
relevant to studies of common variant interactions. When analyzing the full dataset of 105
S-PrediXcan SCZ eGenes in the post-mortem adult DLPFC®, a median of ten and a
maximum of 37 eGenes had outlying expression in the direction of risk association per
individual (SI Fig. 17). Across the twenty-one SCZ eGenes targeted in either the pooled
or arrayed experiments, a median of two and a maximum of eight eGenes had outlying
expression in the direction of risk association per individual (SI Fig. 18). Of course, the
present design also falls short of capturing nuances of pleiotropy, incomplete penetrance,
and environmental factors.

Whereas population genetics finds very little evidence of non-additive effects in
phenotypic variation, molecular biology unequivocally demonstrates the occurrence of
gene-gene interactions!%%. To resolve this seeming contradiction, recall that although the
“liability threshold model” assumes that disease risk reflects the total sum of many
additive genetic (and/or environmental) effects, the relationship between predisposition
and clinical outcome is necessarily binary'®2, Indeed, the cumulative effect of risk SNPs
can exceed observed phenotypic variation. Thus, epistasis at the gene level is consistent
with additivity of complex traits'%3. Likewise, here we report that convergent perturbations
at the pathway level correlated with predominantly sub-additive effects. Our findings



indicate that the cumulative effect of gene perturbations is additive only until a
downstream pathway is maximally perturbed, after which, additional perturbations yield
reduced marginal effects. Our results further suggest that a pathway can be manipulated
to the point of saturation effect with only a handful of genes. We posit that there may be
many combinations of variants that have the same impact on a pathway. This is supported
by emerging evidence of pathway polygenic risk score (PRS) burdeni®, whereby
pathway PRS provided higher prediction power of [disease] than overall genome-wide
risk, even in cases with low overall genetic risk1,

We further tested the extent that our in vitro studies of CRISPR perturbations inform the
polygenic architecture of schizophrenia at the population level. First, transcriptomic
imputation of brain eGene expression (see Methods,) revealed a dose-dependent effect:
schizophrenia case-control status (p<0.01774, OR>1.10) was best predicted when three
or more eGenes were perturbed (ORs ecenes = 1.47 vS. OR1 ecene = 1.10) (S| Fig. 1A).
Second, transcriptomic risk scores (see Methods) indicated that schizophrenia risk was
better predicted from larger (p<2.2 x 107%) (SI Fig. 1C) or more biologically diverse
(R=0.19, p<2.2x101) (SI Fig. 1D) gene groups. Of note, there was a lack of individuals,
either case or control, with strong imputed within-function perturbations, perhaps
explaining why population-level schizophrenia risk increased with the number of genes
and pathways impacted. Pathway-specific polygenic risk scores (PRSets'%) that
incorporate biological pathways, co-expression patterns, convergence, and/or non-
additivity may improve patient stratification or better predict drug response; consistent
with this, non-additive PRSets performed as well as those curated from synaptic genes
(S| Fig. 24). Altogether, these studies of transcriptomic imputation and polygenic risk
scores suggest that our in vitro studies of CRISPR perturbations indeed inform the
polygenic architecture of schizophrenia in vivo.

How does our genetic analysis of convergence advance precision medicine for patients
with psychiatric disorders? First, it may inform molecular subtypes of disease. For
example, when we cluster individuals based on shared patterns of schizophrenia eGene
up-regulation in the post-mortem DLPFC (Sl Table 2), diagnosis of included individuals
distinguished clusters (Pearson’s Chi-squared; X?=140, df=21, p-value=9.51e-20) (e.g.,
cluster 8, SCZ, X?=3.286; cluster 12, affective disorders (AFF), X?=5.57; cluster 16,
control, X?=3.014) (Sl Fig. 31-32). A diagnosis of affective disorder (AFF) was significantly
associated with up-regulation of FES, NAGA, CALN1, CLCN3, SF3B1 and ZNF804A
(cluster 12). Convergence analysis across these six eGenes in iGLUTs identified the
central node gene ABCG2, which is a biomarker associated with increased negative
symptoms!%’, down-regulated in a neuroimmune molecular subtype (SCZ Type 11)108.109,
and associated with SCZ treatment resistance!'®. Second, points of convergence
represent novel therapeutic targets that might be shared across cases; reversing the
effects of even a small number of genomic variants could make a substantial difference
to an individual’s risk of developing schizophrenia'll. We predicted drugs capable of
reversing convergent transcriptomic signatures and demonstrated that pharmacological
targeting of convergent hubs ameliorated the effects of multiple schizophrenia eGene
perturbations. We highlight statins, particularly simvastatin, which crosses the blood brain
barrier and shows promise as an add-on treatment in schizophrenia''?. Two double-blind
placebo-controlled trials of simvastatin highlighted the possibility that simvastatin may
decrease negative symptoms in some patients!3114 potentially predictable based on



inflammatory profiles'> and treatment-induced changes in insulin receptor levels!?®.
Targeted shared convergent hubs potentially obviate the need to individually reverse the
effects of multiple distinct risk loci in each patient.

That convergent genes were associated with a range of brain disorders indicated that
convergent effects may partially explain shared features of psychiatric disorders and
pleiotropy of risk. Consistent with this, common and rare risk variants for
schizophrenia?17:38-42.117-119 ' aytism spectrum disorder?%-122 and more broadly across the
neuropsychiatric disorder spectrum3%123-125 gre all highly enriched for genes involved in
synaptic biology and gene regulation. Our findings support the hypothesis that common
and rare psychiatric risk variants converge on the same biological pathways?’. As recently
demonstrated for autism?6, by combining genetic and clinical data, it may be possible to
resolve biologically distinct subtypes of schizophrenia. Our overarching goal is to advance
the field towards an era of precision medicine*?’, whereby patient genetics, in conjunction
with clinical evaluation, are used to more accurately predict diagnosis, disorder trajectory,
and potential therapeutic interventions.

METHODS
Statement of Ethics

Yale University Institutional Review Board waived ethical approval for this work. Ethical
approval was not required because the hiPSC lines, lacking association with any
identifying information and widely accessible from a public repository, are thus not
considered to be human subjects research. Post-mortem data are similarly lacking
identifiable information and are not considered human subjects research.

Schizophrenia eGene Prioritization: eGenes are defined as genes with significant genetic
regulation of gene expression levels. In total, across the pooled and arrayed analyses, 20
unique eGenes were prioritized based on statistical and epigenetic evidence supporting
genetic (dys)regulation of expression in schizophrenia (see Table 1), rather than GWAS
or eQTL effect size; predicted direction and magnitude of eGene effect available in Sl
Table 1.

i) SCZ1 eGenes: EpiXcan® was used to impute brain transcriptomes from Psychiatric
Genomics Consortium 3 (PGC3)-SCZ GWAS? at the level of genes and isoforms from
the PsychENCODE post-mortem datasets of genotyped individuals (brain homogenate,
n=924)4370: EpiXcan increases power to identify trait-associated genes under a causality
model by integrating epigenetic annotation!?® (from REMC?°); transcriptomes were
imputed at the gene and isoform levels and features with training cross-validation R220.01
were retained. The epigenetic imputation models were built with the PrediXcan’® method
(using a 50kbp window instead of 1Mbp for transcripts) utilizing the recently described
ChlPseq datasets?!; summary-level imputation was performed with S-PrediXcan’:. Peaks
were assigned to genes with the ChlPseeker R package'®. In addition, PrediXcan”®
imputed H3K27ac (brain homogenate, n=122; neuronal, n=191) and H3K4me3 (neuronal,
n=163)2! to more confidently identify cis regulatory elements associated with risk for SCZ.
Overall, SCZ eGenes were prioritized from GWAS based on: i) significant genetic up-
regulation of expression (z-score >6 for genes), ii) epigenetic support (imputed epigenetic



activity (p<0.01) across at least one of the three assays), iii) exclusion of non-coding
genes or those located in the MHC locus, iv) robust expression in our hiPSC neuron
RNAseq. Genes were ranked based on the association z-score for imputed gene
expression. For pooled experiments (day 7 hiPSC-derived iGLUT), six top coding genes
and one top pseudo-gene were selected: NEK4, PLCL1, UBE2Q2L, NAGA, FES, CALN1,
and ZNF804 (Table 1).

i) SCZ2 eGenes: First, transcriptomic imputation (prediXcan’73) identified ~250
significant genes (p<6x10%) with predicted differential expression between SCZ-cases
and controls using SCZ GWAS? and post-mortem CommonMind Consortium (CMC)® data
(623 samples). Second, colocalization (COLOC"4") of fine-mapped PGC3-GWAS? loci
(65,205 cases and 87,919 controls) with post-mortem brain® eQTL (537 EUR samples)®
identified 25 loci with very strong evidence (high posterior probability that a single shared
variant is responsible for both signals, PP4>0.874). There was significant overlap
between the two analyses (binomial test p-value 3.03x10-1%?); of the 25 COLOC genes,
22 were also significant by PrediXcan. For each eGene, the magnitude and direction of
perturbation associated with SCZ risk was predicted, and expression confirmed in hiPSC
neuron RNAseq?’. eGenes were further separated into discrete functional categories
based on gene ontology annotations (http:/geneontology.org/). From these 22, we
prioritized the top coding genes across three broad categories: synaptic, regulatory, and
multifunction (defined as not synaptic, regulatory, and seemingly unrelated to each other).
To complete selection of five genes from each category, three additional top-ranked
synaptic genes from the prediXcan analysis were included: DOC2A’, CLCN3"® and
PLCL1'%, Overall, 15 SCZ eGenes were prioritized from GWAS based on i) significant
genetic regulation by COLOC and/or PrediXcan, ii) exclusion of non-coding genes and
those located in the major histocompatibility complex (MHC) locus, iii) robust expression
in our hiPSC neuron RNAseq.

For arrayed experiments (day 21 NPC-derived iGLUT), our final gene list for combinatorial
perturbations included five synaptic genes (SNAP91, CLCN3, PLCL1, DOC2A, SNCA),
five regulatory genes (ZNF823, INO8OE, SF3B1, THOC7, GATAD2A), and five genes
with non-synaptic, non-regulatory functions, termed “multi-function” (CALN1, CUL9,
TMEM219, PCCB, FURIN) (Table 2). For pooled experiments (day 21 NPC-derived
iGLUT), the ten coding genes with significant genetic up-regulation were selected:
CALN1, CLCN3, CUL9, DOC2A, PLCL1, INO8EO, SF3B1, SNAP91, TMEM219, ZNF823.
This list was combined with our eGene set previously evaluated in hiPSC-neurons ?7; one
functionally validated gRNA was included for each of these three genes (SNAP91,
TSNAREL1, and CLCN3)?’.

gRNA design: CRISPRa gRNA design and cloning were conducted as described
previously3t, using the lentiGuide-Hygro-mTagBFP2 backbone (Addgene, No.
99374). For the fifteen eGenes prioritized by a combination of COLOC and PrediXcan,
we designed three gRNAs each. For the seven eGenes prioritized by EpiXcan and
PrediXcan, we designed ten gRNAs each. For the three previously tested eGenes?’
(intended a positive control), we used one pre-validated gRNA each. All gRNA sequences
and corresponding oligonucleotide sequences used for cloning of gRNA vectors and
subsequent experimentation are listed in Supplementary Data 5.

iGLUT induction from hiPSC-derived NPCs27:59-61 or hiPSCs86.132,




Validated control hiPSCs for eGene perturbation were selected from a previously reported
case/control hiPSC cohort of childhood onset schizophrenia®33. Informed consent was
obtained from all fibroblast donors at the National Institute of Mental Health, under the
review of the Internal Review Board of the NIMH. All hiPSC work was reviewed by the
Internal Review Board of the Icahn School of Medicine at Mount Sinai. This work was
also reviewed by the Embryonic Stem Cell Research Oversight Committee at the Icahn
School of Medicine at Mount Sinai and Yale University. The following control hiPSC/NPCs
were used: NSB553-S1-1 (male), NSB2607-2/NSB2607-1-4 (male), NSB690-2 (male).
All fibroblast samples were genotyped by llluminaOmni 2.5 bead chip genotyping®3+135,
PsychChip!33, and exome sequencing®®3. Parental hiPSCs were validated by G-banded
karyotyping (Wicell Cytogenetics), with ongoing genome stability monitored by Infinium
Global Screening Array v3.0 (lllumina). Critically, SNP genotype is inferred from all
RNAseq data using the Sequenom SURESelect Clinical Research Exome (CRE) and
Sure Select V5 SNP lists to confirm that neuron identity matches donor.

i) Validated control hiPSC-derived NPCs for CRISPRa/shRNA were selected from a
previously reported case/control hiPSC cohort of childhood onset SCZ (COS)3:
NSB553-S1-1 (male, average SCZ PRS, European ancestry), NSB2607-1-4 (male,
average SCZ PRS, European ancestry). hiPSC-NPCs were generated via dual-SMAD
inhibition (0.1uM LDN193189 and 10uM SB542431) followed by neural rosette selection
and MACS-based purification and validated as previously described)!33. hiPSC-NPCs
were subsequently transduced with lentiviral vectors for dCas9-VPR-puro (Addgene, No.
99373) and selected with 1 mg/mL puromycin (Sigma, no. P7255) as described
previously'33, hiPSC-NPCs expressing dCas9-VPR were cultured in hNPC media
(DMEM/F12 (Life Technologies #10565), 1x N2 (Life Technologies #17502-048), 1x B27-
RA (Life Technologies #12587-010), 1x Antibiotic-Antimycotic, 20 ng/ml FGF2 (Life
Technologies)) on Matrigel (Corning, #354230).

At day -2, dCas9-VPR hiPSC-NPCs were seeded as 1.2x10"¢ cells / well in a 12-well
plate coated with Matrigel. At day -1, cells were transduced with rtTA (Addgene 20342)
and NGN2 (Addgene 99378) lentiviruses. Medium was switched to non-viral medium four
hours post infection. At day 0 (D0), 1 pg/ml dox was added to induce NGN2-expression.
At D1, transduced hiPSC-NPCs were treated with antibiotics to select for lentiviral
integration (300 ng/ml puromycin for dCas9-effectors-Puro, 1 mg/ml G-418 for NGN2-
Neo). At D3, NPC medium was switched to neuronal medium (Brainphys (Stemcell
Technologies, #05790), 1x N2 (Life Technologies #17502-048), 1x B27-RA (Life
Technologies #12587-010), 1 ug/ml Natural Mouse Laminin (Life Technologies), 20 ng/ml
BDNF (Peprotech #450-02), 20 ng/ml GDNF (Peprotech #450-10), 500 pg/ml Dibutyryl
cyclic-AMP (Sigma #D0627), 200 nM L-ascorbic acid (Sigma #A0278)) including 1 pg/ml
Dox. 50% of the medium was replaced with fresh neuronal medium once every second
day.

For pooled analysis, on day 5, young hiPSC-NPC NGN2-neurons were replated onto
matrigel-coated plates and cells were dissociated with Accutase (Innovative Cell
Technologies) for 5-10 min, washed with DMEM/10%FBS, gently resuspended, counted
and centrifuged at 1,000(1g for 5 min. The pellet was resuspended at a concentration of
101108 cells/mL in neuron media [Brainphys (StemCell Technologies #05790), 1[1N2
(ThermoFisher #17502-048), 111B27-RA (ThermoFisher #12587-010), 1 mg/ml Natural



Mouse Laminin (ThermoFisher #23017015), 20 ng/mL BDNF (Peprotech #450-02), 20
ng/mL GDNF (Peptrotech #450-10), 500 mg/mL Dibutyryl cyclic-AMP (Sigma #D0627),
200 nM L-ascorbic acid (Sigma #A0278)] with doxycycline, puromycin, G418 [4uM Ara-C
(Sigma #C6645)] and 1 Thiazovivin (Sigma #420220). Cells were seeded 5[110° per 12-
well plate. For arrayed analysis, neurons were not replated, owing to the complexity of
conditions involved.

At D13, iGLUTs were treated with 200 nM Ara-C to reduce the proliferation of non-
neuronal cells in the culture, followed by half medium changes. At D18, Ara-C was
completely withdrawn by full medium change while adding media containing individual
SshRNA/gRNA vectors or pools of mixed shRNA and gRNA vectors (Addgene 99374),
either targeting eGenes or scramble controls. CRISPRa and shRNA vectors were
specifically selected for perturbation due to the potential for simultaneous, bi-directional
perturbation of target eGenes in joint perturbation conditions. shRNA knockdown was
chosen over CRISPRI due to the difficulties in expressing multiple separate CRISPR
effectors in the same cell lines (e.g. dCas9-VPR + dCasl12a-KRAB). Control conditions
were as follows: scramble gRNA vector (for comparing with target gRNA conditions),
scramble shRNA vector (for comparing with target shRNA conditions) and scramble
gRNA vector + scramble shRNA vector (for comparing with joint perturbation conditions).
All control conditions were MOI-matched to their respective target condition. Medium was
switched to non-viral medium four hours post infection. At D19, transduced iGLUTs were
treated with corresponding antibiotics to the gRNA lentiviruses (1 mg/ml HygroB for
lentiguide-Hygro/lentiguide-Hygro-mTagBFP2) followed by half medium changes until
neurons were harvested at D21.

i) Clonal hiPSCs from two control donors of European ancestry (NSB690-2 (male,
average SCZ PRS, European ancestry) and NSB2607-2 (male, average SCZ PRS,
European ancestry)'33 with lenti-EF1a-dCas9-VPR-Puro (Addgene #99373), pLV-TetO-
hNGN2-eGFP-Neo (Addgene #99378), and lentiviral FUW-M2rtTA (Addgene #20342)
were maintained in StemFlex™ Medium (ThermoFisher #A3349401) and passaged with
EDTA (Life Technologies #15575-020). On day 1, induction media (DMEM/F12
(ThermoFisher #10565,), 110 N2 (ThermoFisher #17502-048), 11 B27-RA (ThermoFisher
#12587-010), 101 Antibiotic-Antimycotic (ThermoFisher #15240096), and 1 pg/mL
doxycycline) was prepared and dispensed 2 mL of suspension at 1.2(110° cells/well in
induction media onto a 6-well plate coated with matrigel (Corning #354230). On day 3,
media is replaced with induction medium containing 1 pg/mL puromycin and 1
mg/mLG418. On day 5, split neurons were replated onto matrigel-coated plates and cells
were dissociate with Accutase (Innovative Cell Technologies) for 5-10 min, washed with
DMEM/10%FBS, gently resuspended, counted and centrifuged at 1,000(1g for 5 min. The
pellet was resuspended at a concentration of 11108 cells/mL in neuron media [Brainphys
(StemCell Technologies #05790), 1[IN2 (ThermoFisher #17502-048), 10B27-RA
(ThermoFisher #12587-010), 1 mg/ml Natural Mouse Laminin (ThermoFisher
#23017015), 20 ng/mL BDNF (Peprotech #450-02), 20 ng/mL GDNF (Peptrotech #450-
10), 500 mg/mL Dibutyryl cyclic-AMP (Sigma #D0627), 200 nM L-ascorbic acid (Sigma
#A0278)] with doxycycline, puromycin, G418 [4uM Ara-C (Sigma #C6645)] and
10Thiazovivin (Sigma #420220). Cells were seeded 5110° per 12-well plate. On day 7,
neurons were harvested for SCRNA sequencing.



Neuronal Pooled CRISPRa screens. Expanded CRISPR-compatible CITE-seq (ECCITE-
seq)’®, combines Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-
seq) and Cell Hashing for multiplexing and doublet detection®3¢ with direct detection of
sgRNAs to enable single cell CRISPR screens with multi-modal single cell readout. By
capturing pol Ill-expressed guide RNAs directly, this approach overcomes limitations of
other single-cell CRISPR methods, which detect guide sequences by a proxy transcript,
resulting in barcode switching and lower capture rates'®’-1%°. CRISPRa hiPSC iGLUT
neurons (2607 (male) and 690 (male)) were transduced with the pooled gRNA at day -1.
After maturation, 7-day-old iIGLUT neurons were dissociated to single cell suspensions
with papain, antibody-hashed®®¢, and bar-coded single cell cDNA generated using 10X
Genomics Chromium*4%, NPC-derived iGLUT neurons (2607 (male) and 553 (male)) were
transduced with the mixed-pooled gRNA vectors (Addgene 99374) at day 17. At day 21,
media was replaced by 0.5ml/well accutase containing 10 um Rock inhibitor, THX
(catalog no. 420220; Millipore) for 1 hour to dissociate neurons. Neurons were spun down
(3 mins X 300g) and resuspended in DMEM/F12 + THX before proceeding to single cell
sequencing.Analysis of single-cell CRISPRa screens in DIV. 7 and DIV 21 iGLUT
Neurons. mRNA sequencing reads were mapped to the GRCh38 reference genome
using the Cellranger Software. To generate count matrices for HTO and GDO libraries,
the kallisto indexing and tag extraction (kite) workflow were used. Count matrices were
used as input into the R/Seurat package'#! to perform downstream analyses, including
QC, normalization, cell clustering, HTO/GDO demultiplexing, and DEG analysis’6:142,

Normalization and downstream analysis of RNA data were performed using the Seurat R
package (v.2.3.0), which enables the integrated processing of multimodal single-cell
datasets. Each ECCITE-seq experiment was initially processed separately. Cells with
RNA UMI feature counts were filtered (200 < nFeature_RNA < 8000) and the percentage
of all the counts belonging to the mitochondrial, ribosomal, and hemoglobin genes
calculated using Seurat::PercentageFeatureSet. Hashtag and guide-tag raw counts were
normalized using centered log ratio transformation, where counts were divided by the
geometric mean of the corresponding tag across cells and log-transformed. For
demultiplexing based on hashtag, Seurat::HTODemux function was used; and for guide-
tag counts Seurat::MULTIseqgDemux function within the Seurat package was performed
with additional MULTIseq semi-supervised negative-cell reclassification. In both
experiments, 8-10% of retained cells contained multiple gRNAs and were assigned as
doublets after de-multiplexing. To remove variation related to cell-cycle phase of
individual cells, cell cycle scores were assigned using Seurat::CellCycleScoring which
uses a list of cell cycle markers!* to segregate by markers of G2/M phase and markers
of S phase. RNA UMI count data was then normalized, log-transformed and the percent
mitochondrial, hemoglobulin, and ribosomal genes, batch, donor (HTO-maxID; as a
biological replicate), cell cycle scores (Phase) regressed out using Seurat::SCTransform.
The scaled residuals of this model represent a ‘corrected’ expression matrix, that was
used for all downstream analyses. To ensure that cells assigned to a guide-tag identity
class demonstrated successful perturbation of the target gene, we performed ‘weighted-
nearest neighbor’ (WNN) analysis, to assign clusters based on both guide-tag identity
class and gene expression’’. To identify successfully perturbed cells, we calculated a p-
value based on the Wilcox rank sum test and Area Under the Curve (AUC) statistic, which
reflects the power of each gene (or gRNA) to serve as a marker of a given cluster using



Presto. WNN Clusters were then filtered based on two criteria (1) single gRNA-identity
with an AUC statistic of >= 0.8 (where 1 means the gRNA is a perfect marker of a given
cluster) and (2) a logFC >= 2 standard deviations of the mean or logFC > 0 and p-val >
0.05, of the target gene (but no other target genes) compared to scramble (non-targeting
SgRNAs) controls (SI Fig. 4-8). These clusters were then used for downstream
analyses'#.

Of note, there was a lower representation of specific gRNAs and fewer gene perturbations
resolved in SCZ2 than SCZ1. This likely reflected the use of a single pre-validated gRNA
vector per gene from our arrayed experiments for SCZ2, rather than a pooled library
comprised of multiple gRNAs targeting each eGene in SCZ1.

Cell Fraction Imputation and Quantification of Heterogeneity in Composition of iGLUT
neurons. Using CiberSortx, we imputed the cell-faction identity of randomly sampled
scramble control cells from each experiment (n=100/exp) using the PsychEncode
scRNAseq dataset as a reference (100 permutations). To determine if the level of
heterogeneity of iGLUT neuron maturity and subtype was similar between DIV7 and
DIV21iGLUT neurons in the given experiments, we performed a non-parametric Levene’s
Test for Homogeneity of Variance (LT-test) on the imputed cell fraction matrices. Although
we observed heterogeneity in relative central and peripheral nervous system marker
expression across the cell fractions, this heterogeneity was not due to gRNA identity and
the level of variance in our data due to cellular heterogeneity was not significantly different
by time-point. We were underpowered to compare gRNAs between cells with higher
expression of different cell markers.

Meta-analysis of gene expression across perturbations!4>. We performed a meta-analysis
and Cochran’s heterogeneity Q-test (METAL®) using the p-values and direction of effects
(t-statistic), weighted according to sample size across all sets of perturbations in both the
arrayed and pooled assays (Target vs. Scramble DEGs). Genes were defined as
‘convergent” if they (1) had the same direction of effect across all 5, 10, or 15 target
combinations, (2) were Bonferroni significant in our meta-analysis (Bonferroni adjusted p-
value <= 0.05), and (3) had a heterogeneity p-value = >0.05.

Bayesian Bi-clustering to identify Target-Convergent Networks4>. eGene-Convergent
gene co-expression Networks (eGCN)& were built using an unsupervised Bayesian
biclustering model, BicMix!#¢, on the log2CPM expression data from all the replicates
across each of the 5-target sets and scramble gRNA jointly or all the cells across 10
targets and scramble gRNA jointly for the arrayed and pooled assays respectively. To
account for neuronal maturity differences in the single-cell screen, expression matrices
were batch corrected and normalized and the scramble cells from both experiments
(matched scramble gRNA across experiments) used as a single control population. To
perform this as a joint analysis across two experiments, (1) Count matrices from each
experiment were combined and RNA transcripts, mitochondrial, ribosomal, and
hemoglobin genes were removed (['AMT-
|*"RP[SL][[:digit:]]|*"RPLPI[[:digit:]]|"\RPSA|*HB[ABDEGMQZ][[:digit:]]') as well as genes
that had at fewer than 2 read counts in 90% of samples, (2) and limma:voom
normalization and transformation was used to compute the log2cpm counts from the
effective library sizes of each cell (16851 genes). 40 runs of BicMix were performed on
these data and the output from iteration 400 of the variational Expectation-Maximization




algorithm was used. The hyperparameters for BicMix were set based on previous
extensive simulation studies'4’. Convergent networks were identified across all possible
combinations of 2-14 as well as all 15 of the targets (n=32752 combinations) in the
arrayed assay, and all possible combinations of 2,3,4,5,6,7 or 8 as well as all 10 of the
targets (n=1003 combinations) in the pooled experiment. Network connections that did
not replicate in more than 10% of the runs were excluded. Nodes with less than 5 edges
or non-coding genes were removed from gene set enrichment analysis (GSEA). (The
threshold of >5 edges is based on the likelihood of more than 5 edges being present by
chance, with 10% being the percentage of runs where the connection was identified,
see®146, Duplication thresholds are network-dependent and a metric of confidence in the
connections; including those with especially low duplication rates were not included in
downstream analysis.) Of all random sets tested in the pooled experiment, 64.8%
resolved a convergent network passing at least a 10% duplication threshold; of all random
sets tested in the arrayed experiment, ~50% resolved a convergent network with a 5-255
threshold of duplication depending on the node-edge connection. Using FUMAGWAS:
GENE2FUNC, the protein-coding genes were functionally annotated and
overrepresentation gene-set analysis for each network gene set was performed*48, Using
WebGestalt (WEB-based Gene SeT AnalLysis Toolkit)}*°, over-representation analysis
(ORA) was performed on all convergent network gene sets against a curated list of
common and rare variant target genes across ASD, BIP, SCZ, and ID?’. Nodes were
annotated using GeneCards®®, MalaCards?®!, and GWAS Catalog®®?. Specific
enrichments were observed with 1' de novo SCZ-CNV?%3, SCZ eQTLs'™*, SCZ brain hub
genel®”, downregulated in ASD/WS?'%®, SCZ neurons?®®, and Sox21 neural patterning*®’.

Influence of Functional Similarity on Convergence Degree. Functionally similarity scores
across the eGenes represented in each set was calculated using three metrics: (1) Gene
Ontology Scores: the average semantic similarity score based on Gene Ontology
pathway membership (within Biological Pathway (BP), Cellular Component (CC), and
Molecular Function (MF) between genes in a set8’, (2) Brain expression correlation
(B.E.C.) score: based on the strength of the correlation in gene expression in the CMC
(n=991 after QC) post-mortem dorsolateral prefrontal cortex (DLPFC) gene expression
data®, and (3) Signaling Score: based on the proportion of eGenes whose basic functional
annotation was categorized as “signaling” (CALN1, CLCN3, FES, NAGA, PLCL1,
TMEM219; with PLCL1 and CLCNS3 further separated as specific synaptic genes) or four
“epigenetic/regulatory” target genes (SF3B1, UBE2Q2L, ZNF823, ZNF804A; with
ZNF823, ZNF804A as specific transcription factors) using FUMAGWAS: GENE2FUNC4®
(Sl Fig. 10).

Bi-clustering identifies co-expressed genes shared across the downstream transcriptomic
impacts of any given set of eGene perturbations, thus, the resolved networks are the
transcriptomic similarities between distinct perturbations (convergence). While bi-
clustering resolves convergent gene co-expression networks, the strength of
convergence within a network can be defined by (i) the degree of network connectivity as
define by two small-world network connectivity coefficients (edge density and average
path length) and (ii) the degree of functional similarity or unity between genes represented
within the network. Given this definition, (1) represents perturbations with no convergent
downstream effects, (2) represents a network with a moderate degree of convergence
because it (i) has resolved gene co-expression clusters that can be constructed into a




network, (ii) has a moderate degree of network connectivity and (ii) is enriched in
biological pathways with some redundancy, while (3) represents a highly convergent
network because the degree of network connectivity is stronger and there is greater
uniformity in biological pathway gene membership. Overall, we quantify the strength or
degree of convergence using the function in (4), where Cp is the edge density (the
proportion of edges present given all possible edges) and Lp is the average path length
(the mean of the shortest distance between each pair of nodes), MFsc is the average
semantic similarity score between each pair of nodes in the network based on Molecular
Function Gene Ontology, BPsc is the average semantic similarity score based on
Biological Pathway Gene Ontology and CCsc is the average semantic similarity score
based on Cellular Component Gene Ontology. Semantic similarity is based on the idea
that genes with similar function have similar Gene Ontology annotations. Semantic
similarity scores were calculated by aggregating four information content-based methods
and one graph structure-based method with the R package GoSemSim.

We assigned each network a “degree of convergence” based on (1) network connectivity
and (2) similarity of network genes based on biological pathway membership. We
performed a principal components analysis on the functional similarity scores and the
degree of network convergence. PCA loadings determined the effect of the included
variables on the variability across all resolvable sets (arrayed=16320, pooled=827,
variables=6). To quantify this, we calculated two small world connectivity network
coefficients: the cluster connectivity coefficient based on the proportion of edges present
out of all possible edges (Cp) and the average path length (Lp)*°8.

Here we define convergence as (1) increased connectivity of the resolved networks, and
(2) functional similarity of genes within the network. Network connectivity was defined by
the sum of the clustering coefficient (Cp) and the difference in average length path (Lp)
from the maximum average length path resolved across all possible sets [(max)Lp-Lp].
Network functional similarity was scored by taking the sum of the mean semantic similarity
scores between all genes in the network. Overall, convergence degree represented the
sum of the network connectivity score and the network functional similarity score (1):

N

convergence = Cp + [max(Lp) — Lp] + Z MFsemsim + BPsemsim + CCsemsim
1

Convergent networks with matched patterns of gene expression in the post-mortem brain.
We clarify that this approach asks how often eGenes are up-regulated together in
individual post-mortem brains. To do this, we ran target-convergent network
reconstruction in our scCRNA-seq data, not the CMC bulk tissue data, for sets of eGenes
defined by the clustering observed in the CMC bulk tissue data. We found zero individuals
in the CMC data with significant upregulation of all ten risk eGenes. Instead of only
evaluating convergence on the basis on eGene functional similarity as in the first portion
of the manuscript, we define eGene pairings more broadly based on the signatures of
these eGenes in the post-mortem DLPFC - increasing the relevancy to risk at the
individual level. Target sets based on gene expression patterns in the CMC (n=991 after
QC) post-mortem dorsa-lateral pre-frontal cortex (DLPFC). We performed K-means
clustering to subset the data into clusters based on the Z-scored gene expression of the
10 target genes. Although initial silhouette analysis identified the optimal number of




clusters as two, visualization by a scree plot suggested the optimal number to be between
4-6 clusters. Given that data clustered by case/control status (2 clusters), and sub-
diagnosis of BP, SCZ, AFF, and Controls (4 clusters), to assess clustering based on 10
eGenes, we tested the impact of using 10 clusters and 20 clusters (Sl Fig. 32).
Perturbation identities were assigned based on average positive Z-scores of >=0.5 within
each cluster. We then assigned our single-cell data to clusters based on the overlap of
perturbations and performed network reconstruction to replicate our convergent analysis
using groups based on CMC post-mortem data. We retained clusters that resolved
networks with at least 10% duplication rate and calculated convergence scores and
performed GSEA using protein-coding network genes. Of the twenty clusters, networks
were recovered for the combination of targets represented in cluster 4 (2 targets; 913
cells; 15% duplication; 13 node genes), cluster 5 (3 targets; 1260 cells; 15% duplication;
13 node genes), cluster 6 (6 targets; 2035 cells; 15% duplication; 34 node genes), cluster
9 (6 targets, 1822 cells, 20% duplication, 108 node genes), cluster 11 (5 targets; 1640
cells; 15% duplication; 25 node genes), cluster 12 (6 targets; 2357 cells; 20% duplication,
152 node genes), cluster 13 (5 targets; 1741 cells; 17.5% duplication, 17 node genes),
cluster 18 (6 targets; 1884 cells, 15% duplication, 25 nodes), cluster 19 (6 targets, 2327
cells, 20% duplication, 153 nodes), cluster 20 (6 targets, 2015 cells, 20% duplication, 33
nodes), while low confidence convergence was resolved for cluster 1 (5 targets, 1600
cells; 7.5% duplication; 38 node genes), cluster 8 (3 targets, 1233 cells, 7.5% duplication,
38 node genes), cluster 14 (3 targets, 1020 cells, 5% duplication, 23 nodes) and 16 (4
targets, 1177 cells, 2.5% duplication, 16 nodes). To determine if convergent networks
were distinct between diagnostic groups, we first performed a Pearson’s chi-squared test
to determine whether there was a significant difference between the expected frequencies
and the observed frequencies in diagnosis of AFF, BIP and SCZ within the clusters and
then calculated Jaccard Similarity Indices between clusters based on convergent network
gene membership.

Drug prioritization based on perturbation signature reversal in LINCs Neuronal Cell Lines:
To identify drugs that could reverse the resolved convergent perturbation signature
across all ten targets, and within each target individually, we used the Query tool from
The Broad Institute’s Connectivity Map (Cmap) Server. Briefly, the tool computes
weighted enrichment scores (WTCS) between the query set and each signature in the
Cmap LINCs gene expression data (dose, time, drug, cell-line), normalizes the WRCS by
dividing by signed mean w/in each perturbation (NCS), and computes FDR as fraction of
“null signatures” (DMSO) where the absolute NCS exceeds reference signature'>®. We
prioritized drugs that reversed signatures specifically in neuronal cells (either neurons
(NEU) or neural progenitor cells (NPCs) with NCS <= -1.00) and filtered for (i) drugs that
cross the blood-brain barriers, (ii) drugs that target genes expressed in iGLUT neurons
based on bulk RNA-sequencing data from our lab and (ii) drugs that are currently
launched or in clinical trial according to the cMAP Drug Repurposing database and
without evidence of neurotoxicity (Box 2).

CRISPRa/shRNA Validation?’. At day -2, dCas9-VPR hiPSC-NPCs were seeded as
0.6x107° cells / well in a 24-well plate coated with Matrigel. At day -1, cells were
transduced with rtTA (Addgene 20342) and NGN2 (Addgene 99378) lentiviruses. Medium
was switched to non-viral medium four hours post infection. At DO, 1 pg/ml dox was added
to induce NGN2-expression. At D1, transduced hiPSC-NPCs were treated with




corresponding antibiotics to the lentiviruses (1 mg/ml G-418 for NGN2-Neo) in order to
increase the purity of transduced hiPSC-NPCs. At D3, NPC medium was switched to
neuronal medium (Brainphys (Stemcell Technologies, #05790), 1x N2 (Life Technologies
#17502-048), 1x B27-RA (Life Technologies #12587-010), 1 ug/ml Natural Mouse
Laminin (Life Technologies), 20 ng/ml BDNF (Peprotech #450-02), 20 ng/ml GDNF
(Peptrotech #450-10), 500 pg/ml Dibutyryl cyclic-AMP (Sigma #D0627), 200 nM L-
ascorbic acid (Sigma #A0278)) including 1 pg/ml Dox. 50% of the medium was replaced
with fresh neuronal medium once every second day. At D4 individual sShRNA/gRNA
vectors (Addgene 99374), either targeting eGenes or scramble controls. 3-5 vectors were
tested per eGene. Medium was switched to non-viral medium four hours post infection.
At D5, transduced iGLUTs were treated with corresponding antibiotics to the gRNA
lentiviruses (1 mg/ml HygroB for lentiguide-Hygro/lentiguide-Hygro-mTagBFP2) before
harvesting at D7 in order to assess eGene perturbation efficacy via gPCR.

Real time-quantitative PCR. Real time qPCR was performed as previously described3!.
Specifically, cell cultures were harvested with Trizol and total RNA extraction was carried
out following the manufacturer’'s instructions. Quantitative transcript analysis was
performed using a QuantStudio 7 Flex Real-Time PCR System with the Power SYBR
Green RNA-to-Ct Real-Time gPCR Kit (all Thermo Fisher Scientific). Total RNA template
(25 ng per reaction) was added to the PCR mix, including primers listed below. gPCR
conditions were as follows; 48°C for 15 min, 95°C for 10 min followed by 45 cycles (95°C
for 15 s, 60°C for 60 s). All g°PCR data is collected from at least three independent
biological replicates of one experiment. A one-way ANOVA with posthoc Dunnett's
multiple comparisons test was performed on data for the set of targeting vectors for each
eGene relative to the scramble control vector. Data analyses were performed using
GraphPad PRISM 6 software. For a list of primer sequences used for real time gPCR,
see Sl Table 5.

Immunostaining and high-content imaging microscopy, neurite analysis. Immature
iGLUTs were seeded as 1.5x10* cells/well in a 96-well plate coated with 4x Matrigel at
day 3. iGLUTs were plated in media containing individual shRNA/gRNA vectors or pools
of mixed shRNA and gRNA vectors (Addgene 99374), either targeting eGenes or
scramble controls. Medium was switched to non-viral medium four hours post infection.
At day 4, transduced iGLUTs were treated with corresponding antibiotics to the gRNA
lentiviruses (1 mg/ml HygroB for lentiguide-Hygro/lentiguide-Hygro-mTagBFP2) followed
by half medium changes until the neurons were fixed at day 7. At day 7, cultures were
fixed using 4% formaldehyde/sucrose in PBS with Ca?* and Mg?* for 10 minutes at room
temperature (RT). Fixed cultures were washed twice in PBS and permeabilized and
blocked using 0.1% Triton/2% Normal Donkey Serum (NDS) in PBS for two hours.
Cultures were then incubated with primary antibody solution (1:21000 MAP2 anti chicken
(Abcam, ab5392) in PBS with 2% NDS) overnight at 4°C. Cultures were then washed 3x
with PBS and incubated with secondary antibody solution (1:500 donkey anti chicken
Alexa 647 (Life technologies, A10042) in PBS with 2% NDS) for 1 hour at RT. Cultures
were washed a further 3x with PBS with the second wash containing 1 ug/ml DAPI. Fixed
cultures were then imaged on a Cellinsight CX7 HCS Platform with a 20x objective (0.4
NA) and neurite tracing analysis performed using the neurite tracing module in the
Thermo Scientific HCS Studio 4.0 Cell Analysis Software. 12-24 wells were imaged per
condition across a minimum of 2 independent cell lines, with 9 images acquired per well




for neurite tracing analysis; each N therefore represents an average of hundreds of
neurons per image. A one-way ANOVA with a post hoc Bonferroni multiple comparisons
test was performed on data for neurite length per neuron using Graphpad Prism.

Immunostaining and high-content imaging microscopy, synapse analyses: Commercially
available primary human astrocytes (pHAs, Sciencell, #1800; isolated from fetal female
brain) were seeded on D3 at 0.85x10* cells per well on a 4x Matrigel-coated 96 W plate
in neuronal media supplemented with 2% fetal bovine serum (FBS). iGLUTs were seeded
as 1.5x10° cells/well in a 96-well plate coated with 4x Matrigel at day 5. Half changes of
neuronal media were performed twice a week until fixation. At day 13, iGLUTs were
treated with 200 nM Ara-C to reduce the proliferation of non-neuronal cells in the culture.
At day 18, Ara-C was completely withdrawn by full medium change while adding media
containing individual ShRNA/gRNA vectors or pools of mixed shRNA and gRNA vectors
(Addgene 99374), either targeting eGenes or scramble controls. Medium was switched
to non-viral medium four hours post infection. At day 19, transduced iGLUTs were treated
with corresponding antibiotics to the gRNA lentiviruses (1 mg/ml HygroB for lentiguide-
Hygrol/lentiguide-Hygro-mTagBFP2) followed by half medium changes until the neurons
were fixed at day 21. At day 21, cultures were fixed and immunostained as described
previously, with an additional antibody stain for Synapsinl (primary antibody: 1:500
Synapsinl anti mouse (Synaptic Systems, 106 011); secondary antibody: donkey anti
mouse Alexa 568 (Life technologies A10037)). Stained cultures were imaged and
analyzed as above using the synaptogenesis module in the Thermo Scientific HCS Studio
4.0 Cell Analysis Software to determine SYN1+ puncta number, area, and intensity per
neurite length in each image. 20 wells were imaged per condition across a minimum of 2
independent cell lines, with 9 images acquired per well for synaptic puncta analysis. A
one-way ANOVA with a post hoc Bonferroni multiple comparisons test was performed on
data for puncta number per neurite length using Graphpad Prism. For a list of antibodies
used for immunostaining, see S| Table 6.

Multiple Electrode array (MEA): Commercially available primary human astrocytes (pHAS,
Sciencell, #1800; isolated from fetal female brain) were seeded on D3 at 1.7x104 cells
per well on a 4x Matrigel-coated 48 W MEA plate (catalog no. M768-tMEA-48W; Axion
Biosystems) in neuronal media supplemented with 2% fetal bovine serum (FBS). At D5,
iGLUTs were detached, spun down, and seeded on the pHA cultures at 1.5x10° cells per
well. Half changes of neuronal media supplemented with 2% FBS were performed twice
a week until day 42. At day 13, co-cultures were treated with 200 nM Ara-C to reduce the
proliferation of non-neuronal cells in the culture. At Day 18, Ara-C was completely
withdrawn by full medium change. At day 25, a full media change was performed to add
media containing individual ShRNA/gRNA vectors or pools of mixed shRNA and gRNA
vectors (Addgene 99374), either targeting eGenes or scramble controls. Medium was
switched to non-viral medium four hours post infection. If drug treatments were included,
D26 neurons were treated for 48hrs with either Anandamide (10uM), Etomoxir (10puM),
Simvastatin (10puM), or matched vehicles. Electrical activity of iGLUTs was recorded at
37°C twice every week from day 28 to day 42 using the Axion Maestro MEA reader (Axion
Biosystems). Recording was performed via AxiS 2.4. Batch mode/statistic compiler tool
was run following the final recording. Quantitative analysis of the recording was exported
as Microsoft excel sheet. Data from 6-12 biological replicates were analyzed using
GraphPad PRISM 6 software or R.




RNAseq: RNA Sequencing libraries were prepared using the Kapa Total RNA library prep
kit. Paired-end sequencing reads (100bp) were generated on a NovaSeq platform. Raw
reads were aligned to hgl9 using STAR alignert®® (v2.5.2a) and gene-level expression
were quantified by featureCounts!¢! (v1.6.3) based on Ensembl GRCh37.70 annotation
model. Genes with over 10 counts per million (CPM) in at least four samples were
retained. After filtering, the raw read counts were normalized by the voom? function in
limma and differential expression was computed by the moderated t-test implemented in
limmal®s, Differential gene expression analysis was performed between each
CRISPRa/shRNA target group and scramble control group. Bayes shrinkage
(imma::eBayes) estimated modified t- and p- values and identified differentially
expressed genes (DEGs) based on an FDR <= 0.05 (limma::TopTable)'%*. Gene
Ontology/pathways were evaluated using Gene-set Enrichment Analysis (GSEA)!%°, with
genes expressed in iIGLUTs as our baseline comparison. In these analyses, the t-test
statistics from the differential expression contrast were used to rank genes in the GSEA
using the R package ClusterProfiler®é. Permutations (up to 100,000 times) were used to
assess the GSEA enrichment P value. Log2 fold changes in expression were calculated
across all RNA-seq samples in our arrayed dataset.

Analysis of additive and non-additive effects?’. We applied our published approach to
resolve distinct additive and non-additive transcriptomic effects after combinatorial
manipulation of genetic variants and/or chemical perturbagens, developed?’, applied®®,
and described in detail®®>. The expected additive effect was modeled through addition of
the individual comparisons; the non-additive effect was modeled by subtraction of the
additive effect from the combinatorial perturbation comparison. Fitting of this model for
differential expression identifies genes that show a difference in the expected differential
expression computed for the additive model compared to the observed combinatorial
perturbation. Briefly, the non-additive effect between eGenes was identified using a
limma'’s linear model analysis. The coefficients, standard deviations and correlation matrix
were calculated, using contrasts.fit, in terms of the comparisons of interest. Empirical
Bayes moderation was applied using the eBayes function to obtain more precise
estimates of gene-wise variability. P-values were adjusted for multiple hypotheses testing
using false discovery rate (FDR) estimation, and differentially expressed genes were
determined as those with FDR < 10%, unless stated otherwise. Two methods were used
to compare the extent of synergy between data sets. First, we calculated the fraction of
synergistic genes (FDR<10%) measure the extent of synergy. Second, we calculated a
synergy coefficient, 1, as the fraction of non-null synergistic P-values, to inform the
existence of a synergistic component, even if the P-values themselves are not significant
genome-wide.

However, interpretation of the resulting DEGs depends on several factors, such as the
direction of fold change (FC) in all three models. To identify genes whose magnitude of
change is larger in the combinatorial perturbation vs. the additive model, we categorized
all genes by the direction of their change in both models and their log2(FC) in the non-
additive model. First, log2(FC) standard errors (SE) were calculated for all samples.
Genes were then grouped into ‘positive non-addition’ if their FC was larger than SE and
‘negative non-addition’ if smaller than -SE. If the corresponding additive model logz2(FC)
showed the same or no direction, the gene was classified as more differentially expressed
in the combinatorial perturbation than predicted. GSEA was performed on a curated



subset of the MAGMA collection using the limma package camera function, which tests if
genes are ranked highly in comparison to other genes in terms of differential expression,
while accounting for inter-gene correlation. Due to the small sample size in this study and
moderate fold changes in some eGene perturbations, changes in gene expression may
be small and distributed across many genes. However, powerful enrichment analyses in
the limma package may be used to evaluate enrichment based on genes that are not
necessarily genome-wide significant and identify sets of genes for which the distribution
of t-statistics differs from expectation. Over-representation analysis (ORA) was performed
when subsets of DEGs were of interest; genes of interests were ranked by —log10 (p-
value) and enrichment was performed against a background of all expressed genes using
the WebGestaltR package.

Dataset for population-level analysis of synergy: Individuals from the Sweden-SCZ
Population-Based cohort were obtained from the database of Genotypes and
Phenotypes, Study Accession: phs000473.v2.p2 (Ncases = 5,232, Ncontrols = 6,468)16.

Pathway polygenic risk scores: Pathway-specific polygenic risk score (PRS) analyses
were performed using PRSice-2 (v2.3.5) on individual genotype data for the Sweden-SCZ
Population based cohort. A total of 4,834 individuals diagnosed with SCZ and 6,128
controls were included after quality control. To calculate the scores, we used a version of
the summary statistics from the PGC SCZ GWAS that excludes the Sweden-SCZ data to
prevent inflation of results. SNPs were annotated to genes and pathways based on GTF
files obtained from ENSEMBL (GRCh37.75). To include potential gene regulatory
elements, gene coordinates were extended 35 kilobases (kb) upstream and 10 kb
downstream of each gene. We excluded from analyses the MHC region (chr6:25Mb-
34Mb), ambiguous SNPs (A/T and G/C), and SNPs not present in both GWAS summary
statistics and genotype data.

To obtain empirical competitive P-values, that assess GWAS signal enrichment while
accounting for pathway size, we performed the following permutation procedure: first, a
background pathway containing all genic SNPs is constructed, and clumping is performed
within this pathway. For each pathway with m SNPs, N=10,000 null pathways are
generated by randomly selecting m SNPs from the background pathway. The competitive
P-value can then be calculated as (2):

Tn1 (B <PR)+1
N+1

where [(.) is an indicator function, taking a value of 1 if the association P-value of the
observed pathway (Po) is larger than the one obtained from the nt null pathway (Pn), and
0 otherwise (seel® for additional details).

competitive P — value =

Pathway-specific polygenic risk scores (PRS) (PRSet!%) were calculated from non-
additive signatures from synaptic (4,306 genes in PRS; R2=0.0431), regulatory (5,249
genes in PRS; R?=0.0419), all fifteen eGenes (4,988 genes in PRS, R?=0.0425), and
genome-wide PRS (19,340 genes plus SNPs in regions outside gene annotations in
genome-wide PRS, R?= 0.0925). For the analyses testing whether non-additive genes
from synaptic/regulatory pathways explain larger R? than the same number of non-
additive genes from random combinations (SI Fig. 24), we took 2,799 random genes from
the non-additive synaptic and regulatory transcriptome, which corresponds to the number



of genes with non-additive effects in one of the random joint perturbations. For the GTF
NULL permutation analyses, we selected n=2,799 random genes from the GTF file
GRCh37.75. Pathway-specific PRS for each sample of 2,799 genes was calculated using
PRSet%, as described above. This procedure was repeated 1000 times.

Transcriptomic Risk Score (TRS) Analyses: In order to test the impact of non-additive
genetic effects in silico, we used transcriptomic imputation methods to calculate
genetically-regulated gene expression (GREX) for individuals from the Sweden-SCZ
Population-Based cohort (Sl Table 3). Brain GREX was calculated using PrediXcan”3 with
CMC dorsolateral prefrontal cortex (CMC-DLPFC) models®. Predicted GREX levels were
calculated for the fifteen eGenes. An initial test of aberrant gene expression was
performed by counting the number of genes with dysregulated GREX (defined as
predicted GREX in the top or bottom decile of overall expression of that gene, defined in
the direction of effect of that gene’s association with SCZ from S-PrediXcan analyses (top
decile for positive effect, bottom decile for negative effect) for each of the five-gene groups
(synaptic, regulatory, multi-function), and summed the number of aberrant genes present
in each individual for each perturbed gene group (Synaptic, Regulatory, and Multi-
function). We then looked at the SCZ case/control proportion within each group of
individuals with 3+, 1-2, and any genes with aberrant GREX.

Association of Synaptic, Requlatory, and Multi-function gene-sets with SCZ: We tested
for association of each of the fifteen eGene GREX individually with SCZ (SCZ ~ GREX),
and then calculated composite scores of group GREX (Synaptic, Regulatory, and Multi-
function) using a Transcriptomic Risk Score (TRS), calculated as the sum of each GREX
weighted by the direction of gene perturbation (1 for activation, -1 for inhibition) from in
vivo experiments, divided by the total number of genes (N) in the gene-set (3):

YN¥GREX x direction of perturbation
TRS = N
We then tested for association of each TRS (Synaptic, Regulatory, and Multi-function)
with SCZ status in the Swedish cohort.

Permutation tests. We performed permutation tests to assess the impact of (1) the
number of genes included in our TRS gene group and (2) the number of pathways
impacted by those genes on SCZ case status. We used S-PrediXcan to find genes with
CMC-DLPFC GREX associated with SCZ in a large SCZ cohort (Ncases = 11,260, Ncontrols
= 24,542)%°. From this resulting list of genes, we assigned genes to two groups: nominally-
significant genes (N=1,963, Bonferroni p<0.05), and tissue-specific significant genes
(N=144, p<0.05/NGenes in cMc-DLPFC Predixcan model). WWe created pathway sets affected by
these genes using the overlap with Kyoto encyclopedia of genes and genomes (KEGG)168
and gene ontology (GO)%%170 This gave us a sampling pool of 1,465 genes affecting
8,324 pathway sets for the nominally-significant group, and 110 genes affecting 2,382
pathway sets for the tissue-specific group. We then performed permutation sampling
analyses (for nominally-significant and tissue-specific significant gene-pathway set pools)
where we randomly sampled sets of five, ten, or fifteen genes from the sampling pool
(adjusted for the size of each pathway set), calculated TRS from the sampled gene-set,
and looked at the association of TRS with SCZ. We performed sampling 100,000 times
for each gene-set size. For this analysis, TRS was calculated by taking the sum of each
gene in the gene-sets GREX weighted by the direction of effect of the gene association




with SCZ from our S-PrediXcan analysis (1 or -1) (4):

YN¥NGREX x direction of perturbation
N

We then looked at the overall association the number of pathways hit by each TRS (based
on the annotated lists) with SCZ variance explained (Sl Fig. 1A-C). To determine if the
type of pathways hit by our perturbed genes was important to SCZ risk (i.e. is it more
important to hit multiple, similar pathways or more diverse pathways to increase SCZ
variance explained), we additionally assessed whether the similarity in make-up of
pathways affected by the TRS was associated with SCZ. To do this, we used the R
GeneOverlap package to calculate the average Jaccard Index of pathways for each TRS,
and looked at the association of that index with SCZ.

TRS =

DATA AVAILABILITY

All source donor hiPSCs have already been deposited at the Rutgers University Cell and
DNA Repository (study 160; http://www.nimhstemcells.org/). All vectors are available at
https://www.addgene.org/Kristen_Brennand/. Bulk and single cell-RNA sequencing data
is available at the Gene Expression Omnibus under accession code GSE200774
[https://www.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE200774]. Processed data can
be accessed through Synapse under Synapse accession code syn27819129
[https://www.synapse.org/Synapse:syn27819129/wiki/623524].

For the pooled and arrayed CRISPR analyses, all raw FASTQ Count files and
corresponding processed data are available on the gene expression omnibus under GEO
accession code GSE200774
[https://www.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE200774]). Average
expression count matrices and meta data following quality control and normalization of
ECCITE-seq data as well as results of differential gene expression analysis and Target
Network Reconstruction of Bayesian Bi-clustering are available on Synapse accession
code syn27819129 [https://www.synapse.org/Synapse:syn27819129/wiki/623524. All
corresponding code was uploaded to Synapse under accession code syn27819129
[https://www.synapse.org/Synapse:syn27819129/wiki/623524]). DEGs, GSEA tables,
synergy sub-categories, and synergy sub-category over-representation analysis for
arrayed screen RNA-seq data; individual scRNA-seq perturbation DEGs and pathway
enrichments from pooled experiments; reconstructed convergent networks and
convergent network enrichment results (FUMA, ClusterProfiler, ORA of
common/rare/variants) from arrayed and pooled screens; and CMAP drug prioritization
gueries and GSEA for 10 target and each individual perturbation signature used in CMAP
guery are available in Supplementary Data Files 1-4.

CODE AVAILABILITY

Code used for the convergence and additivity analyses presented in this manuscript can
be accessed through Synapse under Synapse accession code syn27819129
[https://lwww.synapse.org/Synapse:syn27819129/wiki/623524].
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TABLES

Table 1. Top PGC3 SCZ-GWAS eGenes, prioritized by EpiXcan and epigenetic annotation, as epigenetic/regulatory (MEK4, UBE2Q2L, ZNF804A) and signaling (PLC1, NAGA,
FES, CALN1, SNAP31) for pathway studies. EpiXcan test: elastic net regression-based predictor model of methylation applied to genotype data to identify genetically
regulated gene methylation, two-tailed, within tissue Bonnferonni multiple comparison correction. NEK4, PLCL1, UBE2Q2L, NAGA, FES, CALNT, and ZNF804A are present
in the pooled screen SCZ1.

EpiXcan ExN-PrediXcan Epi tic Annotati
Gene z r2 z  effectsize P ATACseq  H3K27ac H3Kame3 |on2rac
Group Chr (neuron)
regulatory 3 NEK4 8.64 0.26 NA NA NA NA Promoter NA Promoter
signaling 2 PLCL1T 7.2 0.04 5.214354 0.403086 1.84E-07 NA Intron Promoter Intron
regulatory 15 UBE2Q2L 6.89 0.02 NA NA NA NA Promoter Promoter Promoter
signaling 22 NAGA 6.67 0.25 6.983019 0.148533 2.89E-12 NA Promoter  Promoter NA
signaling 15 FES 6.63 0.05 3.917081 0.289907 8.96E-05 NA Promoter Promoter NA
signaling 7 CALN1 6.57 0.07 5.356091 0.171432 8.50E-08 NA Intron Promoter Intron
regulatory 2 ZNFB04A 6.27 0.05 2.867957 5.119801 4.13E-03 NA Promoter Intron NA

Table 2. Top PGC3 SCZ-GWAS eGenes, prioritized by COLOC and PrediXcan, as synaptic (SNAP91, SNCA, DOC2A, CLCN3, PLCL1), regulatory/epigenetic (ZNF823,
INO8BOE, THOC?, SF3B1, GATAD2A), and unrelated multi-function (FURIN, CULS, CALN1, PCCB, TMEM219). COLOC test: Approximate Bayes Factor method, two-tailed,
Benjamini-Hochberg multiple comparisons correction. PrediXcan test: elastic net regression-based predictor model of gene expression applied to genotype data to identify
genetically regulated gene expression, two-tailed, within tissue Bonnferonni multiple comparison correction. CALN7, CLCN3, CUL9, DOC2A, PLCL1, INOSOE, SF3B1,
SNAPS1, TMEM219, ZNF823 are present in the pooled screen SCZ2. All 15 eGenes are present in the subsequent arrayed screen.

GWAS coLoc PrediXcan ExN-PrediXcan

Group Chr SNP P LD range Gene PP4 z P z effect_size P
synapse 6 rs2022265 3.74E-10  83262613...85419243 | SNAPI1 | 0.893265 | 5.185282 2.16E-07 6.209717 0.434707 5.31E-10
synapse 4 rs356183  3.37E-08 89645368...91759130 SNCA 0.847582 | -4.494898 6.96E-06 -1.209231 -0.067749 2.27E-01
synapse 16 rs3814883 8.82E-15 30016830...30034591 DOC2A | 0.521296 | 6.088335 1.14E-09 5.910559 0.739169 3.41E-09
synapse 4 rs61405217 5.39E-11 170533784...170644824| CLCN3 | 0.718835 | 5.771783 7.84E-09 6.21805 0.659242 5.03E-10
synapse 2 rs1451488  6.72E-17 198669426...199437305| PLCL1 | 0.035058 | 4.910285 0.000000909 | 5.214354 0.403086 1.84E-07
regulatory 19 rs72986630 3.07E-10  10832225...12839819 | ZNF823 | 0.999253 | 6.350252 2.15E-10 5.475881 0.542843 4.35E-08
regulatory 16 rs3814883 8.82E-15 29007489...31016970 | INOSOE | 0.894347 | 7.639276 2.18E-14 7.28675 0.28085 3.18E-13
regulatory 3 rs704364 8.41E-10 62819885...64848612 THOCT? | 0.893413 | -5.236222 1.64E-07 -5.694926 -0.30103 1.23E-08
regulatory 2 rs2914983 1.10E-14 197256700...199299078| SF3B7 | 0.888092 | 7.256793 3.96E-13 6.353697 3.288414 2.10E-10
regulatory 19 rs1858999 7.97E-14  18497024...20619093 | GATAD2A | 0.858178 | -7.214675 5.41E-13 -7.297041 -0.251158 2.94E-13
proprotein convertase 15 rs4702 2.15E-23  90414642...92426654 FURIN | 0.999943 | -10.06869 7.60E-24 -8.776284 -0.52838 1.69E-18
ubiquitination 6 rs113113059 2.29E-11  42150013...44192158 CUL9 0.953677 | 5.754229 8.70E-09 5.052675 0.198153 4.36E-07
calcium signalling 7 rs2944821  1.90E-09  70244499...72912040 CALN1 0.913966 | 5.547481 2.90E-08 5.356091 0.171432 8.50E-08
metabolism 3 rs7432375 5.32E-15 134969406...137055316| PCCB | 0.906413 | -7.547429  4.44E-14 -7.973074 -0.238932 1.55E-15
signalling 16 rs3814883 8.82E-15  28952638...30984212 | TMEM219 | 0.846736 | 6.291546 3.14E-10 6.781431 0.358578 1.19E-11




FIGURE LEGENDS

Figure 1. Prioritization and manipulation of synaptic, regulatory, and multi-function
brain eGenes regulated by schizophrenia.

A. Schematic of schizophrenia eGene identification and prioritization. Schizophrenia
eGenes were prioritized by fine-mapping (COLOC), transcriptomic imputation
(PrediXcan), and/or epigenomic imputation (EpiXcan) schizophrenia GWAS using post-
mortem brain expression data. B. Effect sizes of significant eGenes from either
dorsolateral prefrontal cortex (DLPFC) EpiXcan (blue), DLPFC S-PrediXcan (green) or
excitatory neuron (ExN) S-PrediXcan (purple) transcriptomic imputation studies. Size of
circles corresponds with the -log10(adjusted p-value) C. Log2(fold change) of all eGenes
in the arrayed experiment following single (teal) and joint perturbations across all 15
eGenes (yellow) or functional (orange) or random (maroon) sets of 5 eGenes in D21
hiPSC-NPC derived iGLUTSs, using individual vectors. Size of circles corresponds with
the -log(adjusted p-value) from a one-tailed t-test. D. Log2(fold change) of all eGenes in
the pooled experiments SCZ1 and SCZ2 comparing all perturbed cells of one target
eGene identity to all other cells of different eGene identities (blue) or compared to only
Scramble gRNA (teal). Size of circles corresponds with the -log(adjusted p-value) from a
one-way pairwise Wilcox Rank Sum. Created with BioRender.com.

Figure 2. Downstream target-convergent networks identified by Bayesian bi-
clustering resolve distinct networks enriched for schizophrenia common and rare
variant target genes and transcription factor binding motifs.

A. Convergent networks resolved across the downstream transcriptomic impacts of all
ten target perturbations in the pooled experiments SCZ1 and SCZ2 identified 1869
convergent genes with enrichments for (i) brain-related GWAS genes, (ii) transcription
factor binding sites of know schizophrenia-associated TFs (TFAP4, NFAT and ERR1),
and (iii) common and rare variant target genes. B. Convergent networks resolved across
the downstream transcriptomic impacts of all fifteen target perturbations in the arrayed
assay identified 255 convergent genes with enrichments for (i) miRNA targets and (ii)
transcription factor binding sites of know schizophrenia-associated TFs (TFAP4, NFAT
and ERR1), and (iii) common and rare variant target genes. C. While largely distinct, the
resolved convergent networks from the arrayed and pooled experiments shared 16
significant enrichments for miRNA targets and 4 significant enrichments for TF targets —
many of which are thought to play a role in regulation of schizophrenia-associated genes.
2Ai, 2Bi: Overrepresentation analysis using one-tailed Fisher's exact test for gene
enrichment in curated disorder genelists with Benjamini-Hochberg FDR multiple testing
test P-values with Benjamni-Hochberg FDR multiple testing correction using FUMA
GENE2FUNC. D. Overlapping nodes between the two networks were often involved in
neuronal proliferation, and differentiation. Created with BioRender.com.

Figure 3. The degree of network convergence is influenced by functional similarity
of target perturbations.



A. Defining convergence and calculating convergent network strength. Here we define
convergence as the independent development of transcriptomic similarities between
separate gene perturbations that move towards union or uniformity of biological function.
B-G. Principal component analysis (PCA) of the convergence scores, the three Gene
Ontology scores (Molecular Function, M.F.; Biological Process, B.P.; Cellular
Component, C.C.), brain expression correlation (B.E.C), and sample size across all
resolved networks in both the pooled and arrayed assays revealed that some functional
scores have similar influence on variance as convergence (Sl Fig. 19). B & E. Distribution
of the degree of convergence (x-axis) of networks across all possible combinations of 2
to 8 (y-axis; number of sets tested within each set) target perturbations from the single-
cell pooled experiment (B) and arrayed experiment (E) across all possible combinations
of 2 to 14 target perturbations from the arrayed experiment show an influence of sample
size on the ability to resolve a network. Data are represented as median values, lower
and upper hinges correspond to the 1st and 3rd quartiles, upper and lower whiskers
represent largest values within 1.5*IQR (inter-quartile range) from the first or third quartile.
Each point represents convergence based on biclustering between 2-8 unique
combinations of CRISPR perturbations. B: N = 4 replicates per condition (2 x donors, 2 x
independent replicates per donor). E: N = 2 biological replicates, 10 gRNA replicates
(SCZ1); N = 2 biological replicates, 2 technical replicates (sequencing batches) and 3
gRNA replicates (SCZ2). C & F. For both the pooled (C) and the arrayed (F) experiment,
PCs 1 (x-axis) and 2 (y-axis) explain ~62% of the variance between networks. PC
loadings demonstrate the influence of each variable on the variance between networks;
within the first two PCs the influence of brain expression correlation (B.E.C) and
proportion of signaling genes perturbed (S.P) on PCs 1 and 2 on variance explained are
more strongly related to convergence degree compared to other functional scores. Since
degree of convergence is influenced by number of eGenes perturbed we ran PCA
analysis within networks of the same set size and found that the pattern of influence of
signaling proportion and brain expression correlation is maintained when convergence is
ranked within set size shown in Sl Fig. 20. D & G. This corresponds to an overall
significant positive correlation between network convergence degree, signaling/synaptic
proportion of perturbed genes in a set, and brain expression correlation between genes
in a set (Bonferroni adjusted p-value of Pearson’s correlations: *<0.05, **<0.01,
***<0.001. Created with BioRender.com.

Figure 4. Perturbation of schizophrenia eGenes within functional categories results
in non-additive effects on transcription impacting expression of genes linked to
brain disorders and synaptic function.

A. Schematic of differential expression analysis. Individual eGene perturbations, the
implementation of the expected additive model based on the latter and the measured
combinatorial perturbation permitting the detection of interactive effects through
comparison with the additive model. B. Combinatorial perturbation of synaptic and
regulatory eGenes resulted in non-additive effects on expression across 16.8% (synaptic)
and 20.2% (regulatory) of the transcriptome. No significant non-additive effects were seen
following joint perturbation of non-synaptic, non-transcriptional regulatory eGenes. Teal
= proportion of genes showing significant non-additivity (two-tailed FDR<0.1); blue =
proportion of genes showing no significant non-additivity. C. GSEA of non-additive genes



in the Synaptic eGene set demonstrated significant enrichment for genes relating to brain
disorders and synaptic function. GSEA of non-additive genes in the Regulatory eGene
set demonstrated significant enrichment for genes relating to brain disorders and synaptic
function. SCZ = schizophrenia, CNV = copy number variant, FMRP = Fragile X Mental
Retardation Protein, FDR = false discovery rate. D. Non-additive effects following
combinatorial perturbation of sets of five, ten, and fifteen eGenes randomly assigned from
the synaptic, regulatory, and multi-function eGene groups. The proportion of the
transcriptome exhibiting significant non-additive effects increased with increasing
numbers of perturbed eGenes (average of 5.1%, 10.0% and 19.2% of the transcriptome
with non-additive FDR<0.1 after joint perturbations of five, ten, and fifteen eGenes
respectively).

Figure 5. Convergence accounts for non-additive effects within functional
pathways.

A-E. Meta-analysis of differentially expressed genes (DEGS) elicited by individual eGene
perturbations for each five-gene grouping using METAL to identify DEGs that showed
altered expression consistently in the same direction across all five eGene perturbation
conditions for each set of eGenes. A. Convergence across individual eGene perturbations
is correlated with the degree of non-additive effect seen in the corresponding joint
perturbation condition. Two tailed Pearson’s r> = 0.6569, p=0.0147. Teal = number of
genes showing significant non-additivity (two-tailed FDR<O0.1); yellow = no. of genes
showing significant convergent effects (two-tailed FDR<0.1) for each perturbation set. B.
For each joint eGene perturbation group, non-additive impacts on transcription were
compared with genes showing significant convergence across individual perturbations for
the same eGene set. C. Evidence of convergence was found in 1070 genes across the
synaptic eGene perturbations, 761 of which also exhibited non-additive effects in the
additive-combinatorial comparison for the same set. D. Evidence of convergence was
found in 1070 genes across the regulatory eGene perturbations, 1000 of which also
exhibited non-additive effects in the additive-combinatorial comparison for the same set.
E. No significant non-additive effects and only minimal convergence could be seen in
eGene perturbations across functional pathways. F. GSEA of convergent genes in the
synaptic and regulatory eGene groups demonstrated significant enrichment for genes
relating to brain disorders and synaptic function. SCZ = schizophrenia, CNV = copy
number variant, FMRP = Fragile X Mental Retardation Protein, ID = intellectual disability,
PPI = protein-protein interaction, KEGG = Kyoto Encyclopedia of Genes and Genomes,
FDR = false discovery rate.

Figure 6. In vitro validation identifies opposing effects of in silico drug predictions
and top schizophrenia eGenes (related to Box 2).

In vitro validation of drug-eGene phenotypic interactions. A. Effects of 48-hour treatment
with 10uM simvastatin on synaptic puncta density in TMEM219 CRISPRa perturbed (teal)
or non-perturbed (purple) iGLUT neurons. Syn1-positive puncta values are expressed
relative to MAP2-positive neurite length in each well. Perturbation of TMEM219
expression with CRISPRa significantly increased synaptic puncta density; this increase
was partially ameliorated by 48hr treatment with 10uM simvastatin (2-way ANOVA;
CRISPRa variation p<0.0001; CRISPRa x Drug treatment variation p<0.05). N = minimum



of 2 independent experiments across 2 donor lines with 12 technical replicates per
condition. Values for each technical replicate in imaging experiments were averaged data
from 9O separate images per single well. B. Treatment of cells perturbed with either
TMEM219 CRISPRa with 10 yM Simvastatin reverses or suppresses the transcriptomic
impacts of the schizophrenia eGene perturbations alone (S| Fig. 28-30). Treatment of
cells with CRISPRa TMEMZ219-gRNA and 10uM Simvastatin over 48hrs opposes the
transcriptomic impact observed in CRISPRa TMEMZ219-gRNA + Vehicle treated cells.
Venn diagram of significant DEGs at an (top left) adjusted p-val <= 0.05 and at an (top
right) unadjusted p-value of <= 0.05. (bottom) Dot plot demonstrating the logFC of each
gene in either the TMEM219 + Vehicle (green) or TMEMZ219 + 10uM Simvastatin (yellow)
condition, ordered by degree of logFC in the TMEM219 + Vehicle treated cells. Size of
the points corresponds to the -log10 (adjusted p-value).

Editorial Summary:

Here the authors perturb genes linked to schizophrenia risk in human neurons. They find that single
perturbations share common downstream effects on gene networks, while joint perturbations result in
downstream effects being saturated.

Peer review information: Nature Communications thanks the anonymous, reviewers for their
contribution to the peer review of this work. A peer review file is available.



Table 1. Top PGC3 SCZ-GWAS eGenes, prioritized by EpiXcan and epigenetic
annotation, as epigenetic/regulatory (NEK4, UBE2Q2L, ZNF804A) and signaling
(PLC1, NAGA, FES, CALN1, SNAP91) for pathway studies. EpiXcan test: elastic net
regression-based predictor model of methylation applied to genotype data to identify
genetically regulated gene methylation, two-tailed, within tissue Bonnferonni multiple
comparison correction. NEK4, PLCL1, UBE2Q2L, NAGA, FES, CALN1, and
ZNF804A are present in the pooled screen SCZ1.
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Table 2. Top PGC3 SCZ-GWAS eGenes, prioritized by COLOC and PrediXcan, as
synaptic (SNAP91, SNCA, DOC2A, CLCN3, PLCL1), regulatory/epigenetic (ZNF823,
INO8BOE, THOC7, SF3B1, GATAD2A), and unrelated multi-function (FURIN, CUL9,
CALN1, PCCB, TMEM219). COLOC test: Approximate Bayes Factor method, two-
tailed, Benjamini-Hochberg multiple comparisons correction. PrediXcan test: elastic
net regression-based predictor model of gene expression applied to genotype data to
identify genetically regulated gene expression, two-tailed, within tissue Bonnferonni
multiple comparison correction. CALN1, CLCN3, CUL9, DOC2A, PLCL1, INOSOE,
SF3B1, SNAP91, TMEM219, ZNF823 are present in the pooled screen SCZ2. All 15
eGenes are present in the subsequent arrayed screen.
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