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The cerebral cortex comprises diverse excitatory and inhibitory neuron sub-
types, each with distinct laminar positions and connectivity patterns. Yet, the
molecular logic underlying their precise wiring remains poorly understood. To
identify ligand-receptor (LR) interactions involved in cortical circuit assembly,
we tracked gene expression dynamics in mice across major neuronal popu-
lations at 17 developmental stages using single-cell transcriptomics. This
generated a comprehensive atlas of LR-mediated communication between
excitatory and inhibitory neuron subtypes, capturing known and novel inter-
actions. Notably, we identified NEOGENIN-1 as the principal receptor for
CBLN4 during the perinatal period, mediating synapse formation between
somatostatin-expressing interneurons and glutamatergic neurons. We also
identified members of the cadherin superfamily as candidate regulators of
perisomatic inhibition from parvalbumin-expressing basket cells onto deep
and superficial excitatory neurons, exerting opposing effects on synapse for-
mation. These findings suggest a context-dependent role for cadherins in
synaptic specificity and underscore the power of single-cell transcriptomics
for decoding the molecular mechanisms of cortical wiring.

The mammalian cerebral cortex is a six-layered structure at the brain’s
surface that supports the most complex cognitive functions. These
functions rely on highly orchestrated and evolutionarily conserved
developmental processes that establish precise patterns of commu-
nication between two major classes of neurons: excitatory glutama-
tergic neurons (GlutNs) and inhibitory GABAergic neurons (GABANS).
Both GlutNs and GABANs are further subdivided into numerous tran-
scriptionally defined subtypes, a diversity largely revealed by single-
cell RNA sequencing (scRNA-seq). Dozens of GlutN and GABAN sub-
types have been identified®, each characterized by distinct

morphological, electrophysiological, and molecular properties, pre-
ferential laminar localization, specific synaptic partners and selective
targeting of subcellular compartments. This precise organization
establishes the intricate cortical wiring that underpins cortical com-
putation. Disruption of connectivity between even a single pair of
neuron subtypes at a given developmental stage can impair circuit
function and contribute to neurodevelopmental disorders®. Elucidat-
ing how subtype-specific connections are established and regulated is
therefore essential for understanding both cortical development and
disease.
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In the past decade, major advances have been made in mapping
the spatial organization and synaptic connectivity rules of cortical
neuron subtypes. In particular, high-resolution studies have delineated
the cellular and subcellular wiring patterns between GlutN and GABAN
subtypes in the adult mouse cortex, revealing remarkable specificity,
stereotypy, and evolutionary conservation of these connections across
mammalian species’ ™. Despite these insights, the molecular
mechanisms that guide corticogenesis and ultimately produce this
intricate architecture remain poorly understood. Only a few studies
have begun to identify the specific molecules that govern the inter-
actions and developmental processes shaping cortical circuit
assembly" ™,

It is likely that neuron-neuron communications via ligand-
receptor (LR) interactions play a key role, as these interactions are
critical for the development of many tissues" ™. This hypothesis is
supported by several studies suggesting that GlutNs may non-cell
autonomously influence the recruitment of specific GABAN subtypes.
Indeed, GlutN subtypes settle into their final positions earlier than the
synchronically generated GABANs™, and altering specific GlutN sub-
type identities during development modifies the allocation and
synaptic connectivity of corresponding GABAN subtypes™".

In this study, we integrated newly generated and publicly available
scRNA-seq datasets from the developing mouse cortex to investigate
the molecular logic of cortical wiring through LR inference. We first
mapped gene expression dynamics across glutamatergic and
GABAergic neuron subtypes over development, with particular focus
on the perinatal period when circuit assembly intensifies. Using these
data, we constructed a comprehensive atlas of putative LR-mediated
signaling between neuronal subtypes. We then validated this atlas
through functional experiments, showing that it recapitulates known
interactions and identifies further interactions. For example, we con-
firmed the role of Cbin4 in inhibitory synapse formation onto excita-
tory neurons and identified Neogenin-1 as its likely cortical receptor.
We also uncovered cadherin superfamily members exerting opposing
effects on perisomatic inhibition in deep versus superficial excitatory
neurons. All data are available for interactive exploration at https://
sclrsomatodev.online/.

Results

Comprehensive single neuron transcriptomics atlas covering
mouse somatosensory cortex development

To infer LR-mediated cell-cell interactions during cortical develop-
ment, we cross-referenced scRNA-seq information from all cortical
neuron subtypes across multiple stages with publicly available LR
information.

First, we generated a comprehensive scRNA-seq transcriptomic
dataset of all cortical neurons throughout somatosensory cortico-
genesis. We conducted scRNA-seq and snRNA-seq at six key stages
within the underexplored PO-P30 circuit wiring period: PO-P2 (radial
migration and laminar allocation of GABANs'*"’), P5-P8 (programmed
cell death of GlutNs and GABANs?®"*%), and P16-P30 (circuit refinement
and synaptogenesis completion). We integrated previously published
scRNA-seq data covering earlier embryonic (E11.5-E18.5) and adult
stages (P53-P102)** including ganglionic eminences (GEs), to cap-
ture early transcriptional signature of future cortical GABANs™® (see
“Methods”). Our analysis spans 17 time points from EIL5 to adult-
hood (Fig. 1A).

After stringent quality control and filtering (Supplementary
Fig. 1A, B and “Methods”), we identified postmitotic neuronal cell types
and tracked their transcriptional dynamics. For final cell type nomen-
clature, we used the most comprehensive resource of transcriptomic
cell-types in the somatosensory cortex that existed before December
2023, i.e., Yao et al’ (hereafter referred to as AllenRef2l1), corre-
sponding to the adult stage (Supplementary Fig. 1A). Assigning cellular
identities in early developmental stages proved difficult given that

transcriptional signatures of specific cell-types evolve drastically dur-
ing development®*. To overcome this difficulty, we developed a
hierarchical pipeline assigning identities at increasing resolution
levels, similar to the method used by the Allen Institute® (Supple-
mentary Fig. 1A).

First, we assigned cell identities at the class level (Glutamatergic,
GABAergic, Non-Neuronal, Immature/Migrating, dorsal pallium pro-
genitor and subpallium progenitor)’. For datasets covering early
development (up to P5), we used the perinatal somatosensory cortex
dataset from Di Bella et al.?*, the largest published at this stage, and the
early ganglionic eminence (GE) GABANs dataset from Bandler et al.”,
representing neurons fated for the cortex. For P8 to P30, as cells were
transcriptionally similar to the adult reference, we used the adult
dataset’ directly as the reference (Supplementary Fig. 1A). In order to
investigate LR interactions mediating circuit wiring between neuronal
subtypes, we focused our downstream analyses on post-mitotic GlutNs
and GABANs (Fig. 1A, B). In total, 182,084 high-quality post-mitotic
neurons were analyzed. To account for technical variation arising from
different studies, RNA-seq methods (scRNA-seq and snRNA-seq) and
sequencing platforms (Fig. 1C), we integrated all data using the Seurat
SCT workflow (Supplementary Fig. 1C). The integrated dataset was
splitinto classes, i.e., GlutNs and GABANSs. For each class, cell identities
were further delineated at increasing resolutions; first at the subclass
level, and then at the supertype level in each subclass, as defined in
AllenRef21’. To identify biologically meaningful cell-types, we lever-
aged the correspondence provided by Yao et al. between supertypes
from scRNA-seq studies and morpho-electro-connectomic types (mec-
types) from patch-seq studies'>* (Supplementary Fig. 2, S3). Pooling
supertypes belonging to the same mec-type allowed us to reach a
biologically meaningful cell-type annotation (Supplementary Fig. 4).
Ultimately, we identified 159 290 cells, representing 27 cell-types
(Fig. 1D) including 11 GlutN cell-types grouped in 3 families - intrate-
lencephalic (IT), extratelencephalic (ET), Other GlutNs - and 16 GABAN
cell-types grouped in 5 families - Lamp5, Sst, Pvalb, Vip and Other
GABANSs - (Fig. 1B-D, Supplementary Fig. 4). All intermediate steps of
the label transfer procedure, including bootstrapped prediction scores
and cell-wise assignment files, are available in the Zenodo folder,
ensuring full transparency and reproducibility of the classification
process.

In the UMAP embedding of all neurons, each GlutN and GABAN
cell-type exhibited a largely continuous temporal gradient of tran-
scriptional variation across corticogenesis, with gene expression pro-
files of individual cells correlating with mouse developmental age
(Fig. 1B, C).

Temporal transcriptional dynamics

To track the temporal maturation of each neuronal cell-type in a
continuous rather than discrete manner, single cells were ordered
along a continuous trajectory on the basis of their transcriptional
profile® (see “Methods”) (Supplementary Fig. 5A, Supplementary
Fig. 6A, B). This “pseudo-maturation” axis correlated well with the
actual age of the cells (Supplementary Fig. 5A, Supplementary Fig. 6A,
B), indicating gradual transcriptional variation over neuronal
differentiation.

For each cell type, genes showing significant variation along the
“pseudo-maturation” axis were identified and used to illustrate tem-
poral gene dynamics in six waves (Supplementary Fig. 5A, Supple-
mentary Fig. 6A, B). During early development (E11.5-E18.5), most cell-
types displayed transcriptional signatures related to cell-intrinsic
properties (Supplementary Fig. 5B, Supplementary Fig. 6C), shifting
later to programs controlling cell-cell and cell-environment interac-
tions (Supplementary Fig. 5B, Supplementary Fig. 6C)**2. These find-
ings reveal the molecular transitions through which each neocortical
cell type shifts from intrinsic programs to extrinsic, interaction-driven
programs essential for integration into the cortical network.
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Spatial transcriptional gradients

In adult mice, glutamatergic IT neurons exhibit a spatial gradient of
transcriptional variation along the cortical sheet>*’, We investigated
whether similar laminar transcriptional gradients exist within each
neuronal family between embryonic day 18.5 (E18.5) and postnatal day
30 (P30). To do so, we cross-referenced our datasets with Patch-seq?
and MERFISH* data to determine the exact normalized laminar
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position of each cell type within its family, providing information
about their relative positions (Supplementary Figs. 2, S3).

In parallel, for each neuronal family and at each developmental
stage, we fitted a curve along the UMAP transcriptional continuum and
defined this axis as a “pseudo-layer” score. This approach allowed us to
assess whether transcriptional variation along the pseudo-layer axis
corresponded to the actual laminar organization of cell types, which
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Fig. 1| Comprehensive neuronal transcriptomic atlas of mouse somatosensory
cortex development. A Sankey diagram depicting the experimental paradigm for
data collections and integration of published datasets. Yao*: Yao et al., 2021; J. Di
Bella*: ). Di Bella et al., 2021, Telley*: Telley et al., 2019; R.Lee*: R.Lee et al., 2022;
Bandler: Bandler et al., 2021; Mayer*: Mayer et al., 2018; Mi*: Mi et al., 2018; SSp
primary somatosensory cortex, SSs supplemental somatosensory cortex, MGE
medial ganglionic eminence, dMGE dorsal MGE, VMGE ventral MGE, CGE caudal
ganglionic eminence, LGE lateral ganglionic eminence, 10X 10X Genomics, SSv4
Smart-seq version 4, SSv2 Smart-seq version 2, C1 Fluidigm C1. B UMAP

visualization of post-mitotic neurons from the 17 time points after integration. Cells
are colored by cell-type assignment. C UMAP visualization is colored by age, study,
region, RNA-seq method, sequencing platform, and gene markers. D Left: Sankey
plot representing the different hierarchical levels of cell type assignment; middle:
heatmap representing the fraction of each cell type per age; right: heatmap
representing some cell type-specific genes. “Normalized expression” represents the
25% trimmed mean log2(CPM + 1) expression normalized by row. See also

Figs. S1-S4. Associated source data are provided.

would reflect the presence of spatial transcriptional gradients across
cortical layers.

Strikingly, the spatial gradient previously described for adult IT
neurons® was already present at all earlier developmental stages
examined, from EI18.5 to P30 (Supplementary Fig. 7A). Similar gra-
dients were also observed for all other neuronal families analyzed;
namely ET, Sst, Pvalb, Vip, and Lamp5 (Supplementary Fig. 7-S9). In
summary, our results show that all major neuronal families, both glu-
tamatergic and GABAergic, exhibit transcriptional gradients aligned
with cortical lamination, consistently across development from
E18.5 to P30.

We identified genes showing significant variation along the
pseudo-layer axis and used them to define six distinct spatial tran-
scriptional gradients. In GlutNs, the upper waves, corresponding to
upper-layer (UL) displayed gene expression patterns enriched for
features commonly observed in earlier developmental states, parti-
cularly involving cell-intrinsic properties (Supplementary Fig. 7B and
D). In contrast, the lower waves, corresponding to deep-layer (DL)
GlutNs, showed comparatively reduced expression of these features.
This is consistent with UL GlutNs being born later than DL GlutNs, due
to cortical inside-out patterning”®. In contrast, for GABANS,
environment-sensing programs were already active by E18.5 (Supple-
mentary Fig. 8B and D), supporting the hypothesis that cortical
GABANs mature later than their earlier-settled GlutN counterparts and
depend on cues from these excitatory neurons to reach their final
positions and establish proper connectivity>"*,

Spatiotemporal transcriptional landscapes

Based on the pseudo-maturation and pseudo-layer scores, cells of each
family were embedded within 2D graphs to generate spatiotemporal
transcriptional landscapes of gene expression (Fig. 2A-D and Fig. S10).
For any gene queried within a given family, the 2D transcriptional map
shows temporal dynamics along the x axis and spatial dynamics on the
y axis (Fig. 2B-D). This confirmed the spatiotemporal expression of
genes known to be involved in cortical layer patterning (Cuxl, Fezf2,
Reln, Fig. 2B, C) or in neuropeptidergic system maturation in specific
neuronal families (Fig. 2D).

To validate our approach, we examined whether LR transcrip-
tional landscapes matched known roles in migration or synapto-
genesis. We focused on CXCL12 and its receptors CXCR4 and
ACKR3, which are essential for GABAN tangential migration®®. As
previously reported, CXCL12 is expressed perinatally by meninges®,
immature GlutNs*, and possibly Cajal-Retzius (CR) cells®’, while
CXCR4/ACKR3 are co-expressed on migrating GABANs***, with
CXCR4 also present in CR cells*. CXCL12 downregulation post-
natally is thought to trigger GABAN radial migration and cortical
plate invasion®~**2, Our data aligned with these patterns: Cxcl12 was
enriched in CR cells, and Cxcl12, Cxcr4, and Ackr3 expression was
restricted to E18.5-PO, consistent with a role in migration but not in
synaptogenesis (Fig. 2E).

It is well established that the formation of synapses requires
specific adhesion molecules, including the NRXNI-NLGN1 LR-pair
(Fig. 2E)**". Our landscapes showed NRXN1 and NLGN1 expression
across all cell types during developmental windows consistent with
synaptogenesis (Fig. 2E), supporting their role in synapse formation.

Applying PCA and subsequent k-means clustering enabled us to
define 15 archetypal spatiotemporal transcriptional landscapes
(Fig. 2F). Some genes mapped to early or late developmental trajec-
tories, whereas others showed layer-specific or combined spatio-
temporal patterns. To functionally interpret these clusters, we
performed KEGG enrichment analysis and annotated each spatio-
temporal cluster with its dominant ontology term (Fig. 2F; Supple-
mentary Data S8), revealing programs ranging from ribosome
biogenesis and spliceosome activity to calcium signaling and neu-
roactive ligand-receptor pathways. Intriguingly, members of the
Cadherin gene family were distributed across all 15 clusters (Fig. 2G),
underscoring their broad spatiotemporal diversity throughout cortical
development.

We developed a Shiny application, scLRSomatodev, (https://
sclrsomatodev.online/) that enables interactive exploration of spatio-
temporal gene expression patterns across cortical neuronal subtypes,
using various visual representations (Supplementary fig. 11).

An atlas for inferring LR interactions between neuronal sub-
types over corticogenesis

We hypothesized that LR interactions between neuronal subtypes,
especially between GlutNs and GABANSs, are key to shaping stereo-
typical cortical wiring. If this hypothesis proved correct, we would
expect highly correlated transcriptional landscapes between GlutN-
expressed ligands and their cognate GABAN receptors, and vice versa.
To test this, we assembled LR DB 2025, the most comprehensive
curated LR database to date. It integrates existing LR datasets with
manually added pairs from published studies (Fig. 3A & Fig. S12, Sup-
plementary Data S1, see “Methods”), yielding 8,789 curated LR pairs
involving 1421 ligands and 1233 receptors. Each molecule was further
classified by molecular function and known involvement in neurode-
velopmental processes (see “Methods” & Supplementary Data S2).

For LR pairs in the cadherin superfamily, known to play key roles
in neurodevelopment, we observed strong correlations between
ligand expression in GIutN neurons and receptor expression in
GABANs (Fig. 3B). This underscores the importance of cadherin-
mediated interactions in GlutN-GABAN communication during devel-
opment and supports previous hypotheses implicating cadherins in
areal specialization®** and synaptic specificity*®. LR pairs tied to
migration, differentiation, cell death, cell adhesion, and synaptogen-
esis (Supplementary Data S2, Methods) exhibited varying degrees of
spatiotemporal correlation (Fig. 3B). Synaptogenesis displayed the
strongest LR pair correlation, suggesting that this process relies
heavily on intercellular communication. In contrast, LR pairs asso-
ciated with processes such as cell death or differentiation were less
consistently correlated, possibly reflecting a greater reliance on cell-
intrinsic mechanisms or limitations in the completeness of GO anno-
tations for these pathways (Fig. 3B).

To identify ligand-receptor pairs driving intercellular interactions
shaping cortical wiring, we built a comprehensive LR atlas inferring
high-confidence interactions between neuronal cell types from E18.5 to
adulthood, covering the full period of cortical circuit formation in
mice. This approach integrates temporal cell-by-gene expression
matrices with our curated LR database (Fig. 3C, Supplementary Fig. 13;
see “Methods”).
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Fig. 2 | Spatiotemporal transcriptional dynamics of neuronal subtypes over
cortical wiring. A UMAP visualization of all neurons color coded with cell family
labels. B Top: 2D map in which cells are embedded according to their pseudo-
maturation (x-axis) and pseudo-layer (y-axis) scores for the IT family. Bottom: A
generalized additive model (GAM) was applied to generate 2D maps, i.e., “tran-
scriptional landscapes”, for the spatiotemporal expression of genes throughout
cortical wiring; Cuxl expression is represented as an example. C Transcriptional
landscapes for Fezf2 in ET (top) and for Reln in Other GlutNs (bottom).

D Transcriptional landscapes for representative genes in each GABAN family.
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(Cxcl12, Ackr3 and Cxcr4), and in synaptogenesis (Nignl and Nrxnl). F Gene map
obtained by performing a PCA on all the significantly expressed genes colored by
cell family (left) and by spatiotemporal cluster (right). Average transcriptional
landscapes of each cluster are displayed around the gene map, annotated with the
corresponding top KEGG ontology label (Supplementary Data S8). G Varying spa-
tiotemporal clusters for the Cadherin gene family among 3 neuronal families. CP
cortical plate, IZ intermediate zone, MZ marginal zone, SVZ subventricular zone, VZ
ventricular zone, WM white matter. See also Figs. S5-S16. Associated source data
are provided.

First, we implemented and adapted the scSeqComm method*’ to
our dataset. This method computes an intercellular ligand-receptor
(LR) score for each source-target cell-type pair, based on the relative
expression levels of ligands in source cells and receptors in target cells.
The core scSeqComm tool was not modified; intercellular scores were
calculated exactly as described in the original publication and returned
for all pairs across all cell-type combinations.

To improve the biological plausibility of predicted interactions
and increase stringency, we introduced an additional cell pair
score, applied independently of any particular LR pair. This score
enabled prioritization of LR interactions according to known
developmental timing and the final connectivity patterns between
the cell-types. Specifically, the cell-pair score represents the (nor-
malized) sum of (i) a developmental score, reflecting the relative

timing at which each cell type populates the cortex and could
transiently interact, (Fig. 3C and Fig. S13, Supplementary Data S3),
and (ii) a connectivity score, estimating the likelihood of synaptic
connections inferred from adult cortical architecture, derived from
morphological reconstructions of ~-1000 neurons within a cortical
column from adult Patch-seq studies*® (Fig. 3C, Figs. S13-14, Sup-
plementary Data S4). For LRs with documented downstream
genetic signaling from the receptor, our pipeline quantified intra-
cellular signaling activity in target cells by integrating information
from public regulatory gene databases*’ (see “Methods”). This
yielded an intracellular signaling score (Fig. 3C and Fig. S13), which
helped assess the robustness of inferred LR interactions and in
determining the preferred receptor(s) for ligands with multiple
potential targets.
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Predicted LR interactions can be explored at https:/
sclrsomatodev.online/ (Supplementary Fig. 16), where users can
visualize both the number and identities of interactions between any
of the 729 neuronal cell-type pairs across seven developmental stages
covering cortical wiring (E18.5 to adulthood). Interaction counts are
shown as heatmaps (Fig. 3D, Fig. S16A), while specific LR pairs and
associated GO pathways are displayed as dot plots (Supplementary
Fig. 16B). LR pair predictions were generally consistent between
scRNA-seq and snRNA-seq (Supplementary Fig. 15), demonstrating
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modality consistency. An exception is observed for certain short
transcripts, which are underdetected in snRNA-seq, as previously
reported. For instance, Neurod2, Sic12a5, and DIx2 (-1kb) show
reduced detection in snRNA-seq at P8, whereas larger genes such as
CuxlI (-340 kb) are comparable across both modalities.

To determine which molecular codes underlie the specificity of
LR-mediated cell positioning and connectivity, we systematically ana-
lyzed LR predictions across 729 neuronal cell-type combinations from
E18.5 to adulthood. We quantified LR interactions maintained across at
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Fig. 3 | scLRSomatoDev, an atlas to infer LRs involved in cortex wiring.

A Curated ligand-receptor database containing 8789 LR pairs compiled from 109
sources (LR_DB_2025). To increase biological relevance for our study, we generated
a brain-focused subset (LR_DB_2025_Brain) by retaining only ligands and receptors
expressed in our single-cell dataset, resulting in 5341 LR pairs. See Supplementary
Data S1and S2 for full listings. B Correlations between transcriptional landscapes of
neurodevelopmental process-associated ligands in ITs and receptors in GABANs,
suggesting a ligand-receptor code for neuronal adhesion and synaptogenesis that
involves the cadherin family of adhesion molecules. (Left) bars show the mean
correlation between IT ligand and GABAN receptor landscapes for random
ligand-receptor (LR) pairs, ADAM metalloproteases, cadherins and Ig-like cell-
adhesion molecules. (Right) bars show the mean correlation for LR pairs assigned
to neurodevelopmental categories (brain-associated, migration, cell death, differ-
entiation, cell adhesion and synaptogenesis). Data are presented as mean values,

statistical significance was assessed by comparing each category to its respective
reference group (Left: random non-LR gene pairs; Right: “Brain associated” cate-
gory) using a two-sided z-test based on Fisher’s r-to-z transformation, with no
adjustment for multiple comparisons. Exact P values were: cadherins vs random LR
pairs, P=0.00125; cell adhesion vs “ Brain associated ”, P=2.215e-05; synaptogen-
esis vs “ Brain associated ”, P=7.0357e-04. Asterisks indicate significance levels:
P<0.05(*),P<0.01(*), P<0.001 (**). C Simplified method for the inference of LR-
mediated interactions. TF, transcription factor; TG, target gene; S_inter, score for
intercellular communication; S_intra, score for intracellular signaling. See

Figs. S13-14. D Heatmaps illustrating the number of inferred LR interactions that
persist across at least two consecutive ages for all 729 cell-type pairs. From left to
right and top to bottom: all possible interactions; interactions unique to a single
cell-type pair, widely shared interactions (by >400 pairs) and very rare interactions
(shared by <10 pairs). Associated source data are provided.

least two consecutive stages and categorized them as “unique” (1 cell
pairs), “widely shared” (=400 cell pairs), or “rarely shared” (<10 cell
pairs) (Fig. 3D). While some cell pairs showed up to ~600 predicted LR
interactions, uniquely used LR pairs were extremely rare. Widely
shared LRs represented less than 10% of all inferred interactions. In
contrast, rarely shared LRs showed more variability, with up to 60
detected in CR-CR interactions. These findings suggest that cortical
neurons employ a combinatorial code of common and rare
ligand-receptor interactions, rather than unique pairs, to establish
subtype-specific communication and connectivity. To directly evalu-
ate whether LR expression patterns can distinguish neuronal subtypes,
we developed a machine-learning framework that generates single-cell
replicates for each SOURCE > TARGET cell-type pair across develop-
mental stages. Each example encodes ligand x receptor product
values, and the model is tasked with predicting the correct cell-type
pair identity (Supplementary Fig. 17). While the prediction task is
extremely challenging (>600 classes), many individual cell-type
pairs achieved high ROC-AUC values, demonstrating strong dis-
criminability and reinforcing the idea of a combinatorial LR code
(Supplementary Fig. 17A). We benchmarked models trained on five
LR feature sets: all significant pairs, widely shared pairs, rarely
shared pairs, unique-only pairs, and random non-LR pairs (Supple-
mentary Fig. 17B, C). Across developmental stages, classifiers trained
on unique-only, shared-only, or random pairs performed at or
near chance, whereas those trained on rare-only pairs consistently
provided predictive performance above chance. The highest
accuracy was obtained when combining feature sets (all significant =
rare + shared + occasional unique) with moderately strong perfor-
mance for the rarely shared pairs, supporting our conclusion that
specificity is encoded by combinatorial patterns rather than by shared
or unique pairs alone. This trend was maintained across all develop-
mental stages and remained consistent even when one cell type was
held constant while varying the other (Supplementary Figs. S18-S20).

These findings suggest that a combinatorial LR code underlies
neuronal specificity. A key question is whether such codes are deter-
mined by laminar position, class identity, or whether fate-intrinsic
factors, such as the progenitor domain of origin of interneurons, also
impose additional constraints. To address this, we further quantified
the distribution of interactions between GlutNs and GABANS, as well as
within each neuronal class. This analysis revealed progressive differ-
ences between superficial and deep layers across development
(Figs. S21, S22). To investigate whether the origin of interneurons
influences their predicted LR interactions with glutamatergic partners,
we grouped subtypes by MGE, CGE, or POA origin, which revealed a
temporal shift from GE-specific programs at embryonic/early postnatal
stages to predominantly shared modules at P8-P30, followed by
renewed specificity in adulthood (Supplementary Fig. 23A-C). GE-
specific modules were enriched for partner recognition and integra-
tion processes at early stages, while shared modules were dominated

by synaptic organization ontologies during peak synaptogenesis.
These results show that LR communication is shaped not only by class
and laminar identity (Figs. S21, S22), but also by interneuron pro-
genitor domain (Supplementary Fig. 23), adding a fate-dependent
dimension to cortical wiring.

Key roles for LR interactions during synaptogenesis and in
neurodevelopmental diseases

We analyzed the temporal progression of LR predictions between
GlutNs and GABANS as source and target cells, respectively. The total
number of predicted LRs increased over time (Fig. 4A), consistent with
the gradual establishment of synaptic connectivity. Among GABAN
subtypes, Sst and Pvalb neurons were the first to receive a high number
of LR interactions from GlutNs (Fig. 4A), while Lamp5, Vip, and other
GABAN populations showed a later increase. Notably, Pvalb cells
initially exhibited fewer LRs than Sst neurons but progressively
reached comparable levels to Sst neurons, consistent with studies
showing that Sst neurons precede Pvalb neurons in cortical network
formation and in agreement with recent findings*’.

Next, we focused our analysis at the cell-type level, using IT neu-
rons as source cells and GABAN subtypes as targets. The number of
predicted LR interactions increased over time (Fig. 4B), consistent with
the global trend (Fig. 4A). However, we noted only subtle differences in
the temporal profiles of upper layer (UL) and deep layer (DL) GABANSs.
LR interactions with UL GABANs were low at early stages but showed a
gradual increase over time. DL GABANs showed a marginally higher
level of LR engagement early on, though this difference was very subtle
(Fig. 4B). While such a pattern could be compatible with earlier
maturation of DL neurons, the effect size is minimal, and we interpret
this as a possible depth-related trend, although additional analyses will
be needed to confirm it.

We calculated the proportion of LRs associated with the five key
neurodevelopmental processes. Migration, differentiation, and cell
death were sparsely predicted, suggesting that our atlas captures
fewer LR interactions associated with these processes. This could
indicate a stronger reliance on cell-intrinsic programs, but may also
reflect underrepresentation of relevant signaling interactions in cur-
rent GO terms or from the limitations of transcriptomic inference. In
contrast, synaptogenesis-related LRs, and to a lesser extent those
involved in adhesion, were consistently and robustly utilized from
E18.5 through adulthood (Fig. 4C). Notably, Cadherins showed sharp
increases in inferred activity from P8 onward, underscoring their
possible role in shaping cortical wiring.

We investigated the engagement of LR pairs associated with
neurodevelopmental disorders during cortical development. LRs from
our curated database were categorized based on their disease asso-
ciations: autism, epilepsy, schizophrenia (SCZ), and intellectual dis-
ability (ID) (Supplementary Data S5). While the proportion of active
SCZ- and ID-linked LRs remained consistently low across all
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Fig. 4 | Involvement of LR pairs based on neurodevelopmental ontologies and
diseases. A Number of LR pairs predicted to be utilized per GABAN family as target
cells, from E18 to adulthood. B Number of predicted LR interactions between IT and
GABAN cell-types as source and target cells, respectively, from E18 to adulthood.

C Percentage of LR pairs of five main neurodevelopmental ontologies and of the

cadherin LR family that are predicted as utilized between IT and GABAN cell-types
as source and target cells, respectively, from E18 to adulthood. D Percentage of LR
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developmental stages (Fig. 4D), those associated with autism and
epilepsy showed markedly higher engagement, peaking at postnatal
day 8 (P8) and remaining elevated into adulthood. In some instances,
up to 50% of autism- or epilepsy-associated LRs were active at specific
time points (Fig. 4D). These findings suggest that the etiology of aut-
ism and epilepsy may be more closely related to LR-mediated inter-
cellular communications in cortical circuits than that of SCZ and ID.
Several of the highly utilized LRs were implicated in multiple disorders
(Fig. 4E). Notably, CDH13 and CDH22, two cadherins, were the only
significantly utilized LRs shared between autism and SCZ (Fig. 4F).
Overall, gene ontology analysis revealed that predicted disease-
associated LRs were enriched in neurodevelopmental biological pro-
cesses (Fig. 4G).

Validation of the LR prediction atlas: Nrg3-Erbb4

We queried our LR atlas to validate known interactions between GlutNs
and GABANs, focusing on the NRG3-ERBB4 pair, which is recognized
for mediating the development of excitatory synapses onto GABANs
and is linked to neurodevelopmental disorders®® (Fig. 5A). Consistent
with the literature, transcriptional landscapes confirmed NRG3
expression in GlutNs and the restriction of ERBB4 expression to
GABANSs (Fig. 5B). NRG3 and ERBB4 expression levels peaked in the
second half of the developmental timeline, coinciding with synapto-
genesis (Fig. 5B). Our atlas predicts significant NRG3-ERBB4 interac-
tions from E18.5-PO through P30, with GlutNs werving as the
NRG3 source and most GABANs as ERBB4-expressing targets (Fig. 5C).
Across all developmental stages, the intracellular signaling score for
NRG3-ERBB4 was highest when target cells were Pvalb BCs and Vip|L2/
3 -L5 BP/BTCs, two GABAN subtypes known to critically depend on
ERBB4 signaling for the formation of excitatory synapses (Fig. 5D)'**"",
Overall, our atlas supports a role for the NRG3-ERBB4 interaction in
driving excitatory synapse formation onto specific GABAN subtypes
during corticogenesis.

NEOL1 is the primary CBLN4 receptor at Martinotti-
glutamatergic developing synapses

To explore whether our atlas could illuminate previously incompletely
understood intercellular communications, we focused on CBLN4, a
ligand that facilitates synapse formation between Sst neurons axon
terminals and the apical dendrites of GlutNs in the mouse cortex'*
(Fig. SE). Which precise Sst subtype expresses CBLN4, and which
receptor(s) mediate its effects on GlutNs, remain open questions®*
(Fig. 5F). Our transcriptional landscape analyses revealed that among
the 4 identified Sst cell-types (Sst|L2/3-L5 fan-MC, Sst|L4 IVC, Sst|L5
T-MC, and Sst|L5/L6 NMCs), only the Sst|L2/3-L5 fan-MCs exhibited
clear Cbin4 expression (Fig. 5G). Our LR interactome atlas predicted
that CBLN4 is involved in relatively few intercellular interactions dur-
ing synaptogenesis (P5 to P30), specifically between Sst|L2/3-L5 fan-
MCs as source cells and select GlutN subtypes (L2/3 IT, L4 IT | SSC, L4/5
IT|PC, L5 IT and L5 PT) as target cells (Fig. 5G). Unexpectedly, most
GABAN cell-types were also predicted as target cells. Intercellular sig-
naling scores further indicated that among the three known CBLN4
receptors (DCC, GLUDI and NEO1), only GLUD1 and NEO1 were pre-
dicted to be involved (Fig. SH). Intercellular scores rose from P4 to P8,
consistent with CBLN4’s known role in synapse formation during this
window".

We used intracellular scores to assess whether GLUD1 or NEO1
predominates as the CBLN4 receptor in cortex. Although GLUDI has
been identified as a CBLN4 receptor in GlutNs at P21-P30"*, our data
suggest that NEO1 signaling is more active during peak synaptogenesis
(P4-P8) in CBLN4-receiving neurons (Fig. 5H). NEO1-associated genes
were enriched for axon guidance and TGF-p pathways. To test for
direct interactions at P8, we performed in situ PLA and observed
strong CBLN4-NEO1 signals in cortical layers L1-2, while
CBLN4-GLUDI interactions were minimal or absent (Fig. 5I). These

results underscore the atlas’s ability to identify key LR pairs and their
cell-type specificity.

CDH13 and PCDHS8 mediate perisomatic inhibition in deep and
superficial layers

To determine whether our LR atlas can help identify novel LR pairs
essential for cortical wiring, we focused on the cadherin family of
adhesion molecules. Cadherins were prioritized because they are
thought to play such a role***** and because our atlas revealed
extensive spatiotemporal diversity in S1 (Fig. 2G).

The atypical cadherin Cdhi3, genetically associated with neuro-
developmental disorders™*, exhibited a distinct and widespread
expression pattern across cortical neuronal subtypes. In transcrip-
tional landscapes, Cdh13 was detected in all GABAergic neuron types
except Lamp5 neurons, with the highest expression levels observed in
MGE-derived Sst and Pvalb populations (Fig. 6A). It was also broadly
expressed across GlutN subtypes, with enrichment in DL subtypes.
During corticogenesis, Cdh13 expression in DL GlutNs was sustained,
whereas in MGE-derived GABAergic neurons, it peaked during the
wiring period (P4-P30), suggesting a temporally coordinated role in
circuit formation (Fig. 6A). These spatiotemporal dynamics point to a
potential role for CDHI3 in mediating homophilic interactions
between MGE-derived GABAergic neurons and DL GlutNs. Consistent
with this hypothesis, our LR inference analysis predicted that the vast
majority of CDHI3-CDHI13 interactions occur between Sst/Pvalb
interneurons and DL (L5 and L6) GlutNs (Fig. 6B, C, only ITs visualized
as sources). These predictions are consistent with recent evidence
implicating CDHI13 in perisomatic inhibition of L5 subtypes by Pvalb
basket cells (BCs)”’. To experimentally validate this interaction, we
performed in utero electroporation to knock down Cdhi3 in L5 GlutNs
and assessed perisomatic innervation by Pvalb BCs. Cdhi13 knockdown
significantly reduced the area of GlutN somata contacted by SYT2*
Pvalb BC boutons (Fig. 6C), indicating that postsynaptic CDH13 is
required for proper perisomatic inhibition. Notably, chandelier cell
(CHC) synapses onto the axon initial segment were unaffected
(Fig. 6D), highlighting the specificity of CDH13 function and support-
ing our atlas-based predictions.

We next focused on PCDH8, whose spatial expression pattern
appeared largely complementary to that of CDH13, with enrichment in
GlutNs and Pvalb neurons of the UL (Fig. 6E). In line with this expres-
sion landscape, our LR atlas predicted that, aside from a few additional
putative interactions, PCDH8-PCDHS signaling would predominantly
occur between L2/3 intratelencephalic (IT) neurons and Pvalb basket
cells (BCs) (Fig. 6F, G). To test this prediction, we performed in utero
electroporation of a Pcdh8 shRNA at E15.5 to knock down
PCDHS specifically in L2/3 IT neurons and assessed their perisomatic
innervation by Pvalb BCs. Strikingly, Pcdh8 knockdown significantly
increased SYT2* bouton coverage of L2/3 IT somata, indicating that
PCDHS8 negatively regulates perisomatic inhibition in this circuit
(Fig. 6H). This effect contrasts sharply with CDH13 function in L5
neurons, which acts as a positive regulator of Pvalb BC-mediated
inhibition.

Thus, our LR atlas supports the conclusion that distinct cadherins
differentially regulate perisomatic inhibition in a layer-dependent
manner.

Discussion

Seminal studies in the last decades have shown that stereotyped
cortical circuit wiring in mammals is regulated by LR interactions
between GlutNs and GABANs™™. More specifically, these data
suggest that a molecular code, established by LR interactions
between early-settling GlutNs and later-arriving GABANSs, orches-
trates circuit assembly. To identify LR pairs critical for
GlutN-GABAN interactions and cortical circuit formation, we
leveraged high-throughput single-cell transcriptomics. Our LR
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predictions, along with gene expression visualizations, are avail-
able at https://sclrsomatodev.online/.

We began by characterizing the transcriptomic profiles of the
major neuronal classes across cortical development. This dataset,
generated through extensive integration and meticulous annotation, is
provided as a publicly accessible reference for exploring the dynamic
transcriptional landscape of corticogenesis (https://sclrsomatodev.

GlutN

online/). For our analysis of LR interactions, we focused on the critical
E18-P30 window, during which GABANs migrate to their target layers
and form synaptic connections with GlutNs and other GABAergic
partners. We developed computational tools to assess spatiotemporal
expression of all genes in main cortical neuron types and to infer the
number and identities of significant LR pairs that may govern cortical
wiring. These tools can be applied to: (1) validate established
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Fig. 5 | Experimental confirmation of the Ligand-Receptor Atlas. A Diagram
illustrating Nrg3-Erbb4 interaction between GlutNs and GABANs. B Nrg3 and Erbb4
transcriptional landscapes in GlutN and GABAN families. C Heatmap depicting
predictions of Nrg3-Erbb4 mediated interactions between GlutN and GABAN cell-
types. D Left: Predicted Nrg3-Erbb4 mediated cell-cell interactions at P8 and P30.
GlutNs (blue) are sources of Nrg3 and GABANS are targets expressing Erbb4. Right:
Schematic representation illustrating the predicted interaction strength among
three example cell pairs, highlighting preferred connectivity patterns based on
computational predictions, which validates the 3 cited references. E Diagram
illustrating CBLN4-mediated inhibitory synapse formation from Sst cells to GlutNs

in the cortex. F Transcriptional landscapes of Cbin4 expression across different
neuron families. G Heatmap with LR pairs predicted to involve CBLN4 as a ligand.
H Predicted CBLN4-mediated cell-cell interactions at P4-P5 and P8. Pathways on the
left, CBLN4-receptor pairs on the right. I Proximity ligation assay (PLA) for inter-
actions between CBLN4 and GLUD], and between CBLN4 and NEO], in layers L1and
upper L2. A magnified view of a GFP-positive neuronal process with PLA puncta
(red) is shown on the lower right. Scale bar: 10 um. The PLA experiment was per-
formed independently in 4 biological replicates, each yielding similar results.

J Summary of the experimental findings related to investigations on CBLN4. S _inter,
intercellular score; S _intra, intracellular score.

interactions (e.g., NRG3 - ERBB4), (2) extend knowledge of known LR
interactions (e.g., Cbln4 - Neol for Sst MC -> GlutN interaction) and (3)
identify novel LR pairs involved in the formation of specific connec-
tions (e.g., the CDH13 and PCDHS cases).

LR-mediated intercellular interactions are fundamental processes
that shape the development and function of most biological tissues.
Before the development of scRNA-seq, studying the molecular
underpinnings of cell-cell interactions was low-throughput, restricted
to a short selection of genes or proteins and a limited number of cell-
type pairs. The emergence of scRNA-seq has enabled the development
of numerous computational tools to infer cell-cell communication.
While many existing methods predict LR interactions based solely on
the expression levels of the LR pair across cell types**°, a subset of
more recent approaches may better approximate biological ground
truth by also incorporating the downstream responses elicited in
receptor-expressing cells*”*"%, For this study, we benchmarked most
available methods and selected scSeqComm®*’, one of the most recent
tools capable of inferring both intercellular and intracellular signaling.
The intracellular score provided an additional layer of reliability for
inferred interactions, and custom thresholds can be set for both
intercellular and intracellular scores to modulate confidence. To fur-
ther increase the reliability of the inferred interactions, we curated a
comprehensive LR database by integrating existing published data-
bases and incorporating additional LR pairs from the literature.

Our LR predictions indicate that neuronal connections are
determined by specific combinations of LRs with distinct specificities.
Notably, a core group of approximately 40 broadly expressed LRs
mediate interactions in over 50% of cell-type pairs, complemented by a
larger subset of LRs with varying degrees of specificity. Importantly,
LRs unique to single neuronal connections are extremely rare, sug-
gesting that cortical wiring is predominantly shaped by a combination
of shared and context-dependent LRs rather than by unique or isolated
interactions. Our predictive modeling analysis further strengthens the
“combinatorial code” hypothesis. Classifiers trained on distinct LR
feature subsets revealed that neither shared nor unique LR pairs alone
could reliably discriminate cell types. Instead, rare context-dependent
interactions provided the key discriminatory signal, with their pre-
dictive value maximized when combined with shared pairs. These
results suggest that synaptic specificity emerges from the combined
deployment of common and rare LR modules, rather than from
exclusive dependence on unique interactions. This combinatorial logic
echoes classical molecular code theories in neural development and
provides a quantitative framework for how LR diversity encodes cell-
type-specific connectivity.

Cadherin superfamily members are differentially expressed
across subtypes of cortical excitatory and inhibitory neurons®*,
suggesting that a combinatorial cadherin code could guide the struc-
tured assembly of cortical circuits. Our data support this idea by
demonstrating, with unprecedented resolution, that cadherins exhibit
highly cell-type-specific and developmentally dynamic expression
patterns (Fig. 4C). Building on predictions from our LR atlas, we
experimentally identified two cadherins, CDH13 and PCDHS, as reg-
ulators of perisomatic inhibition by Pvalb basket cells (BCs) in deep

and superficial layers, respectively (Fig. 6). Specifically, we found that
CDHI13-CDH13 interactions are crucial for Pvalb BC-mediated periso-
matic inhibition of deep-layer GlutNs. Our atlas also shows that this
interaction is not required for BCs expressing Sncg/CCK, which is
consistent with recent findings”. In contrast, in superficial layers,
PCDHS negatively regulates Pvalb BC innervation, demonstrating that
cadherins can either promote or restrict synapse formation depending
on the context. This duality highlights the predictive power of our LR
atlas, particularly in uncovering inhibitory or repulsive interactions, an
underappreciated dimension of forebrain circuit development. Our
atlas also predicts a higher number of LR interactions between exci-
tatory neurons and Sst or Pvalb interneurons compared to Vip or
Lamp5 populations, which is consistent with these findings. This may
indicate that Sst and Pvalb rely more strongly on non-cell-autonomous
signals for their integration, although alternative explanations should
be considered, including differences in cell abundance or sampled
developmental stages, which may not fully capture the wiring periods
of other interneuron subtypes.

Beyond laminar and cell-class distinctions, our data indicate that
the progenitor domain of interneurons (MGE, CGE, or POA) imposes an
additional layer of specificity on predicted LR interactions. We found
that GE-derived interneurons exhibit dynamic shifts from early GE-
specific LR modules, enriched in partner recognition and integration
processes, to shared programs during peak synaptogenesis (P8-P30),
and back to fate-specific modules in adulthood (Supplementary
Fig. 23). These findings suggest that cortical wiring is not only struc-
tured by laminar position and cell-class identity but also by develop-
mental lineage, underscoring the combinatorial logic of fate- and
stage-dependent LR programs.

Interestingly, the suppressive role of PCDHS8 in superficial lay-
ers mirrors that of another protocadherin, PCDH18, which limits Sst
neuron connectivity with GlutNs". Given that both Cdh13 and Pcdh8
are genetically linked to neurodevelopmental disorders®**%*, our
findings raise the possibility that layer-specific disruption of Pvalb
BC-mediated inhibition may contribute to the etiology of these
conditions.

It remains unclear how generalizable our somatosensory cortex-
focused analysis is to other cortical areas. Most GABAergic clusters
defined in the Allen Institute taxonomy are shared across isocortical
regions, and the relative proportions of cells within these clusters are
largely consistent across areas’. For glutamatergic cell types, there is a
modest, gradual transcriptomic variation across regions, and some
degree of regional specificity is observed, particularly at the cluster
level and in isocortical areas located at the rostral and caudal
extremes’. In contrast, adjacent cortical areas largely share the same
clusters. Importantly, our analysis is anchored at the supertype level; a
higher-order classification that is more stable than individual clusters
and broadly conserved across cortical areas. As described in Yao et al ?,
supertypes are consistently observed across the isocortex, with only a
few known exceptions, such as the L5 PT and Car3 supertypes. Because
the cell types in our study were defined at the supertype level, we
expect that our findings are likely to generalize to neighboring cortical
regions.
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Fig. 6 | Distinct cadherins differentially regulate perisomatic inhibition in a
layer-dependent manner. A Transcriptional landscapes of Cdh13 expression.

B Heatmap of predicted CDH13-CDH13 interactions between GlutN ITs and GABAN
types, shared by at least two consecutive ages. C Predicted utilization of
CDH13-CDH]13 interactions across ITs and GABANSs at P4-P5 and P30; interaction
strength is quantified by the inter_diff score. D In vivo knock-down of CDH13 in L5
GlutNs (left). Perisomatic (middle) and axon initial segment (right) inhibitory inputs
from Pvalb BC and CHC boutons onto L5 GlutNs were quantified as SYT2 coverage.
Statistical analysis was performed using Two-sided Mann-Whitney tests with bio-
logical replicates: n =4 mice per electroporation condition (shCtl, shCdh13). Unit of
analysis: individual electroporated L5 GlutN somata; technical replicates: 36 somata
(shCtl) and 37 somata (shCdh13). Exact P value for perisomatic SYT2 coverage:
P=0.0227 *p < 0.05. No correction for multiple comparisons. Data are presented as
median values in box plots, which show the median (centre line), 25th-75th per-
centiles (box), and whiskers representing minimum and maximum values within

1.5x the interquartile range (IQR). E Transcriptional landscapes of Pcdh8 expres-
sion. F Heatmap of predicted PCDH8-PCDHS interactions between GlutN ITs and
GABAN types shared by at least two consecutive ages. G Predicted utilization of
PCDH8-PCDHS8 interactions at P1-P2 and P4-P5. H In vivo knock-down of PCDH8 in
L2/3 ITs (left). Perisomatic (middle) and axon initial segment (right) inhibitory
inputs from Pvalb BC and CHC boutons onto L2/3 ITs were quantified as SYT2
coverage. Statistical analysis was performed using Two-sided Mann-Whitney tests
with biological replicates: n =4 mice per electroporation condition (shCtl,
shPcdh8). Unit of analysis: individual electroporated L2/3 IT somata; technical
replicates: 72 somata (shCtl) and 66 somata (shPcdh8). Exact P value for periso-
matic SYT2 coverage: P=0.028 *p < 0.05. No multiple-comparison correction. Data
are presented as median values in box plots, with the median (centre line),
25th-75th percentiles (box), and whiskers indicating minimum and maximum
values within 1.5x IQR. Associated source data are provided.
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Nonetheless, because our analyses were restricted to the soma-
tosensory cortex, extrapolation to other cortical areas should be
approached cautiously. In addition to neurons, non-neuronal cells also
play a role in the early stages of cortical circuit assembly. For example,
blood vessels and ventral oligodendrocyte precursor cells regulate the
tangential migration of GABANs from the subpallium to the cortical
plate through specific CXCL12-SEMA6A/B-PLXNA3 unipolar contact
repulsion®. Future studies should leverage single-cell transcriptomics
to systematically investigate neuron-non-neuronal cell communication
to further explore these interactions.

Limitations of the approach—considerations for Future
Improvements in Ligand-Receptor Atlases

Despite the robustness and comprehensiveness of our approach,
certain limitations should be acknowledged. Reliance on mRNA
levels as proxies for protein abundance can be misleading due to
post-transcriptional regulation, and even when ligand and recep-
tor proteins are expressed, their functional interaction depends on
correct trafficking and subcellular localization, which single-cell
RNA-seq cannot capture. Advances in single-cell proteomics may
soon allow integration of such spatial information into develop-
mental atlases. Our focus on glutamatergic and GABAergic neu-
rons also excludes non-neuronal cell types such as astrocytes,
oligodendrocytes, and microglia, which likely contribute to cor-
tical circuit assembly and should be incorporated in future ana-
lyses. Interpretations based on GO terms remain provisional, as
they may underrepresent intercellular contributions to broader
processes such as cell death or differentiation. Finally, the use of
an adult-derived connectivity matrix constrains predictions to
mature architectures, providing a conservative but potentially
incomplete view that may overlook transient developmental
connections.

Currently, our understanding of the spatial relationship
between cortical cell types is largely limited to adult stages®®*”, which
impedes precise inference of timely LR mediated cell-cell interactions
at specific developmental stages, whether transient or stable. The
advent of spatial transcriptomic technologies with high sensitivity,
throughput, and resolution promises to bridge this gap in the near
future.

Methods

Animals

Mice (mus musculus) were group housed (2-5 mice/cage) with
same-sex littermates on a 12-hour light-dark cycle with access to
food and water ad libitum. They were bred and maintained on a
mixed SVeV-129/C57BL/6 N background. Animal experiments were
carried out in accordance with European Communities Council
Directives and approved by French ethical committees (Comité
d’Ethique pour I'expérimentation animale no. 14; permission num-
ber: 62-12112012, Apafis #21683- 2019073011285386v4). Mice were
housed on a 12-hour light-dark cycle at 21-23°C and 40-60%
humidity. Sample sizes were not predetermined by statistical
methods; rather, they were guided by standards commonly used in
single-cell transcriptomics and developmental neurobiology,
ensuring sufficient cell numbers and biological replicates to achieve
robust clustering, stable ligand-receptor inference, and reliable
validation of observed phenotypes. For tissue collection, mice were
deeply anesthetized and euthanized in accordance with institutional
and governmental guidelines. Adult and postnatal mice were
euthanized by intraperitoneal injection of pentobarbital (150 mg/
kg). Loss of reflexes was confirmed prior to tissue collection. For
histological analyses, animals were transcardially perfused with
0.9% saline followed by 4% paraformaldehyde. For experiments
requiring fresh tissue for single-cell isolation, brains were rapidly
dissected following euthanasia.

Single-cell isolation

Male and Female mice brains were dissected submerged in an ice-cold
bubbled artificial cerebrospinal fluid (ACSF) with carbogen (95% O,
and 5% CO,). Our ACSF consisted of NaCl (7.32g/L), KCI (0.26 g/L),
NaH2PO4,H20 (0165 g/l_), CaCI2,2H20 (0438 g/l_), MgC12,6H20
(0.264 g/L), D(+)-Glucose (1.98g/L), NaHCO; (2.1g/L), and acid
kynurenic (0.567 g/L). Brains were then sliced into a 300 um (PO and P2
mice) or 500 um (P5, P8 and P30 mice) coronal sections with a vibra-
tome (Leica). Somatosensory cortex area was dissected under a bino-
cular loop. Enzymatic digestion was then processed by using pronase
(Septomyces Argeus at 1 mg/mL) during 25 min at room temperature
(RT) for PO to P8 datasets. Cells were dissociated and triturated into
single cell suspension in a solution consisting of ACSF, 1% FCS and
DNAse (1ul/10 mL). Trituration was carried out by using 3 glass pasteur
pipets prepared at 3 different diameters. For P30 datasets, we used the
Worthington Papain Dissociation System to carry out the enzymatic
digestion and the cell dissociation following the manufacturer
instructions.

Single-nuclei isolation

Dissection of the somatosensory cortex was achieved by following the
same procedure as described for single-cell isolation. The dissected
somatosensory cortices were transferred immediately into 500 pl of
Hibernate™-E Medium (#A12476-01), then frozen for 3 min in iso-
pentane pre-cooled to -80 °C. The samples were subsequently stored
at —80 °C for long-term preservation. To process the tissue after con-
servation, the medium was first removed from the Eppendorf tube.
Chilled 0.1X NP40 Lysis Buffer was then added in a volume of 500 ul,
and the tissue was immediately homogenized using a Pellet Pestle with
15 strokes. The homogenized samples were incubated on ice for 5 min.
The suspension was then pipette-mixed 10 times using a wide-bore
pipette tip and incubate for 10 min on ice to ensure proper lysis. Fol-
lowing lysis, 500 pl of chilled wash buffer was added to the suspension,
and the mixture was pipette-mixed 5 times using a regular-bore pipette
tip. The suspension was passed through a 30 um cell strainer into a
50 ml tube to remove debris. The filtered suspension was subsequently
transferred to a 1.5ml tube for centrifugation. Samples were cen-
trifuged at 950 x g for 10 min at 4 °C. After centrifugation, the super-
natant was carefully removed to avoid disrupting the nuclei pellet,
which was retained for further analysis.

cDNA Amplification and library construction

10xv3 libraries were sequenced on lllumina HiSeq 4000. For single-
nuclueus RNAseq, nuclei suspensions were adjusted following 10X
recommendation. For GEM generation and barcoding, we utilized the
Chromium Next GEM Single Cell 3’ Reagent Kits, following the manu-
facturer’s protocol. In summary, the prepared single-cell suspensions
were loaded onto a Chromium Next GEM Chip G, along with the
appropriate reagents, and processed using the chromium controller to
encapsulate individual cells into GEMs. After GEM-RT incubation,
cDNA was recovered and amplified through a series of cleanup and
amplification steps, including SPRIselect bead-based purification. The
amplified cDNA was then subjected to fragmentation, end repair, A-
tailing, adaptor ligation, and sample index PCR to construct the final 3’
gene expression libraries. The constructed libraries were sequenced
10xv3 libraries were sequenced on Illumina HiSeq 4000.

Sequencing data processing

Sequencing reads were aligned to the mouse pre-mRNA reference
transcriptome (mml0) using the 10x Genomics CellRanger pipeline
(version 3.1.0 or 6.1.1) with default parameters.

External datasets
All external datasets were incorporated exactly as provided by the
original publications. In the Di Bella et al.** dataset, cells that were
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annotated as low-quality cells, doublets and Red blood cells were
discarded. Because only the somatosensory cortex (SS CTX) was dis-
sected in our experiments, we selected from the Allen Institute dataset
only cells coming from the primary somatosensory cortex (SSp) for
10x data, and from both SSp and SSs for Smart-seq v4 data. To ensure
that clusters were representative of the SS CTX, we discarded clusters
containing fewer than 5 cells within a given subclass (as defined by Yao
et al. 2021b) and retained only subclasses with at least two clusters.
Furthermore, for supertypes containing fewer than 100 cells, we sup-
plemented them—where possible—to reach 100 cells passing quality
control (see Methods) by randomly selecting cells from cortical areas
most correlated with the SS CTX (primary motor, MOp; secondary
motor, MOs; frontal pole, FRP; and auditory areas). Exceptions were
made for the CR Trp73, Meis2, Astro Gfap Apoe, and PVM
Mrcl supertypes, for which all cortical areas were used due to the low
total cell numbers. The resulting dataset from Yao et al.>*® constitutes
our reference for cell-type assignment (hereafter referred to as
AllenRef21).

Quality control

In order to retain only high-quality cells in all datasets, cells that passed

the following criteria were kept (see Supplemental information QC

metrics):

* Cells with a mitochondrial gene percentage <10%.

* Cells with a log;o (number of detected genes) within three double
median absolute deviations (doubleMAD) of the population
median, with a minimum low threshold of 500 genes.

Cells with alog;o (number of detected UMIs) above 3 doubleMADs

of the population median.

We plotted log;o (nFeature RNA) versus log;o (nCount RNA) and

fitted a linear regression model between these variables. Cells

falling below an offset of -0.09 were retained.

* Doublets in scRNA-seq datasets were identified using Scrublet®,
with an expected doublet rate of 10%. The number of simulated
doublets was set to twice the number of observed transcriptomes,
and eight neighbors were used to construct the KNN classifier for
observed and simulated doublets.

Assigning cell identity
Cells that passed QC criteria were used for the following analysis. Key
steps to determining cell identity consisted of (Fig. S1):

Assigning Broad class identity. An in-house artificial neural network
(ANN) was used to determine the identity of the cells at the class
level for E11.5 to P5 datasets. We selected the datasets from Di Bella
et al.?* and Bandler et al.” as the training set for the ANN as they
encompassed all broad cell classes relevant to our studies. Cells
from Di Bella et al.** were organized into five classes: GABAergic
(Interneuron), Glutamatergic (CR, UL CPN, Layer 4, DL CPN, SCPN,
NP, CThPN, Layer 6b), Immature/Migrating (Immature neurons,
migrating neurons), Non-Neuronal (Astrocytes, Oligodendrocytes,
Microglia, Cycling glial cells, Ependymocytes, Endothelial cells,
VLMC, Pericytes) and Dorsal Pallium Progenitor (Apical progenitors,
Intermediate progenitors). Cells from Bandler et al. (2021) were
organized into two classes: GABAergic and SubPallium Progenitor.
The weights derived from this model (hereafter referred to as the
class PAB21 model) were independently applied to datasets from
E11.5 to PS5, excluding those used as reference.

For P8 to P30 datasets we used the map sampling function of the
R package scrattch.hicat to train a centroid classifier, randomly
selecting 80% of marker genes. Test data were mapped to the Allen-
Ref21 reference set at the class level (GlutNs, GABANs and NN classes).
Classification was bootstrapped 1000 times to estimate robustness.
Cells with prediction probabilities below 0.5+1/(number of class)?
were considered undetermined.

Seurat Louvain graph-based clustering was initially performed
on each dataset independently at the top level (k.para-
m=round(sqrt(Number of cells)), annoy.metric = “cosine” in the Find-
Neighbors function and resolution=1 in the FindClusters function of the
Seurat R package). One or more additional rounds of clustering were
performed to resolve subclusters within candidate major clusters, with
cluster heterogeneity evaluated using the Silhouette Score computed
via a modified ReclusterCells function from the R package SCISSORs™®
(Leary et al., 2021)). Cluster identities were assigned based on the most
frequent prediction obtained either from the class PAB21 model or
using scrattch.hicat. A cluster was assigned a given identity only if the
difference between the most and second-most frequent predicted
identities exceeded 40%. For downstream analyses, only cells pre-
dicted as Glutamatergic or GABAergic were retained. In GE datasets,
only GABAergic cells were retained, as other postmitotic classes were
considered potential contaminants.

Determining future cortical GABANSs in the ganglionic eminences
datasets. Since not all ganglionic eminence (GE)-derived cells migrate
towards the cortex, we aimed to identify the migratory population.
Using the differentially expressed (DE) branch analysis by Mayer
et al.”®, we identified the common DE genes for each branch within
each GE and predicted cell identities by applying the assign_cell func-
tion from the R package MetaMarkers™. Cells were then clustered
using the method described above, and the most frequently predicted
branch identities were assigned to each cluster. As branch 1 was
identified as giving rise to most future cortical cells®, only cells
assigned to branch 1 were retained for downstream analysis.

Integration of all studies. To identify homologous cell types across
10X, Drop-seq, SSv4, SSv2, C1 scRNA-seq and snRNA-seq datasets, both
from this study and from external studies, datasets were integrated
using Seurat’s SCTransform integration workflow. For the integration
analysis, 3’000 variable genes were selected. k.anchor= 5 and k filter=
150 were the parameters set for the FindIntegrationAnchors function
used to identify anchors between the datasets. For Yao et al. (2021b),
only cells from the SS CTX were integrated (supplementary Fig. 1c).

Assigning subclass and supertype identities. Datasets were split into
glutamatergic and GABAergic classes.

Glutamatergic neurons. For the E11.5 to P5 datasets, the in-house ANN
was initially trained with the GlutNs part of the Di Bella et al. dataset**
using their defined cell-type labels (referred to as the ctPA21 model).
The resulting model weights were then independently applied to each
dataset from E11.5 to P5. The clustering module described above was
performed on the entire E1L5 to P5 dataset. Cluster identities were
assigned by comparing predictions from the ctPA21 model, and the
most frequent predicted identity was designated as the cluster
identity.

Correspondence between cell types annotations of Di Bella et a
and subclass annotation of Yao et al. (2021b) was achieved as followed:
UL CPN, Layer 4, DL CPN: IT, SCPN: L5 PT, NP: L5 NP, CThPN: L6 CT,
Layer 6b: L6b, Cajal-Retzius cells: CR.

Next, we aimed to distinguish IT cellsamong L2/3IT, L4/5IT, L5 IT,
L6 IT, or Car3 subclass identities. We used the map sampling function
of the scrattch.hicat package as previously described, utilizing the
IT cells from the AllenRef21 dataset as the reference set.

For P8 to P30 datasets, subclass identities were directly assigned
using the map sampling function of the scrattch.hicat package, as
these time points are less far transcriptionally from the adult dataset.
After applying our clustering module to the entire dataset, we assigned
final subclass identities to clusters based on the most frequently pre-
dicted identity. To ensure accuracy, the difference between the top
predicted subclass and the second most predicted subclass within

|24
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each cluster had to exceed 20%. If this difference was less than 20%, we
assigned a mixed subclass identity. For the adult dataset, we retained
the original subclass labels.

Finally, for each unique subclass, we assigned the supertype level
of Yao et al.®> by using the same procedure used to assign subclass
labels with the map sampling function.

GABAergic neurons. For datasets sampled from SS CTX, we assigned
the subclass labels by using the same procedure as described above
with scrattch.hicat. Once we obtained the subclass labels in the SS CTX
datasets, we used the MapQuery function from the R package Seurat v4
(with weigh.reduction =“cca” parameter) to transfer these labels to
datasets sampled from the GEs using the SS CTX subclass labels.
Subclass labels were assigned by comparing each cell to the cluster
defined by the clustering module. For GE cells whose subclass
remained undetermined, typically less mature cells, we performed an
additional round of the MapQuery function, using the subclass labels
of more mature GE cells as reference. The final subclass labels were
assigned by comparison to the clusters obtained with the clustering
module. The same procedure was applied to determine supertype
labels for each subclass. Because the Pvalb Lpl supertype (which cor-
responds to the Pvalb FS BC) was distributed across the full cortical
thickness (Supplementary Fig. 2e), we deepened our analysis in order
to discriminate between upper and lower Pvalb FS BC. This was
achieved by using the map sampling function, with clusters of the
Pvalb Lpl supertype in our AllenRef21 dataset serving as reference.

Assigning cell-type names. Cell-type names were assigned by incor-
porating morphology, electrophysiological properties, and/or con-
nectivity (mec-type) associated with each final identity. Mec-types
were determined using patch-seq and connectivity studies'>*, which
showed that many transcriptomic neuron types are correlated with
known cortical neuron types by integrating transcriptomic clustering
with patch-seq datasets (simultaneous electrophysiological recording
and morphology reconstruction) and large-scale connectivity studies.
These multimodal approaches demonstrated reproducible corre-
spondences between molecularly defined subtypes and canonical
cortical neuron classes. This integrative framework allowed us to
anchor transcriptomic identities to established cortical cell types with
known functional and anatomical properties. Final cell-type names
were assigned by pooling original cell-type labels that shared a com-
mon mec-type.

Classification of cell-types into families. We classified our 27 iden-
tified cell-types into 8 families: IT family encompassing L2/3 IT, L4
IT|SSC, L4/51IT|PC, LSIT, L6 IT cell-types; ET family encompassing L5
PT, L6 CT, Léb cell-types; Other GlutNs encompassing CR, L5/6 NP and
Car3|Claustrum-like cell-types; Lamp5 encompassing Lamp5 | L1 A7C/
CNC and Lamp5 | L1-L5 NGC cell-types; Vip encompassing Vip|L2/3-L4
BP/BTC, ViplUncharacterized and Vip|L2/3-L5 BP/BTC cell-types; Sst
encompassing Sst|L2/3-L5 fan-MC, Sst|L4 IVC, Sst|L5 T-MC and Sst|L5/
L6 NMC cell-types; Pvalb encompassing Pvalb|L2/3 CHC, Pvalb|L2/3-L4
FS BC, Pvalb|L4/5 FS BC and Pvalb|L5/6 FS BC cell-types; Other GABANs
encompassing Sncg|CCK BC, Sst|FS-like and Sst ChodI|LPC cell-types.

Pseudo-maturation score analysis. Pseudo-maturation analysis was
performed from the earliest time point at which a given cell-type was
observed up to P30. For each cell-type, we first performed an inte-
gration designed to preserve the developmental trajectory of the cells
by using the R package FastMNN">" with prop.k set to 0.1 for most cell
types and 0.4 for those with a large number of cells (L2/3 IT, L6 CT).
Pseudo-maturation scores were calculated by first performing k-means
clustering (k=2) and then by using the R package slingshot (Street
et al., 2018) which fits principal curves to identify lineages within each
cell-type directly on the mutual nearest neighbor graph generated

from the integration. Maturation directionality along each lineage was
established by specifying a starting cluster. The resulting pseudo-
maturation scores were normalized between 0 and 1. At each age, cells
with normalized pseudo-maturation scores exceeding +3 double
median absolute deviations (doubleMADs) from the population med-
ian were considered outliers and discarded. After outlier removal,
pseudo-maturation scores were scaled into three bins spanning ages
E11.5-E17.5, E18.5-P5, and P8-P30 corresponding to intervals [0;1/3], [1/
3;2/3] and [2/3;1] respectively. Cells in the E18.5-P5 and P8-P30
intervals were further subdivided into 6 and 3 equally sized bins,
respectively.

Temporal gene wave computation

Genes differentially expressed along this inferred maturation axis were
identified using the differentialGeneTest function of the R package
Monocle 2 (v2.18.0)’* using parameters’fullModelFormulaStr =
“sm.ns(pseudomaturation, df = 3)+study.RNAseq.method.platform”,
and’reducedModelFormulaStr="study.RNAseq.method.platform”. = We
maintained genes with g-values less than 0.05 for downstream analy-
sis. Genes with similar expression dynamics were grouped in 6 clusters
using partition around medoids on the smoothed expression profiles
of the significantly differentially expressed genes.

Pseudo-layer score analysis. Pseudo-layer analysis was performed
from E18.5 to P30 by pooling the 2 nearest time points 2 by 2 from E18.5
to P5. Furthermore, this analysis was done independently for each
family except for the Other GlutNs and Other GABANs families as they
included cell-types that were not related to each other. UMAP was
computed for IT and ET families at each defined time point, with Seurat
SCT integration applied beforehand when necessary. For the Sst,
Pvalb, Vip and Lamp5 families, all GABANSs present at each defined time
point were jointly embedded using UMAP, with dataset integration
performed when necessary. After generating unified embedding,
families were subset while retaining their original UMAP coordinates.
Pseudo-layer scores were calculated following the same procedure
used for the pseudo-maturation described above. Briefly, k-means
clustering was applied (k=3 or 2, depending on the dataset), except
for the ET family, for which predefined cell-type annotations were used
in place of clustering, designating L5 PT as the starting state and Lé6b as
the terminal state. Lineage trajectories were inferred with slingshot™.
The pseudo-layer score was normalized between 0 and 1. Cells with
normalized values above or below three doubleMADs of the popula-
tion median were considered as outliers. Once outliers were discarded,
the pseudo-layer score was renormalized between O and 1. To enable
comparisons both across time points and across families, the pseudo-
layer scores were further scaled using the 5™ percentile and the 957
percentile of each cell-type distribution (as determined in Supple-
mentary Fig. 2e and Supplementary Fig. 3e). In addition, the median
score of each cell-type was aligned to the corresponding median
position determined in Supplementary Fig. 2e and Supplementary
Fig. 3e, with the overall scaling set such that the 95th percentile of the
Lé6b distribution equaled 1.

Spatial gene gradient computation

Genes differentially expressed along this inferred layer axis were
identified using Monocle 2 using parameters “fullModelFormulaStr
="sm.ns(pseudolayer, df=3)+orig.ident”, and “reducedModelFormulaS-
tr="orig.ident”. Genes with similar expression dynamics were grouped
in 6 clusters.

Determining the distribution of cell types within a cortical column.
We took advantage of two patch-seq studies from Gouwens et al.' and
Scala et al.> and a multiplexed error-robust fluorescence in situ hybri-
dization (MERFISH) study®. For each subclass, we applied the map -
sampling function of scrattch.hicat to independently map cells of the 2
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patch-seq studies to our reference AllenRef21 by taking the supertype
level of the matching subclass (Supplementary Fig. 2a, Supplementary
Fig. 2b). We assigned each of the clusters defined in these studies to the
most frequent predicted supertype identity. For the MERFISH dataset,
which comprised only 254 genes, the limited gene coverage prevented
us from reliably identifying the corresponding supertype of the
AllenRef21. We therefore took advantage of the published confusion
matrix between this MERFISH dataset and 7 scRNAseq and snRNAseq
datasets™®® to guide cell-type correspondence (Supplementary
fig. 2d). For each subclass, we applied the map sampling function to
the 7 datasets and assigned supertype of AllenRef21 to the cluster
defined in Callaway et al.”’ (Fig. 2c). The confusion matrix between
MERFISH dataset and the 7 datasets allowed us to find the corre-
sponding supertype in the MERFISH dataset. Clusters whose predicted
subclass did not match their original subclass assignment were
excluded from further analysis. Finally, supertype labels were merged
into cell types defined in the section above to obtain the distribution of
our cell-types along the cortical thickness (Supplementary Fig. 2e). For
certain cell-types, no corresponding populations were identified in the
patch-seq and MERFISH studies. We overcame this issue by assigning
laminar distribution of these cell-types as follows:

CR: we took 100 random values encompassed in the L1 (< 0.07) to
reconstruct the distribution.

Vip|L2/3 - L4 BP/BTC is a mixed cell-type corresponding to the Vip
Mypcl and Vip Lmol supertypes in AllenRef21. We therefore pooled
cells corresponding to these two cell-types to reconstruct the dis-
tribution of this cell-type.

We further applied the map sampling function from the
scrattch.hicat R package to each “Pvalb FS BC” clusters identified in the
two patch-seq and MERFISH studies, using AllenRef21 cluster labels to
determine layer specific Pvalb FS BC (Supplementary Fig. 3a, Supple-
mentary fig. 3b, Supplementary Fig. 3c). The resulting AllenRef21
cluster assignments were then consolidated into three cell types,
defined on the basis of their corresponding distribution extrapolated
from the normalized soma depth of patch-seq and MERFISH studies:
Pvalb | L2/3-L4 FS BC (114 Pvalb/113 Pvalb and 114 Pvalb clusters), Pvalb |
L4/5 FS BC (115 Pvalb, 116 Pvalb/115 Pvalb, and 117 Pvalb/116 Pvalb
clusters), and Pvalb | L5/6 FS BC (111 Pvalb, 112 Pvalb, 116 Pvalb, 116
Pvalb/112 Pvalb, 117 Pvalb, and 119 Pvalb).

Transcriptional landscape analysis. For each family, cells were inde-
pendently embedded in a 2D graph based on their pseudo-maturation
and pseudo-layer scores from E18.5 to P30. Gene expression values were
represented as Log,(CPM +1). For all genes expressed in at least five
cells, we fitted a generalized additive model using the gam function
from the mgcv R package, modelling expression as a function of both
the pseudo-maturation and the pseudo-layer axis. For each family, to
prevent oversmoothing of expression profiles, one third of the total
number of cells were artificially added with log,(CPM +1) expression
values set to zero for all genes. As pseudo-layer score was not computed
for other GlutNs and other GABANSs families, an artificial pseudo-layer
score was assigned to each cell included in these families according to
their relative position determined in Supplementary Fig. 2e. As descri-
bed above, the gam function was applied to these two families. In a
given family, genes were considered significantly expressed if and only if
for at least one cell-type and at least one age the number of cells was >5,
the gene was expressed in more than 20% of the cells and its mean
expression was higher or equal to the median of the median of the
log2(CPM +1) values across all cell-types at that age. Significant genes
were used to perform a PCA on their smoothed expression landscape.
The resulting PCA space was discretized using a k-mean clustering, with
k=15 determined by the gap statistic method. Average smoothed
expression profiles were subsequently computed for each cluster.
Enriched genes were split by cluster within each sheet and converted
from mouse gene symbols to Entrez IDs using clusterProfiler and

org.Mm.eg.db. KEGG pathway enrichment was performed for each
(family, cluster) gene set using enrichKEGG, with the background uni-
verse defined as all Entrez IDs present across all clusters. Enriched
pathways were retained at FDR < 0.05. KEGG functional hierarchy (level
1 and level 2) was retrieved directly from KEGG via KEGGREST and
assigned to each enriched pathway. For each (family, cluster), we
defined a wave-level functional label as the KEGG level 2 category most
significantly and frequently enriched within that cluster. Representative
pathways (top 3 by FDR) were recorded for interpretability. Global
spatiotemporal wave labels were derived analogously by aggregating
enrichment across all neuronal families and selecting, for each cluster,
the dominant KEGG level 2 category and its most recurrent enriched
pathways (Supplementary Data S8 and Fig. 2F).

Gene ontology analysis. We used the clusterProfiler>’® R package
(v4.0) to find enriched biological processes in gene sets by using the
enrichGO function. Gene ontology analyses were applied for each wave
identified along the pseudo-maturation axis, and along the pseudo-
layer axis.

Construction of the ligand-receptor database. LR DB 2025 is the
result of integrating and curating 109 existing public databases, to
which we manually added 203 LR pairs based on literature (Supple-
mentary Data S1). To the best of our knowledge, it is the largest curated
LR database. Public databases were found by using some R and python
packages, in particular OmnipathR”, singleCellSignalR*”, CellPhoneDB%,
NATMI®, CellCall”, scMLnet®* and CytoTalk®®. We retained only
ligand-receptor pairs corresponding to strictly intercellular interac-
tions. LRs referenced in LR_DB_2025 were curated with supporting
PMIDs documenting the evidence for each the interaction (Supple-
mentary Data S1). We assigned each LR to a category and a family.
Categories for LRs included in Omnipath were taken directly from the
database, whereas categories for additional LRs were manually curated.
In total, there are 20 distinct ligand categories and 10 distinct receptor
categories. The LR family was attributed by using the HUGO Gene
Nomenclature Committee (HGNC) resource and to a lesser extent the
Uniprot database. Overall, 344 distinct ligand families and 313 distinct
receptor families were identified (Supplementary Data SI).

Construction of the transcription regulatory database. The tran-
scription factor (TF) database is the result of combining the merged
mouse TRRUST v27® and “high” confidence RegNetwork” TFs provided
by the scSeqComm R package*” with the transcription regulatory
database from Omnipath, retaining only entries supported by at least
one literature reference.

Receptor-Transcription factor a priori association. Directed graphs
of Reactome and KEGG signaling pathways, available from the GitLab
repository associated with the scSeqComm package*’, were used to
compute the score of a-priori association between a receptor and a TF
using the compute tfactor PPR function of scSeqComm.

LR landscape correlations in specific LR categories or LR neuro-
developmental ontologies (Fig. 3B). We analyzed LR pairs where
ligands showed significant transcriptional landscapes in IT neurons
and where receptors exhibited significant expression in GABANs. LRs
belonging to neurodevelopmental ontologies were identified using the
MSigDB resource via the msigdbr R package®*®', focusing on gene sets
from the H, C2, C5, and C8 ontologies, while excluding the “cellular
component (CC)” ontology. Using specific keywords, we identified LRs
belonging to six neurodevelopmental ontologies: Migration (2008
LRs), Cell Death (1,135 LRs), Differentiation (3158 LRs), Cell Adhesion
(961 LRs), Synaptogenesis (554 LRs), and Brain-associated processes
(1243 LRs), the latter encompassing nervous system functions not
directly tied to development. LRs identified in these ontologies formed
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a new database: LR_DB_2025 Brain-Dev-Ontologies. We calculated the
average correlation between ligand and receptor expression land-
scapes for LRs of specific categories (Fig. 3B, left plot) or neurodeve-
lopmental ontologies (Fig. 3B, right plot), with ITs as source cells and
GABANs as target cells. Statistical significance was assessed using
Fisher Z-transformation.

Inferring ligand-receptor interactions. To infer ligand-receptor
interactions between all cell-type pairs, we used the R package
scSeqComm” using log2(CPM + 1) of expression values. The interaction
analysis was conducted from E18.5 to P30 by pooling the two nearest
time points two-by-two from E18.5 to P5 and at the cell-type level. Only
cell-types with at least five cells were kept for analysis. scSeqComm
processed each LR pair referenced in LR.DB_2025 and computed
intercellular and intracellular scores (S_inter and S_intra respectively) for
all pairs of cell-types. For each ligand and receptor, scSeqComm assigned
a score between O and 1 that quantified how strongly their average
expression in a given cell type exceeded the expression levels expected
by chance for randomly selected genes in the same cell type. The S_inter
score was equal to the minimum value obtained between the ligand and
the receptor implicated in the LR pair. For each known biological sig-
naling pathway and a given receptor, S_intra was computed to quantify
the evidence that the receptor in a given cell-type activated intracellular
signaling within that pathway. We also computed the S_inter_diff score
allowed by scSeqComm which represents an alternative version of the
default scSeqComm intercellular signaling score. For each gene G in the
input matrix, gene expression levels of G were normalized by the
average expression level of gene G across all cell-types before com-
puting the intercellular scores. This score aimed to prioritize ligands
(receptors) that behaved differently across cell-types, thereby high-
lighting LR pairs enriched in particular cell-type interactions. To reduce
false positives and increase the robustness of our approach, we gener-
ated a cell-type score that combined two metrics, incorporating prior
knowledge about the likelihood of interaction between two cell-types:
* A connectivity score: We constructed a cortical column in 3D of
the SS cortex including our identified cell-types. To determine the
distribution of our cell types within a cortical column, we used the
cross-reference approach described above with Gouwens et al.',
Scala et al.? Zhang et al.*>. To gain access to the morphology of our
cell-types, morphological reconstructions in SWC format (https://
download.brainimagelibrary.org/3a/88/3a88a7687ab66069/)
from Scala et al.” were used. Only three of our identified cell-type
did not have matched cell- type morphology: Vip Uncharacter-
ized, Car3 Claustrum-like and CR. For Vip Uncharacterized,
corresponding morphological reconstruction from Vip | L2/3-L4
BP/BTC and Vip | L2/3-L5 BP/BTC cell-types were used. Some
studies suggest that Car3 Claustrum-like cells were IT cell-types
predominantly located in L6*%?, consequently L6 IT cells were
used as proxies for Car3 Claustrum-like morphologies. For CR
cells, a mouse neocortex morphological reconstruction was
obtained from the neuromorpho.org website (<https://
neuromorpho.org/neuroninfo.jspneuronname=
AnstoetzNCCajalRetzius 9>). This CR morphological reconstruc-
tion was rescaled in order to match the morphological recon-
struction scale of Scala et al. (2020). The constructed 3D cortical
column encompassed 1 000 cells. The proportion of cell types
was set, as closely as possible, to reflect their reported
abundances in the somatosensory cortex based on the
literature® " (80%GlutNs: 28.25% L2/3 IT, 23.25% L4 IT (85% L4
IT|SSC (60% strictly SSC morphology, 25% star pyramidal cell
morphology (SPC)), 15% L4/51T | PC), 16.25% L5 (80% L5 PT, 20% L5
IT), 29.25% L6 (85% L6 CT,10% L6 1T, 5% L6b), 1% CR, 1% L5/6 NP, 1%
Car3|Claustrum-like; 20% GABANSs: 45% Pvalb (42% Pvalb|FS BC
(45% Pvalb|L2/3-L4 FS BC, 29% Pvalb|L4/5 FS BC, 26% Pvalb|L5/6 FS
BC), 3% Pvalb|L2/3 CHC), 28% Sst (15% Sst MC (50% Sst|L5 T-MC,

50% Sst|L2/3-L5 fan-MC), 6% Sst|L4 IVC, 5% Sst|L5/L6 NMC, 2% Sst|
FS-like), 2% Sst ChodlI|LPC, 10% Vip (60% Vip|L2/3-L4 BP/BTC, 20%
Vip|L2/3-L5 BP/BTC, 20% Vip|Uncharacterized), 6% Sncg|CCK BC,
9% Lamp5 (44% Lamp5 L1 A7C/CNC, 56% Lamp5 L1-L5 NGC). The
centroid corresponding to the position of the soma for each
reconstructed cell was calculated by using the nGauge python
package®. All the reconstructed cells were embedded in a 3D
cortical cortical column by using the natverse R package’ by
positioning the soma according to the normalized cortical depth
provided in% If more cells than provided in’> were needed, a
random normalized cell soma depth was selected between the 5%
and the 95" percentile of the cell-type distribution along the
cortical column. Values of soma position were adjusted in such a
way that the cortical column had a cortical depth of 1 500 um (Y
axis) and the X and Z axis had a length of 150 um. X and Z
coordinates were randomly taken between 0 and 150 for each cell.
Once the 1000 cells were embedded in the reconstructed cortical
column, the potential synapses between each cell and the 999
other cells were computed by using the potential synapses
function of the natverse package that implements the method
of Stepanyants and Chklovskii*®. This method created a technical
artifact by facilitating potential synapses between cells belonging
to the same cell-type as they were similarly distributed within the
cortical column. All the potential synapses involving 2 cells
belonging to the same cell-type were assigned as NA values. A
connectivity score between 2 cell-types was obtained as follows:
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where :
—ct; : cell — typej
—cty : cell — typek
—ng,, : Number of cells belonging to cell — typej
—ng, : Number of cells belonging to cell — type k

jel:27)kel:27),
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2

Due to the technical artifact affecting cell pairs belonging to the
same cell-type, a medium connectivity score was assigned:

Vje[l:27),Vk e [1:27],
conn.scorei— %=k =0.5

* A development score: Some cell types colonize the cortex before
others. For example, GlutNs colonize the cortex before GABANs
and deep-layer GlutNs before superficial layers GlutNs. We
attributed a development score between cell-types to reflect the
degree of maturity of the different cell-types across cortical
development. These scores span values from 0.1 to 1 (Supple-
mentary Data S3).
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These 2 scores allowed us to define a cell-type score:

Vell:m,vke[l:m),
ct.score®s— % = dev.scorei— % x (conn.scores— % + 1 x (1 — dev.score®i—c%))

where :
-ctj: cell - typej
—cty = cell — typek
-m : Total number of cell - types in the processed dataset

A ligand-receptor pair (LR); between 2 cell-types pairs was con-
sidered significant if and only if:
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where:
—=(LR); : LR pair i
-n : Total number of LR pairs in LR_DB_2025 detected in the pro-
cessed dataset
-[ : subunit | composing the ligand L
-r : subunit r composing the receptor R
-M : Total number of subunits composing the ligand L or the
receptor R
~Wy . weight applied to the cell — type score.
If the ligand L of the (LR); was not a secreted

moleculethenw,, _=0.6;
elseif theligand L of the(LR);was a secreted molecule then
w =04

“Winger,,,,, - Weight applied to theligand — receptor interaction
score. If theligand L of the(LR); was

not a secreted molecule then Wy,  _=0.4;

elseif theligand L of the (LR); was a secreted

molecule then Wipe,, , =0.6

—Pctitf : Ligand L percentage expression in cell — type j

—Pctf{k : Receptor R percentage expression in cell — type k

In order to prioritize cell-type specific interactions, we retained
only significant LR pairs that had a S_inter_diff score above the popu-
lation median minus 1.5 x DoubleMAD for each cell-type pair and at
each age.

In the case of homophilic interaction, i.e., LR pairs in which the
same molecule acted as both ligand and receptor, the mean S_inter
values could differ according to the direction of the interaction
between two cell-types. Therefore, the threshold described was eval-
uated in both directions to consider the LR pair between two cell-types
as significant.

For LRs with secreted ligands, we gave a lower weight to the cell
pair score and a higher weight to the LR intercellular score to account
for their ability to act over greater distances. To further reduce false
positives, only LR pairs that were significantly present across con-
tiguous developmental stages were included (Supplementary Fig. 13).

Definition and use of intercellular score thresholds

As detailed above, each ligand-receptor interaction was associated
with an intercellular score S a cell-type score combining the
developmental score and the anatomical connectivity score of the two
cell types, and ligand-type-specific weights (0.6/0.4 for membrane

ligands and 0.4/0.6 for secreted ligands) that determine how the cell-
type score and the ;.. score contribute to the thresholding step. To
clarify how these components were used to establish significance, we
applied a two-step thresholding procedure. First, for each LR-cell-type
pair, we compared the weighted observed value (cell-type score x
weight + S, X weight) with the corresponding weighted expected
value (threshold derived from the same LR pair and its mean S,
across all cell-type pairs). An interaction was retained only when its
observed value exceeded this threshold, ensuring that LR pairs were
accepted only when their intercellular score was stronger than
expected given the developmental and anatomical plausibility of the
interacting cell types. Second, LR pairs were required to pass an
independent expression filter in which all ligand and receptor subunits
had to be detected in more than 15% of cells in their respective cell
types. Among the remaining interactions, only those with an S;,.,_gifr
score above the median minus 1.5xDoubleMAD were kept ensuring
cell-type specificity. Together, these steps convert continuous scSeq-
Comm scores into a strict binary classification (significant vs. non-
significant) while leaving the underlying scores unchanged.

Machine learning framework to test the combinatorial code
hypothesis. To assess whether LR expression patterns can distinguish
cell-type pairs, we implemented a machine learning classification fra-
mework in R/PyTorch. For each developmental stage, source-target
cell-type pairs were expanded into single-cell replicates by subsetting a
fixed number of cells from each source and target cell-type. For every
replicate, we generated a ligand-receptor feature matrix in which each
entry corresponded to the product of the normalized RNA counts of a
ligand in the source cell and its cognate receptor in the target cell. This
encoding captured the potential interaction strength at the single-cell
level and yielded a standardized feature set across all pairs. These
matrices were then used to train classifiers tasked with predicting the
correct source-target identity. Each example was encoded as ligand x
receptor expression products (loglp, z-scaled). Five LR feature sets
were evaluated: (i) all significant pairs; (ii) shared-only pairs (=300
pairs); (iii) rare-only pairs (<10 pairs); (iv) unique-only pairs (1 pair);
and (v) size-matched random non-LR pairs. Train/test splits were made
by cells (no source or target cell seen in training was included in
testing). We trained a multi-layer perceptron (MLP) classifier with and
without weight pruning, optimizing with Adam and early stopping.
Model performance was assessed by test accuracy, ROC-AUC, and
macro-F1 across >600 possible cell-type pairs. While overall accuracy
was necessarily modest due to the difficulty of the task, rare-only
feature sets consistently exceeded chance, and combining feature sets
(all significant) achieved the best performance, consistent with a
combinatorial LR code.

Analysis on ganglionic eminences (Supplementary Fig. 23). To
characterize ligand-receptor (LR) interactions within the ganglionic
eminences (GE), we combined curated LR pairs from LR_DB_2025 with
ontology annotations derived from MSigDB. After filtering out com-
plexes, unique ligand-receptor couples were intersected with neuro-
developmental gene sets to identify processes relevant to GE
maturation. We classified interactions according to their progenitor
origin (VZ-> MGE, VZ - CGE, VZ~ POA) and monitored their persis-
tence across contiguous developmental stages. Using UpSet plots and
clustered heatmaps, we quantified the proportion of LR pairs that were
specific versus shared between domains and traced their evolution
across ages. Pairwise overlap was further assessed with Jaccard indices
to measure the stability of interactions between domains. Enrichment
analysis of LR-associated ontologies was then performed separately
for specific and shared interactions, enabling the identification of
domain- and age-dependent signaling programs. Enrichment analysis
of LR-associated ontologies was performed using the clusterProfiler R
package. First, ligand-receptor pairs were collapsed into ontology
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terms by mapping both ligands and receptors to MSigDB biological
process gene sets (C5 collection), creating a custom TERM2GENE table.
This annotation was joined to LR pairs detected in each GE domain and
age group. LR pairs were then split into “specific” (present in only one
domain) and “shared” (present in two or more domains) subsets, and
enrichment was tested independently within each subset using the
enricher function, with all detected LR pairs as the background uni-
verse. Significant terms were defined by adjusted p-value < 0.05. For
visualization, the most enriched terms were displayed as dot plots,
separated by domain (VZ-MGE, VZ-CGE, VZ-POA), developmental
stage (E18.5-PO, P1-P2, P4-P5), and interaction type (specific vs
shared), enabling identification of signaling programs enriched at
distinct ages or across domains.

General analysis of inferred LR interactions (Fig. 4). We analyzed the
percentage of LR pairs associated with neurodevelopmental processes
and disorders predicted by our atlas, focusing on their utilization at
specific time points and between defined cell- pairs. In Fig. 4C, LRs
were categorized into six neurodevelopmental processes using an
approach similar to the landscape analysis (Fig. 3B). However, in this
case, we included all significant LRs from the LR_DB_2025 database, as
determined by intercellular and cell pair scores, regardless of their
landscape significance or prior classification within brain ontologies
(Fig. 3B). This analysis identified 2576 LRs associated with neuronal
migration, 1494 with neuronal cell death, 3921 with differentiation/
morphogenesis, 1391 with cell recognition/adhesion, 613 with synap-
togenesis, and 238 specific to the Cadherin family. These groups were
further stratified by developmental time points (E18.5-PO to adult-
hood) and cell families (Pvalb, Sst, Vip, Lamp5, and Other GABANs). We
used curated neurodevelopmental disorder gene lists to identify LRs
implicated in specific conditions (Fig. 4D-F). We found 29 LRs asso-
ciated with epilepsy’, 104 with intellectual disorders (from the
ITHACA database: https://id-genes.orphanet.app/ithaca/), 14 with
schizophrenia®, and 100 with autism®® (from the SFARI Gene database,
accessed December 2024) (Supplementary Data S5). For Fig. 4F, we
visualized the disease-associated LR pairs as an interaction network
using the ggraph and igraph R packages. In Fig. 4C and D to enable fair
comparison across ontologies with unequal numbers of possible
ligand-receptor pairs or Diseases, the number of significant interac-
tions was normalized by the total number of LR combinations within
each ontology or diseases category.

ShRNAs. RNAi experiments were conducted using shRNAs targeting
the coding sequence of Mus musculus Cdhi3 and Pcdh8 (GenBank
accession number NM_019707 and NM_021543) based on the following
criteria (http://www.promega.com/siRNADesigner/program) :

-the sequence must start with either a Cysteine (C) or Guanine (G)

-It must have more than 50% G or C bases

-No more than 3 consecutive base repetitions in the sequence

The sequences chosen to design oligonucleotides (Supplemen-
tary Data S7) for shRNA genesis recognized nucleotides 1521-1541 of
Cdhi3 coding sequence and nucleotides 2302-2322 of Pcdh8 coding
sequence. BLAST searches against Mus musculus databases confirmed
the specificity of each target. As negative controls, we used corre-
sponding non-targeting shRNAs with the same nucleotide sequence
except in four positions. These shRNAs were subcloned into the
mUépro vector (gift from Dr J. LoTurco) and validated in vitro using
classical western blot assays (Supplementary Data S7).

In utero electroporations. Timed pregnant C57BL6/] females were
anesthetized with isoflurane (75% for induction and 2 to 2.5% for sur-
gery) at E13.5 to trace DL neurons, at E15.5 to trace superficial layer
neurons. The uterine horns were exposed. A volume of 1-2 uL of small
hairpin RNA-expressing DNA plasmid (shRNA against Cdh13 or against

Pcdh8 vs their respective control shRNAs, 1.5 pg/ul) was mixed with
pCAG-GFP plasmids (1 pg/ul) and Fast Green (2 mg/ml, Sigma) for fur-
ther injection into the lateral ventricle of each embryo with a pulled
glass capillary and a microinjector (Picospritzer I, General Valve Cor-
poration, Fairfield, NJ, USA). Electroporation was then conducted by
discharging a 4000 pF capacitor charged to 27 V using a BTX ECM 830
electroporator (BTX Harvard Apparatus, Holliston, MA, USA). Five
electric pulses (5 ms duration) were delivered at 950 ms intervals using
electrodes. Embryos were allowed to be born and develop before
being sacrificed at P28, and 50 um coronal brain slices were cut using a
sliding microtome (Microm).

Histology and immunostainings. Mice were perfused transcardially
with ice-cold 4% paraformaldehyde (in PBS). Brains were removed and
post-fixed overnight at 4 °C with the same fixative. Coronal sections
were cut at 50 um thickness using a sliding microtome (Microm).
Briefly, for immunofluorescence experiments, free-floating sections
were blocked and permeabilized for 2 h in a blocking buffer composed
of 10% Normal Bovine Serum, 0.2% Triton X-100 (Sigma) in PBS. Pri-
mary antibodies, diluted in blocking solution and added overnight at
4 °C, were as follows: rabbit anti-Parvalbumin (1:1000, Swant), chicken
anti-GFP (1:500, Aves), rabbit anti-Synaptotagmin 2 (SYT2) (1:100,
DSHB), mouse IgG2a anti-SYT2 (DSHB, 1:100), and rabbit anti-SPTBN4
(Thermofisher, 1:1000). Corresponding fluorescently labeled second-
ary antibodies (AlexaFluor, Invitrogen) were added for 2 h in blocking
solution at room temperature. Hoechst was added in PBS for 10 min,
and sections were mounted on microscope slides that were cover-
sliped using Mowiol solution (Sigma).

Proximity ligation assay. 60 pm sagittal sections were treated for
rabbit anti-CBLN4 (Invitrogen, PA5-36472) and anti-Mouse GLUDI1
(Proteintech, 67026-1-1g) or anti-CBLN4 and goat anti-NEO1 (Bio-
techne, AF1079) co-immunolabeling before application of Rabbit Plus
and Mouse Minus or Rabbit Plus and Goat Minus probes, respectively
(Merck, Duolink). Experiments were then done according to the
manufacturer’s instructions.

Image acquisition. Images were obtained from 50 um thick sections
using a Zeiss LSM-800 confocal microscope. Electroporated zones
were imaged with a 10X objective (Plan-Apochromat, Numerical
aperture 0.3) to provide an overall view of all electroporated cells. For
the proximity ligation assay, we imaged layers 1 and 2 with an oil-
immersed 40X objective using mosaic tiles, or with an oil-immersed
63X objective (Olympus, Numerical aperture 1.4) for GFP colocaliza-
tion with puncta. For synaptic analysis, GFP+ GlutNs located in deep or
superficial cortical layers were imaged with the 63X objective. A 3X
digital zoom was applied to achieve a lateral and z-axis resolution of
85nm. The Z-stack was adjusted for each slice to ensure complete
imaging of the entire neuron for subsequent 3D reconstruction. Laser
power and detection filter settings were optimized based on the
staining quality of each slice.

Image analysis. All cell analyses were performed on GFP-
electroporated neurons found in the DL of the S1 cortex. All images
were blinded using “blind analysis tool” plugins in ImageJ. 3D-Image
reconstructions and analyses were performed with IMARIS 9.9.0 soft-
ware. First, a zoomed crop was done on the GFP* soma compartment.
Then, to assess Pvalb FS BC cell input onto GFP-expressing electro-
porated cells, the Syt2* presynaptic boutons physically contacting the
GFP* soma of pyramidal electroporated cells were analyzed. First,
spots (diameter 0.6 um) corresponding to individual Syt2" presynaptic
boutons were created by using the create spots function. The GFP*
soma was then reconstructed using the create surface tool. The density
of Syt2" synaptic spots contacting the GFP* soma’s surface was then
measured using the object-object statistic tool with the filter “shortest
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distance from soma.” To analyze the mean volume of presynaptic Syt2*
puncta, these puncta were modelized using the create surface tool
followed by the filter “shortest distance from soma” adjusted to O to
isolate only the Syt2" surfaces contacting the GFP* soma surface.

Statistics. All statistical tests are described in the figure legends. Sta-
tistical methods to predetermine sample size were not used. Unless
otherwise stated, all values represent the averages of independent
experiments + SEM. Shapiro-Wilk or Anderson-Darling test was used to
test the normality of the data. Statistical significance for comparisons
of one variable was determined by student’s t-test using two- tailed
distribution for two normally distributed groups, and by Mann-
Whitney non-parametric test when distributions were not normal.
For proportion comparisons, 2 test was applied. Differences were
considered significant when p-value < 0.05. All statistical analyses were
performed with R and Rstudio or with Prism 8.0.2 software
(GraphPad).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw sc/snRNA-seq data generated in this study are available in the
ArrayExpress database under accession E-MTAB-16260, and bulk RNA-
seq data are available under accession E-MTAB-16355 (https://www.ebi.
ac.uk/biostudies/arrayexpress/studies). Processed data, QC outputs,
and derived RDS files are deposited on Zenodo (https://zenodo.org/
records/11634657). Interactive exploration of inferred signaling net-
works is available through the scLRSomatoDev Shiny application at
https://sclrsomatodev.online/. Source data are provided with
this paper.

Code availability

All scripts used for data preprocessing, quality control,
ligand-receptor inference, ontology annotation, and enrichment
analysis were written in R and Python. The complete codebase,
including custom functions and documentation, is publicly available
on Zenodo (https://zenodo.org/records/11634657). Additional doc-
umentation and tutorials are provided online: Documentation: https://
cortical-interactome.github.io/scLRSomatoDev-Docs/ Video tutorials:
https://www.youtube.com/playlist?list=
PLYfGSyn6Q6UY82ccuHRZQmRchVx6Dskf].

References

1. Gouwens, N. W. et al. Integrated morphoelectric and tran-
scriptomic classification of cortical GABAergic cells. Cell 183,
935-953.€19 (2020).

2. Scala, F. et al. Phenotypic variation of transcriptomic cell types in
mouse motor cortex. Nature 598, 144-150 (2021).

3. Yao, Z. et al. A taxonomy of transcriptomic cell types across the
isocortex and hippocampal formation. Cell 184,
3222-3241.e26 (2021).

4. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of
cell types in the whole mouse brain. Nature 624, 317-332 (2023).

5. Zhang, M. et al. Molecularly defined and spatially resolved cell atlas
of the whole mouse brain. Nature 624, 343-354 (2023).

6. del Pino, I. et al. Erbb4 deletion from fast-spiking interneurons
causes schizophrenia-like phenotypes. Neuron 79, 1152-1168 (2013).

7. Jiang, X. et al. Principles of connectivity among morphologically
defined cell types in adult neocortex. Science 350, aac9462 (2015).

8. Motta, A. et al. Dense connectomic reconstruction in layer 4 of the
somatosensory cortex. Science 366, eaay3134 (2019).

9. Campagnola, L. et al. Local connectivity and synaptic dynamics in
mouse and human neocortex. Science 375, eabj5861 (2022).

10.

M.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

34.

Schneider-Mizell, C. M. et al. Cell-type-specific inhibitory circuitry
from a connectomic census of mouse visual cortex. bioRxiv 6,
2023.01.23.525290 (2023).

Favuzzi, E. et al. Distinct molecular programs regulate synapse
specificity in cortical inhibitory circuits. Science 363,

413-417 (2019).

Fazzari, P. et al. Control of cortical GABA circuitry development by
Nrg1 and ErbB4 signalling. Nature 464, 1376-1380 (2010).
Bernard, C. et al. Cortical wiring by synapse type-specific control of
local protein synthesis. Science 378, eabm7466 (2022).

Pla, R., Borrell, V., Flames, N. & Marin, O. Layer acquisition by cor-
tical GABAergic interneurons is independent of reelin signaling. J.
Neurosci. 26, 6924-6934 (2006).

Lodato, S. et al. Excitatory projection neuron subtypes control the
distribution of local inhibitory interneurons in the cerebral cortex.
Neuron 69, 763-779 (2011).

Ye, Z. et al. Instructing perisomatic inhibition by direct lineage
reprogramming of neocortical projection neurons. Neuron 88,
475-483 (2015).

Wester, J. C. et al. Neocortical projection neurons instruct inhibitory
interneuron circuit development in a lineage-dependent manner.
Neuron 102, 960-975.e6 (2019).

Miyoshi, G. & Fishell, G. GABAergic interneuron lineages selectively
sort into specific cortical layers during early postnatal develop-
ment. Cerebral Cortex 21, 845-852 (2011).

Baudoin, J.-P. et al. Tangentially migrating neurons assemble a
primary cilium that promotes their reorientation to the cortical
plate. Neuron 76, 1108-1122 (2012).

Southwell, D. G. et al. Intrinsically determined cell death of devel-
oping cortical interneurons. Nature 491, 109-113 (2012).

Wong, F. K. et al. Pyramidal cell regulation of interneuron survival
sculpts cortical networks. Nature 557, 668-673 (2018).

Priya, R. et al. Activity regulates cell death within cortical inter-
neurons through a calcineurin-dependent mechanism. Cell Reports
22, 1695-1709 (2018).

Telley, L. et al. Temporal patterning of apical progenitors and their
daughter neurons in the developing neocortex. Science 364,
eaav2522 (2019).

Di Bella, D. J. et al. Molecular logic of cellular diversification in the
mouse cerebral cortex. Nature 595, 554-559 (2021).

Mi, D. et al. Early emergence of cortical interneuron diversity in the
mouse embryo. Science 360, 81-85 (2018).

Mayer, C. et al. Developmental diversification of cortical inhibitory
interneurons. Nature 555, 457-462 (2018).

Bandler, R. C. et al. Single-cell delineation of lineage and genetic
identity in the mouse brain. Nature 601, 404-409 (2022).

Lee, D. R. et al. Transcriptional heterogeneity of ventricular zone
cells in the ganglionic eminences of the mouse forebrain. eLife 11,
e71864 (2022).

BRAIN Initiative Cell Census Network (BICCN) et al. A multimodal
cell census and atlas of the mammalian primary motor cortex.
Nature 598, 86-102 (2021).

Street, K. et al. Slingshot: cell lineage and pseudotime inference for
single-cell transcriptomics. BMC Genomics 19, 477 (2018).

Mandai, K., Rikitake, Y., Mori, M. & Takai, Y. Nectins and nectin-like
molecules in development and disease. Curr. Top. Dev. Biol. 112,
197-231 (2015).

Friedman, L. G., Benson, D. L. & Huntley, G. W. Cadherin-based
transsynaptic networks in establishing and modifying neural con-
nectivity. Curr Top. Dev. Biol. 112, 415-465 (Elsevier, 2015).

. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary

motor cortex by MERFISH. Nature 598, 137-143 (2021).
Libé-Philippot, B. et al. Auditory cortex interneuron development
requires cadherins operating hair-cell mechanoelectrical trans-
duction. Proc. Natl. Acad. Sci. USA 114, 7765-7774 (2017).

Nature Communications | (2026)17:1298

20


https://www.ebi.ac.uk/biostudies/arrayexpress/studies
https://www.ebi.ac.uk/biostudies/arrayexpress/studies
https://zenodo.org/records/11634657
https://zenodo.org/records/11634657
https://sclrsomatodev.online/
https://zenodo.org/records/11634657
https://cortical-interactome.github.io/scLRSomatoDev-Docs/
https://cortical-interactome.github.io/scLRSomatoDev-Docs/
https://www.youtube.com/playlist?list=PLyfGSyn6Q6UY82ccuHRZQmRchVx6DskfJ
https://www.youtube.com/playlist?list=PLyfGSyn6Q6UY82ccuHRZQmRchVx6DskfJ
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-68059-8

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Li, G. et al. Regional distribution of cortical interneurons and
development of inhibitory tone are regulated by Cxcl12/

Cxcr4 signaling. J. Neurosci. 28, 1085-1098 (2008).
Lépez-Bendito, G. et al. Chemokine signaling controls intracortical
migration and final distribution of GABAergic interneurons. J. Neu-
rosci. 28, 1613-1624 (2008).

Borrell, V. & Marin, O. Meninges control tangential migration of
hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat.
Neurosci. 9, 1284-1293 (2006).

Tiveron, M.-C. et al. Molecular interaction between projection
neuron precursors and invading interneurons via stromal-derived
factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular
zone/intermediate zone. J. Neurosci. 26, 13273-13278 (2006).
Causeret, F., Moreau, M. X., Pierani, A. & Blanquie, O. The multiple
facets of Cajal-Retzius neurons. Development 148,

dev199409 (2021).

Stumm, R. K. et al. CXCR4 regulates interneuron migration in the
developing neocortex. J. Neurosci. 23, 5123-5130 (2003).

Wang, Y. et al. CXCR4 and CXCR7 Have distinct functions in reg-
ulating interneuron migration. Neuron 69, 61-76 (2011).

Tanaka, D. H. et al. CXCRA4 is required for proper regional and
laminar distribution of cortical somatostatin-, calretinin-, and neu-
ropeptide y-expressing gabaergic interneurons. Cerebral Cortex
20, 2810-2817 (2010).

Graf, E. R., Zhang, X., Jin, S.-X., Linhoff, M. W. & Craig, A. M. Neur-
exins induce differentiation of GABA and glutamate postsynaptic
specializations via neuroligins. Cell 119, 1013-1026 (2004).
Krueger, D. D., Tuffy, L. P., Papadopoulos, T. & Brose, N. The role of
neurexins and neuroligins in the formation, maturation, and func-
tion of vertebrate synapses. Curr. Opin. Neurobiol, 22,

412-422 (2012).

Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial
transcriptional profiling enables identification of gene correlates of
projections. Nat. Neurosci. 24, 873-885 (2021).

Basu, R., Taylor, M. R. & Williams, M. E. The classic cadherins in
synaptic specificity. Cell Adhesion Migration 9, 193-201 (2015).
Baruzzo, G., Cesaro, G. & Di Camillo, B. Identify, quantify and char-
acterize cellular communication from single-cell RNA sequencing
data with scSeqComm. Bioinformatics 38, 1920-1929 (2022).
Stepanyants, A. & Chklovskii, D. Neurogeometry and potential
synaptic connectivity. Trends Neurosci. 28, 387-394 (2005).
Modol, L., Moissidis, M., Selten, M., Oozeer, F. & Marin, O. Soma-
tostatin interneurons control the timing of developmental desyn-
chronization in cortical networks. Neuron 112,

2015-2030.e5 (2024).

Exposito-Alonso, D. et al. Subcellular sorting of neuregulins con-
trols the assembly of excitatory-inhibitory cortical circuits. eLife 9,
57000 (2020).

Batista-Brito, R. et al. Developmental dysfunction of vip inter-
neurons impairs cortical circuits. Neuron 95, 884-895.e9 (2017).
Fossati, M. et al. Trans-synaptic signaling through the glutamate
receptor delta-1 mediates inhibitory synapse formation in cortical
pyramidal neurons. Neuron 104, 1081-1094.e7 (2019).

Liakath-Ali, K., Polepalli, J. S., Lee, S.-J., Cloutier, J.-F. & Stidhof, T. C.
Transsynaptic cerebellin 4-neogenin 1 signaling mediates LTP in
the mouse dentate gyrus. Proc. Natl. Acad. Sci. USA. 119,
2123421119 (2022).

Lv, X. et al. Patterned cPCDH expression regulates the fine organi-
zation of the neocortex. Nature 612, 503-511 (2022).

Lesch, K.-P. et al. Molecular genetics of adult ADHD: converging
evidence from genome-wide association and extended pedigree
linkage studies. J. Neural Transm. 115, 1573-1585 (2008).

Sanders, S. J. et al. Multiple recurrent de novo CNVs, Including
duplications of the 7g11.23 williams syndrome region, are strongly
associated with autism. Neuron 70, 863-885 (2011).

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

74.

75.

76.

77.

78.

79.

Jézéquel, J. et al. Cadherins orchestrate specific patterns of peri-
somatic inhibition onto distinct pyramidal cell populations. Nat.
Commun. 216, 4481 (2023).

Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
CellPhoneDB: inferring cell-cell communication from combined
expression of multi-subunit ligand-receptor complexes. Nat. Pro-
toc. 15, 1484-1506 (2020).

Cabello-Aguilar, S., Fau, C., Lacroix, M. & Colinge, J. Single-
CellSignalR: inference of intercellular networks from single-cell
transcriptomics. Nucleic Acids Res. 48, €55 (2020).

Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A. R.R.
Predicting cell-to-cell communication networks using NATMI. Nat.
Commun. 11, 5011 (2020).

Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling inter-
cellular communication by linking ligands to target genes. Nat.
Methods 17, 159-162 (2020).

Cheng, J., Zhang, J., Wu, Z. & Sun, X. Inferring microenvironmental
regulation of gene expression from single-cell RNA sequencing
data using scMLnet with an application to COVID-19. Brief. Bioin-
form. 22, 988-1005 (2021).

Hu, Y., Peng, T., Gao, L. & Tan, K. CytoTalk: De novo construction of
signal transduction networks using single-cell transcriptomic data.
Sci. Adv. 7, eabf1356 (2021).

Butler, M., Rafi, S., Hossain, W., Stephan, D. & Manzardo, A. Whole
exome sequencing in females with autism implicates novel and
candidate genes. IJMS 16, 1312-1335 (2015).

Lepiemme, F. et al. Oligodendrocyte precursors guide interneuron
migration by unidirectional contact repulsion. Science 376,
eabn6204 (2022).

Zhang, M. et al. A molecularly defined and spatially resolved cell
atlas of the whole mouse brain. Nature 624, 343-354 (2023)

Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of
cell types in the whole mouse brain. Nature 624, 317-33 2023)
Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the
mouse primary motor cortex. Nature 598, 103-110 (2021).

Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational
Identification of Cell Doublets in Single-Cell Transcriptomic Data.
Cell Syst. 8, 281-291.e9 (2019).

Leary, J. et al. Sub-cluster identification through semi-supervised
optimization of rare-cell silhouettes (SCISSORS) in single-cell RNA-
sequencing. Bioinformatics 39, btad449 (2021).

Fischer, S. & Gillis, J. How many markers are needed to robustly
determine a cell’s type? iScience. 25, 103378 (2022).

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch
effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol. 36,

421-427 (2018).

Luecken, M. D. et al. Benchmarking atlas-level data integration in
single-cell genomics. Nat. Methods 19, 41-50 (2022).

Qiu, X. et al. Reversed graph embedding resolves complex single-
cell trajectories. Nat. Methods 14, 979-982 (2017).

Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS: A J.
Integrative Biol. 16, 284-287 (2012).

Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for
interpreting omics data. Innovation 2, 100141 (2021).

Turei, D. et al. Integrated intra- and intercellular signaling knowl-
edge for multicellular omics analysis. Mol. Syst. Biol. 17,

€9923 (2021).

Han, H. et al. TRRUST v2: an expanded reference database of human
and mouse transcriptional regulatory interactions. Nucleic Acids
Res. 46, D380-D386 (2018).

Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated
database of transcriptional and post-transcriptional regulatory
networks in human and mouse. Database 2015, bav095 (2015).

Nature Communications | (2026)17:1298

2


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-68059-8

80. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 102, 15545-15550 (2005).

81. Castanza, A. S. et al. Extending support for mouse data in the
molecular signatures database (MSigDB). Nat. Methods 20,
1619-1620 (2023).

82. Peng, H. et al. Morphological diversity of single neurons in mole-
cularly defined cell types. Nature 598, 174-181 (2021).

83. Tamamaki, N. et al. Green fluorescent protein expression and
colocalization with calretinin, parvalbumin, and somatostatin in the
GAD67-GFP knock-in mouse. J. Comparative Neurol. 467,

60-79 (2003).

84. Staiger, J. F. et al. Functional diversity of layer iv spiny neurons in rat
somatosensory cortex: quantitative morphology of electro-
physiologically characterized and biocytin labeled cells. Cerebral
Cortex 14, 690-701 (2004).

85. Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H. & Agmon, A. Distinct
subtypes of somatostatin-containing neocortical interneurons
revealed in transgenic mice. J. Neurosci. 26, 5069-5082 (2006).

86. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of
interneurons account for nearly 100% of neocortical GABAergic
neurons. Dev. Neurobiol. 71, 45-61 (2011).

87. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the
neocortex: from cellular properties to circuits. Neuron 91,
260-292 (2016).

88. Nigro, M. J., Hashikawa-Yamasaki, Y. & Rudy, B. Diversity and con-
nectivity of layer 5 somatostatin-expressing interneurons in the
mouse barrel cortex. J. Neurosci. 38, 1622-1633 (2018).

89. Lim, L., Mi, D., Llorca, A. & Marin, O. Development and functional
diversification of cortical interneurons. Neuron 100,

294-313 (2018).

90. Scala, F. et al. Layer 4 of mouse neocortex differs in cell types and
circuit organization between sensory areas. Nat. Commun. 10,
4174 (2019).

91. Billeh, Y. N. et al. Systematic integration of structural and functional
data into multi-scale models of mouse primary visual cortex. Neu-
ron 106, 388-403.e18 (2020).

92. Walker, L. A. et al. nGauge: Integrated and extensible neuron
morphology analysis in python. Neuroinform 20, 755-764 (2022).

93. Bates, A. S. etal. The natverse, a versatile toolbox for combining and
analysing neuroanatomical data. eLife 9, €53350 (2020).

94. Genes4Epilepsy. An epilepsy gene resource - Oliver - Epilepsia -
Wiley Online Library. https://onlinelibrary-wiley-com.insb.bib.cnrs.
fr/doi/10.1111/epi. 17547 (2023).

95. Merikangas, A. K. et al. What genes are differentially expressed in
individuals with schizophrenia? a systematic review. Mol. Psychiatry
27, 1373-1383 (2022).

96. Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowl-
edgebase for the autism spectrum disorders (ASDs). Mol. Autism 4,
36 (2013).

Acknowledgements

We thank Julien Prados (UNIGE) for providing his Torch model for arti-
ficial neural network (ANN)-based cell type identification, members of
the Cardoso laboratory for their input, and the Molecular and Cellular
Biology Facility (PBMC), the Animal Core Facility and the Imaging Facility
(inMagic) INMED platforms. This work was supported by the Institut
National de la Santé et de la Recherche Médicale (INSERM), the Agence
Nationale de la Recherche with ANR-13-JSV4-0006 SynD2 and ANR-23-
CE16-0021 CALIN (A.d.C.), NeuroMarseille ICR+ Grant 2021 (A.d.C.),
Fondation pour la Recherche sur le Cerveau ‘Développement et

vieillissement’ (A.d.C.), Fondation Lejeune (A.d.C.), European Commu-
nity 7th Framework programs (Development and Epilepsy; Strategies for
Innovative Research to improve diagnosis, prevention and treatment in
children with difficult to treat Epilepsy [DESIRE], Health-F2-602531-2013
(A.R., C.C.), and by an Excellence Initiative of Aix-Marseille University/
A*MIDEX grant (CALIN-R24002AA) of the French ‘Investissements
d’Avenir’ programme (C.C., A.d.C.). Research in the Telley laboratory
was supported by ERC starting grant CERDEV_759112 and a SNSF grant
31003A_182676/1.

Author contributions

A.d.C. and R.M. initiated the study. A.d.C. and L.T. conceptualized and
supervised the study. A.d.C., L.T. and R.M. designed and conceptualized
the experiments. A.d.C. L.T and R.M. performed most experiments. R.M.
analyzed most experiments, supervised by L.T. and A.d.C. T.D.N. per-
formed analyses for Figs. 3 and 4 and revision analysis. R.M. and L.S
generated the Shiny App scLRSomatodev (https://sclrsomatodev.
online/).C.C., A.G., L.C. and V.B. performed and analyzed shRNA design/
production and in utero electroporations. E.P. validated shRNAs and
performed proximity ligation assays. A.R participated in project man-
agement and help in manuscript writing and corrections. A.d.C. L.T. and
R.M. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-68059-8.

Correspondence and requests for materials should be addressed to
Ludovic Telley or Antoine de Chevigny.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2026

Nature Communications | (2026)17:1298


https://onlinelibrary-wiley-com.insb.bib.cnrs.fr/doi/10.1111/epi.17547
https://onlinelibrary-wiley-com.insb.bib.cnrs.fr/doi/10.1111/epi.17547
http://sclrsomatodev.online/
http://sclrsomatodev.online/
https://doi.org/10.1038/s41467-025-68059-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Uncovering the molecular logic of cortical wiring between neuronal subtypes across development through ligand–receptor inference
	Results
	Comprehensive single neuron transcriptomics atlas covering mouse somatosensory cortex development
	Temporal transcriptional dynamics
	Spatial transcriptional gradients
	Spatiotemporal transcriptional landscapes
	An atlas for inferring LR interactions between neuronal subtypes over corticogenesis
	Key roles for LR interactions during synaptogenesis and in neurodevelopmental diseases
	Validation of the LR prediction atlas: Nrg3-Erbb4
	NEO1 is the primary CBLN4 receptor at Martinotti-glutamatergic developing synapses
	CDH13 and PCDH8 mediate perisomatic inhibition in deep and superficial layers

	Discussion
	Limitations of the approach—considerations for Future Improvements in Ligand-Receptor Atlases

	Methods
	Animals
	Single-cell isolation
	Single-nuclei isolation
	cDNA Amplification and library construction
	Sequencing data processing
	External datasets
	Quality control
	Assigning cell identity
	Assigning Broad class identity
	Determining future cortical GABANs in the ganglionic eminences datasets
	Integration of all studies
	Assigning subclass and supertype identities
	Glutamatergic neurons
	GABAergic neurons
	Assigning cell-type names
	Classification of cell-types into families
	Pseudo-maturation score analysis

	Temporal gene wave computation
	Pseudo-layer score analysis

	Spatial gene gradient computation
	Determining the distribution of cell types within a cortical column
	Transcriptional landscape analysis
	Gene ontology analysis
	Construction of the ligand-receptor database
	Construction of the transcription regulatory database
	Receptor-Transcription factor a priori association
	LR landscape correlations in specific LR categories or LR neurodevelopmental ontologies (Fig. 3B)
	Inferring ligand-receptor interactions

	Definition and use of intercellular score thresholds
	Machine learning framework to test the combinatorial code hypothesis
	Analysis on ganglionic eminences (Supplementary Fig. 23)
	General analysis of inferred LR interactions (Fig. 4)
	ShRNAs
	In utero electroporations
	Histology and immunostainings
	Proximity ligation assay
	Image acquisition
	Image analysis
	Statistics

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




