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ABSTRACT  

Active, responsive, non-equilibrium materials–at the forefront of materials engineering–offer 

dynamical restructuring, mobility and other complex life-like properties. Yet, this enhanced 

functionality comes with significant amplification of the size and complexity of the datasets 

needed to characterize their properties, thereby challenging conventional approaches to analysis. 

To meet this need, we present BARCODE: Biomaterial Activity Readouts to Categorize, 

Optimize, Design and Engineer, an open-access software that automates high throughput screening 

of microscopy video data to enable non-equilibrium material optimization and discovery. 

BARCODE produces a unique fingerprint or ‘barcode’ of performance metrics that visually and 

quantitatively encodes dynamic material properties with minimal file size. Using three 

complementary material-agnostic analysis branches, BARCODE significantly reduces data 

dimensionality and size, while providing rich, multiparametric outputs and rapid tractable 

characterization of activity and structure. We analyze a series of datasets of cytoskeleton networks 

and cell monolayers to demonstrate BARCODE’s abilities to accelerate and streamline screening 

and analysis, reveal unexpected correlations and emergence, and enable broad non-expert data 

access, comparison, and sharing.  
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INTRODUCTION 

Biological activity manifests through a wide range of mechanical and dynamical features, such as 

stiffening, restructuring and flow. Examples include migrating slime molds, developing tissues, 

and the cytoskeleton, a protein network in living cells that undergoes dramatic remodeling during 

cell division, crawling, and wound healing 1-7. Engineered materials can recapitulate many such 

features, and offer stimuli-responsiveness, patterning, and spatiotemporal control that could, in 

principle, be harnessed for applications such as self-healing infrastructure, dynamic prosthetics, 

and self-sensing protective barriers 8-19. Like their biological analogs, engineered materials 

exhibiting such functionalities must be multicomponent and multiphase, with structures and 

dynamics operating over a broad range of length and time scales. For example, in vitro networks 

that recapitulate properties of the cell cytoskeleton, such as contractility, self-organization, and 

responsivity to external stimuli, comprise filamentous proteins, such as actin and microtubules, 

enzymatically-active motor proteins, such as myosin and kinesin, and a host of crosslinking 

proteins 12,20-30. Varying the network formulation and intermolecular interactions can tune the 

material dynamics and structure over decades of spatiotemporal scales 20,25,29,31-33. Similarly, cells 

in vitro exhibit dynamics and restructuring similar to living tissues such as jamming, flow, and 

collective patterns emerging on length scales much longer than the individual agents driving the 

motion 34-39. This dynamic structural heterogeneity, foundational to function, challenges classic 

approaches to material design, characterization and deployment. 

Complex active dynamics and restructuring present several challenges to developing predictive 

relationships between material formulation and performance, and to realizing tractable engineering 

designs. Video sizes and complexity limit data sharing and use of standard software to process 

images within manageable time frames, often forcing valuable information to be ignored, 

discarded, or siloed. Active materials require a higher dimensionality of characterization metrics, 

which often emerge in unexpected ways and on spatiotemporal scales that are difficult to predict 

a priori. Inconsistencies in metrics, definitions, and approaches further hinder the identification of 

performance intersections among materials. These complexities demand readily accessible 

material-agnostic algorithms that enable rapid screening of large datasets and characterization of 

emergent dynamics in a manner that enables data- and physics-driven modeling and rational 

material design. 

To address these challenges, we present BARCODE: Biomaterial Activity Readouts to Categorize, 

Optimize, Design and Engineer, an open-access software to facilitate the democratized discovery 

and optimization of non-equilibrium materials. BARCODE automates high throughput (HTP) 

screening of optical microscopy videos and outputs a unique fingerprint that encodes dynamic 

material properties (Fig. 1). Consisting of three complementary branches that leverage 

standardized widely used image analysis approaches (Fig. 1D), BARCODE produces a unique 

array or ‘barcode’ of performance metrics for each video, and the collective dataset (Fig. 1E), 

significantly reducing data dimensionality, complexity and size, while providing rich, 

multiparametric outputs. Importantly, screening is performed without consideration of material 

composition or formulation, allowing unexpected correlations between performance metrics or 

disparate material systems to be rapidly revealed. To produce each barcode, the software also 

calculates rich reduced data structures (RDS) that enable more detailed understanding of the time-

evolving material structures and mechanics, and archives the RDS to enable subsequent 

hypothesis-driven research. Through these features, BARCODE not only streamlines on-system 
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screening and accelerates analysis, but also enables non-expert data access and sharing across 

different materials and communities.  

 

RESULTS 

 

BARCODE: Biomaterial Activity Readouts to Categorize, Optimize, Design and Engineer 

BARCODE is designed to enable rapid HTP analysis of multi-channel microscopy videos to screen 

for desirable features of active material systems (Fig. 1). By extracting key parameters that 

describe material structure and dynamics (Table 1), BARCODE reduces large (~1 TB) and 

complex datasets (Fig. 1A-C) by up to four orders of magnitude. BARCODE’s core architecture 

executes three complementary, yet independent, ‘branches’ in parallel (Fig. 1D). We designed 

each branch to leverage established image processing tools–image binarization (IB), pixel intensity 

distribution (ID) analysis, and optical flow (OF)40–for which there is an extensive body of literature 

describing approaches, implementation, and best practices41-47. Each branch produces distinct 

metrics selected to encode key structural and dynamic features of active materials, organized in a 

1⨉17 ‘barcode’ that is output both numerically and as a color-coded array (Fig. 1E). We compute 

all 17 metrics (Table 1) using standardized reduced data structures (RDS) (Fig. 1D) –binarized 

video images (IB), pixel intensity distributions (ID), and velocity fields (OF) – which are 

automatically produced and archived to facilitate future downstream analysis and that contain 

substantially more information than the 17-parameter barcode itself. We envision the barcodes will 

be used primarily for initial assessment and rapid down-selection, and the standardized outputs of 

the RDS will facilitate more time-intensive and hypothesis-driven downstream analyses.  Based 

on our extensive analysis of active matter systems, we found that BARCODE’s reduced set of 17 

simple metrics captures key dynamic and structural information during rapid screens of large 

datasets. However, the software is material-agnostic, modular and highly adaptable: branches and 

metrics can be easily added or removed without impacting other metrics, thus providing flexibility, 

while allowing for discovery of unexpected correlations or trends.   

As fully described in the Supplemental Information (SI, Section 1), BARCODE is a Python-based 

package that reads .tif and .nd2 video files and converts the data into arrays with dimensions 

(𝑇, 𝑚, 𝑛, 𝑐 ), where 𝑇  is the number of frames, 𝑚  and 𝑛  are the number of pixels along the 

horizontal and vertical axis of each frame, and 𝑐 is the number of channels (for, e.g., confocal 

videos with multiple components of a material labeled with distinct fluorophores and recorded in 

separate detectors). The software has a user-friendly graphical user interface (GUI) and several 

adjustable parameters that the user can set to tailor and optimize the operations of each branch for 

their system. We also provide a detailed online tutorial48 to guide users in choosing parameters 

that best suit their data. BARCODE outputs include three RDS files, one for each branch, for every 

video, saved as .csv files; and a .csv file and colorized .svg with the 17 BARCODE metrics for the 

entire dataset (e.g., Figs. 1E, 2E). BARCODE can be executed on dozens, even hundreds of videos 

to produce a single barcode array (Fig. 1D), in 1-4 minutes per GB (SI Table S1), that can be used 

to identify patterns, correlations and trends.   
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Demonstrating BARCODE workflow and utility  

To demonstrate the BARCODE workflow, we analyze two representative videos of motor-driven 

actin-microtubule composites displaying distinct structures and dynamics (Fig. 2A).  

The Image Binarization (IB) branch (Fig. 2B) converts each grayscale image of size 𝑚 × 𝑛 pixels 

of the video of 𝑇 frames into a binary image of white (1) and black (0) pixels. The threshold pixel 

intensity for binarization is computed from a user-specified offset that provides a threshold 

percentage %𝐼 above the mean intensity of each image (Fig. 2B, top). This process assigns a 

unique threshold intensity value for each frame, set by its mean value, which corrects for reduced 

mean intensities of images over time due to photobleaching and other spurious fluctuations in 

intensity. We assume in this analysis that there are minimal spatial variations in background 

intensity across the field of view. To increase processing speed and reduce the data size, the 

resulting stack of binarized images, which is a saved RDS, can be downsampled in time, by 

choosing to analyze every 𝑘𝑡ℎ frame, and spatially, by averaging together 𝑝 × 𝑝 windows of pixels 

to result in a stack of 𝑇/𝑘 images of 𝑚/𝑝 × 𝑛/𝑝 pixels. We have found that %𝐼 = 10, 𝑘 =  10 

and 𝑝 = 2-8 to provide sufficient resolution and accuracy while maintaining rapid processing 

times (SI Table S1).   

To characterize key structural features of the system, we calculate the areas of connected regions 

of white pixels, ‘islands’, and black pixels, ‘voids’ in each frame of the binarized RDS. The islands 

are regions of the field of view (FOV) where the material resides while voids are absent of material, 

and we compute their areas relative to the FOV area, with values ranging from 0 to 1. We identify 

the maximum island area 𝐼𝑖 and maximum void area 𝑉𝑖 in each frame 𝑖 (Fig. 2B bottom) and report 

in BARCODE the global maximum island (𝐼) and void (𝑉) area, indicators of the size of the largest 

features and gaps in the material. In general, to produce a more statistically robust measure of any 

maximum barcode metric, we compute and report the mean of the highest 10% of all values over 

all frames. To characterize the initial structure of the time-evolving material, we also compute the 

average initial maximum and initial secondary maximum island areas in the first X% of frames of 

each video 𝐼0,1 and 𝐼0,2, where X is a user-defined value with default value X=5. For materials that 

are primarily space-spanning or connected, 𝐼0,1 will be much larger than 𝐼0,2, while materials that 

comprise more homogenous distributions of independent entities (e.g., clusters, particles) will have 

𝐼0,1 ≈ 𝐼0,2. Another important feature of a material that often dictates its behavior and mechanics 

is the degree to which it is percolated across dimensions, which we assess by computing 

‘connectivity’.  The connectivity per frame 𝐶𝑖  is defined as  𝐶𝑖 =1 (or 0) for images having a 

continuous path (or not) of white pixels extending from edge to edge along at least one axis. In 

BARCODE, we report the fraction of frames that are connected 𝐶 = 〈𝐶𝑖〉. To assess any time-

dependent restructuring of the material, we also provide in BARCODE the relative change in the 

island and void areas from the first 𝑋% of frames to the last 𝑋% (∆𝐼, ∆𝑉), which we compute 

relative to the initial value, such that changes that are greater than (or less than) one correspond to 

increased (or decreased) area. We have found 𝑋 =  5 to be optimal for capturing dynamic 

information while ensuring sufficient signal to noise. The 7 metrics of the IB branch (Fig. 2E) 

accurately describe the time-varying structures shown in Fig. 2A. Video 1 remains connected 

(𝐶 =1) with a much smaller maximum void area as compared to maximum island area (𝐼 > 𝑉) 

and the void area shrinks over time (∆𝑉 < 1), indicative of restructuring to more space-filling 

composition. Conversely, Video 2 is poorly connected (𝐶 = 0.13), has comparable maximum 

island and void sizes (𝐼 ≈ 𝑉) and shows a large increase in void area (∆𝑉 > 1) over the time course 

of observation. 
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The Intensity Distribution (ID) branch (Fig. 2C) evaluates the probability distribution of pixel 

intensities, which serves as a proxy for mass density, and outputs 6 BARCODE entries that 

describe the global distribution features, and how these features change from the beginning to the 

end of the video to report aspects of time-dependent restructuring. The ID branch produces 

distributions for all 𝑇 frames in a video, which we output as an RDS. Similar to the IB branch, to 

accelerate processing speed, users can also choose to only evaluate a subset of 𝑇/𝑘 frames where 

the interval 𝑘 is specified by the user. We have found that an interval of 𝑘 = 10 provides optimal 

balance of resolution and speed for the systems we have tested.  

To quantitatively characterize and reduce the dimensionality of the distributions, BARCODE 

computes the median skewness 𝑆1,𝑖, mode skewness 𝑆2,𝑖, and kurtosis 𝐾𝑖 for each evaluated frame 

𝑖 (Fig. 2C), which are each metrics that describe the shape of the distributions relative to a Gaussian 

distribution. 𝑆1,𝑖 (𝑆2,𝑖) is the difference between the median (mode) and mean (Fig 2C), normalized 

by the standard deviation of the distribution, with positive values indicating a more pronounced 

tail of high intensity pixels and/or a peak at lower-than-expected pixel values. These features often 

correlate with bundling and aggregation which lead to denser (brighter) regions complemented 

with larger regions of minimal mass, which shift the distribution to having a more pronounced 

high-intensity tail and lower intensity mode, respectively. Because in skewed distributions, the 

median is typically closer to the mean than the mode is, the mode skewness 𝑆1,𝑖 is often a more 

sensitive skewness measure. However, the median skewness 𝑆2,𝑖 is less susceptible to artifacts of 

pixel saturation and photobleaching, which can cause modes to be at the highest and lowest pixel 

values, respectively. Kurtosis, computed as the fourth central moment of the distribution 

normalized by the squared variance, 𝐾 =
𝜇4

𝜎4 − 3, reports the extent to which pixel values are closer 

to (𝐾 < 0) or further from (𝐾 > 0) the mean than expected for a normal distribution (see SI, 

Section 1). Positive kurtosis values are indicative of de-mixing, coarsening and/or clustering while 

negative values indicate uniform and/or space-filling materials.  

In general, if photobleaching were significant, one would expect the mean of the intensity 

distribution to decrease with time, shifting the overall distribution left towards zero. However, the 

shape of the distribution would likely not change substantially, since the underlying structures are 

not changing.  By contrast, material restructuring due to aggregation, phase separation or bundling 

should change the distribution of mass, and should lead to changes in the distribution shape, which 

are detected via the kurtosis and skewness outputs of BARCODE.  In the case of severe 

photobleaching, one might expect that eventually some fraction of low intensity pixels would 

become so dark that their intensity would not be detectable over the static pixel noise which arises 

from e.g., stray light, dark camera noise, etc. In this limit, we would expect the shape of the 

intensity distribution, and therefore the kurtosis or skewness, to likely change due to the inability 

to detect the full distribution (i.e., due to ‘missing events’).  To avoid this potential artifact, we 

flag videos with unusually low intensity and remove these from the analysis; saturated videos are 

also flagged (see SI Section 1).   

Similar to island and void computations in the IB branch, BARCODE reports the maximum of 

each of these shape metrics across all evaluated frames, denoted as 𝑆1, 𝑆2 and 𝐾 (Fig. 2E), as well 

as the difference between the values in the first and last 𝑋% of frames, ∆𝑆1 , ∆𝑆2  and ∆𝐾  to 

determine the degree and type of restructuring. These 6 metrics accurately capture the differences 

between Video 1 and 2 and their time-dependent restructuring. In Video 1, we find that 𝑆2,𝑖 is 

positive and remains relatively constant, indicative of modest bundling seen in the example frames. 
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𝐾𝑖 is likewise positive for all frames but displays a much wider range of values over time and is 

substantially closer to zero at end of the video (∆𝐾 < 0), indicating a more uniformly bundled 

material (i.e., a higher density of pixels near the mean). 

The Optical Flow (OF) branch (Fig. 2D) outputs 4 BARCODE metrics by calculating velocity 

vectors for every pixel of every 𝑘𝑡ℎ frame of a video, and averaging those vectors within each 

𝑝 × 𝑝  window of the 𝑚 × 𝑛  image, resulting in a downsampled field of 𝑚/𝑝 × 𝑛/𝑝  velocity 

vectors for all 𝑇/𝑘 frames of a video, where 𝑘 and 𝑝 are user-defined. From the vector fields, 

which we save as RDS, we compute, for each field 𝑖, the speed 𝑣𝑖 ,mean flow direction 𝜃𝑖, and 

directional spread 𝜎𝜃,𝑖 , calculated as the circular standard deviation of flow directions across all 

vectors. Averaging each of these quantities across all fields from a given video provides the global 

averaged BARCODE metrics, 𝑣, 𝜃 and 𝜎𝜃. We also compute the change in 𝑣𝑖 between the final 

and initial 𝑋% of vector fields ∆𝑣. To compute direction metrics we use bounds of −𝜋 to +𝜋 and 

take care in averaging the vector components to avoid issues with motion that is directed near the 

±𝜋 boundary (see SI, Section 1). Together these BARCODE entries quantify the magnitude and 

direction of the material motion, and the extent to which it is directed or randomly oriented, and 

speeding up or slowing down. For example, a material that exhibits fast directed flow in the vertical 

direction that slows down over time, will report a high 𝑣 value (fast), ∆𝑣 < 0 (slowing down), 𝜃 ≈
𝜋/2 (vertical direction) and 𝜎𝜃 ≈ 0 (most vectors are oriented in the same direction). Steady but 

randomly oriented motion would result in 𝑣 > 0 (the rate of random fluctuations), ∆𝑣 ≈ 0 (steady 

rate), 𝜃 ≈ 0 (all directions average to zero in the isotropic case) and 𝜎𝜃 > 0. Moreover, comparing 

the OF branch metrics between different channels of the same video reports the degree to which 

the different components of the material are moving together. OF analysis of the two example 

videos reveal starkly different dynamics (Fig. 2D). Video 1 flow field has smaller vectors that have 

a wider range in orientations compared to Video 2, which can be seen quantitatively by 𝑣𝑖 being 

smaller and 𝜎𝜃,𝑖 being larger and more variable for Video 1 compared to Video 2. We also see that 

𝑣𝑖 is relatively constant over time for Video 1 (∆𝑣 ≈ 0), while it substantially decreases for Video 

2 (∆𝑣 < 0). These distinct dynamics are captured in the different colors of the last 4 entries of their 

respective barcodes (Fig. 2E). 

To benchmark BARCODE performance and demonstrate its ability to rapidly screen and discover 

properties of a broad range of non-equilibrium materials, we present the results of BARCODE 

analyses performed on microscopy data for four different materials that each have different image 

sizes, resolution, durations, acquisition parameters, and dataset sizes.  

 

BARCODE accurately measures filament speeds and reveals emergent correlations in 

active cytoskeleton composites 

We first analyze a published set of two-channel confocal videos of composites of entangled actin 

and microtubules, with and without crosslinkers, that undergo restructuring via kinesin and myosin 

motors acting on microtubules and actin, respectively (Fig. 3A) 20. The dataset includes 48 videos 

of 𝑇 ≈1000 frames of size 𝑚 × 𝑛 = 512×512, each with two channels that separately visualize the 

actin and microtubules (Fig. 3B). Originally, the videos were analyzed using differential dynamic 

microscopy (DDM) 49,50, an established and powerful, yet labor-intensive, approach to show that 

all formulations exhibit ballistic motion with speeds spanning roughly three orders of magnitude. 

DDM analysis also revealed that the data could be categorized into three distinct dynamic classes: 

‘fast’ directed flow, ‘slow’ isotropic restructuring or ‘multi-mode’ dynamics that manifested 
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aspects of fast and slow behavior (Fig. 3B). Importantly, the dynamic class was not statistically 

correlated with the material formulation and the molecular underpinnings remained unclear.  

BARCODE analysis of this dataset took ~9 mins to complete, with no pre- or post-processing of 

the videos, compared to ~53 min required to complete the first step of DDM analysis, after which 

several rounds of subjective fitting and parameter choices requiring expertise are needed to 

determine dynamics. The resulting barcode matrices for the actin (Fig. 3C) and microtubule (Fig. 

3D) channels also provide structural and orientational data for the complete dataset, which was not 

comprehensively analyzed in the original work20. The 4 OF entries are indistinguishable between 

the two channels, consistent with the nontrivial finding that actin and microtubules exhibited 

similar speeds across the entire formulation space20. The other branches show differences, 

indicating distinct and previously unreported, structural features of actin and microtubule 

networks.  

To first benchmark and validate BARCODE, we compare the speeds 𝑣  computed from 

BARCODE to the previously reported DDM-computed speeds for the entire dataset, color-coded 

by the nominal dynamical class (Fig. 3B, E). We find remarkably good agreement over two 

decades of speeds (Fig. 3E, SI Table S2). Multi-mode class data deviates from the equivalency 

line more than the other classes because the original DDM analysis resulted in two speeds, which 

were averaged here, while BARCODE computes a single speed for each condition. BARCODE 

also quantitatively captures other dynamical features of each class that were only qualitatively 

described in prior work. Specifically, prior particle image velocimetry (PIV) analysis demonstrated 

that a single exemplar video for each of the fast and slow classes exhibited unidirectional and 

randomly oriented motion, respectively. By evaluating correlations between speed 𝑣, directional 

spread 𝜎𝜃, and flow direction 𝜃, BARCODE not only reproduces this result but demonstrates its 

applicability to all data in each class (Fig. 3F).  

We next demonstrate the ability of BARCODE to rapidly discover structural properties and 

correlations. We observe substantially greater median and mode skewness changes, ∆𝑆1 and ∆𝑆2, 

for fast class data compared to slow and multi-mode (Fig. 3G), suggesting more pronounced 

restructuring. Moreover, the larger range in ∆𝑆2 values compared to ∆𝑆1 is a likely indicator of 

pixel saturation due to largescale aggregation, shifting the mode from a low intensity peak to the 

highest value (as shown in Fig. 2C). A powerful feature of BARCODE is its ability to directly 

correlate structural and dynamical features, such as the relationship between directional spread 𝜎𝜃 

and maximum median skewness 𝑆1  (Fig. 3H). Here, we find clear partitioning between the 

different dynamic classes. Fast data exhibits minimal 𝜎𝜃, indicative of directed motion; and a large 

spread in 𝑆1, suggestive of wide-ranging structures. Conversely, the other classes generally exhibit 

higher 𝜎𝜃 values, indicating more randomly oriented motion; and lower and less varied 𝑆1 values, 

signifying minimal restructuring.  

Using BARCODE’s IB branch we compare the initial maximum and secondary maximum island 

areas, 𝐼0,1 and 𝐼0,2 (Fig. 3I), observing that slow and multi-mode composites exhibit predominantly 

a single large island, with 𝐼0,2 < 5% of the FOV for all videos and 𝐼0,1 values up to ~75%. Fast 

class composites have a comparatively broader spread in initial island sizes and generally smaller 

𝐼0,1 and larger 𝐼0,2 values, suggesting that less connected and more heterogeneous networks may 

more readily facilitate fast flow. Additionally, microtubules generally have smaller island sizes 

compared to actin, which may reflect increased network heterogeneity and larger mesh sizes.  
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To corroborate this physical picture, we compare the connectivity and maximum void area for the 

different classes (Fig 3J), finding that nearly all slow and multi-mode networks remain fully 

connected (𝐶 ≈ 1)  and most void areas are below 50%. Conversely, BARCODE reports a range 

of fractional (𝐶 < 1) connectivity values for the fast class networks as well as for microtubules, 

which also have larger void areas (𝑉 > 50%) and smaller initial island areas compared to actin.  

 

BARCODE reveals universal features of active cytoskeleton materials 

To further validate BARCODE and demonstrate its rapid and robust characterization capabilities, 

we analyze two additional datasets: a published study that examined the contractile behavior of 

myosin-driven crosslinked actin 10 (Fig. 4A), and previously unpublished data on kinesin-driven 

composites of actin and microtubules, with and without crosslinking (Fig. 4H). In the first, 

confocal microscopy videos with separate channels representing labelled myosin and actin were 

collected. Previously published image analysis performed on the myosin channels revealed three 

classes of contractile behavior: local, global, and critically connected (Fig. 4A). Local contraction 

was signified by actin and myosin forming small scale (~10 µm) uniformly distributed clusters, 

whereas global contraction led all components to condense into a single well-defined region. 

Critically connected networks exhibited distinct reconfiguration across lengthscales, with some 

regions condensing to large aggregates while others remained more homogeneously distributed 

(Fig. 4A).  

To corroborate these general features of the different classes and discover their dynamical 

properties and structure-dynamics correlations, we use BARCODE to analyze both actin and 

myosin channels of the videos (Fig. 4B,C). Upon visual inspection of the barcodes, we find highly 

similar OF metrics between actin and myosin, suggesting that the two components are highly 

interacting and moving together. Both channels show larger maximum areas and larger changes 

for voids as compared to islands (i.e., ∆𝑉 > ∆𝐼, 𝑉 > 𝐼). Additionally, the actin channel shows a 

lower degree of connectivity and increased variability in skewness (𝑆1, 𝑆2 ), suggesting more 

complex structure and reconfiguration, and consistent with the images in Fig. 4A. We next analyze 

correlations between the quantitative metrics output by BARCODE, color-coding the data by the 

previously identified contractile classes (Fig. 4D-G). 

Comparing the speed 𝑣 to the speed change ∆𝑣  (Fig. 4D), we confirm that myosin and actin 

dynamics are highly correlated (i.e, similar 𝑣 and ∆𝑣 values). Locally contractile networks display 

relatively low speeds with minimal changes, consistent with small-scale local contractions. By 

contrast, both critically connected and globally contractile networks exhibit higher and more 

variable speeds, spanning over an order of magnitude in 𝑣, with faster speeds showing increased 

changes in dynamics (Fig 4D inset).  

To determine how the initial structure correlates with contractile class, we compare the initial 

maximum and secondary maximum island areas for actin and myosin (Fig. 4E). For actin, we find 

that locally contractile networks exhibit large  𝐼0,1  values (>40%) and nearly zero 𝐼0,2  values, 

similar to the slow class networks in Fig. 3I, and consistent with prior reports10,20. Conversely, the 

globally contractile and critically connected networks have smaller 𝐼0,1  and larger 𝐼0,2  values, 

similar to the fast networks in Fig. 3I, and suggesting the presence of a larger number of structures 

of similar sizes. In contrast, the myosin data exhibits similar and generally correlated values of 𝐼0,1 

and 𝐼0,2, with the critically connected networks having the highest (𝐼0,1, 𝐼0,2) pairs, consistent with 

their expected clustering across different scales.  
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Finally, we relate restructuring to dynamics (Fig. 4F,G), comparing changes in mode skewness 

∆𝑆2 to changes in median skewness ∆𝑆1 (Fig. 4F) and island area ∆𝐼 (Fig. 4G). We observe clear 

distinctions between the different contractile classes and between actin and myosin. We find that 

actin exhibits larger skewness changes compared to myosin, as visually indicated by the barcode 

(Fig 4B,C), and global and critical contractile networks exhibit larger skewness changes compared 

to local contraction data, as expected. Interestingly, critical and global data have mostly negative 

and positive median skewness changes ∆𝑆1 , respectively, indicating large-scale aggregation 

(brighter pixels) coupled with more network-poor (darker) regions for global data as compared to 

varied or multiple aggregates (brighter pixels) coupled with sustained network-rich regions (fewer 

dark pixels) for critically connected networks. These results highlight the power of BARCODE to 

reveal complex behaviors and correlations in active systems from a remarkably thrifty set of 

metrics produced in minutes.  

Thus far, we have presented analysis of previously published and well-vetted data to benchmark 

BARCODE, revealing insights and emergent similarities between two different cytoskeletal 

materials. To explore potential universality in response, and further demonstrate BARCODE 

capabilities, we analyze previously unpublished data on kinesin-driven composites of actin and 

microtubules, with and without crosslinking of actin or microtubules (Fig. 4H). The system 

components are similar to those shown in Fig. 3A, but with a lower ratio of microtubules to actin, 

higher kinesin concentration, and no myosin (see SI Section 2). The actin is also not labeled in this 

set of 109 videos, so our analysis focuses solely on the structure and dynamics of the microtubule 

network. Comparing the barcodes for this system (Fig. 4I) to those of the actomyosin system (Fig. 

4B), we find similar OF parameters, except ∆𝑣 appears higher for the kinesin-driven composites, 

while we observe much more variability in IB metrics. To further investigate similarities and 

differences between the different cytoskeleton systems, we evaluate similar correlations as in Figs 

3 and 4D-G, color-coding the data by the type of crosslinking: none, microtubule-microtubule, or 

actin-actin.  

We again find that slower speeds correlate with minimal speed changes (∆𝑣 ≈ 0) (Fig. 4J), and 

increasing speed generally correlates with increasing speed change |∆𝑣| (Fig 4J inset). However, 

in comparison to actomyosin network dynamics, the speeds are generally an order of magnitude 

higher and dynamics appear to speed up (∆𝑣 > 0) rather slow down. Moreover, uncrosslinked 

networks generally exhibit faster speeds and greater speed changes compared to crosslinked 

networks, crosslinked microtubule networks exhibit the slowest speeds likely because crosslinking 

provides more rigidity and connectivity thereby slowing contraction. Increased connectivity 

should lead to larger differences between the initial maximum and secondary maximum island 

areas, since connected networks should have FOV-spanning islands, which we observe (Fig. 4K). 

Most of the crosslinked data lies below the equivalency line, indicating 𝐼0,1 > 𝐼0,2, with a roughly 

inverse relationship between 𝐼0,1 and 𝐼0,2, similar to trends in Fig. 3I and the actin data in Fig. 4E. 

By contrast, the uncrosslinked network data falls near the equivalency line, indicating an ensemble 

of similarly sized clusters. Contraction is further confirmed by comparing 𝐼0,1 with the maximum 

island area 𝐼 (Fig. 4K inset), which shows that most paired 𝐼0,1 and 𝐼 values are similar, suggesting 

that islands are generally shrinking (i.e., contracting) over time.  

To provide further insight into the network restructuring, we evaluate correlations between the 

maximum kurtosis 𝐾 and the maximum median skewness 𝑆1 (Fig. 4L) and flow directional spread 

𝜎𝜃  (Fig. 4M). We find that 𝐾 and 𝑆1 are generally inversely related and that most crosslinked 

networks exhibit lower kurtosis and higher skewness than uncrosslinked networks, which we 
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attribute to increased connectivity and bundling, respectively. Specifically, lower 𝐾 values and 

higher 𝑆1  values indicate increased global structural homogeneity and increased local mass 

density, respectively. Coupling these structural distinctions with dynamical features, we observe 

that uncrosslinked networks exhibit a wider spread in 𝜎𝜃 values that extend to much smaller values 

than for crosslinked networks (Fig. 4M), indicating more variable types of motion and a higher 

propensity for directed motion in the uncrosslinked case. This behavior is likely enabled by the 

reduced connectivity, increased structural heterogeneity, and faster speeds that uncrosslinked 

networks exhibit compared to crosslinked networks. Together, these results demonstrate 

BARCODE’s ability to quantify and correlate a host of structural and dynamic parameters for 

different active cytoskeleton network formulations, conditions, acquisition parameters, and 

spatiotemporal scales to reveal universal behaviors and emergent properties in this foundational 

class of active matter.  

 

BARCODE characterizes dynamics and structure of dynamic cell monolayers  

To further demonstrate the broad applicability of BARCODE, we next analyze two datasets of 

active cell monolayers. In each, large FOV (>1 mm) time-lapse videos are captured over the course 

of days (69-89 hrs) and the nuclei and cytoplasm are imaged separately, providing two channels 

for analysis. We first evaluate a previously published dataset 34 of videos of weakly interacting 

spindle-shaped human dermal fibroblasts (hdFs) (Fig. 5A) at two cell densities. The barcodes for 

each channel of the 72 videos (Fig. 5B) show both expected and nontrivial properties. For example, 

the entire set of nucleus data, which primarily contains isolated punctate objects that are not 

expected to significantly change shape or size, has essentially no connectivity, very small 

maximum and initial island sizes, and large voids. Conversely, the cytoplasm channel has more 

instances of positive connectivity along with larger maximum island areas and smaller voids. 

Despite clear structural differences, the dynamic OF metrics (𝑣, ∆𝑣, 𝜃, 𝜎𝜃) display similar trends 

between the channels, as expected since the two components comprise the same ensemble of cells. 

To more closely examine the effects of cell density, we evaluate similar correlations as in Figures 

3 and 4.  

Evaluating the speed and its change for each channel and cell density (Fig. 5C), we observe modest 

slowing for nearly all data, perhaps indicative of jamming as the cell number increases over time 

due to cell division, in line with the observation that the higher cell density data exhibits generally 

slower speeds. The cytoplasmic signal is generally slower than the nuclear signal, which we 

attribute to the more complex shape and intensity changes of the cytoplasm. Comparing the initial 

maximum and secondary maximum island areas, we find most of the data falling near the 𝐼0,1 ≈
𝐼0,2 equivalency line. Moreover, the nucleus data is all tightly clustered around 𝐼0,1 ≈ 𝐼0,2 ≈ 1% 

which is equivalent to ~2000 µm2, roughly equivalent to the 2D projected area of the nucleus (Fig. 

5A). The cytoplasm data displays more variation in island area and greater deviation from the 

equivalency line (i.e., 𝐼0,1 > 𝐼0,2), indicating closely packed cells that register as larger multi-cell 

islands. 

Turning to structural changes, quantified by ∆𝑆2 and ∆𝑉 (Fig. 5E), we observe minimal changes 

in the nucleus channel, as expected, since they are not changing in size, shape or concentration. 

As expected, the cytoplasm data shows more variations in both metrics, reflecting changing cell 

shapes as well as clustering over time. Moreover, ∆𝑆2  is universally negative, indicative of 

increased uniformity and reduced spread in pixel intensities, which can be observed in Fig. 5A. 
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Interestingly, we find that the maximum void areas decrease for low density cases and increase for 

high densities. This suggests that at higher densities cell cluster into large connected multi-cell 

regions producing larger void areas, while at lower density, cells remain more dispersed, thus 

producing smaller voids. This physical picture is corroborated by Fig. 5F which shows that lower 

cell densities result in higher connectivity 𝐶 and generally higher median skewness 𝑆1, indicating 

a more connected meshwork of cells at low densities compared to large multi-cell aggregates that 

come with larger voids and more dark pixels. 

To assess the relevance of these findings to other cell systems, we also analyze videos of jamming 

MCF10A breast epithelial cells (Fig. 5G-L). Here, whole cells and their GFP-labeled nuclei are 

imaged using phase contrast and epifluorescence, respectively (Fig. 5G). Examining the barcode 

for each channel (Fig. 5H), we find similarities with the hdFs (Fig. 5B), including minimal 

connectivity and island areas for the nucleus data and similar OF metrics between the two channels. 

Evaluating the same correlations as in Fig. 5C-F, we find the both cell types exhibit generally 

decreasing speeds (i.e., ∆𝑣 < 0 ) (Fig. 5C,I) and similar 𝐼0,1 vs 𝐼0,2  correlations (Fig. 5D,J). 

However, the spread in ∆𝑣 and 𝑣 values is less for the MCF10As (Fig. 5I) compared to hdFs (Fig. 

5C), suggesting more ordered and correlated motion within epithelia as compared to more motile 

fibroblasts. Moreover, the mode skewness change is positive (∆𝑆2 > 0) for epithelial cells (Fig. 

5K) in contrast to hdFs and consistent with increased contrast and sharpness of final versus initial 

images (Fig. 5G,K), opposite to hdFs. As expected, we observe zero connectivity (𝐶 = 0) (Fig. 

5F,L) and minimal void area change (∆𝑉 ≈ 1) (Fig. 5E,K) for the nucleus channel and a wide 

range of connectivity values among the cell boundaries (Fig. 5F,L). Together, our results 

demonstrate the power of BARCODE to reveal convergent properties, dissect differences between 

disparate materials systems and accurately characterize material properties using distinct imaging 

modalities. 

 

DISCUSSION 

We present BARCODE, a HTP analysis platform that rapidly extracts a unique low-dimensional 

fingerprint from large and complex microscopy datasets of active materials. Each barcode output 

represents a readily accessible visual readout of 17 quantitative features, providing a concise and 

standardized summary of the system's structural and dynamic behavior and enabling rapid 

identification and comparison of properties among different experiments, formulations and 

conditions. In generating each barcode, the platform also produces and archives standardized 

reduced data structures, including time series of binarized frames, intensity distributions, and 

optical flow fields which are calculated for a down-sampled selection of frames throughout the 

video. The RDS facilitate down-stream analysis and enable users to perform deep-dives into 

datasets that exhibit performance targets, irregularities or emergent outputs.  

BARCODE offers several advantages for analysis of large microscopy-based datasets, as 

demonstrated by our analysis of multiple distinct active matter systems here. BARCODE is 

effective and efficient in reproducing known material properties and discovering new features and 

formulation-structure-dynamics relationships in a material-agnostic manner. We have established 

BARCODE’s abilities to analyze confocal fluorescence, epifluorescence and phase contrast videos 

ranging from 6 mins to 89 hours, 5 to 1178 frames, and with dimensions of 200 µm to 2 mm and 

256 to 6318 pixels. The barcodes produced for each data set included multiple video channels, 

with individual file sizes as large as 1.95 GB and folder sizes as large as 40 GB. For all datasets, 
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BARCODE analysis was completed in a range between 10 minutes for a 12 GB dataset to ~75 

minutes for a 40 GB dataset. 

BARCODE is expressly designed to be a high throughput screening tool, rather than an intensive 

data analysis platform, to rapidly extract average and reduced-dimensionality metrics for coarse 

characterization to compare datasets, guide optimization and discover emergence. This data 

reduction necessarily leads to some information loss.  To increase processing speed and ensure the 

metrics are applicable to a broad range of materials, we chose to reduce spatial and temporal 

resolution (downsampling frames and pixels by 𝑘 and 𝑝) in calculating the RDS, and to focus on 

extremal quantities and changes thereof. In general, the metrics that report changes in quantities 

assess property differences between the beginning and end of each video, so transient changes may 

not be captured in the lowest dimension barcode matrix. However, the full time-dependent 

information is saved in the RDS and users can choose to perform advanced analysis on RDS to 

assess time-dependencies and discern more subtle changes in material structure and dynamics.    

To ensure BARCODE is broadly accessible, we designed it to require minimal subjective inputs 

or training. BARCODE is executed with a user-friendly GUI, in contrast to algorithmically-

intensive methods such as Fourier image analysis and particle-tracking methods, allowing for rapid 

analysis and broad use of the platform by beginners and experts alike 49,51-54. Our improved ability 

to analyze and share data is an important step towards democratizing materials discovery across 

disparate working groups with varied expertise.  

BARCODE is also highly adaptable: branches and metrics can be easily added or removed, 

providing flexibility to users and enabling the software to meet the future needs of the community. 

Planned expansions of BARCODE will include additional branches and metrics that quantify 

diffusive behavior and mechanical properties, including two-point correlation functions, as well 

as adding user-identified improvements and user-generated extensions in the future. We are also 

currently investigating the use of machine learning for data classification and to enable data-driven 

predictions of material behavior. Ultimately, the rapid read-outs BARCODE provides may also 

enable ‘on-the-fly’ training of machine learning tools for active material design and optimization, 

thereby unlocking the capabilities of complex multiphase multiscale soft materials in fit-for-

purpose applications.  

 

METHODS 

Preparation and Imaging of Active Cytoskeleton Networks. Data presented in Figures 2 and 3 

were generated from previously published source videos20. Actomyosin data presented in Figure 

4A-G were generated from previously published source videos10. The cytoskeletal networks and 

video data presented in Fig. 4H-M were generated as follows. 

Proteins: All proteins were purchased as lyophilized powder from Cytoskeleton, Inc, 

reconstituted, flash-frozen into single-use aliquots, and stored at -80˚C until use. Rabbit skeletal 

actin monomers (AKL99) and biotin-actin monomers (AB07) were reconstituted in G-buffer (2.0 

mM Tris (pH 8), 0.2 mM ATP, 0.5 mM DTT, 0.1 mM CaCl2). Porcine brain tubulin dimers 

(T240), HiLyte 647-labeled tubulin dimers (TL670M) and biotin-tubulin dimers (T333P) were 

reconstituted in PEM-100 buffer (100 mM PIPES (pH 6.8), 2 mM MgCl2, and 2 mM EGTA). 

Biotinylated kinesin-40155,56 was expressed, as described previously20, in Rosetta (DE3)pLysS 

competent E. coli (ThermoFisher) grown on selective media plates for 16-18 hours at 37°C. Fifteen 

colonies were added to a 5 mL starter culture of selective LB media and grown for 2 hrs at 
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37°C/250rpm before adding to 400 mL of selective LB media. Cells are grown at 37°C/250rpm to 

OD 0.6-0.9 at 600 nm, then induced at 20°C/250rpm for 18 hours with 1mM Isopropyl -D-1-

thiogalactopyranoside (IPTG), and pelleted at 5000 rpm for 10 minutes at 4°C before being frozen 

at -80°C for 1 hr. Cells were lysed in lysis binding buffer (50 mM PIPES, 4 mM MgCl2, 20 mM 

imidazole, 10 mM β-mercaptoethanol, 50 μM ATP, one protease inhibitor tablet per 10 mL, 1.1 

mg/mL PMSF, 1.1 mg/mL lysozyme) via sonication for 3 mins, pulsing every 20 s, then pelleted 

for 30 mins at 40,000 x g at 4°C, filtered through a 0.22 µM filter, and incubated with 1 mL nickel 

(Ni-NTA) agarose beads (Qiagen) for 2 hrs on a rocker at 4°C. The lysate/bead mixture was passed 

through a chromatography column then washed with 15 mL buffer (50 mM PIPES, 4 mM MgCl2, 

20 mM imidazole, 10 mM β-mercaptoethanol, 50 μM ATP, one protease inhibitor tablet per 10 

mL) before 1 mL fractions were eluted in (50 mM PIPES, 4 mM MgCl2, 20 mM imidazole, 10mM 

β-mercaptoethanol, 50 μM ATP, one protease inhibitor tablet per 10 mL, 2 mM DTT, 0.05 mM 

ATP). An elution dot blot was performed to assess the most concentrated fraction which was run 

through a 40KD MWCO desalting column for buffer exchange with PEM-100 with 0.1 mM ATP, 

then mixed with 60% sucrose for a final concentration of 10% sucrose before being aliquoted and 

flash-frozen into single-use aliquots. 

To prepare force-generating kinesin clusters, kinesin-401 dimers were incubated with NeutrAvidin 

(ThermoFisher) at a 1.7:1 ratio in PEM-100 to a final concentration of 10 µM supplemented with 

4 mM DTT for 30 min at 4°C. Clusters were prepared fresh and used within 24 hrs. 

For composites that incorporate actin or microtubule crosslinking, actin:actin or 

microtubule:microtubule crosslinked complexes were prepared by combining biotinylated actin 

monomers or tubulin dimers with NeutrAvidin and free biotin at a ratio of 2:2:1 protein:free 

biotin:NeutrAvidin and incubating for 90 mins57.  

Cytoskeletal Network Preparation: Actin-microtubule composites were prepared by polymerizing 

a mixture of 5.22 μM actin monomers, 6.06 μM tubulin dimers, 0.32 μM HiLyte 647-labeled 

tubulin dimers, 5.22 μM phalloidin (Invitrogen) and 5 µM Taxol (Sigma) in PEM-100, 

supplemented with 0.1% Tween, 4 mM ATP, and 4 mM GTP. For crosslinked composites, a 

portion of either actin monomers or tubulin dimers was replaced with equivalent crosslinker 

complexes to achieve the same overall actin and tubulin concentrations and crosslinker:protein 

ratios of 𝑅𝐴 = 0.02 for actin or 𝑅𝑇= 0.005 for tubulin. Composites were polymerized in the dark 

for 1 hour at 37°C. 

To prepare ACCs, 5 μL of the polymerized actin-microtubule composite was combined with the 

following to a 9 µL final volume: oxygen scavenging system [45 μg/mL glucose, 0.005% β-

mercaptoethanol, 43 μg/mL glucose oxidase, 7 μg/mL catalase, 2 mM Trolox (Sigma)] and ATP-

regeneration system [26.7 mM phosphoenol pyruvate (Beantown Chemical, 129745) and pyruvate 

kinase/lactate dehydrogenase (Sigma, P-029)]. Finally, 1 μL of kinesin clusters was added to reach 

a final concentration of 1 μM, followed by gentle mixing of the sample by pipetting up and down.  

Sample chambers: Sample chambers with a volume of ~10 μL were made by placing two strips of 

parafilm between a No. 1 glass coverslip and microscope slide, followed by heating to fuse them 

together. To prevent surface adsorption of proteins, the chambers were filled with a 1 mM solution 

of BSA (bovine serum albumin, Sigma) and incubated for 10 minutes, after which the solution is 

flushed out with compressed air. The prepared cytoskeletal network solution was then loaded into 

the chamber and the open ends were sealed with UV-curable glue.  
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Imaging: Imaging of HiLyte647-labeled microtubules was performed using a Nikon A1R laser 

scanning confocal microscope with a 60× oil-immersion objective (Nikon) and a 640 nm laser 

with 624±20 nm / 692±20 nm excitation/emission filters. Time-series (videos) of 256 × 256 

square-pixel (213 μm × 213 μm) images were collected at 1.33 fps for a minimum of 400 frames 

(300 s). Imaging began 5 minutes after the addition of kinesin motors to the sample in the middle 

plane of the ~100 μm thick sample chamber. Each subsequent video was recorded in a different 

field of view laterally translated by at least 500 μm. Imaging continued until restructuring or 

motion was no longer visible (~60-120 min). 5-10 videos were collected for each sample. Each 

data point shown in Fig. 4 corresponds to a single video. The 55, 7 and 47 data points for the 

uncrosslinked, actin crosslinked and microtubule crosslinked data, respectively are from 8, 2 and 

6 independent replicates, which sufficiently capture the range of material dynamics. 

Preparation and Imaging of Cell Monolayers. Data presented in Figure 5A-F were generated 

from source videos34 of human dermal fibroblasts (ATCC PCS-201-010), which we further 

processed as described below. Video data presented in Fig. 5G-J, from experiments similar to 

previous reports37,38, were graciously shared by Jasmin Di Franco and Roberto Cerbino (University 

of Vienna, Austria) and prepared as described below. 

Cell culture: MCF10A cells (kind gift of J. S. Brugge, Department of Cell Biology, Harvard 

Medical School, Boston, USA) were cultured in Dulbecco’s Modified Eagle Medium: Nutrient 

Mixture F-12 supplement with Glutamine (DMEM/F12 GlutaMax) medium (Gibco), 

supplemented with 5% horse serum (Biowest), 0.5 mg/mL hydrocortisone (Sigma-Aldrich), 100 

ng/mL cholera toxin (Sigma-Aldrich), 10 µg/mL insulin (Roche), 1% Penicillin-Streptomycin 

(HyClone), and 20 ng/mL EGF (Peprotech), the latter being added directly to the culture plates. 

Cells were maintained at 37°C in a humidified atmosphere with 5% CO₂. Cell identity was verified 

by fingerprinting by the IFOM (Milan) cell culture facility, and cells were routinely tested for 

Mycoplasma contamination. Stable expression of GFP-H2B was achieved by lentiviral infection 

of MCF10A cells with pBABE-puro-GFP-H2B vectors to enable nuclear labeling. 

Cell jamming assay: Cells were seeded into six-well plates at a density of 1.5 × 10⁶ cells per well 

in complete medium and cultured to form a uniform monolayer (~24 hours). Prior to imaging, the 

cell monolayer was carefully washed with 1X Dulbecco's Phosphate Buffered Saline (DPBS) to 

remove floating cells, and the medium was refreshed. Time-lapse images of size 1024 ×1024 

square-pixels (1331 µm × 1331 µm) were captured every 5 minutes over a 72-hour period using 

a Leica Thunder inverted microscope equipped with a 10× objective, both in phase contrast, to 

image the cell walls and cytoplasm, as well as fluorescence, to image the GFP-labeled nuclei. The 

assay was conducted in an environmental microscope incubator set to 37°C with 5% CO₂ 

perfusion. Data presented in Fig. 5G-J are from 20 videos from 5 independent samples, each 

containing a fluorescence and phase contrast channel, which sufficiently capture the range of 

material dynamics. For BARCODE analysis, we divided each video channel into four 512 ×512 

square-pixel images to increase statistics. 

Fig. 5A-F video post-processing: Videos34 of size 6318×3546 square-pixels (3702 µm × 2078 

µm) and 5088 × 2332 square-pixels (2982 µm × 1367 µm) were divided into smaller FOVs to 

increase statistics and remove spurious dark spots or sample borders that impact image analysis. 

Specifically, the data is from 72 videos from 2 independent samples, each containing two channels, 

which sufficiently capture the range of material dynamics and represent the full published dataset 

for these cell densities on isotropic subtrates. For BARCODE analysis, we divided each video 

channel into 30-42 video tiles with tile size of 960×608 square-pixels (562 µm × 356 µm). 
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DATA AVAILABILITY 

The source data for all plots shown in Figures 2-5 have been deposited in the Dryad repository 

and can be accessed at: doi:10.5061/dryad.pc866t235. 

 

CODE AVAILABILITY 

BARCODE and supporting documentation are available on the GitHub repository58 at 

https://github.com/softmatterdb/barcode and can be accessed at: doi:10.5281/zenodo.17585069.  
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Table 1. BARCODE Parameters fully described in the main text and SI Section 1. 

Parameter Description 

Connectivity 𝐶 Fraction of frames in a video in which material is 

percolated across at least one dimension  

Maximum Island Area 𝐼 Fractional area of largest contiguous region of white 

pixels across all frames of a binarized video  

Maximum Void Area 𝑉 Fractional area of largest contiguous region of black 

pixels across all frames of a binarized video 

Maximum Island Area Change ∆𝐼 Relative change in maximum island area over the time 

course of the video 

Maximum Void Area Change ∆𝑉 Relative change in maximum void area over the time 

course of the video  

Initial Maximum Island Area 𝐼0,1   Area of largest island at start of video 

Initial 2nd Maximum Island Area 

𝐼0,2 

Area of second largest island at start of video 

Maximum Kurtosis 𝐾  Largest measured kurtosis value  

Maximum Median Skewness 𝑆1 Largest median skewness value  

Maximum Mode Skewness 𝑆2 Largest mode skewness value  

Kurtosis Change ∆𝐾 Change in maximum kurtosis value over the time course 

of the video 

Median Skewness Change ∆𝑆1 Change in maximum median skewness value over the 

time course of the video 

Mode Skewness Change ∆𝑆2 Change in maximum mode skewness value over the time 

course of the video 

Speed 𝑣 Mean speed of material across all vectors of all flow fields  

Speed Change ∆𝑣 Difference between the speed measured in the initial and 

final flow field 

Mean Flow Direction 𝜃 Average direction of material motion over all flow fields 

Directional Spread 𝜎𝜃 Standard deviation of motion direction over all flow fields 
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FIGURE CAPTIONS 

 

Figure 1. BARCODE performs HTP screening of large video-based datasets to extract an 

information-rich, sparse-data barcode that reduces dataset size by 4 orders of magnitude. 

(A) In typical experiments, a large number of multi-channel microscopy videos are acquired and 

saved in a hierarchical folder structure with (B) individual multi-channel videos within each 

folder, representing various compositions of active materials. Shown from top to bottom are 

kinesin-driven composites of actin (green) and microtubules (magenta) with (top) and without 

(middle) passive crosslinkers; and (bottom) a monolayer of cells with separately labeled nuclei 

(magenta) and cytoplasm (cyan). (C) Each multichannel video is separated into stacks of single-

channel images. Shown from top to bottom are microtubules, actin, and microtubule crosslinkers 

(ASE1, anaphase spindle elongation protein 1) separated from the merged images shown in B 

(top). (D) Each channel is fed into three independent analysis branches that leverage vetted 

image analysis methods: binarization (top), pixel intensity distributions (middle), and optical 

flow (bottom). The reduced data structures (RDS) that each branch computes are saved for 

further screening or hypothesis-driven research outside of BARCODE; and used to extract a low 

dimensional 1⨉17 matrix or ‘barcode’ which visually and quantitatively represents key output 

metrics characterizing material structure, reconfiguration and dynamics. (E) Each video channel 

is reduced to a unique barcode that is compiled into a consolidated array providing a 

comprehensive and quantitative fingerprint of the dataset. The different colors depict the values 

of each metric from the minimum (blue) to maximum (yellow) assigned values using the plasma 

colorscale, as shown by the color scale bar. 

 

Figure 2. BARCODE leverages three independent analysis branches to rapidly extract a 

structural and dynamical fingerprint. (A) Select frames at beginning (0 min), middle (3 min) 

and end (6 min) of confocal fluorescence microscopy videos show microtubules (magenta, Video 

1) and actin (green, Video 2). (B) The Image Binarization (IB) branch binarizes every 𝑘𝑡ℎ frame, 

resulting in down-sampled binary image stacks. Binarized 0 min and 6 min frames of Video 1 

(magenta border) and Video 2 (green border), show full connectivity (orange line), and largest 

island and void (contiguous white and black region). Connectivity 𝐶𝑖  vs time for Video 1 

(magenta) and 2 (green) yields the fractional connectivity 𝐶. Maximum island and void areas, 𝐼𝑖 

and 𝑉𝑖 , versus time determine: maximum island and void areas, 𝐼 and 𝑉, and their changes between 

the first and last 5% of frames, ∆𝐼 and ∆𝑉. (C) The Intensity Distribution (ID) branch evaluates 

the distribution of pixel intensities for every 𝑘𝑡ℎ frame, displayed for the first and last frames of 

Video 1 (magenta) and 2 (green) with mode, mean and median, indicated. Skewness 𝑆2,𝑖 (left axis, 

filled circles) and kurtosis 𝐾𝑖  (right axis, open diamonds) vs time for every 𝑘𝑡ℎ  frame yields 

maximum kurtosis 𝐾, maximum mode skewness 𝑆2 and their changes from the initial to final 5% 

of frames, ∆𝐾, ∆𝑆2. (D) The Optical Flow (OF) branch generates a velocity field for every 𝑘𝑡ℎ 

frame, downsampled by a 𝑝 × 𝑝 pixel window (default 𝑝 = 8). The last (6 min) and first (0 min) 

flow fields are shown for Video 1 (left, magenta border) and 2 (right, green border), respectively, 

with arrow length and color indicating speed relative to individual flow fields and the group (see 

colorscale). Mean speed 𝑣𝑖 and directional spread 𝜎𝜃,𝑖 evaluated for every 𝑘𝑡ℎ frame yields speed 

𝑣, speed change ∆𝑣 and directional spread 𝜎𝜃. (E) A 1⨉17 ‘barcode’ of metrics, each labeled by 

its variable and name (Table 1), for Video 1 (magenta border) and 2 (green border), Numeric 
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values are given in magenta or green, respectively. Barcode colorscale is bounded by metric-

specific minimum (blue text) and maximum (yellow text) values.  

 

Figure 3: BARCODE validation and discovery of emergent properties and relationships in 

motor-driven cytoskeletal composites. (A) Cytoskeleton composite20 components include actin 

(green), microtubules (magenta), crosslinkers (biotin-NeutrAvidin-biotin), and multimeric myosin 

(dark purple) and kinesin (orange) motors. (B) Multi-channel images of actin (green) and 

microtubules (magenta), and single-channel color-coded temporal projections, with features from 

each frame of a video colorized according to the time-color scale shown, for each of the previously 

identified dynamical classes [(i) slow: purple circles, (ii) fast: orange squares, (iii) multi-mode: 

magenta triangles] and filament types [actin: filled, microtubules:open], as used in plots E-J. (C,D) 

Barcodes for actin (C) and microtubule (D) channels20 ordered by increasing speed 𝑣. Letters 

below select columns denote the figure subpanel (E-J) and axis (𝑥, 𝑦) where the metric is plotted. 

(E) Speed 𝑣  calculated with BARCODE plotted against speeds calculated using differential 

dynamic microscopy (DDM)20, show excellent agreement over two orders of magnitude (see Table 

S2 for statistical analysis). The dashed equivalency line indicates where the two values are equal. 

Arrows indicate data points corresponding to the conditions shown in B. (F) Correlation between 

speed 𝑣  and directional spread 𝜎𝜃  shows faster speeds are correlated with directed motion 

(minimal 𝜎𝜃). (Inset) Correlation between 𝜎𝜃 and flow direction 𝜃 shows fast flows are directed 

along ±
𝜋

2
, while slow and multi-mode videos have no preferred direction. (G) Correlation between 

median skewness change ∆𝑆1 and mode skewness change ∆𝑆2, with dashed lines denoting no 

change. Grey inset is a zoom-in of the grey central region. (H) Correlation between flow 

directional spread 𝜎𝜃 and maximum median skewness 𝑆1 show that fast samples (orange) exhibit 

smaller directional spread than other classes, coupled with a wider range of larger skewness values. 

(I) Initial maximum island area 𝐼0,1 versus initial secondary maximum island area 𝐼0,2 shows slow 

and multi-mode composites are initially dominated by a single large island, while fast composites 

have broader distribution of initial sizes. (J) Correlation between connectivity 𝐶 and maximum 

void area 𝑉 show slow and multi-mode networks are largely connected while fast networks are 

often not connected. Inset: Connectivity 𝐶 versus maximum island area 𝐼. 

 

Figure 4. BARCODE reveals universal dynamical and structural properties in diverse 

cytoskeletal networks. (A) Networks of (i) crosslinked actin (green) and myosin (purple), 

previously examined using confocal fluorescence microscopy and classified as locally (ii, purple) 

or globally (iii, orange) contractile or critically connected (iv, magenta)10. Initial (𝑡𝑖) and final (𝑡𝑓) 

frames of representative videos of actin (green) and myosin (magenta) with single-channel zoom-

ins of the boxed-in regions in 𝑡𝑓 frames. Colors and symbols for actin (open) and myosin (filled) 

in (ii) local (purple squares), (iii) global (orange triangles), and (iv) critically connected (magenta 

circles) networks are used in D-G. (B,C) Barcode matrix for actin (B) and myosin (C) channels10, 

ordered by increasing speed 𝑣. Letters below metrics denote figure subpanel (D-G) and axis (𝑥, 𝑦) 

where they are plotted. (D) Speed 𝑣 versus speed change ∆𝑣. Inset: absolute value of ∆𝑣 vs 𝑣 on 

log scale. (E) Initial maximum island area 𝐼0,1 versus initial secondary maximum island area 𝐼0,2. 

Dashed line indicates 𝐼0,1 = 𝐼0,2. (F,G) Correlations between mode skewness change ∆𝑆2 and (F) 

median skewness change ∆𝑆1 and (G) maximum island area change ∆𝐼, with dashed lines denoting 

zero change. Grey inset is zoom-in of grey region. (H-M) BARCODE analysis of fluorescence 
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confocal microscopy videos of networks comprising actin, microtubules and kinesin motors with 

and without crosslinking via biotin-NA-biotin. (H) Schematics of components (top) and initial and 

final frames (bottom) of example videos of fluorescent-labeled microtubules for composites with 

(i) no crosslinking: purple squares, (ii) microtubule crosslinking: orange triangles, (iii) actin 

crosslinking: magenta circles. (I) Barcode for all compositions ordered by increasing 𝑣. Letters 

below select metrics denote figure subpanels and axis (𝑥, 𝑦) where they are plotted. (J) Speed 𝑣 

versus ∆𝑣. Inset: absolute value of ∆𝑣 vs 𝑣 on log scale. (K) Initial maximum island area 𝐼0,1 

versus initial secondary maximum island area 𝐼0,2 with dashed line indicating 𝐼0,1 = 𝐼0,2. Inset: 𝐼0,1 

versus maximum island area 𝐼 with the dashed line indicating their equality. (L,M) Correlations 

between maximum kurtosis 𝐾 and (L) maximum median skewness ∆𝑆2 and (M) flow directional 

spread 𝜎𝜃. Grey inset is zoom-in of grey region.  

 

Figure 5. BARCODE provides high-throughput characterization of dynamic cell 

monolayers. (A-F) BARCODE analysis of epifluorescence microscopy videos of monolayers of 

human dermal fibroblast (hdF) cells with spectrally-distinct labeled nuclei (magenta, circles) and 

cytoplasm (cyan, squares) and two different cell concentrations [300 mm-2 (open), 450 mm-2 

(filled)] as previously reported34. Scale bar is 100 µm for all images. (A) Initial (0 hours) and final 

(89 hours) frames of representative multi-channel video of low-density monolayers with single-

channel zoom-ins of the boxed-in regions in each frame. (B) Barcode matrix for the nuclei (left, 

magenta border) and cytoplasm (right, cyan border) channels of the source videos 34 ordered by 

increasing 𝑣. Letters below select columns denote the figure subpanel (C-F) and axis (𝑥, 𝑦) where 

the metric is plotted. (C) Correlation between speed 𝑣 and ∆𝑣 shows general slowing of dynamics 

and faster motion for lower concentration monolayers. (D) Correlation between initial maximum 

𝐼0,1 and secondary maximum 𝐼0,2 island areas with dashed line indicating 𝐼0,1 = 𝐼0,2. (E) Mode 

skewness change ∆𝑆2  versus void area change ∆𝑉  with dashed lines denoting no change. (F) 

Maximum median skewness 𝑆1 versus connectivity 𝐶 . (G-L) BARCODE analysis of 

epifluorescence and phase contrast microscopy videos of monolayers of jamming MCF10A breast 

epithelial cells prepared as described37,38. Color and symbol keys, correlation plots and RDS mirror 

those in A-F. (G) Initial (0 min) and final (69 hours) frames of representative multi-channel video 

of monolayers with single-channel zoom-ins of the boxed-in regions in each frame. (H) Barcode 

matrix for the nuclei and phase contrast channels, ordered by increasing 𝑣. (I) Correlation between 

𝑣 and ∆𝑣 shows general slowing of dynamics and similar speeds for nuclei and phase contrast 

channels, the latter of which represents the cell boundary and cytoplasm. (J) Correlation between 

𝐼0,1  and 𝐼0,2  with dashed line indicating 𝐼0,1 = 𝐼0,2 . (K) Mode skewness change ∆𝑆2  versus 

maximum void area change ∆𝑉 shows voids universally shrink and skewness increases, an effect 

that is amplified for data obtained from phase contrast imaging. (L) Maximum median skewness 

𝑆1versus connectivity 𝐶.  
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Editor Summary: 
BARCODE is an open-access software that automates high throughput screening of microscopy video 
data to produce a unique fingerprint or ‘barcode’ of performance metrics that enables optimization and 
accelerates discovery of soft, active materials.  
Peer Review Information: 
Nature Communications thanks Anne bernheim-Groswasser, Kelly Schultz and the other anonymous 
reviewer(s) for their contribution to the peer review of this work. [A peer review file is available.] 
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