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Abstract

Fine-grained migration data illuminate demographic, environmental, and health phenomena.
However, United States migration data have serious drawbacks: public data lack spatial gran-
ularity, and higher-resolution proprietary data suffer from multiple biases. To address this, we
develop a method that fuses high-resolution proprietary data with coarse Census data to cre-
ate MIGRATE: annual migration matrices capturing flows between 47.4 billion US Census Block
Group pairs—approximately four thousand times the spatial resolution of current public data.
Our estimates are highly correlated with external ground-truth datasets and improve accuracy
relative to raw proprietary data. We use MIGRATE to analyze national and local migration
patterns. Nationally, we document demographic and temporal variation in homophily, upward
mobility, and moving distance—for example, rising moves into top-income-quartile block groups
and racial disparities in upward mobility. Locally, MIGRATE reveals patterns such as wildfire-
driven out-migration that are invisible in coarser previous data. We release MIGRATE as a
resource for migration researchers.

Introduction

Fine-grained migration data, which record the number of people relocating from one geographic
area to another, are essential for understanding a range of social, environmental, and health phe-
nomena. Migration data illuminate responses to environmental disasters and climate change!’ ;
responses to economic stresses and opportunities®8l; patterns of social change!®); consequences
of conflicts'011]; effects of the COVID-19 pandemic!'?; housing instability '*14; urban-suburban
migration patterns['%1%; and political polarization 7.

But migration datasets within the United States have serious limitations. The most fine-grained
publicly available national datasets track migration at the county level '), While widely used, these
datasets lack sufficient spatial resolution to study a number of phenomena where previous research
has revealed important variation at the sub-county level. For example, research on flood-risk-induced
migration uses models at the much more granular Census block level '), arguing that this spatial
granularity is necessary due to the highly localized nature of flood risk 2%, Other research on climate-
induced vulnerability, eviction or displacement similarly models risk at a sub-county (Census Tract)
level 21 or even at the household level[*2l. Research on housing instability often models Census
Block Groups!?? or even specific building complexes!?4. All of these applications testify to the need
for highly granular data to facilitate accurate study of many important migration-related phenomena.



Additionally, movers within the same county have accounted for more than half of migratory flows
in the United States in all years from 2006 to 2019[25. Publicly available, county-level migration
datasets are too coarse to study these important migration patterns.

Proprietary migration datasets offer greater granularity. Data aggregators like Infutor 26! combine
many data sources — including voter files, property deeds, credit files, and phone books 2729 — to
attempt to infer address histories for individual-level movers. Such datasets have been widely used
because they are extremely temporally and spatially fine-grained [>:13:28:30-32] " A Jong literature which
provides more recent or granular migration estimates using non-traditional data sources, including
social media and digital advertisement data, testifies to the power of new data sources[4:10:11,33,34]
Previous work also suggests that address history data do contain valuable signal which correlates
with external datasets, as validated by cross-referencing the data with hurricanes or public housing
foreclosures ('3, and with marginal population counts in the region of interest 7). However, propri-
etary address history datasets have three major disadvantages. First, they are not publicly available,
limiting their utility to researchers. Second, they require extensive computational pipelines, and
substantial computational resources, to clean and map to standardized geographical areas to facil-
itate subsequent analysis. Third, and most fundamentally, they combine multiple imperfect data
sources using proprietary algorithms, and thus contain noise and biases. For example, Infutor and
other consumer record datasets have been shown to overrepresent higher-income and majority-group
populations in some settings [35]

To address the limitations of existing migration data, we create and release MIGRATE (Migration
Inference for GRAnular Trend Estimation): fine-grained migration estimates that combine the
strengths of both aforementioned types of data by harmonizing biased but fine-grained proprietary
data from the data aggregator Infutor with reliable but coarse Census data. To produce our estimates,
we develop a data fusion method 337 based on iterative proportional fitting (IPF) [38-40] t6 reconcile
the raw Infutor migration data with the more reliable Census constraints. The output of our method
is a set of yearly inferred United States migration matrices at the Census Block Group (CBG)
level from 2010-2019. Our matrices capture migration flows between 47.4 billion pairs of CBGs,
making MIGRATE approximately 4,600 times more granular than the county-county flows publicly
available on the 5-year level, and 18 million times more granular than the state-state flows publicly
available on the 1-year level. We comprehensively validate MIGRATE by comparing to external data
sources, showing that it correlates well with ground-truth population counts and migration flows, and
improves accuracy and reduces demographic bias compared to raw Infutor data, which overcounts
rural, older, white, and home-owning populations. We then use MIGRATE to analyze both national
and local migration. Nationally, we reveal both temporal and demographic variation in migration
homophily, upward mobility, and moving distance. We find, for example, that people are increasingly
likely to move to top-income-quartile CBGs, but also provide evidence of racial disparities: movers
from plurality Black CBGs are less likely, and movers from plurality Asian CBGs more likely, to
move to top-income-quartile CBGs, and these disparities persist even when controlling for income of
origin CBG. Locally, we show that MIGRATE can illuminate important migration patterns, including
dramatic increases in out-migration in response to California wildfires, that are invisible in county-
level data. To provide a foundation for more precise migration research in the social, environmental,
urban, and health sciences, we release MIGRATE for non-profit research use at our website.

Results
Creating MIGRATE

Here we provide a high-level summary of our method for inferring fine-grained migration matrices by
harmonizing Census and Infutor data. In the Methods Section, we provide full details of processing
the Infutor dataset, processing Census data, and harmonizing both data sources.

We first preprocess the raw Infutor data into yearly migration matrices. The raw Infutor data
consists of sequences of addresses for individual people. We use these address sequences to compute
the number of people moving between each pair of geographic areas. In particular, we estimate the
matrices E®), where entries EZ(;) represent the number of people who reside in CBG j some time
during year ¢t and resided in CBG i a year prior. We correct populations to account for birth, deaths,
and international migration; full details in the Methods Section. (For a subset of individuals, Infutor

also provides estimated demographic information — e.g., age and gender — but we do not use this
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in our analysis both because it is missing for roughly half the population, and because it contains
biases [#5:41]).

We provide a conceptual overview of the preprocessing pipeline here and full details in Methods.
We first construct cleaned monthly address histories for each individual in the Infutor dataset by rec-
onciling inconsistencies in address start/end dates, discarding unreliable records (e.g., postal boxes),
and modeling uncertainty when multiple addresses are active. These monthly address distributions
are then aggregated in a way that simulates American Community Survey (ACS) responses about res-
idence one year prior, producing annual migration flow estimates between pairs of addresses. Finally,
to convert the address-address migration matrices to CBG-CBG migration matrices, each address is
mapped to one or more CBGs. When the raw Infutor data contains a precise street address (90.40%
of all addresses in the dataset), we map each address to a unique 2010 CBG with a state-of-the-art
geocoder #2431 We obtain matches for 92.18% of these addresses and confirm by hand inspection
of 200 addresses that this yields highly accurate results. The remaining addresses are incomplete or
imprecise (e.g., contain only ZIP codes); we probabilistically map these addresses to multiple CBGs,
with the weight of each CBG proportional to the population in the CBG intersecting the ZIP code.
We are able to map 99.21% of all addresses in Infutor to CBGs. The final output of this preprocess-
ing procedure is the Infutor yearly migration matrices E(*), which capture migration counts between
pairs of CBGs as estimated from Infutor data alone. We provide summary statistics for the raw
Infutor data and the processed migration matrices for the 2010-2019 time period in Table 1 and
additional descriptive statistics in Table 2.

Having produced the raw Infutor yearly migration matrices E(*), we next reconcile them with
more reliable but less granular Census data by rescaling selected entries of E(). We rescale to
different Census datasets in sequence, rather than simultaneously, because the datasets are not
totally consistent with each other. Specifically, we first rescale the entries of E® to match CBG
populations from the Census and 5-year ACS estimates; then the 1-year ACS counts of movers
and non-movers by state; then the 1-year ACS state-to-state flows; and finally the 1-year county
populations from the Population Estimates Program (PEP). The motivation for this ordering is that
the 1-year county populations are more precisely estimated than the other datasets, and we thus
prioritize matching to them. While CBG populations and state flows are estimated by the ACS and
often contain large sampling errors, county populations are estimated by PEP using more precise
large-scale administrative datasets. We verify that incorporating each of these datasets improves our
performance on the validations discussed below, and that the performance is not overly sensitive to
the order in which we match to the datasets (see Supplementary Table 1).

To perform the final rescaling (matching 1-year county populations) we apply an iterative pro-
cedure based on the classical IPF algorithm 3%3%: specifically, we scale blocks of rows and columns
to agree with the annual county populations in years t — 1 and ¢, respectively, alternating between
scaling rows and scaling columns until the procedure converges. Only the final rescaling is performed
using full IPF; the other rescalings, to CBG populations, 1-year counts of movers and non-movers,
and 1-year state-to-state flows, are performed only once at the beginning of the process, as opposed
to iteratively, to avoid overfitting to these more noisily estimated datasets. The resulting migration
matrices constitute our MIGRATE estimates. In the Methods Section, we provide additional details
on these scalings.

Naive implementations of our harmonization algorithm impose prohibitive computation times due
to the size of the matrices involved. We rely on the sparsity of the problem to dramatically reduce
both memory and time requirements, allowing our procedure to converge within 2 hours using 16G of
memory and 8 cores. Our general approach — i.e., rescaling submatrices to match Census constraints
— can straightforwardly be adapted to accommodate other sources of Census data.

Figure 1 depicts the MIGRATE estimates. Figure la plots the average out-migration rates for all
CBGs in the United States in the 2010-19 period, highlighting the spatial granularity of the estimates.
This granularity often reveals important patterns which are invisible at the county-county level, as
we illustrate by zooming in on New York City and comparing the county-level rates obtained from
ACS flows (Figure 1b) to the CBG-level out-migration rates inferred by MIGRATE (Figure 1c).

Comparing MIGRATE to Census data

MIGRATE estimates are well-correlated with all available Census measures of population counts and
flows (Figure 2a-c). By design, MIGRATE estimates perfectly match state and county populations
(because the last step in our harmonization procedure is to match to county populations). MIGRATE



estimates also achieve Pearson correlation p = 0.997 with 5-year Census Tract populations, and p =
0.996 with 5-year CBG populations (Figure 2a). MIGRATE estimates of the number of movers between
each pair of states and each pair of counties are also highly correlated with ACS estimates (p = 0.998
and 0.957 for states and counties respectively; Figure 2b). We exclude people who remain within
the same state or county from this calculation because most people do not move, which artificially
inflates the correlation; Supplementary Table 1 reports the correlation without this exclusion, which
is nearly perfect. Finally, MIGRATE estimates of state and county in-migration rates (i.e., the number
of people moving into an area as a fraction of the area’s population) are well-correlated with ACS
estimates (Figure 2¢; p = 0.987 and 0.715 for state and county in-migration rates, respectively,
weighting by area population). Supplementary Table 1 reports correlations with additional Census
quantities (e.g., in-migration counts as opposed to rates) which remain high. We note that even for
Census quantities that are used in our harmonization procedure, like CBG populations, we would
expect correlations between Census and MIGRATE to be high but not perfect, because the Census
datasets are not totally consistent with each other.

Overall, these validations demonstrate that MIGRATE estimates are highly correlated with
ground-truth Census data. This is not merely because of variation in state or county populations,
since it remains true when examining in-migration rates, which normalize for population, as well as
when examining Census Tracts and CBGs, which do not vary as significantly in population. Nor is
it due merely to the fact that most people do not move, since we examine correlations for movers
specifically, as well as correlations with in-migration rates. Finally, it is not merely a consequence of
overfitting to Census data, because it remains true on held-out datasets that are not used in our har-
monization procedure, a standard check for statistical estimation methods*4. Specifically, MIGRATE
estimates remain highly correlated with county-county mover counts and county in-migration rates,
which are not used in our estimation procedure. As a further held-out validation, we verify that our
estimation procedure yields highly correlated estimates with each Census data source even when we
remove it from the datasets used for estimation. For example, we remove CBG-level Census popula-
tions from our estimation datasets, and verify that our resulting estimates remain highly correlated
with data below county level (p = 0.888 with Census Tract populations and p = 0.856 with Census
Block Group populations). See Supplementary Table 1 for full results.

Reduction in error relative to Infutor data

We show that MIGRATE estimates also increase agreement with Census datasets compared to using
the Infutor data alone. We note that Infutor systematically undercounts the population, as shown in
Table 1; to compare to Infutor as generously as possible, and in particular to ensure that MIGRATE
does not reduce error due to trivial rescalings, we multiply each raw Infutor matrix E®) by a scaling
factor so it matches the national yearly Census population prior to conducting these comparisons.
Figures 2d-f report the reduction in error that MIGRATE estimates achieve relative to Infutor data.
We compute root mean squared error (RMSE) between (1) MIGRATE estimates and ground-truth
Census data and (2) Infutor data and ground-truth Census data, and report the reduction in RMSE
from using MIGRATE estimates. We report average reduction in RMSE across all data releases
between 2010 and 2019; error bars represent standard deviation across these releases.

MIGRATE estimates eliminate error in state and county populations because they are constructed
to match county-level estimates. They also reduce error in Census Tract and CBG populations by an
average of 85.9% and 83.6% respectively (Figure 2d); in state-to-state movers and county-to-county
movers by 87.5% and 42.3% (Figure 2e); and in state in-migration and county in-migration rates
by 87.3% and 51.8% (Figure 2f). These gains persist even when using held-out datasets that are
not used in estimating MIGRATE (namely, county-to-county flows and county in-migration rates).
We also repeat the validation above where we successively remove types of data (e.g., CBG-level
populations) from our estimation procedure, and verify that our estimation procedure still reduces
error in reproducing those held-out data types (Supplementary Table 1).

Collectively, these validations demonstrate that MIGRATE estimates increase agreement with
Census datasets, including held-out datasets, compared to raw Infutor data. We provide error reduc-
tions for additional metrics (all flows, non-movers, and in-migration counts as opposed to rates) in
Supplementary Table 1, and conduct additional validations on synthetic data (Supplementary Figure

1).



Reduction in bias relative to Infutor data

The Infutor data displays geographic and demographic biases (Figure 3). Specifically, it overrepresents
populations in the counties in the northeastern United States while underrepresenting populations
in the southwest (Figure 3a). For this analysis, as above, we multiply each Infutor matrix E® by a
scaling factor so it matches the national yearly Census population to avoid deviations due to trivial
rescalings. Errors plotted are averages of county population errors across all 10 years of data from
2010-2019. MIGRATE estimates remove all such county-level errors by construction.

Errors in the Infutor data also correlate with demographics (Figure 3b). Infutor data overrepre-
sents White, home-owning, richer, and older populations: there is a positive Spearman correlation
between the relative error in county population estimates and the population share of a county in
each of these groups. These biases are consistent with biases found in previous research[®%!, as we
discuss in detail in the Supplementary Information, and could propagate into biases in downstream
analyses of inequality and other topics.

MIGRATE estimates reduce biases in Infutor data. Figure 3c compares the demographic biases of
the MIGRATE estimates to the biases of the Infutor data. To quantify bias, we compare (1) the ground-
truth number of people within each group (from Census data) to (2) the number of people within
each group estimated from Infutor or MIGRATE, which we compute as Y. p; - n;, where i indexes
CBGs, p; is the proportion of people in a CBG within a given group (e.g., the proportion of Black
residents) based on Census data, and n; is the number of people in a CBG in Infutor or MIGRATE.
This quantifies how much Infutor and MIGRATE overcount or undercount a given demographic group,
relative to ground-truth Census data. The raw Infutor data substantially overcounts rural, older,
white, and home-owning populations, and undercounts younger, Black, Asian, Hispanic, renter, and
below-the-poverty-line populations; the MIGRATE estimates almost entirely eliminate these biases.
We present analyses for additional demographic groups, including immigrant populations, in the
Supplementary Information.

Analysis of national migration patterns

We use MIGRATE to analyze national patterns of migration from 2010-2019. The spatial granularity of
the data affords an opportunity to study demographic variation in migration patterns — for example,
differences in migration between higher-income and lower-income CBGs — that may be obscured by
county or state-level data, which show far less demographic variation. We hence divide CBGs into
10 (overlapping) categories — plurality white, Asian, Black, and Hispanic; urban versus rural; and
bottom, second, third, and top income quartile — and stratify the migration statistics we compute
by these ten categories. To determine the category of each CBG every year, we use the most recent
ACS b5-year demographic estimates. For example, to classify CBGs by their plurality race group to
study moves in the 2010-2011 period, we use the ACS 2006-2010 race and ethnicity estimates.

Figure 4a plots flows between the ten categories — for example, the proportion of movers from top-
income-quartile CBGs who move to top-income-quartile CBGs. This reveals substantial homophily
in migration: out-movers from all ten CBG categories are more likely than movers as a whole to
move to CBGs of the same category. However, the strength of this homophily varies across categories.
Movers from plurality Black, Asian, and Hispanic CBGs exhibit strong homophily: they are 5.5x,
14.6x, and 4.3x likelier than movers as a whole to move to CBGs with the same plurality race group
(Supplementary Figure 4a reports relative rates for all groups). We also observe income homophily,
particularly for movers within top and bottom quartile CBGs: movers from bottom-income-quartile
CBGs are nearly twice as likely as movers as a whole to move to CBGs in the bottom income quartile
(34% versus 18% for movers as a whole); movers from top-income-quartile CBGs are 1.7x likelier
than movers as a whole to move to top-income-quartile CBGs (53% versus 32%). In Supplementary
Figure 4b, we confirm that this homophily does not occur merely because many moves are local and
demographics are spatially correlated: we also observe homophily when restricting to long-distance
(out-of-county) moves.

Figure 4a also shows that people are likelier to move to CBGs in higher income quartiles: 32%
of moves are to top-income-quartile CBGs, while only 18% are to bottom-income-quartile CBGs.
This trend becomes more pronounced over the decade we study (Supplementary Figure 5d) and is
only partially explained by the fact that top-income-quartile CBGs account for a larger share of
the population (29%) than bottom-income-quartile CBGs (21%). There are also racial disparities:



movers from plurality Asian CBGs are 1.7x likelier than movers as a whole to move to top-income-
quartile CBGs; movers from plurality Black CBGs are 2.0x likelier than movers as a whole to move
to bottom-income-quartile CBGs.

Figure 4b investigates whether these racial disparities persist when controlling for origin CBG
median income: in particular, plotting the share of movers moving to a higher-income CBG when
controlling for the mover’s origin CBG median income decile. This reveals that the probability of
moving to a higher-income CBG varies substantially by race even conditional on origin CBG income:
movers from plurality Asian CBGs are more likely than movers as a whole, and movers from plurality
Black CBGs less likely, to move to higher-income CBGs. For example, movers from fifth-income-
decile, plurality Asian CBGs have a 71% chance of moving to a higher-income CBG; movers from
fifth-income-decile, plurality Black CBGs have a 53% chance. Supplementary Figure 5 shows that
the same racial disparities occur when controlling for CBG median income percentile, as opposed to
decile; or when examining the probability of moving to a top- or bottom-income-quartile CBG, as
opposed to moving to a higher-income CBG. Overall, we find robust and substantial racial disparities
in income of destination CBG that persist even conditional on income of origin CBG.

Finally, Figure 4c provides statistics on the distance of moves. 37% of movers move less than
5 miles; 40% from 5-50 miles; and 23% more than 50 miles. Figure 4c¢ also highlights demographic
variation in these statistics, revealing that movers from plurality white CBGs, rural CBGs, and
higher-income CBGs are likelier to move long distances (more than 50 miles). In the Supplementary
Information, we report additional migration distance statistics stratified by geographic boundary (i.e.,
whether movers remain within the same tract, county, or state) and show that migration distance
increases over the decade we study.

Overall, these results demonstrate that fine-grained migration data illuminates important demo-
graphic variation in homophily, upward mobility, and migration distance. Future research could
stratify migration flows by additional characteristics available in Census data: for example, one might
study the migration patterns of immigrants by analyzing flows from areas with larger proportions
of immigrants, or larger proportions of residents with a given country of birth—both of these are
datasets available at the sub-county level via ACS. However, we note that such analyses require sig-
nificant heterogeneity across CBGs (or other Census areas) in the demographic trait being studied;
for example, it would not be possible to reliably disaggregate migration patterns by gender using
this method, since gender proportions remain relatively stable across Census areas.

Analysis of local migration patterns

In addition to using MIGRATE to analyze national migration trends, we use it to study local migration
patterns: specifically, migration in response to wildfires in California. Natural disasters, including
wildfires, are known drivers of human mobility >#5]. There were over 3,000 fire events in California
from 2010-2019, which cumulatively affected nearly 27,504 square kilometers — approximately 6.5%
of the California land area. In many US states, including California, wildfire risk increased from 2010-
20191%6]and is expected to further increase due to climate change*”). Researchers rely on a variety
of data sources, such as administrative records and building codes, to study vacancy and movement
following these disasters 4!,

Post-wildfire migration estimates can inform disaster response and long-term planning in multiple
ways. First, migration data is crucial for policymaking in the aftermath of a wildfire. It helps guide
the allocation of housing, public health, and other resources to support displaced residents while
minimizing strain on housing markets in receiving areas!*>49-51 Data on out-migration rates from
affected areas can also inform decisions about whether and how to rebuild in fire-prone regions!°2:3!,
Second, high-resolution migration data is important for future wildfire planning. As populations
relocate in response to shifting wildfire risks, migration patterns can refine policymakers’ estimates of
future risk and guide the regulation of housing and insurance markets!®* 8], While some households
may move to reduce their exposure, others may become “trapped” in high-risk areas due to financial,
social, or logistical barriers!®6!. Identifying these communities through high-resolution migration
data can help ensure that government support reaches those who need it most [>3:62],

We use high-resolution fire perimeter data from the California Department of Forestry and Fire
Protection %3/, Fire perimeters are typically much smaller than county boundaries, suggesting that
analyzing fire impacts may require the granularity of the MIGRATE estimates as opposed to the
relatively coarse county-to-county flows. We analyze the two most destructive fires in California from
2010-2019 (as quantified by the number of structures lost to the fire): the Tubbs Fire in October



2017, and the Camp Fire in November 2018 (Figure 5). The Tubbs Fire occurred in Napa County
and Sonoma County and destroyed at least 5,636 residential or commercial structures®4!. The Camp
Fire, about a year later, destroyed over 18,804 structures and damaged nearly 1,000 more in the
Northern California county of Butte[®5]. The Camp Fire remains the most destructive wildfire in
California as of early 2025; the Tubbs Fire has only been surpassed by the January 2025 Eaton and
Palisades fires (66,

MIGRATE estimates reveal dramatic levels of out-migration for CBGs within the fire perimeters
(Figure 5a) in the year following the fires, often exceeding 50%. In contrast, CBGs outside the fire
perimeters experience much lower out-migration rates. We systematically quantify these differences
in Figure 5b, which compares CBGs within the fire perimeter to three sets of less-affected CBGs
outside the perimeter: (1) other CBGs neighboring the perimeter; (2) other CBGs within the affected
counties; and (3) others within California as a whole. The out-migration rate in the year following the
Camp Fire for CBGs within the fire perimeter is 46%, at least 3.1x that of less-affected CBG groups;
the out-migration rate in the year following the Tubbs Fire for CBGs within the perimeter is 37%, at
least 2.8 x that of less-affected CBG groups. Our estimates of out-migration following the Camp Fire
are similar to those in prior work [45]. (The fact that the out-migration rate is not 100% is likely due
to a number of factors, including the often-preferred option of rebuilding and returning %571, and
is consistent with past studies finding a much more significant uptick in short-term vacancy than in
long-term vacancy [48].)

In contrast, publicly available county-level migration data obscure these dramatic out-migrations;
Figure 5c shows that rates of out-migration in affected counties remain essentially flat. This happens
because the county-level data is both too spatially and too temporally coarse: the county boundaries
include many CBGs unaffected by the fire, and the estimates are aggregated over 5 years. Further,
many people displaced by the Camp and Tubbs Fires moved to other CBGs within the affected
counties (and thus would not be counted as movers in the county-level data): 77% of movers from
CBGs within the Tubbs fire perimeter and 54% of movers from CBGs within the Butte Fire perimeter
remained within the affected counties.

ACS 5-year CBG population estimates similarly obscure the dramatic levels of out-migration
due to their lack of temporal granularity. In the year following the fires, MIGRATE estimates reveal
population declines 260% larger in magnitude for the Tubbs fire and 40% larger in magnitude for the
Camp fire than those visible at the 5-year ACS level. (For this analysis, we compare to the relative
change in the ACS 5-year dataset released the year following the fire from the ACS 5-year dataset
the year before: for example, for the 2018 Camp Fire, we compare the 2015-2019 ACS estimates to
the 2014-2018 ACS estimates.) The ACS 5-year population estimates, unlike MIGRATE estimates,
also provide no insight into the destinations of out-movers.

In the Supplementary Information, we provide two additional analyses of local migration patterns
that are impossible using county-level data: we analyze socioeconomic variation in New York City
out-mover destinations, and migration patterns for residents who live in public housing provided by
the New York City Housing Authority as part of the city’s affordable housing policy. Collectively,
these analyses showcase how MIGRATE estimates reveal important, policy-relevant local migration
patterns that traditional data sources conceal.

Discussion

We produce MIGRATE, a dataset of spatially and temporally fine-grained migration matrices cap-
turing annual flows between pairs of CBGs from 2010-2019. Our estimates are approximately 4,600
times more spatially granular than publicly available county-to-county 5-year migration data, and 18
million times more spatially granular than state-to-state 1-year migration data. MIGRATE estimates
correlate highly with external Census ground-truth datasets and reduce error and demographic bias
relative to raw proprietary data. Our estimates are available for non-profit research use at our web-
site. We discuss the measures taken to protect the privacy of all individuals in the dataset in the
Supplementary Information.

We use MIGRATE to analyze both local and national patterns of migration. We show that
MIGRATE can reveal important local migration patterns, including dramatic increases in out-
migration in response to California wildfires, that are invisible in county-level data. Nationally, we
analyze demographic and temporal variation in migration patterns. We find that people tend to move
to CBGs of the same type across dimensions of race, income, and rural/urban status — for example,
movers from plurality Black, Asian, and Hispanic CBGs are 15.5x, 14.6x, and 4.3x likelier to move


https://migrate.tech.cornell.edu
https://migrate.tech.cornell.edu

to CBGs with the same plurality race group, consistent with prior work documenting the persistence
of racial segregation (6799, We document demographic and temporal variation in moving distance:
movers from plurality white, rural, and higher-income CBGs are likelier to travel long distances, and
moving distance increases over the decade we study, consistent with prior work (25,

An important finding from our national analysis is racial and temporal variation in upward mobil-
ity. Movers are likelier to move to top-income-quartile CBGs than bottom-income-quartile CBGs, a
trend that becomes more pronounced over the decade we study. We find large racial disparities in the
likelihood of moving to higher-income CBGs, or top-income-quartile CBGs, even when controlling
for income of origin CBG: movers from plurality Asian CBGs are likelier to move to a higher-income
CBG, and movers from plurality Black CBGs are less likely. These findings are consistent with prior
work documenting racial disparities in neighborhood attainment 773 and generalize these findings
to larger and more recent samples and additional racial groups. Overall, we document demographic
and temporal variation in national migration trends using a recent, large-scale, and highly granular
dataset.

While we validate MIGRATE estimates comprehensively against external data sources, practi-
tioners making use of the data should be mindful of two limitations. First, while we use multiple
ground-truth Census data sources to reduce the biases we document in the raw Infutor data, uncor-
rected biases likely remain. For example, while we correct biases in CBG populations, we cannot
correct sub-CBG-level population biases, or biases in CBG-CBG flows; practitioners should thus not
assume data at this level contain no residual biases. Data at very fine-grained levels will also be
noisier than data at more aggregated levels; while we provide practitioners with fine-grained data
to maximize flexibility, we recommend aggregating up to less fine-grained levels if granularity is not
required for analysis. Second, while we show that MIGRATE estimates are highly correlated with
external Census datasets (including held-out datasets that are not used to produce our estimates),
these validations have imperfections. As we further describe in the Methods Section, Census datasets
themselves have biases; are not perfectly consistent with each other; and can possess significant
margins of error, particularly at fine spatial scales. To mitigate these concerns, we conduct our har-
monization process using datasets with relatively low margins of error and also prioritize fitting to
Census datasets that are more precisely estimated (both detailed in the Methods Section). Another
challenge in validation is the lack of a ground-truth CBG-CBG migration matrix against which to val-
idate; publicly available Census datasets do not afford this level of granularity, and non-Census data
sources (e.g., voter files) have significant biases and measure substantively different populations than
the one we seek to model #7475 Overall, MIGRATE should be viewed as a migration data source
that like all data possesses limitations but that nonetheless represents a significant improvement on
widely used publicly available data sources (due to its granularity) or proprietary data sources (due
to reductions in error and bias).

We hope these improvements will enable a wide range of further migration-related analyses. As
our analyses illustrate, MIGRATE reveals patterns which cannot be observed in publicly available,
county-level migration data. We release MIGRATE as a resource to facilitate more precise study of
many migration-related phenomena across the social, health, urban, and environmental sciences.

Methods

Processing Infutor Data

Infutor provides data in tabular form. Each row in the data provides data for one individual, which
includes a list of known addresses, along with the date when the individual is first observed at the
address (which we refer to as the effective date below), and the first and last date that the individual
is observed in the data (which we refer to as the listed start date and thelisted end date, respectively).
Dates are listed as month and year. For example, the data for one individual might consist of two
addresses: “1 Main Street, Everytown, USA, 10000 (January 2010); 2 Cornelia Street, New York,
New York, USA (December 2017)” followed by an initial date of January 2008 and an end date of
December 2017. We describe the steps taken to (1) identify and clean Infutor data records within
the scope of MIGRATE, (2) process the Infutor data into matrices documenting yearly flows between
address pairs, and (3) map these address-level matrices to the CBG-level matrices E ) mentioned in
the main text. Table 2 summarizes the raw and processed data.



Cleaning address histories

We first create a sequence of monthly addresses for each individual in Infutor: i.e., the address at
which they are living each month. This requires us to resolve any inconsistencies in the dates provided
by Infutor and model uncertainty in address histories.

We define the interval of activity during which each individual is active (observed) in the Infutor
data. For each individual, we define their reconciled start date as the minimum of their first effective
date, and their listed start date. We similarly define their reconciled end date as the maximum of their
last effective date, and their listed end date. (For example, if the effective date list for an individual
was [January 2013, January 2016], their listed start date was January 2014, and their listed end date
was January 2017, their reconciled start date would be January 2013, and their reconciled end date
would be January 2017.) Finally, we define their interval of activity as [reconciled start date — 1
year, reconciled end date + 1 year]. We use 1-year padding to reflect the annual granularity of the
final dataset we produce and avoid discarding data in each yearly estimation process. This padding
is also consistent with our treatment of deaths and emigrants, who will be recorded as non-movers
in MIGRATE (and thus keep residence in the address they held during their last year alive in the
United States).

Having defined each individual’s interval of activity, we define the address at which the individual
is located for each month in that interval. This requires us to resolve inconsistencies in the address
dates provided by Infutor, which we do as follows. We discard any addresses lacking an effective date,
unless they are the only address for the individual—in such cases, we consider the reconciled start
date also to be the effective date for that address. We discard any postal box addresses if there is a
non-postal box address for an individual with an effective date within a year, since we assume that
non-postal-box addresses are more reliable indicators of where someone lives. We then forward fill
the remaining addresses so that each address spans span the period between its own effective date
and the effective date of the next address. If the reconciled start date and reconciled end date for the
individual differ from all the address effective dates, we fill these gaps with the first and last available
addresses chronologically. If the individual has multiple addresses with the same effective date, we
uniformly split the individual between the addresses by saying there was an equal probability of
residence in any of them. At the end of this process, each individual is associated with a monthly
probability distribution over addresses for each month in their interval of activity.

Processing address histories into annual address-address migration matrices

When then aggregate the monthly address histories for each individual to the annual level in a way
which is consistent with the ACS interview process. We will ultimately reconcile the Infutor data with
ACS geographic mobility data and thus want these datasets to be consistently processed. Our goal
is to simulate the sampling process of ACS, in which any individual can be asked, throughout the
year, where they lived one year ago (the specific wording of the ACS interview question is, “Where
did this person live 1 year ago?”). To do so, we loop over the twelve months of the year and compute
how the individual would answer this survey question if they were asked in each month, yielding
flows between a pairs of addresses (where the individual currently resides, and where they resided a
year prior).

We allow monthly flows to be probabilistic. For each pair of months in which the individual was
certainly seen at single addresses, they would notify the ACS of that move (or stay) with probability
one. However, if in one of the months there was uncertainty due to conflicting effective dates, the
corresponding flow will also be uncertain; the individual might notify ACS they moved from any of
the addresses they resided in the previous year during the month, or to any of the addresses they
reside in the current year. We multiply probabilities of residence in each different address to obtain
the probability of a flow; if the monthly address distribution remains constant in both years we
assume permanence (i.e. the individual did not move) and report that individual possibly stayed in
each listed address with its own residence probability. Accounting for this uncertainty yields a list
with 3-tuples of addresses and a probability (ADDR1, ADDR2, p;_,3) per month; weighting these
tuples per month (according to the number of days in the month) yields an yearly distribution.

We then aggregate these yearly distributions over the entire Infutor data, we create a list of
expected ACS responses for the full population. That is, if multiple people reported a flow between
ADDRI1 and ADDR2, we add all their individual probabilities and report a single combined flow
between ADDR1 and ADDR2. This represents the expected number of individuals with that flow
reported to ACS. Finally, we create an yearly set of matrices A®) with dimension NAppresses X



Nappresses (i.e. a square matrix on the number of unique Infutor addresses) where each entry Ag)
corresponds to the expected number of individuals moving between addresses ¢ and j from year ¢t — 1
to year t. These matrices will be further aggregated based on the location of each address. e

Processing address-address migration matrices into CBG-CBG migration matrices

We transform the address-level migration matrices A®) into CBG-level matrices E(*) by mapping
each address either to a precise CBG where possible, or to a distribution over CBGs when only a
ZIP code is available. We use the 2010 Census Block Group boundaries for all addresses to maintain
geographic consistency. Figure 6 details this process.

Our address mapping pipeline is divided in two parts: mapping addresses via geocoding, and
mapping addresses with a ZIP code-to-CBG crosswalk. We initially attempt to use one of two state-
of-the art geocoders to map addresses to latitudes and longitudes: the publicly-available Census
Bureau geocoder 3 and ESRI’s ArcGIS geocoder*?. We first attempt to geocode an address via the
Census geocoder; if this algorithm does not find a match, we submit the address to ArcGIS. If neither
algorithm finds a match, we map the address to Census Tracts intersecting its ZIP code, weighting
probabilities based on the share of residential ZIP code addresses represented by the population of
each Census Tract. Addresses representing rural routes and postal boxes are directly mapped via ZIP
code, as well as incomplete addresses. We use the HUD ZIP-to-tract crosswalk, with the date closest
available to the last seen date of an address to account for the fact that ZIP code definitions may
vary and are not nested within Census geographies!”®. We then distribute the probability to each
Census Block Group within the tracts, again weighting by their relative population shares. Success
rates for each of these steps are high and detailed in Figure 6.

We use the results of this mapping process to create an auxiliary matrix G of dimensions
NapprEsses X Neas. Each row of G defines a probability distribution over Census Block Groups:
an address ¢ belongs to CBG j with probability G;;. If the address has been precisely mapped (i.e.,
geocoded via the Census or ArcGIS geocoders), the corresponding row of G has a single entry equal
to 1, with other entries 0. We use the matrix G to compute the CBG-to-CBG matrix E(*) via the
following equation:

E® =gT. {A(t) — diag (A(t)ﬂ -G + diag {QT - diag (A(t))} (1)

where the diag (-) operator either converts a vector into a diagonal matrix or extracts the diagonal
of a matrix as a vector. The first term in this equation maps movers to the appropriate entries of
the migration matrix: for example, a precisely mapped move from CBG i to CBG j will increment
El(;) by 1, and a move from ZIP code a to ZIP code b will distribute mass (summing to 1) evenly
across the sub-block whose rows lie within ZIP code a and columns lie within ZIP code b. The second
term in this equation maps stayers to the appropriate diagonal entries of the migration matrix: for
example, a precisely mapped stayer in CBG ¢ will increment El(f ) by 1, and someone who stays within
ZIP code a will distribute mass (summing to 1) evenly across the diagonal entries corresponding to
CBGs within that ZIP code.

Summarizing the Processed Infutor Data

Table 2 reports a yearly breakdown of relevant Infutor data statistics throughout this pipeline. The
number of individuals with active records in the data represents the number of individuals with an
interval of activity containing each year at the start of the data processing; the number of CBG moves
corresponds to the sum of off-diagonal entries of each matrix E(**1) and measures the “effective size”
of each year’s data: how many movers we actually account for at the beginning of the estimation
procedure.

The number of active records drops in recent years because individuals are only marked as “active”
when they have a recorded move; many people simply haven’t had a recent move, so they no longer
appear as active even though they remain in the population. This means that Infutor is more likely
to underrepresent non-movers in recent years. We employ several measures to mitigate this effect: we
pad each individual’s reconciled end date by one year when constructing their active interval, and
also rescale Infutor data to match rates of non-movers in Census data.

We also verify that the decrease in Infutor active records in recent years, which is simply an
expected consequence of how active records are defined, does not reflect a broader and more worrisome
decrease in Infutor data quality over time. To do this, we examine variation over time in the quality
metrics discussed in the validations section — the RMSE and correlation between Infutor and Census



data for population counts, mover counts, and in-migration rates. Results are shown in Table 3.
While some quality metrics improve slightly over time, and others worsen slightly, overall we do not
find consistent evidence that processed Infutor data quality decreases over time.

Our harmonization process further improves the temporal stability of quality metrics, as can be
seen in the MIGRATE rows of Table 3; the correlations between MIGRATE and Census data remain
stable and high for all years.

Processing Census Data

The U.S. Census Bureau runs multiple programs with the aim of counting and estimating demo-
graphic and socioeconomic population data. Each of these programs may release data at different
spatiotemporal granularity and, even if geographies or timespans agree, the data might lack inter-
nal consistency. We use a series of steps to clean, select, and process Census datasets. We describe
our procedures for reconciling Census geographies, selecting which Census datasets to use as con-
straints, and how we process the Census data to deal consistently with births, deaths, emigration,
and immigration.

Reconciling Census geographies

The United States is hierarchically divided into states, counties, Census Tracts, Census Block Groups,
and Census Blocks, with each level subdividing its parent geography. Geographic boundaries are not
necessarily consistent over time, and ensuring that population counts reflect the same geographic area
across multiple years is essential when working with longitudinal data. For example, to produce multi-
year estimates, the American Community Survey maps every reported address to the corresponding
geography in the current year!””. We use the 2010 Census boundaries for all addresses to maintain
geographic consistency.

While the vast majority of geographies remain intact in the inter-decennial period (between
Censuses, 2010-2020), there are some geography changes we must address. When geographies merge
or split throughout the decade, we resolve the change by keeping only the coarser geographic boundary
— i.e., the combined area which is the union of all finer-grained areas. With this approach, we can
aggregate population statistics from the fine-grained areas into the coarse areas. There was one such
county change in 2010-2019 affecting Bedford County in Virginial™® and a few Census Tract or
Census Block Group changes documented yearly in the Census Bureau website (e.g. [79] for 2010 to
2011). When we aggregate ACS estimates that contain margins of error, we also aggregate margins
of error in the L2 norm—as proposed by the ACS®%. For our purposes, area renames are irrelevant.
After these adjustments, MIGRATE considers a universe of 217,740 Census Block Groups grouped
into 3,142 counties.

Selecting Census datasets

We rely primarily on three Census datasets: the ACS 5-year CBG populations; ACS 1-year state-
to-state flows (from which we use raw flows as well as counts of non-movers and movers); and PEP
1-year county populations. PEP makes use of administrative records on births, deaths, and net
migration to directly estimate county-level populations; the numbers reported contain the population
estimate for July 1st of every year. ACS estimates, on the other hand, are a product of year-round
surveying aggregated at the correspondent time scale, then released with associated margins of errors
that define 90% confidence intervals[®?l. Our dataset selection and methodology accounts for these
different precision levels across the board.

We would like to avoid matching to datasets that were too noisily estimated. To decide which
ACS datasets to use in our harmonization process, we examine their level of sampling error. We
quantify the sampling error by the coefficient of variation (CV): the ratio of the standard deviation
to the estimate value. Table 4 reports the mean coefficient of variation in ACS estimates. In general,
the number of non-movers has very low CVs (mean below 2% for counties and below 1% for states);
population estimates have considerably lower CVs than flow estimates; state-to-state flows have
relatively high CVs (mean around 45% every year), and county-to-county flows have extremely high
CVs (mean almost 90%). We opt not to match to county-county flows due to the imprecision of raw
flow estimates, although we do use them as a validation. In-migration rates have much tighter CVs
than the corresponding flows (mean around 15% and 5% for counties and states, respectively), and
we also use those as validations.



We perform a synthetic simulation study to verify that the datasets we do match to — state-to-
state flows, and CBG population estimates — have sufficiently low sampling error to be reliably used.
In particular, we resample each dataset using its reported margins of error, and compute correlations
between the resampled data and the original data. To also assess mobility rates, we summarize state-
to-state flows via the net migration rate. CBG populations and net state migration rates remain
highly correlated with themselves after resampling (average Pearson correlation of p = 0.976 and
p = 0.766, respectively).

Based on these analyses, we harmonize the entries of each yearly matrix E(*) with the follow-
ing data: (1) CBG populations (both from 2010 Census and 5-year ACS); (2) ACS 1-year counts of
movers and non-movers by state; (3) ACS 1-year state-to-state flows; and (4) PEP 1-year county pop-
ulations. Population count data at the sub-county level was obtained via IPUMS National Historical
Geographic Information System, along with socieoconomic and demographic data used for our bias
analyses81l; population flows and movers data was obtained directly via ACS[$2; population count
data at county level was obtained via the Population Estimates Program (831,

Accounting for natural population increase and international migration

Using Census datasets to constrain MIGRATE estimates requires ensuring that the Census datasets
reflect the same population accounted for in the Infutor matrix E(*). Each entry El(]t) represents the
expected number of people alive with a residence in area i at year t — 1 and with a residence in area j
at year t, and diagonal entries Ez(f ) also include individuals who resided in area i at year t—1 but died
or emigrated. We process the Census datasets so they reflect the same population, by accounting for
changes in the populations at year ¢ due to births, deaths, and international migration. Specifically,
when using Census populations from year ¢ to scale entries of E®), we want to remove from each
Census area population the natural increase in population (i.e., births minus deaths) and the net
international migration (i.e., immigrants minus emigrants); when using Census flows from year t — 1
to year ¢, we want to add counts of deaths and emigrants back into the diagonal as non-movers. We
adjust the Census constraints individually for every matrix E®),

To do this adjustment, we make use of the PEP components of population change and ACS
international immigration estimates. PEP releases estimates for the number of births, deaths, net
international migration, and net domestic migration yearly at both a county and a state level 53],
To build yearly population estimates, PEP directly adds to the previous year’s estimates the natural
increase, net international migration, and net domestic migration. (PEP produces estimates that are
geographically consistent: county-level estimates must aggregate precisely to state-level estimates,
which must aggregate to national-level estimates!®3.) Whereas PEP estimates only report the net
international migration, the ACS 1-year state-to-state flows also estimate the yearly number of immi-
grants per state (average CV around 12% across all years), which allows us to estimate the number
of emigrants per state.

Harmonizing Infutor and Census Data

Having processed the Infutor and Census data, the final step in producing MIGRATE is to harmonize
both data sources. Our harmonization process consists of scaling selected entries of the E() to match
non-zero entries of Census datasets. We do not scale any entries to zero because the Census zeroes are
noisily estimated, and subsequent multiplicative re-scalings cannot correct erroneous zero scalings.
We detail below, in order, the scalings we perform.

Harmonizing with CBG population data

First, we harmonize E® with CBG populations from the 5-year ACS estimates and the 2010
Census. We scale each row of each matrix E®) such that the row sums — i.e., the CBG popula-
tions — are consistent with the constraints implied by the ACS 5-year CBG populations and the
2010 Census. For example, when we take the average sum of each row across the five matrices
{E(2011),E(2012),E(2013),E(2014),E(zols)}7 this should be equivalent to the population for the cor-
responding CBG in the 2011-2015 ACS. We also impose a boundary constraint to match the 2010
population to that reported by the Decennial Census. Imposing these constraints corresponds to
solving the non-negative least squares optimization problem

minimize ||A-Z— g||
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for each row (i.e. each CBG). The vector Z represents the estimated population for the CBG in each
year from 2009 to 2019, and we impose the constraint that ¥ > 0 to ensure populations are non-
negative. We use these estimated CBG populations to harmonize our flow matrices, by scaling each
row to match the estimated CBG population in the relevant year.

Harmonizing with yearly data on state movers and non-movers

Next, we harmonize E) with the counts of movers and non-movers by state from 1-year ACS data.
To do this, we aggregate the off-diagonal entries of columns corresponding to each state and scale
them to match the count of movers by state. We also aggregate the diagonal entries of columns
corresponding to each state and scale them to match the count of non-movers by state. These scalings
(which treat the population remaining within each CBG as equivalent to the population of non-
movers) assume that very few people move to another location within the same CBG, an assumption
substantiated by previous research: the median distance people moved in the US was about 10 to
15 miles in the 2010-19 period, which is far more than the average 2010 CBG radius (1.7 miles) and
close to the 98th percentile of CBG radii®4.

Mathematically, let S,(f) be population of state k in year ¢ and R,(f) the population of state k in
year ¢ which did not move in the previous year. Then we multiply every diagonal entry Eg(c‘;) where
CBG «z lies in state r by

R
® : (3)
> By’ -1{CBG i € state r}

and then multiply every off-diagonal entry Eg%) (z # y) where CBG « lies in state r and CBG y lies
in state s by
Sgt) _ Rgt)

Doi it Ez(]t) -1{CBG j € state s}

(4)

That is, we scale the off-diagonal entries so that the columns corresponding to each state (capturing
the movers into that state) match the Census population who live in the state and did not live there

the year prior (Sgt) - Rgt)).

Harmonizing with yearly state-to-state flow data

We then harmonize E® with all state-to-state flows from 1-year ACS data. To do this, we aggregate
the entries of the matrix E® according to the origin-destination state pair they belong to. For
example, all flows from CBGs within Delaware to CBGs within Nevada are aggregated and scaled
so that they sum to the total flow from Delaware to Nevada in ACS data. We do not scale to match
zero flows.

Mathematically, let Fg) be the number of movers between states r and s from year ¢t — 1 to year

t. Then we multiply every entry Eéty) where CBG z lies in state r and CBG y lies in state s by

£y
Zi’j EZ(;) -1{CBG i € stater} -1{CBG j € state s}

()



whenever F,gf) # 0. We scale both people who move between states (r # s) and who remain within
the same state (r = s).

Harmonizing with yearly county population data

Finally, we harmonize E® with county populations from 1-year PEP data. We choose to match
E® to PEP populations last due to their superior reliability. In addition, PEP estimates are used
internally by the Census Bureau as controls for many other datasets[®!, and ensuring MIGRATE
estimates agree with PEP can lead to better downstream agreement in other datasets.

To match to PEP county populations, we apply a classical IPF-based algorithm, alternating
between two steps until convergence: (1) we aggregate the entries of E® by columns corresponding
to each county and scale them to match the PEP county population at year ¢ and (2) we aggregate
the entries of E(Y) by rows corresponding to each county and scale them to match the PEP county
population at year ¢t — 1.

More formally, let Pc(t) be the population of a given county c at a given year t. We start with the
matrix M := E® . We then perform the following updates for iterations n = 1,2,... N. For odd n,
we scale the blocks of columns of the matrix to match the county populations in year t. Specifically,
for each CBG y lying within county ¢, we multiply entries ng_l by the scaling factor

Py

>0 MZ._l -1{CBG j € county ¢}

(6)

For even n, we scale blocks of rows of the matrix to match the county populations in year ¢ — 1.
Specifically, for each CBG x lying within county p, we multiply entries M~ ! by the scaling factor

Pzgtfl)
di Mi’;fl -1{CBG i € county p}

(7)

Our algorithm runs for 6, 000 iterations, which we verify is sufficient for convergence. Specifically,
we track the L1 distance between the resulting matrices in two subsequent iterations.



Data availability. MIGRATE is available upon request for non-profit research use at our website.
To mitigate any privacy risks, interested researchers must agree to a data usage agreement pledging
not to re-identify individuals in the data, and to adhere to privacy-protecting measures when stor-
ing data and presenting results. Manual review of their application should be completed within 10
business days, and will last for the duration of the proposed research project.

Code availability. Code to reproduce our research findings is available on GitHub: https://github.
com/gsagostini/ MIGRATE.
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Tables

Individuals with active records (any time in 2010-2019) | 374,217,253

Individuals with active records in a given year (average across 2010-2019) | 231,270,602
US population in 2010 | 309,327,143

US population in 2019 | 328,329,953

Address records per active individual (mean) 2.67

Address records per active individual (median) 2

Table 1: Summary statistics for raw Infutor data and Census data during the period of interest (2010-
2019). We define “individuals with active records” as those whose [earliest Infutor date observed,
latest Infutor date observed] interval intersects a given time period. Comparing the average yearly
number of active individuals in the Infutor data to the Census population (second row) shows that
Infutor under-counts the population. (Table 2 provides the number of active individuals in each year
from 2010-2019). Active individuals have on average between two and three addresses, translating to
one or two moves during the decade.

Year || (1) Active records | (2) US Population | (3) Processed CBG Moves
2010 269,228,776 309,327,143 15,180,082
2011 260,064,921 311,583,481 11,793,806
2012 259,451,204 313,877,662 12,544,199
2013 252,933,953 316,059,947 13,829,056
2014 256,453,630 318,386,329 13,071,070
2015 241,295,957 320,738,994 14,022,249
2016 242,298,262 323,071,755 13,605,804
2017 193,479,001 325,122,128 12,684,184
2018 177,629,604 326,838,199 13,505,890

Table 2: Yearly Breakdown of Data Summaries. Population and addresses accounted by the Infutor
and Census datasets during the analysis period (2010-2019). (1) Individuals have active records in
a given year if the year falls within their interval of activity in the dataset. Comparison of these
values to (2) the Census population shows that Infutor under-counts the population at every given
year. (3) The number of moves between Census Block Groups (CBGs) parsed in our dataset. Note
that an individual with two addresses will have at most one move, some addresses do not constitute
residences, some individuals may have a single address in the year thus not move, etc.



Root mean squared error (RMSE) compared to Census data

Quantity Dataset 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019
CBG Population Infutor - - - 507 519 531 556 581 -
MIGRATE - - - 80 91 91 91 88 -
State-to-State Movers Infutor 3,031 | 3,684 | 3,549 | 3,372 | 3,607 | 3,315 | 2,801 | 2,518 | 2,431
MIGRATE 365 403 400 399 434 410 343 361 383
State In-Migration Rate | Infutor 12.4 14.9 14.4 13.4 14.1 12.4 9.77 6.78 5.56
(per 1,000) MIGRATE 1.68 1.73 1.92 1.48 1.29 1.18 1.07 1.03 1.12
Pearson correlation compared to Census data
Quantity Dataset 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019
CBG Population Infutor - - - 0.824 | 0.826 | 0.827 | 0.822 | 0.818 -
MIGRATE - - - 0.996 | 0.995 | 0.995 | 0.996 | 0.996 -
State-to-State Movers Infutor 0.950 | 0.956 | 0.953 | 0.951 | 0.954 | 0.950 | 0.948 | 0.936 | 0.919
MIGRATE | 0.998 | 0.997 | 0.997 | 0.998 | 0.997 | 0.998 | 0.998 | 0.998 | 0.998
State In-Migration Rate | Infutor 0.895 | 0.916 | 0.911 | 0.884 | 0.885 | 0.896 | 0.871 | 0.863 | 0.809
MIGRATE | 0.980 | 0.981 | 0.976 | 0.987 | 0.991 | 0.992 | 0.993 | 0.994 | 0.992

Table 3: Validation of Infutor and MIGRATE estimates over time for selected representative metrics.
Year corresponds to year of the Census data release. 5-Year estimates of Census Block Group Pop-
ulations are only validated against matrices from 2014 to 2019, which span the full 5-year period.
Metrics for in-migration rates are weighted by population area. More details on computation of these
metrics can be found on our validations section.

2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019
CBG Populations 15.76 | 15.67 | 15.42 | 15.33 | 15.17 | 14.94 | 14.95 | 15.08 | 15.21 | 15.59
Tract Populations 6.41 6.24 6.03 5.95 5.79 5.60 5.50 5.54 5.56 5.66
County Flows - 91.03 | 89.97 | 89.47 | 89.41 | 88.06 | 87.33 | 87.30 | 87.01 | 87.01
County Non-Movers - 1.78 1.72 1.69 1.68 1.65 1.64 1.65 1.63 1.65
County In-Migration Rate - 16.37 | 15.79 | 15.55 | 15.48 | 15.03 | 14.96 | 15.25 | 15.34 | 15.60
State Flows - 47.61 | 45.47 | 45.14 | 44.23 | 45.33 | 45.76 | 46.31 | 45.62 | 47.31
State Non-Movers - 0.41 0.39 0.39 0.38 0.40 0.40 0.38 0.37 0.39
State In-Migration Rate - 4.95 4.68 4.79 4.65 4.70 4.76 4.72 4.85 5.02

Table 4: Average coefficient of variation (CV) of the non-zero estimates in each American Commu-
nity Survey (ACS) dataset (in %). CVs were computed as the ratio of the standard error (obtained
by dividing the margin of error by 1.645) by the estimate [89], We did not use flows released in 2010
(as they would report moves from 2009).



Figure Captions

Fig. 1: MIGRATE estimates. We estimate annual migration flows between all pairs of Census Block
Groups (CBGs) from 2010-2019. (a) Average MIGRATE estimates of out-migration rates across
the entire United States. (b-c) MIGRATE estimates of out-migration rates within New York City.
MIGRATE estimates reveal granular spatial patterns invisible in publicly available county-to-county
data (inset plot (b)). Out-migration rates for CBGs with fewer than 100 people are omitted.

Fig. 2: Validating the MIGRATE estimates. (a - ¢): MIGRATE estimates (y-axis) are highly correlated
with Census data (x-axis), including (a) Census populations at the Census Tract and Census Block
Group (CBG) level, (b) movers between each pair of states and each pair of counties (excluding
people who remain within the same state or county), and (c) state and county in-migration rates (i.e.,
the number of people moving into an area as a fraction of the area’s population). (d - f) MIGRATE
estimates increase agreement with Census datasets relative to raw Infutor data for population counts,
movers between states and counties, and in-migration rate, respectively. We compute root mean
squared error (RMSE) between (1) MIGRATE estimates and Census data and (2) Infutor data and
Census data, and report the reduction in RMSE from using MIGRATE estimates. Bars show the
mean reduction in RMSE across all data release years (n = 5 for 5-year population and county-level
migration datasets, n = 9 for 1-year state-level migration datasets); error bars plot standard deviation
across years. To compare our 1-year MIGRATE estimates to 5-year ACS estimates of population and
county-level migration, we average MIGRATE estimates across the same 5-year period each ACS data
product covers, using only ACS data products whose time period completely overlaps with the 2010-
2019 MIGRATE range. For in-migration rates, all metrics are weighted by state or county population,
and points are sized by population.

Fig. 3: Assessment of demographic bias in the raw Infutor data and the MIGRATE estimates. Infutor
data displays biases that MIGRATE estimates greatly reduce. (a) Average errors in county popula-
tions in Infutor data relative to Census data; orange denotes counties where Infutor underrepresents
the population, and purple denotes counties where Infutor overrepresents it. MIGRATE estimates
remove all county-level errors by construction. (b) Spearman correlation between county demo-
graphics (x-axis) and error in Infutor estimates (y-axis). Infutor’s error is correlated with racial,
socioeconomic, and other demographic characteristics. (¢) Comparison of demographic bias in Infu-
tor (purple) and MIGRATE (green). MIGRATE greatly reduces biases for all demographic subgroups.
Bars compare demographic subpopulations estimated from Infutor or MIGRATE to ground-truth
Census data, averaged over n = 5 population data releases (American Community Survey 5-year
estimates, 2015 through 2018). Error bars represent standard deviations across these releases.

Fig. 4: National migration statistics. (a) Flows between ten types of Census Block Groups (CBGs)
— plurality white, Asian, Black, and Hispanic; urban versus rural; and bottom, second, third, and
top income quartile. Rows correspond to the origin CBG, and columns to the destination CBG;
for example, the top left entry indicates that 90% of movers from plurality white CBGs move to
plurality white CBGs. The final two rows report the proportion of all movers moving to CBGs of
each type, and the population share living in CBGs of each type. We report averages across all years.
(b) Probability of moving to a higher-median-income CBG, conditional on income decile of origin
CBG, and plurality race of origin CBG. (c) Distance moved stratified by CBG type.



Fig. 5: Migration in response to California wildfires. (a) Out-migration following the Camp fire
(2018; top) and Tubbs fire (2017; bottom). Red boundaries plot fire perimeters; black lines plot county
boundaries; Census Block Groups (CBGs) are colored by domestic out-migration rate in MIGRATE.
Out-migration rates exceed 50% in many CBGs within the fire perimeters. (b) Out-migration rates
in different groups of CBGs over time according to MIGRATE estimates. Out-migration rates in
the year after the fire are higher in CBGs within the fire perimeter (red line) than in groups of
CBGs outside the fire perimeter (other lines), including those neighboring the fire perimeter, those
in affected counties, or those within California. (¢) Out-migration rates in the American Community
Survey (ACS) 5-year county-to-county data remain relatively constant over time.

Fig. 6: Flowchart detailing the process of mapping addresses to Census Block Groups (CBGs). We
start with all Infutor addresses and classify them into five address types. We remove addresses which
lie within US territories but not US states (around .26% of the addresses). Incomplete addresses—
those that do not have a precise street address line—as well as PO boxes and rural routes are mapped
probabilistically to CBGs according to their ZIP code. The vast majority (90.4%) of addresses are
clean, complete street addresses which are sent to the Census geocoder, which is able to map 81.26%
of these addresses to a Census Block Group. If the Census geocoder fails to provide a match, we
reattempt matching using ESRI’s ArcGIS geocoder; this achieves a lower match rate of 58.24%, in
part because the sample it is applied to is more difficult to parse. In total, we are able to map 99.21%
of all addresses in the original Infutor data: 83.33% to a precise latitude and longitude, and 15.89%
to a ZIP code.
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