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Abstract: The cerebral cortex comprises diverse excitatory and inhibitory neuron subtypes, each 

with distinct laminar positions and connectivity patterns. Yet, the molecular logic underlying their 

precise wiring remains poorly understood. To identify ligand–receptor (LR) interactions involved 

in cortical circuit assembly, we tracked gene expression dynamics in mice across major neuronal 

populations at 17 developmental stages using single-cell transcriptomics. This generated a 

comprehensive atlas of LR-mediated communication between excitatory and inhibitory neuron 

subtypes, capturing known and novel interactions. Notably, we identified NEOGENIN-1 as the 

principal receptor for CBLN4 during the perinatal period, mediating synapse formation between 

somatostatin-expressing interneurons and glutamatergic neurons. We also identified members of 

the cadherin superfamily as candidate regulators of perisomatic inhibition from parvalbumin-

expressing basket cells onto deep and superficial excitatory neurons, exerting opposing effects on 

synapse formation. These findings suggest a context-dependent role for cadherins in synaptic 

specificity and underscore the power of single-cell transcriptomics for decoding the molecular 

mechanisms of cortical wiring.   
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Introduction:  

The mammalian cerebral cortex is a six-layered structure at the brain’s surface that supports the 

most complex cognitive functions. These functions rely on highly orchestrated and evolutionarily 

conserved developmental processes that establish precise patterns of communication between two 

major classes of neurons: excitatory glutamatergic neurons (GlutNs) and inhibitory GABAergic 

neurons (GABANs). Both GlutNs and GABANs are further subdivided into numerous 

transcriptionally defined subtypes, a diversity largely revealed by single-cell RNA sequencing 

(scRNA-seq). Dozens of GlutN and GABAN subtypes have been identified 1–5, each characterized 

by distinct morphological, electrophysiological, and molecular properties, preferential laminar 

localization, specific synaptic partners and selective targeting of subcellular compartments. This 

precise organization establishes the intricate cortical wiring that underpins cortical computation. 

Disruption of connectivity between even a single pair of neuron subtypes at a given developmental 

stage can impair circuit function and contribute to neurodevelopmental disorders 6. Elucidating 

how subtype-specific connections are established and regulated is therefore essential for 

understanding both cortical development and disease. 

In the past decade, major advances have been made in mapping the spatial organization and 

synaptic connectivity rules of cortical neuron subtypes. In particular, high-resolution studies have 

delineated the cellular and subcellular wiring patterns between GlutN and GABAN subtypes in the 

adult mouse cortex, revealing remarkable specificity, stereotypy, and evolutionary conservation of 

these connections across mammalian species 7–10. Despite these insights, the molecular 

mechanisms that guide corticogenesis and ultimately produce this intricate architecture remain 

poorly understood. Only a few studies have begun to identify the specific molecules that govern 

the interactions and developmental processes shaping cortical circuit assembly 11–13. 

It is likely that neuron-neuron communications via ligand-receptor (LR) interactions play a key 

role, as these interactions are critical for the development of many tissues 11–13. This hypothesis is 

supported by several studies suggesting that GlutNs may non-cell autonomously influence the 

recruitment of specific GABAN subtypes. Indeed, GlutN subtypes settle into their final positions 

earlier than the synchronically generated GABANs 14, and altering specific GlutN subtype 

identities during development modifies the allocation and synaptic connectivity of corresponding 

GABAN subtypes  15–17. 

In this study, we integrated newly generated and publicly available scRNA-seq datasets from the 

developing mouse cortex to investigate the molecular logic of cortical wiring through LR 

inference. We first mapped gene expression dynamics across glutamatergic and GABAergic 

neuron subtypes over development, with particular focus on the perinatal period when circuit 

assembly intensifies. Using these data, we constructed a comprehensive atlas of putative LR-

mediated signaling between neuronal subtypes. We then validated this atlas through functional 

experiments, showing that it recapitulates known interactions and identifies further interactions. 

For example, we confirmed the role of Cbln4 in inhibitory synapse formation onto excitatory 

neurons and identified Neogenin-1 as its likely cortical receptor. We also uncovered cadherin 
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superfamily members exerting opposing effects on perisomatic inhibition in deep versus 

superficial excitatory neurons. All data are available for interactive exploration at 

https://sclrsomatodev.online/. 

 

Results 

Comprehensive single neuron transcriptomics atlas covering mouse somatosensory cortex 

development 

To infer LR-mediated cell-cell interactions during cortical development, we cross-referenced 

scRNA-seq information from all cortical neuron subtypes across multiple stages with publicly 

available LR information.  

First, we generated a comprehensive scRNA-seq transcriptomic dataset of all cortical neurons 

throughout somatosensory corticogenesis. We conducted scRNA-seq and snRNA-seq at six key 

stages within the underexplored P0-P30 circuit wiring period: P0-P2 (radial migration and laminar 

allocation of GABANs 18,19), P5-P8 (programmed cell death of GlutNs and GABANs 20–22), and 

P16-P30 (circuit refinement and synaptogenesis completion). We integrated previously published 

scRNA-seq data covering earlier embryonic (E11.5-E18.5) and adult stages (P53-P102) 3,23–28, 

including ganglionic eminences (GEs), to capture early transcriptional signature of future cortical 

GABANs 25–28 (see Methods). Our analysis spans 17 time points from E11.5 to adulthood (Fig. 

1A). 

After stringent quality control and filtering (Supplementary fig. 1A-B and Methods), we identified 

postmitotic neuronal cell types and tracked their transcriptional dynamics. For final cell type 

nomenclature, we used the most comprehensive resource of transcriptomic cell-types in the 

somatosensory cortex that existed before December 2023, i.e., Yao et al. (2021) 3 (hereafter 

referred to as AllenRef21), corresponding to the adult stage (Supplementary fig. 1A). Assigning 

cellular identities in early developmental stages proved difficult given that transcriptional 

signatures of specific cell-types evolve drastically during development 23,26. To overcome this 

difficulty, we developed a hierarchical pipeline assigning identities at increasing resolution levels, 

similar to the method used by the Allen Institute 3 (Supplementary fig. 1A). 

First, we assigned cell identities at the class level (Glutamatergic, GABAergic, Non-Neuronal, 

Immature/Migrating, dorsal pallium progenitor and subpallium progenitor) 3. For datasets covering 

early development (up to P5), we used the perinatal somatosensory cortex dataset from Di Bella 

et al. 24, the largest published at this stage, and the early ganglionic eminence (GE) GABANs 

dataset from Bandler et al. 27, representing neurons fated for the cortex. For P8 to P30, as cells 

were transcriptionally similar to the adult reference, we used the adult dataset 3 directly as the 

reference (Supplementary fig. 1A). In order to investigate LR interactions mediating circuit wiring 

between neuronal subtypes, we focused our downstream analyses on post-mitotic GlutNs and 

GABANs (Fig. 1A, B). In total, 182,084 high-quality post-mitotic neurons were analyzed. To 

account for technical variation arising from different studies, RNA-seq methods (scRNA-seq and 
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snRNA-seq) and sequencing platforms (Fig. 1C), we integrated all data using the Seurat SCT 

workflow (Supplementary fig. 1C). The integrated dataset was split into classes, i.e., GlutNs and 

GABANs. For each class, cell identities were further delineated at increasing resolutions; first at 

the subclass level, and then at the supertype level in each subclass, as defined in AllenRef21 3. To 

identify biologically meaningful cell-types, we leveraged the correspondence provided by Yao et 

al. between supertypes from scRNA-seq studies and morpho-electro-connectomic types (mec-

types) from patch-seq studies 1–3,29 (Supplementary fig. 2, S3). Pooling supertypes belonging to 

the same mec-type allowed us to reach a biologically meaningful cell-type annotation 

(Supplementary fig. 4). Ultimately, we identified 159 290 cells, representing 27 cell-types (Fig. 

1D) including 11 GlutN cell-types grouped in 3 families – intratelencephalic (IT), 

extratelencephalic (ET), Other GlutNs - and 16 GABAN cell-types grouped in 5 families - Lamp5, 

Sst, Pvalb, Vip and Other GABANs - (Fig. 1B-D, Supplementary fig. 4). All intermediate steps of 

the label transfer procedure, including bootstrapped prediction scores and cell-wise assignment 

files, are available in the Zenodo folder, ensuring full transparency and reproducibility of the 

classification process. 

In the UMAP embedding of all neurons, each GlutN and GABAN cell-type exhibited a largely 

continuous temporal gradient of transcriptional variation across corticogenesis, with gene 

expression profiles of individual cells correlating with mouse developmental age (Fig. 1B, C).  

 

Temporal transcriptional dynamics  

To track the temporal maturation of each neuronal cell-type in a continuous rather than discrete 

manner, single cells were ordered along a continuous trajectory on the basis of their transcriptional 

profile 30 (see Methods) (Supplementary fig. 5A, Supplementary fig. 6A-B). This “pseudo-

maturation” axis correlated well with the actual age of the cells (Supplementary fig. 5A, 

Supplementary fig. 6A-B), indicating gradual transcriptional variation over neuronal 

differentiation.  

For each cell type, genes showing significant variation along the “pseudo-maturation” axis were 

identified and used to illustrate temporal gene dynamics in six waves (Supplementary fig. 5A, 

Supplementary fig. 6A-B). During early development (E11.5-E18.5), most cell-types displayed 

transcriptional signatures related to cell-intrinsic properties (Supplementary fig. 5B, 

Supplementary fig. 6C), shifting later to programs controlling cell–cell and cell–environment 

interactions (Supplementary fig. 5B, Supplementary fig. 6C) 31,32. These findings reveal the 

molecular transitions through which each neocortical cell type shifts from intrinsic programs to 

extrinsic, interaction-driven programs essential for integration into the cortical network. 

 

Spatial transcriptional gradients  
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In adult mice, glutamatergic IT neurons exhibit a spatial gradient of transcriptional variation along 

the cortical sheet 3,33. We investigated whether similar laminar transcriptional gradients exist 

within each neuronal family between embryonic day 18.5 (E18.5) and postnatal day 30 (P30). To 

do so, we cross-referenced our datasets with Patch-seq 1,2 and MERFISH 33 data to determine the 

exact normalized laminar position of each cell type within its family, providing information about 

their relative positions (Supplementary fig. 2, S3). 

In parallel, for each neuronal family and at each developmental stage, we fitted a curve along the 

UMAP transcriptional continuum and defined this axis as a “pseudo-layer” score. This approach 

allowed us to assess whether transcriptional variation along the pseudo-layer axis corresponded to 

the actual laminar organization of cell types, which would reflect the presence of spatial 

transcriptional gradients across cortical layers. 

Strikingly, the spatial gradient previously described for adult IT neurons 33 was already present at 

all earlier developmental stages examined, from E18.5 to P30 (Supplementary fig. 7A). Similar 

gradients were also observed for all other neuronal families analyzed; namely ET, Sst, Pvalb, Vip, 

and Lamp5 (Supplementary fig. 7–S9). In summary, our results show that all major neuronal 

families, both glutamatergic and GABAergic, exhibit transcriptional gradients aligned with 

cortical lamination, consistently across development from E18.5 to P30. 

We identified genes showing significant variation along the pseudo-layer axis and used them to 

define six distinct spatial transcriptional gradients. In GlutNs, the upper waves, corresponding to 

upper-layer (UL) displayed gene expression patterns enriched for features commonly observed in 

earlier developmental states, particularly involving cell-intrinsic properties (Supplementary fig. 7, 

B and D). In contrast, the lower waves, corresponding to deep-layer (DL) GlutNs, showed 

comparatively reduced expression of these features. This is consistent with UL GlutNs being born 

later than DL GlutNs,  due to cortical inside-out patterning 23.  In contrast, for GABANs, 

environment-sensing programs were already active by E18.5 (Supplementary fig. 8, B and D), 

supporting the hypothesis that cortical GABANs mature later than their earlier-settled GlutN 

counterparts and depend on cues from these excitatory neurons to reach their final positions and 

establish proper connectivity 15–17,34. 

Spatiotemporal transcriptional landscapes  

Based on the pseudo-maturation and pseudo-layer scores, cells of each family were embedded 

within 2D graphs to generate spatiotemporal transcriptional landscapes of gene expression (Fig. 

2A-D and S10). For any gene queried within a given family, the 2D transcriptional map shows 

temporal dynamics along the x axis and spatial dynamics on the y axis (Fig. 2B-D). This confirmed 

the spatiotemporal expression of genes known to be involved in cortical layer patterning (Cux1, 

Fezf2, Reln, Fig. 2B-C) or in neuropeptidergic system maturation in specific neuronal families 

(Fig. 2D). 
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To validate our approach, we examined whether LR transcriptional landscapes matched known 

roles in migration or synaptogenesis. We focused on CXCL12 and its receptors CXCR4 and 

ACKR3, which are essential for GABAN tangential migration 35,36. As previously reported, 

CXCL12 is expressed perinatally by meninges 37, immature GlutNs 38, and possibly Cajal-Retzius 

(CR) cells 39, while CXCR4/ACKR3 are co-expressed on migrating GABANs 40,41, with CXCR4 

also present in CR cells 40. CXCL12 downregulation postnatally is thought to trigger GABAN 

radial migration and cortical plate invasion 35,36,42. Our data aligned with these patterns: Cxcl12 

was enriched in CR cells, and Cxcl12, Cxcr4, and Ackr3 expression was restricted to E18.5–P0, 

consistent with a role in migration but not in synaptogenesis (Fig. 2E). 

It is well established that the formation of synapses requires specific adhesion molecules, including 

the NRXN1-NLGN1 LR-pair (Fig. 2E)  43,44. Our landscapes showed NRXN1 and NLGN1 

expression across all cell types during developmental windows consistent with synaptogenesis 

(Fig. 2E), supporting their role in synapse formation. 

Applying PCA and subsequent k-means clustering enabled us to define 15 archetypal 

spatiotemporal transcriptional landscapes (Fig. 2F). Some genes mapped to early or late 

developmental trajectories, whereas others showed layer-specific or combined spatiotemporal 

patterns. To functionally interpret these clusters, we performed KEGG enrichment analysis and 

annotated each spatiotemporal cluster with its dominant ontology term (Fig. 2F; Supplementary 

Data S8), revealing programs ranging from ribosome biogenesis and spliceosome activity to 

calcium signaling and neuroactive ligand–receptor pathways. Intriguingly, members of the 

Cadherin gene family were distributed across all 15 clusters (Fig. 2G), underscoring their broad 

spatiotemporal diversity throughout cortical development. 

We developed a Shiny application, scLRSomatodev, (https://sclrsomatodev.online/) that enables 

interactive exploration of spatiotemporal gene expression patterns across cortical neuronal 

subtypes, using various visual representations (Supplementary fig. 11). 

An atlas for inferring LR interactions between neuronal subtypes over corticogenesis  

We hypothesized that LR interactions between neuronal subtypes, especially between GlutNs and 

GABANs, are key to shaping stereotypical cortical wiring. If this hypothesis proved correct, we 

would expect highly correlated transcriptional landscapes between GlutN-expressed ligands and 

their cognate GABAN receptors, and vice versa. To test this, we assembled LR_DB_2025, the 

most comprehensive curated LR database to date. It integrates existing LR datasets with manually 

added pairs from published studies (Fig. 3A & S12, Supplementary Data S1, see Methods), 

yielding 8,789 curated LR pairs involving 1,421 ligands and 1,233 receptors. Each molecule was 

further classified by molecular function and known involvement in neurodevelopmental processes 

(see Methods & Supplementary Data S2). 
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For LR pairs in the cadherin superfamily, known to play key roles in neurodevelopment, we 

observed strong correlations between ligand expression in GlutN neurons and receptor expression 

in GABANs (Fig. 3B). This underscores the importance of cadherin-mediated interactions in 

GlutN-GABAN communication during development and supports previous hypotheses 

implicating cadherins in areal specialization 34,45 and synaptic specificity 46. LR pairs tied to 

migration, differentiation, cell death, cell adhesion, and synaptogenesis (Supplementary Data S2, 

Methods) exhibited varying degrees of spatiotemporal correlation (Fig. 3B). Synaptogenesis 

displayed the strongest LR pair correlation, suggesting that this process relies heavily on 

intercellular communication. In contrast, LR pairs associated with processes such as cell death or 

differentiation were less consistently correlated, possibly reflecting a greater reliance on cell-

intrinsic mechanisms or limitations in the completeness of GO annotations for these pathways 

(Fig. 3B). 

To identify ligand-receptor pairs driving intercellular interactions shaping cortical wiring, we built 

a comprehensive LR atlas inferring high-confidence interactions between neuronal cell types from 

E18.5 to adulthood, covering the full period of cortical circuit formation in mice. This approach 

integrates temporal cell-by-gene expression matrices with our curated LR database (Fig. 3C, 

Supplementary fig. 13; see Methods). 

First, we implemented and adapted the scSeqComm method 47 to our dataset. This method 

computes an intercellular ligand–receptor (LR) score for each source–target cell-type pair, based 

on the relative expression levels of ligands in source cells and receptors in target cells. The core 

scSeqComm tool was not modified; intercellular scores were calculated exactly as described in the 

original publication and returned for all pairs across all cell-type combinations. 

To improve the biological plausibility of predicted interactions and increase stringency, we 

introduced an additional cell pair score, applied independently of any particular LR pair. This score 

enabled prioritization of LR interactions according to known developmental timing and the final 

connectivity patterns between the cell-types. Specifically, the cell-pair score represents the 

(normalized) sum of (i) a developmental score, reflecting the relative timing at which each cell 

type populates the cortex and could transiently interact, (Fig. 3C & S13, Supplementary Data S3), 

and (ii) a connectivity score, estimating the likelihood of synaptic connections inferred from adult 

cortical architecture, derived from morphological reconstructions of ~1,000 neurons within a 

cortical column from adult Patch-seq studies 48 (Fig. 3C, S13–14, Supplementary Data S4). For 

LRs with documented downstream genetic signaling from the receptor, our pipeline quantified 

intracellular signaling activity in target cells by integrating information from public regulatory 

gene databases  47 (see Methods). This yielded an intracellular signaling score (Fig. 3C and S13), 

which helped assess the robustness of inferred LR interactions and in determining the preferred 

receptor(s) for ligands with multiple potential targets. 
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Predicted LR interactions can be explored at https://sclrsomatodev.online/ (Supplementary fig. 

16), where users can visualize both the number and identities of interactions between any of the 

729 neuronal cell-type pairs across seven developmental stages covering cortical wiring (E18.5 to 

adulthood). Interaction counts are shown as heatmaps (Fig. 3D, S16A), while specific LR pairs 

and associated GO pathways are displayed as dot plots (Supplementary fig. 16B). LR pair 

predictions were generally consistent between scRNA-seq and snRNA-seq (Supplementary fig. 

15), demonstrating modality consistency. An exception is observed for certain short transcripts, 

which are underdetected in snRNA-seq, as previously reported. For instance, Neurod2, Slc12a5, 

and Dlx2 (~1 kb) show reduced detection in snRNA-seq at P8, whereas larger genes such as Cux1 

(~340 kb) are comparable across both modalities. 

To determine which molecular codes underlie the specificity of LR-mediated cell positioning and 

connectivity, we systematically analyzed LR predictions across 729 neuronal cell-type 

combinations from E18.5 to adulthood. We quantified LR interactions maintained across at least 

two consecutive stages and categorized them as “unique” (1 cell pairs), “widely shared” (≥ 400 

cell pairs), or “rarely shared” (≤ 10 cell pairs) (Fig. 3D). While some cell pairs showed up to ~600 

predicted LR interactions, uniquely used LR pairs were extremely rare. Widely shared LRs 

represented less than 10% of all inferred interactions. In contrast, rarely shared LRs showed more 

variability, with up to 60 detected in CR–CR interactions. These findings suggest that cortical 

neurons employ a combinatorial code of common and rare ligand–receptor interactions, rather than 

unique pairs, to establish subtype-specific communication and connectivity.  To directly evaluate 

whether LR expression patterns can distinguish neuronal subtypes, we developed a machine-

learning framework that generates single-cell replicates for each SOURCE → TARGET cell-type 

pair across developmental stages. Each example encodes ligand × receptor product values, and the 

model is tasked with predicting the correct cell-type pair identity (Supplementary fig. 17). While 

the prediction task is extremely challenging (>600 classes), many individual cell-type pairs 

achieved high ROC–AUC values, demonstrating strong discriminability and reinforcing the idea 

of a combinatorial LR code (Supplementary fig. 17 A). We benchmarked models trained on five 

LR feature sets: all significant pairs, widely shared pairs, rarely shared pairs, unique-only pairs, 

and random non-LR pairs (Supplementary fig. 17 B-C). Across developmental stages, classifiers 

trained on unique-only, shared-only, or random pairs performed at or near chance, whereas those 

trained on rare-only pairs consistently provided predictive performance above chance. The highest 

accuracy was obtained when combining feature sets (all significant = rare + shared + occasional 

unique) with moderately strong performance for the rarely shared pairs, supporting our conclusion 

that specificity is encoded by combinatorial patterns rather than by shared or unique pairs alone. 

This trend was maintained across all developmental stages and remained consistent even when one 

cell type was held constant while varying the other (Supplementary fig. 18–S20).  

These findings suggest that a combinatorial LR code underlies neuronal specificity. A key question 

is whether such codes are determined by laminar position, class identity, or whether fate-intrinsic 

factors, such as the progenitor domain of origin of interneurons, also impose additional constraints. 

To address this, we further quantified the distribution of interactions between GlutNs and 
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GABANs, as well as within each neuronal class. This analysis revealed progressive differences 

between superficial and deep layers across development (Figs. S21, S22). To investigate whether 

the origin of interneurons influences their predicted LR interactions with glutamatergic partners, 

we grouped subtypes by MGE, CGE, or POA origin, which revealed a temporal shift from GE-

specific programs at embryonic/early postnatal stages to predominantly shared modules at P8–

P30, followed by renewed specificity in adulthood (Supplementary fig. 23A–C). GE-specific 

modules were enriched for partner recognition and integration processes at early stages, while 

shared modules were dominated by synaptic organization ontologies during peak synaptogenesis. 

These results show that LR communication is shaped not only by class and laminar identity (Figs. 

S21, S22), but also by interneuron progenitor domain (Supplementary fig. 23), adding a fate-

dependent dimension to cortical wiring. 

 

 

 

Key roles for LR interactions during synaptogenesis and in neurodevelopmental diseases 

We analyzed the temporal progression of LR predictions between GlutNs and GABANs as source 

and target cells, respectively. The total number of predicted LRs increased over time (Fig. 4A), 

consistent with the gradual establishment of synaptic connectivity. Among GABAN subtypes, Sst 

and Pvalb neurons were the first to receive a high number of LR interactions from GlutNs (Fig. 

4A), while Lamp5, Vip, and other GABAN populations showed a later increase. Notably, Pvalb 

cells initially exhibited fewer LRs than Sst neurons but progressively reached comparable levels 

to Sst neurons, consistent with studies showing that Sst neurons precede Pvalb neurons in cortical 

network formation and in agreement with recent findings 49. 

Next, we focused our analysis at the cell-type level, using IT neurons as source cells and GABAN 

subtypes as targets. The number of predicted LR interactions increased over time (Fig. 4B), 

consistent with the global trend (Fig. 4A). However, we noted only subtle differences in the 

temporal profiles of upper layer (UL) and deep layer (DL) GABANs. LR interactions with UL 

GABANs were low at early stages but showed a gradual increase over time. DL GABANs showed 

a marginally higher level of LR engagement early on, though this difference was very subtle (Fig. 

4B). While such a pattern could be compatible with earlier maturation of DL neurons, the effect 

size is minimal, and we interpret this as a possible depth-related trend, although additional analyses 

will be needed to confirm it. 

We calculated the proportion of LRs associated with the five key neurodevelopmental processes. 

Migration, differentiation, and cell death were sparsely predicted, suggesting that our atlas captures 

fewer LR interactions associated with these processes. This could indicate a stronger reliance on 

cell-intrinsic programs, but may also reflect underrepresentation of relevant signaling interactions 

in current GO terms or from the limitations of transcriptomic inference. In contrast, 

synaptogenesis-related LRs, and to a lesser extent those involved in adhesion, were consistently 
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and robustly utilized from E18.5 through adulthood (Fig. 4C). Notably, Cadherins showed sharp 

increases in inferred activity from P8 onward, underscoring their possible role in shaping cortical 

wiring. 

We investigated the engagement of LR pairs associated with neurodevelopmental disorders during 

cortical development. LRs from our curated database were categorized based on their disease 

associations: autism, epilepsy, schizophrenia (SCZ), and intellectual disability (ID) 

(Supplementary Data S5). While the proportion of active SCZ- and ID-linked LRs remained 

consistently low across all developmental stages (Fig. 4D), those associated with autism and 

epilepsy showed markedly higher engagement, peaking at postnatal day 8 (P8) and remaining 

elevated into adulthood. In some instances, up to 50% of autism- or epilepsy-associated LRs were 

active at specific time points (Fig. 4D). These findings suggest that the etiology of autism and 

epilepsy may be more closely related to LR-mediated intercellular communications in cortical 

circuits than that of SCZ and ID. Several of the highly utilized LRs were implicated in multiple 

disorders (Fig. 4E). Notably, CDH13 and CDH22, two cadherins, were the only significantly 

utilized LRs shared between autism and SCZ (Fig. 4F). Overall, gene ontology analysis revealed 

that predicted disease-associated LRs were enriched in neurodevelopmental biological processes 

(Fig. 4G). 

 

Validation of the LR prediction atlas: Nrg3-Erbb4 

We queried our LR atlas to validate known interactions between GlutNs and GABANs, focusing 

on the NRG3-ERBB4 pair, which is recognized for mediating the development of excitatory 

synapses onto GABANs and is linked to neurodevelopmental disorders 50 (Fig. 5A). Consistent 

with the literature, transcriptional landscapes confirmed NRG3 expression in GlutNs and the 

restriction of ERBB4 expression to GABANs (Fig. 5B). NRG3 and ERBB4 expression levels 

peaked in the second half of the developmental timeline, coinciding with synaptogenesis (Fig. 5B). 

Our atlas predicts significant NRG3-ERBB4 interactions from E18.5-P0 through P30, with GlutNs 

werving as the NRG3 source and most GABANs as ERBB4-expressing targets (Fig. 5C). Across 

all developmental stages, the intracellular signaling score for NRG3-ERBB4 was highest when 

target cells were Pvalb BCs and Vip|L2/3−L5 BP/BTCs, two GABAN subtypes known to critically 

depend on ERBB4 signaling for the formation of excitatory synapses (Fig. 5D) 12,13,51. Overall, our 

atlas supports a role for the NRG3-ERBB4 interaction in driving excitatory synapse formation 

onto specific GABAN subtypes during corticogenesis. 

 

NEO1 is the primary CBLN4 receptor at Martinotti-glutamatergic developing synapses 

To explore whether our atlas could illuminate previously incompletely understood intercellular 

communications, we focused on CBLN4, a ligand that facilitates synapse formation between Sst 

neurons axon terminals and the apical dendrites of GlutNs in the mouse cortex 11,52 (Fig. 5E). 

Which precise Sst subtype expresses CBLN4, and which receptor(s) mediate its effects on GlutNs, 
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remain open questions 52,53 (Fig. 5F). Our transcriptional landscape analyses revealed that among 

the 4 identified Sst cell-types (Sst|L2/3-L5 fan-MC, Sst|L4 IVC, Sst|L5 T−MC, and Sst|L5/L6 

NMCs), only the Sst|L2/3-L5 fan-MCs exhibited clear Cbln4 expression (Fig. 5G). Our LR 

interactome atlas predicted that CBLN4 is involved in relatively few intercellular interactions 

during synaptogenesis (P5 to P30), specifically between Sst|L2/3-L5 fan-MCs as source cells and 

select GlutN subtypes (L2/3 IT, L4 IT|SSC, L4/5 IT|PC, L5 IT and L5 PT) as target cells (Fig. 

5G). Unexpectedly, most GABAN cell-types were also predicted as target cells. Intercellular 

signaling scores further indicated that among the three known CBLN4 receptors (DCC, GLUD1 

and NEO1), only GLUD1 and NEO1 were predicted to be involved (Fig. 5H). Intercellular scores 

rose from P4 to P8, consistent with CBLN4’s known role in synapse formation during this window 
11. 

We used intracellular scores to assess whether GLUD1 or NEO1 predominates as the CBLN4 

receptor in cortex. Although GLUD1 has been identified as a CBLN4 receptor in GlutNs at P21–

P30 11,52, our data suggest that NEO1 signaling is more active during peak synaptogenesis (P4–

P8) in CBLN4-receiving neurons (Fig. 5H). NEO1-associated genes were enriched for axon 

guidance and TGF-β pathways. To test for direct interactions at P8, we performed in situ PLA and 

observed strong CBLN4–NEO1 signals in cortical layers L1–2, while CBLN4–GLUD1 

interactions were minimal or absent (Fig. 5I). These results underscore the atlas’s ability to identify 

key LR pairs and their cell-type specificity. 

 

CDH13 and PCDH8 mediate perisomatic inhibition in deep and superficial layers 

To determine whether our LR atlas can help identify novel LR pairs essential for cortical wiring, 

we focused on the cadherin family of adhesion molecules. Cadherins were prioritized because they 

are thought to play such a role 45,46,54 and because our atlas revealed extensive spatiotemporal 

diversity in S1 (Fig. 2G).  

The atypical cadherin Cdh13, genetically associated with neurodevelopmental disorders 55,56, 

exhibited a distinct and widespread expression pattern across cortical neuronal subtypes. In 

transcriptional landscapes, Cdh13 was detected in all GABAergic neuron types except Lamp5 

neurons, with the highest expression levels observed in MGE-derived Sst and Pvalb populations 

(Fig. 6A). It was also broadly expressed across GlutN subtypes, with enrichment in DL subtypes. 

During corticogenesis, Cdh13 expression in DL GlutNs was sustained, whereas in MGE-derived 

GABAergic neurons, it peaked during the wiring period (P4–P30), suggesting a temporally 

coordinated role in circuit formation (Fig. 6A). These spatiotemporal dynamics point to a potential 

role for CDH13 in mediating homophilic interactions between MGE-derived GABAergic neurons 

and DL GlutNs. Consistent with this hypothesis, our LR inference analysis predicted that the vast 

majority of CDH13–CDH13 interactions occur between Sst/Pvalb interneurons and DL GlutNs 

(L5 and L6) GlutNs (Fig. 6B, C, only ITs visualized as sources). These predictions are consistent 

with recent evidence implicating CDH13 in perisomatic inhibition of L5 subtypes by Pvalb basket 
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cells (BCs) 57. To experimentally validate this interaction, we performed in utero electroporation 

to knock down Cdh13 in L5 GlutNs and assessed perisomatic innervation by Pvalb BCs. Cdh13 

knockdown significantly reduced the area of GlutN somata contacted by SYT2⁺ Pvalb BC boutons 

(Fig. 6C), indicating that postsynaptic CDH13 is required for proper perisomatic inhibition. 

Notably, chandelier cell (CHC) synapses onto the axon initial segment were unaffected (Fig. 6D), 

highlighting the specificity of CDH13 function and supporting our atlas-based predictions. 

We next focused on PCDH8, whose spatial expression pattern appeared largely complementary to 

that of CDH13, with enrichment in GlutNs and Pvalb neurons of the UL (Fig. 6E). In line with this 

expression landscape, our LR atlas predicted that, aside from a few additional putative interactions, 

PCDH8–PCDH8 signaling would predominantly occur between L2/3 intratelencephalic (IT) 

neurons and Pvalb basket cells (BCs) (Fig. 6F, G). To test this prediction, we performed in utero 

electroporation of a Pcdh8 shRNA at E15.5 to knock down PCDH8 specifically in L2/3 IT neurons 

and assessed their perisomatic innervation by Pvalb BCs. Strikingly, Pcdh8 knockdown 

significantly increased SYT2⁺ bouton coverage of L2/3 IT somata, indicating that PCDH8 

negatively regulates perisomatic inhibition in this circuit (Fig. 6H). This effect contrasts sharply 

with CDH13 function in L5 neurons, which acts as a positive regulator of Pvalb BC-mediated 

inhibition. 

Thus, our LR atlas supports the conclusion that distinct cadherins differentially regulate 

perisomatic inhibition in a layer-dependent manner.  

Discussion 

Seminal studies in the last decades have shown that stereotyped cortical circuit wiring in mammals 

is regulated by LR interactions between GlutNs and GABANs 15–17. More specifically, these data 

suggest that a molecular code, established by LR interactions between early-settling GlutNs and 

later-arriving GABANs, orchestrates circuit assembly. To identify LR pairs critical for GlutN–

GABAN interactions and cortical circuit formation, we leveraged high-throughput single-cell 

transcriptomics. Our LR predictions, along with gene expression visualizations, are available at 

https://sclrsomatodev.online/. 

We began by characterizing the transcriptomic profiles of the major neuronal classes across 

cortical development. This dataset, generated through extensive integration and meticulous 

annotation, is provided as a publicly accessible reference for exploring the dynamic transcriptional 

landscape of corticogenesis (https://sclrsomatodev.online/). For our analysis of LR interactions, 

we focused on the critical E18–P30 window, during which GABANs migrate to their target layers 

and form synaptic connections with GlutNs and other GABAergic partners. We developed 

computational tools to assess spatiotemporal expression of all genes in main cortical neuron types 

and to infer the number and identities of significant LR pairs that may govern cortical wiring. 

These tools can be applied to: (1) validate established interactions (e.g., NRG3 – ERBB4), (2) 

extend knowledge of known LR interactions (e.g., Cbln4 – Neo1 for Sst MC -> GlutN interaction) 
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and (3) identify novel LR pairs involved in the formation of specific connections (e.g., the CDH13 

and PCDH8 cases). 

LR-mediated intercellular interactions are fundamental processes that shape the development and 

function of most biological tissues. Before the development of scRNA-seq, studying the molecular 

underpinnings of cell-cell interactions was low-throughput, restricted to a short selection of genes 

or proteins and a limited number of cell-type pairs. The emergence of scRNA-seq has enabled the 

development of numerous computational tools to infer cell-cell communication. While many 

existing methods predict LR interactions based solely on the expression levels of the LR pair across 

cell types 58–60, a subset of more recent approaches may better approximate biological ground truth 

by also incorporating the downstream responses elicited in receptor-expressing cells 47,61–63. For 

this study, we benchmarked most available methods and selected scSeqComm 47, one of the most 

recent tools capable of inferring both intercellular and intracellular signaling.  The intracellular 

score provided an additional layer of reliability for inferred interactions, and custom thresholds 

can be set for both intercellular and intracellular scores to modulate confidence. To further increase 

the reliability of the inferred interactions, we curated a comprehensive LR database by integrating 

existing published databases and incorporating additional LR pairs from the literature. 

Our LR predictions indicate that neuronal connections are determined by specific combinations of 

LRs with distinct specificities. Notably, a core group of approximately 40 broadly expressed LRs 

mediate interactions in over 50% of cell-type pairs, complemented by a larger subset of LRs with 

varying degrees of specificity. Importantly, LRs unique to single neuronal connections are 

extremely rare, suggesting that cortical wiring is predominantly shaped by a combination of shared 

and context-dependent LRs rather than by unique or isolated interactions. Our predictive modeling 

analysis further strengthens the “combinatorial code” hypothesis. Classifiers trained on distinct 

LR feature subsets revealed that neither shared nor unique LR pairs alone could reliably 

discriminate cell types. Instead, rare context-dependent interactions provided the key 

discriminatory signal, with their predictive value maximized when combined with shared pairs. 

These results suggest that synaptic specificity emerges from the combined deployment of common 

and rare LR modules, rather than from exclusive dependence on unique interactions. This 

combinatorial logic echoes classical molecular code theories in neural development and provides 

a quantitative framework for how LR diversity encodes cell-type-specific connectivity. 

Cadherin superfamily members are differentially expressed across subtypes of cortical excitatory 

and inhibitory neurons 34,45, suggesting that a combinatorial cadherin code could guide the 

structured assembly of cortical circuits. Our data support this idea by demonstrating, with 

unprecedented resolution, that cadherins exhibit highly cell-type–specific and developmentally 

dynamic expression patterns (Fig. 4C). Building on predictions from our LR atlas, we 

experimentally identified two cadherins, CDH13 and PCDH8, as regulators of perisomatic 

inhibition by Pvalb basket cells (BCs) in deep and superficial layers, respectively (Fig. 6). 

Specifically, we found that CDH13–CDH13 interactions are crucial for Pvalb BC-mediated 

perisomatic inhibition of deep-layer GlutNs. Our atlas also shows that this interaction is not 
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required for BCs expressing Sncg/CCK, which is consistent with recent findings 57. In contrast, in 

superficial layers, PCDH8 negatively regulates Pvalb BC innervation, demonstrating that 

cadherins can either promote or restrict synapse formation depending on the context. This duality 

highlights the predictive power of our LR atlas, particularly in uncovering inhibitory or repulsive 

interactions, an underappreciated dimension of forebrain circuit development. Our atlas also 

predicts a higher number of LR interactions between excitatory neurons and Sst or Pvalb 

interneurons compared to Vip or Lamp5 populations, which is consistent with these findings. This 

may indicate that Sst and Pvalb rely more strongly on non-cell-autonomous signals for their 

integration, although alternative explanations should be considered, including differences in cell 

abundance or sampled developmental stages, which may not fully capture the wiring periods of 

other interneuron subtypes. 

Beyond laminar and cell-class distinctions, our data indicate that the progenitor domain of 

interneurons (MGE, CGE, or POA) imposes an additional layer of specificity on predicted LR 

interactions. We found that GE-derived interneurons exhibit dynamic shifts from early GE-specific 

LR modules, enriched in partner recognition and integration processes, to shared programs during 

peak synaptogenesis (P8–P30), and back to fate-specific modules in adulthood (Supplementary 

fig. 23). These findings suggest that cortical wiring is not only structured by laminar position and 

cell-class identity but also by developmental lineage, underscoring the combinatorial logic of fate- 

and stage-dependent LR programs. 

Interestingly, the suppressive role of PCDH8 in superficial layers mirrors that of another 

protocadherin, PCDH18, which limits Sst neuron connectivity with GlutNs 11. Given that both 

Cdh13 and Pcdh8 are genetically linked to neurodevelopmental disorders 55,56,64, our findings raise 

the possibility that layer-specific disruption of Pvalb BC-mediated inhibition may contribute to the 

etiology of these conditions. 

It remains unclear how generalizable our somatosensory cortex-focused analysis is to other cortical 

areas. Most GABAergic clusters defined in the Allen Institute taxonomy are shared across 

isocortical regions, and the relative proportions of cells within these clusters are largely consistent 

across areas 3. For glutamatergic cell types, there is a modest, gradual transcriptomic variation 

across regions, and some degree of regional specificity is observed, particularly at the cluster level 

and in isocortical areas located at the rostral and caudal extremes 3. In contrast, adjacent cortical 

areas largely share the same clusters. Importantly, our analysis is anchored at the supertype level; 

a higher-order classification that is more stable than individual clusters and broadly conserved 

across cortical areas. As described in Yao et al. 3, supertypes are consistently observed across the 

isocortex, with only a few known exceptions, such as the L5 PT and Car3 supertypes. Because the 

cell types in our study were defined at the supertype level, we expect that our findings are likely 

to generalize to neighboring cortical regions. 

Nonetheless, because our analyses were restricted to the somatosensory cortex, extrapolation to 

other cortical areas should be approached cautiously. In addition to neurons, non-neuronal cells 

also play a role in the early stages of cortical circuit assembly. For example, blood vessels and 
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ventral oligodendrocyte precursor cells regulate the tangential migration of GABANs from the 

subpallium to the cortical plate through specific CXCL12-SEMA6A/B-PLXNA3 unipolar contact 

repulsion 65. Future studies should leverage single-cell transcriptomics to systematically 

investigate neuron-non-neuronal cell communication to further explore these interactions. 

Limitations of the approach – Considerations for Future Improvements in Ligand-

Receptor Atlases 

Despite the robustness and comprehensiveness of our approach, certain limitations should be 

acknowledged. Reliance on mRNA levels as proxies for protein abundance can be misleading due 

to post-transcriptional regulation, and even when ligand and receptor proteins are expressed, their 

functional interaction depends on correct trafficking and subcellular localization, which single-cell 

RNA-seq cannot capture. Advances in single-cell proteomics may soon allow integration of such 

spatial information into developmental atlases. Our focus on glutamatergic and GABAergic 

neurons also excludes non-neuronal cell types such as astrocytes, oligodendrocytes, and microglia, 

which likely contribute to cortical circuit assembly and should be incorporated in future analyses. 

Interpretations based on GO terms remain provisional, as they may underrepresent intercellular 

contributions to broader processes such as cell death or differentiation. Finally, the use of an adult-

derived connectivity matrix constrains predictions to mature architectures, providing a 

conservative but potentially incomplete view that may overlook transient developmental 

connections. 

Currently, our understanding of the spatial relationship between cortical cell types is largely 

limited to adult stages 66,67, which impedes precise inference of timely LR mediated cell-cell 

interactions at specific developmental stages, whether transient or stable. The advent of spatial 

transcriptomic technologies with high sensitivity, throughput, and resolution promises to bridge 

this gap in the near future. 
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Methods 

Animals. Mice (mus musculus) were group housed (2–5 mice/cage) with same-sex littermates on 

a 12-hour light-dark cycle with access to food and water ad libitum. They were bred and 

maintained on a mixed SVeV-129/C57BL/6N background.  Animal experiments were carried out 

in accordance with European Communities Council Directives and approved by French ethical 

committees (Comité d’Ethique pour l’expérimentation animale no.  14; permission number: 62-

12112012,  Apafis #21683- 2019073011285386v4). Mice were housed on a 12-hour light–dark 

cycle at 21–23 °C and 40–60% humidity. Sample sizes were not predetermined by statistical 

methods; rather, they were guided by standards commonly used in single-cell transcriptomics and 

developmental neurobiology, ensuring sufficient cell numbers and biological replicates to achieve 

robust clustering, stable ligand–receptor inference, and reliable validation of observed phenotypes. 

For tissue collection, mice were deeply anesthetized and euthanized in accordance with 

institutional and governmental guidelines. Adult and postnatal mice were euthanized by 

intraperitoneal injection of pentobarbital (150 mg/kg). Loss of reflexes was confirmed prior to 

tissue collection. For histological analyses, animals were transcardially perfused with 0.9% saline 

followed by 4% paraformaldehyde. For experiments requiring fresh tissue for single-cell isolation, 

brains were rapidly dissected following euthanasia. 

 

Single-cell isolation. Male and Female mice brains were dissected submerged in an ice-cold 

bubbled artificial cerebrospinal fluid (ACSF) with carbogen (95% O2 and 5% CO2). Our ACSF 

consisted of NaCl (7.32 g/L), KCl (0.26 g/L), NaH2PO4,H2O (0.165 g/L), Cacl2,2H2O (0.438 g/L), 

MgCl2,6H2O (0.264 g/L), D(+)-Glucose (1.98 g/L), NaHCO3 (2.1 g/L), and acid kynurenic (0.567 

g/L). Brains were then sliced into a 300 µm (P0 and P2 mice) or 500 µm (P5, P8 and P30 mice) 

coronal sections with a vibratome (Leica). Somatosensory cortex area was dissected under a 

binocular loop. Enzymatic digestion was then processed by using pronase (Septomyces Argeus at 

1 mg/mL) during 25 min at room temperature (RT) for P0 to P8 datasets. Cells were dissociated 

and triturated into single cell suspension in a solution consisting of ACSF, 1% FCS and DNAse 

(1µl/10mL). Trituration was carried out by using 3 glass pasteur pipets prepared at 3 different 

diameters. For P30 datasets, we used the Worthington Papain Dissociation System to carry out the 

enzymatic digestion and the cell dissociation following the manufacturer instructions. 

Single-nuclei isolation. Dissection of the somatosensory cortex was achieved by following the 

same procedure as described for single-cell isolation. The dissected somatosensory cortices were 

transferred immediately into 500 µl of Hibernate™-E Medium (#A12476-01), then frozen for 3 

minutes in isopentane pre-cooled to -80°C. The samples were subsequently stored at -80°C for 

long-term preservation. To process the tissue after conservation, the medium was first removed 

from the Eppendorf tube. Chilled 0.1X NP40 Lysis Buffer was then added in a volume of 500 µl, 

and the tissue was immediately homogenized using a Pellet Pestle with 15 strokes. The 

homogenized samples were incubated on ice for 5 minutes. The suspension was then pipette-mixed 

10 times using a wide-bore pipette tip and incubate for 10min on ice to ensure proper lysis. 
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Following lysis, 500 µl of chilled wash buffer was added to the suspension, and the mixture was 

pipette-mixed 5 times using a regular-bore pipette tip. The suspension was passed through a 30 

µm cell strainer into a 50 ml tube to remove debris. The filtered suspension was subsequently 

transferred to a 1.5 ml tube for centrifugation. Samples were centrifuged at 950 × g for 10 minutes 

at 4°C. After centrifugation, the supernatant was carefully removed to avoid disrupting the nuclei 

pellet, which was retained for further analysis. 

cDNA Amplification and library construction. 10xv3 libraries were sequenced on Illumina 

HiSeq 4000. For single-nuclueus RNAseq, nuclei suspensions were adjusted following 10X 

recommendation. For GEM generation and barcoding, we utilized the Chromium Next GEM 

Single Cell 3' Reagent Kits, following the manufacturer's protocol.  In summary, the prepared 

single-cell suspensions were loaded onto a Chromium Next GEM Chip G, along with the 

appropriate reagents, and processed using the chromium controller to encapsulate individual cells 

into GEMs. After GEM-RT incubation, cDNA was recovered and amplified through a series of 

cleanup and amplification steps, including SPRIselect bead-based purification. The amplified 

cDNA was then subjected to fragmentation, end repair, A-tailing, adaptor ligation, and sample 

index PCR to construct the final 3' gene expression libraries. The constructed libraries were 

sequenced 10xv3 libraries were sequenced on Illumina HiSeq 4000. 

Sequencing data processing. Sequencing reads were aligned to the mouse pre-mRNA reference 

transcriptome (mm10) using the 10x Genomics CellRanger pipeline (version 3.1.0 or 6.1.1) with 

default parameters. 

External datasets. All external datasets 3,23–28 were incorporated exactly as provided by the 

original publications. In the Di Bella et al. (2021) 24 dataset, cells that were annotated as low-

quality cells, doublets and Red blood cells were discarded. Because only the somatosensory cortex 

(SS CTX) was dissected in our experiments, we selected from the Allen Institute dataset only cells 

coming from the primary somatosensory cortex (SSp) for 10x data, and from both SSp and SSs 

for Smart-seq v4 data. To ensure that clusters were representative of the SS CTX, we discarded 

clusters containing fewer than 5 cells within a given subclass (as defined by Yao et al. 2021b) and 

retained only subclasses with at least two clusters. Furthermore, for supertypes containing fewer 

than 100 cells, we supplemented them—where possible—to reach 100 cells passing quality control 

(see Methods) by randomly selecting cells from cortical areas most correlated with the SS CTX 

(primary motor, MOp; secondary motor, MOs; frontal pole, FRP; and auditory areas). Exceptions 

were made for the CR Trp73, Meis2, Astro Gfap Apoe, and PVM Mrc1 supertypes, for which all 

cortical areas were used due to the low total cell numbers. The resulting dataset from Yao et al. 

(2021b) 3 constitutes our reference for cell-type assignment (hereafter referred to as AllenRef21). 

Quality control. In order to retain only high-quality cells in all datasets, cells that passed the 

following criteria were kept (see Supplemental information QC metrics): 

- Cells with a mitochondrial gene percentage ≤10%. 

- Cells with a log10 (number of detected genes) within three double median absolute deviations 

(doubleMAD) of the population median, with a minimum low threshold of 500 genes. 
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- Cells with a log10 (number of detected UMIs) above 3 doubleMADs of the population median. 

- We plotted log10 (nFeature RNA) versus log10 (nCount RNA) and fitted a linear regression model 

between these variables. Cells falling below an offset of -0.09 were retained. 

- Doublets in scRNA-seq datasets were identified using Scrublet 68, with an expected doublet rate 

of 10%. The number of simulated doublets was set to twice the number of observed transcriptomes, 

and eight neighbors were used to construct the KNN classifier for observed and simulated doublets. 

Assigning cell identity. Cells that passed QC criteria were used for the following analysis. Key 

steps to determining cell identity consisted of (Figure S1): 

1. Assigning Broad class identity. An in-house artificial neural network (ANN) was used to 

determine the identity of the cells at the class level for E11.5 to P5 datasets. We selected the 

datasets from Di Bella et al. (2021) 24 and Bandler et al. (2021) 27 as the training set for the ANN 

as they encompassed all broad cell classes relevant to our studies. Cells from Di Bella et al. (2021) 

were organized into five classes: GABAergic (Interneuron), Glutamatergic (CR, UL CPN, Layer 

4, DL CPN, SCPN, NP, CThPN, Layer 6b), Immature/Migrating (Immature neurons, migrating 

neurons), Non-Neuronal (Astrocytes, Oligodendrocytes, Microglia, Cycling glial cells, 

Ependymocytes, Endothelial cells, VLMC, Pericytes) and Dorsal Pallium Progenitor (Apical 

progenitors, Intermediate progenitors). Cells from Bandler et al. (2021) were organized into two 

classes: GABAergic and SubPallium Progenitor. The weights derived from this model (hereafter 

referred to as the class PAB21 model) were independently applied to datasets from E11.5 to P5, 

excluding those used as reference. 

For P8 to P30 datasets we used the map_sampling function of the R package scrattch.hicat to train 

a centroid classifier, randomly selecting 80% of marker genes. Test data were mapped to the 

AllenRef21 reference set at the class level (GlutNs, GABANs and NN classes). Classification was 

bootstrapped 1 000 times to estimate robustness. Cells with prediction probabilities below 

0.5+1/(number of class) ² were considered undetermined. 

Seurat Louvain graph-based clustering was initially performed on each dataset independently at 

the top level (k.param=round(sqrt(Number of cells)), annoy.metric=“cosine” in the FindNeighbors 

function and resolution=1 in the FindClusters function of the Seurat R package). One or more 

additional rounds of clustering were performed to resolve subclusters within candidate major 

clusters, with cluster heterogeneity evaluated using the Silhouette Score computed via a modified 

ReclusterCells function from the R package SCISSORs 69 (Leary et al., 2021)). Cluster identities 

were assigned based on the most frequent prediction obtained either from the class PAB21 model 

or using scrattch.hicat. A cluster was assigned a given identity only if the difference between the 

most and second-most frequent predicted identities exceeded 40%. For downstream analyses, only 

cells predicted as Glutamatergic or GABAergic were retained. In GE datasets, only GABAergic 

cells were retained, as other postmitotic classes were considered potential contaminants. 

2. Determining future cortical GABANs in the ganglionic eminences datasets. Since not all 

ganglionic eminence (GE)-derived cells migrate towards the cortex, we aimed to identify the 

migratory population. Using the differentially expressed (DE) branch analysis by Mayer et al. 
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(2018) 26, we identified the common DE genes for each branch within each GE and predicted cell 

identities by applying the assign_cell function from the R package MetaMarkers 70. Cells were 

then clustered using the method described above, and the most frequently predicted branch 

identities were assigned to each cluster. As branch 1 was identified as giving rise to most future 

cortical cells 26, only cells assigned to branch 1 were retained for downstream analysis. 

3. Integration of all studies. To identify homologous cell types across 10X, Drop-seq, SSv4, SSv2, 

C1 scRNA-seq and snRNA-seq datasets, both from this study and from external studies, datasets 

were integrated using Seurat’s SCTransform integration workflow. For the integration analysis, 

3’000 variable genes were selected.  k.anchor= 5 and k.filter= 150 were the parameters set for the 

FindIntegrationAnchors function used to identify anchors between the datasets. For Yao et al. 

(2021b), only cells from the SS CTX were integrated supplementary fig. 1c). 

4. Assigning subclass and supertype identities. Datasets were split into glutamatergic and 

GABAergic classes. 

• Glutamatergic neurons: For the E11.5 to P5 datasets, the in-house ANN was initially trained with 

the GlutNs part of the Di Bella et al. (2021) dataset 24 using their defined cell-type labels (referred 

to as the ctPA21 model). The resulting model weights were then independently applied to each 

dataset from E11.5 to P5. The clustering module described above was performed on the entire 

E11.5 to P5 dataset. Cluster identities were assigned by comparing predictions from the ctPA21 

model, and the most frequent predicted identity was designated as the cluster identity.  

Correspondence between cell types annotations of Di Bella et al. (2021) and subclass annotation 

of Yao et al. (2021b) was achieved as followed: UL CPN, Layer 4, DL CPN: IT, SCPN: L5 PT, 

NP: L5 NP, CThPN: L6 CT, Layer 6b: L6b, Cajal-Retzius cells: CR. 

Next, we aimed to distinguish IT cells among L2/3 IT, L4/5 IT, L5 IT, L6 IT, or Car3 subclass 

identities. We used the map_sampling function of the scrattch.hicat package as previously 

described, utilizing the IT cells from the AllenRef21 dataset as the reference set. 

For P8 to P30 datasets, subclass identities were directly assigned using the map_sampling function 

of the scrattch.hicat package, as these time points are less far transcriptionally from the adult 

dataset. After applying our clustering module to the entire dataset, we assigned final subclass 

identities to clusters based on the most frequently predicted identity. To ensure accuracy, the 

difference between the top predicted subclass and the second most predicted subclass within each 

cluster had to exceed 20%. If this difference was less than 20%, we assigned a mixed subclass 

identity. For the adult dataset, we retained the original subclass labels. 

Finally, for each unique subclass, we assigned the supertype level of Yao et al. (2021b) 3 by using 

the same procedure used to assign subclass labels with the map_sampling function. 

• GABAergic neurons: For datasets sampled from SS CTX, we assigned the subclass labels by using 

the same procedure as described above with scrattch.hicat. Once we obtained the subclass labels 

in the SS CTX datasets, we used the MapQuery function from the R package Seurat v4 (with 

weigh.reduction=“cca” parameter) to transfer these labels to datasets sampled from the GEs using 

the SS CTX subclass labels. Subclass labels were assigned by comparing each cell to the cluster 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

Mathieu et al. 

 

defined by the clustering module. For GE cells whose subclass remained undetermined, typically 

less mature cells, we performed an additional round of the MapQuery function, using the subclass 

labels of more mature GE cells as reference. The final subclass labels were assigned by comparison 

to the clusters obtained with the clustering module. The same procedure was applied to determine 

supertype labels for each subclass. Because the Pvalb Lpl supertype (which corresponds to the 

Pvalb FS BC) was distributed across de full cortical thickness Supplementary fig. 2e), we deepened 

our analysis in order to discriminate between upper and lower Pvalb FS BC. This was achieved by 

using the map_sampling function, with clusters of the Pvalb Lpl supertype in our AllenRef21 

dataset serving as reference. 

5. Assigning cell-type names. Cell-type names were assigned by incorporating morphology, 

electrophysiological properties, and/or connectivity (mec-type) associated with each final identity. 

Mec-types were determined using patch-seq and connectivity studies 1–3,29, which showed that 

many transcriptomic neuron types are correlated with known cortical neuron types by integrating 

transcriptomic clustering with patch-seq datasets (simultaneous electrophysiological recording and 

morphology reconstruction) and large-scale connectivity studies. These multimodal approaches 

demonstrated reproducible correspondences between molecularly defined subtypes and canonical 

cortical neuron classes. This integrative framework allowed us to anchor transcriptomic identities 

to established cortical cell types with known functional and anatomical properties. Final cell-type 

names were assigned by pooling original cell-type labels that shared a common mec-type. 

6. Classification of cell-types into families. We classified our 27 identified cell-types into 8 families: 

IT family encompassing L2/3 IT, L4 IT|SSC, L4/5 IT|PC, L5 IT, L6 IT cell-types; ET family 

encompassing L5 PT, L6 CT, L6b cell-types; Other GlutNs encompassing CR, L5/6 NP and 

Car3|Claustrum-like cell-types; Lamp5 encompassing Lamp5|L1 A7C/CNC and Lamp5|L1-L5 

NGC cell-types; Vip encompassing Vip|L2/3-L4 BP/BTC, Vip|Uncharacterized and Vip|L2/3-L5 

BP/BTC cell-types; Sst encompassing Sst|L2/3-L5 fan-MC, Sst|L4 IVC, Sst|L5 T-MC and 

Sst|L5/L6 NMC cell-types; Pvalb encompassing Pvalb|L2/3 CHC, Pvalb|L2/3-L4 FS BC, 

Pvalb|L4/5 FS BC and Pvalb|L5/6 FS BC cell-types; Other GABANs encompassing Sncg|CCK 

BC, Sst|FS-like and Sst Chodl|LPC cell-types. 

Pseudo-maturation score analysis. Pseudo-maturation analysis was performed from the earliest 

time point at which a given cell-type was observed up to P30. For each cell-type, we first 

performed an integration designed to preserve the developmental trajectory of the cells by using 

the R package FastMNN 71,72 with prop.k set to 0.1 for most cell types and 0.4 for those with a 

large number of cells (L2/3 IT, L6 CT). Pseudo-maturation scores were calculated by first 

performing k-means clustering (k=2) and then by using the R package slingshot (Street et al., 2018) 

which fits principal curves to identify lineages within each cell-type directly on the mutual nearest 

neighbor graph generated from the integration. Maturation directionality along each lineage was 

established by specifying a starting cluster. The resulting pseudo-maturation scores were 

normalized between 0 and 1. At each age, cells with normalized pseudo-maturation scores 

exceeding ±3 double median absolute deviations (doubleMADs) from the population median were 
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considered outliers and discarded. After outlier removal, pseudo-maturation scores were scaled 

into three bins spanning ages E11.5-E17.5, E18.5-P5, and P8-P30 corresponding to intervals 

[0;1/3], [1/3;2/3] and [2/3;1] respectively. Cells in the E18.5–P5 and P8–P30 intervals were further 

subdivided into 6 and 3 equally sized bins, respectively. 

Temporal gene wave computation 

Genes differentially expressed along this inferred maturation axis were identified using the 

differentialGeneTest function of the R package Monocle 2 (v2.18.0) 73 using parameters 

”fullModelFormulaStr = ˜sm.ns(pseudomaturation, df=3)+study.RNAseq.method.platform“, and 

”reducedModelFormulaStr=˜study.RNAseq.method.platform”. We maintained genes with q-

values less than 0.05 for downstream analysis. Genes with similar expression dynamics were 

grouped in 6 clusters using partition around medoids on the smoothed expression profiles of the 

significantly differentially expressed genes. 

Pseudo-layer score analysis. Pseudo-layer analysis was performed from E18.5 to P30 by pooling 

the 2 nearest time points 2 by 2 from E18.5 to P5. Furthermore, this analysis was done 

independently for each family except for the Other GlutNs and Other GABANs families as they 

included cell-types that were not related to each other. UMAP was computed for IT and ET 

families at each defined time point, with Seurat SCT integration applied beforehand when 

necessary. For the Sst, Pvalb, Vip and Lamp5 families, all GABANs present at each defined time 

point were jointly embedded using UMAP, with dataset integration performed when necessary. 

After generating unified embedding, families were subset while retaining their original UMAP 

coordinates. Pseudo-layer scores were calculated following the same procedure used for the 

pseudo-maturation described above. Briefly, k-means clustering was applied (k = 3 or 2, depending 

on the dataset), except for the ET family, for which predefined cell-type annotations were used in 

place of clustering, designating L5 PT as the starting state and L6b as the terminal state. Lineage 

trajectories were inferred with slingshot 30. The pseudo-layer score was normalized between 0 and 

1. Cells with normalized values above or below three doubleMADs of the population median were 

considered as outliers. Once outliers were discarded, the pseudo-layer score was renormalized 

between 0 and 1. To enable comparisons both across time points and across families, the pseudo-

layer scores were further scaled using the 5th percentile and the 95th percentile of each cell-type 

distribution (as determined in Supplementary fig. 2e and Supplementary fig. 3e). In addition, the 

median score of each cell-type was aligned to the corresponding median position determined in 

Supplementary fig. 2e and Supplementary fig. 3e, with the overall scaling set such that the 95th 

percentile of the L6b distribution equaled 1.  

Spatial gene gradient computation 

Genes differentially expressed along this inferred layer axis were identified using Monocle 2 using 

parameters “fullModelFormulaStr =˜sm.ns(pseudolayer, df=3)+orig.ident”, and 

“reducedModelFormulaStr=˜orig.ident”. Genes with similar expression dynamics were grouped 

in 6 clusters. 
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Determining the distribution of cell types within a cortical column. We took advantage of two 

patch-seq studies from Gouwens et al. (2020) 1 and Scala et al. (2020) 2 and a multiplexed error-

robust fluorescence in situ hybridization (MERFISH) study 33. For each subclass, we applied the 

map_sampling function of scrattch.hicat to independently map cells of the 2 patch-seq studies to 

our reference AllenRef21 by taking the supertype level of the matching subclass Supplementary 

fig. 2a, Supplementary fig. 2b). We assigned each of the clusters defined in these studies to the 

most frequent predicted supertype identity. For the MERFISH dataset, which comprised only 254 

genes, the limited gene coverage prevented us from reliably identifying the corresponding 

supertype of the AllenRef21. We therefore took advantage of the published confusion matrix 

between this MERFISH dataset and 7 scRNAseq and snRNAseq datasets  29,74 to guide cell-type 

correspondence Supplementary fig. 2d). For each subclass, we applied the map_sampling function 

to the 7 datasets and assigned supertype of AllenRef21 to the cluster defined in Callaway et al. 

(2021) 29 fig. 2c). The confusion matrix between MERFISH dataset and the 7 datasets allowed us 

to find the corresponding supertype in the MERFISH dataset. Clusters whose predicted subclass 

did not match their original subclass assignment were excluded from further analysis. Finally, 

supertype labels were merged into cell types defined in the section above to obtain the distribution 

of our cell-types along the cortical thickness Supplementary fig. 2e). For certain cell-types, no 

corresponding populations were identified in the patch-seq and MERFISH studies. We overcame 

this issue by assigning laminar distribution of these cell-types as follows: 

- CR: we took 100 random values encompassed in the L1 (<0.07) to reconstruct the distribution. 

- Vip|L2/3−L4 BP/BTC is a mixed cell-type corresponding to the Vip Mypc1 and Vip Lmo1 

supertypes in AllenRef21. We therefore pooled cells corresponding to these two cell-types to 

reconstruct the distribution of this cell-type. 

We further applied the map_sampling function from the scrattch.hicat R package to each “Pvalb 

FS BC'' clusters identified in the two patch-seq and MERFISH studies, using AllenRef21 cluster 

labels to determine layer specific Pvalb FS BC (Supplementary fig. 3a, Supplementary fig. 3b, 

Supplementary fig. 3c). The resulting AllenRef21 cluster assignments were then consolidated into 

three cell types, defined on the basis of their corresponding distribution extrapolated from the 

normalized soma depth of patch-seq and MERFISH studies: Pvalb | L2/3-L4 FS BC (114 

Pvalb/113 Pvalb and 114 Pvalb clusters), Pvalb | L4/5 FS BC (115 Pvalb, 116 Pvalb/115 Pvalb, 

and 117 Pvalb/116 Pvalb clusters), and Pvalb | L5/6 FS BC (111 Pvalb, 112 Pvalb, 116 Pvalb, 116 

Pvalb/112 Pvalb, 117 Pvalb, and 119 Pvalb). 

 

Transcriptional landscape analysis. For each family, cells were independently embedded in a 

2D graph based on their pseudo-maturation and pseudo-layer scores from E18.5 to P30. Gene 

expression values were represented as Log2(CPM +1). For all genes expressed in at least five cells, 

we fitted a generalized additive model using the gam function from the mgcv R package, modelling 

expression as a function of both the pseudo-maturation and the pseudo-layer axis. For each family, 

to prevent oversmoothing of expression profiles, one third of the total number of cells were 

artificially added with log2(CPM +1) expression values set to zero for all genes. As pseudo-layer 
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score was not computed for other GlutNs and other GABANs families, an artificial pseudo-layer 

score was assigned to each cell included in these families according to their relative position 

determined in Supplementary fig. 2e. As described above, the gam function was applied to these 

two families. In a given family, genes were considered significantly expressed if and only if for at 

least one cell-type and at least one age the number of cells was ≥5, the gene was expressed in more 

than 20% of the cells and its mean expression was higher or equal to the median of the median of 

the log2(CPM + 1) values across all cell-types at that age. Significant genes were used to perform 

a PCA on their smoothed expression landscape. The resulting PCA space was discretized using a 

k-mean clustering, with k=15 determined by the gap statistic method. Average smoothed 

expression profiles were subsequently computed for each cluster. Enriched genes were split by 

cluster within each sheet and converted from mouse gene symbols to Entrez IDs using 

clusterProfiler and org.Mm.eg.db. KEGG pathway enrichment was performed for each (family, 

cluster) gene set using enrichKEGG, with the background universe defined as all Entrez IDs 

present across all clusters. Enriched pathways were retained at FDR ≤ 0.05. KEGG functional 

hierarchy (level 1 and level 2) was retrieved directly from KEGG via KEGGREST and assigned 

to each enriched pathway. For each (family, cluster), we defined a wave-level functional label as 

the KEGG level 2 category most significantly and frequently enriched within that cluster. 

Representative pathways (top 3 by FDR) were recorded for interpretability. Global spatiotemporal 

wave labels were derived analogously by aggregating enrichment across all neuronal families and 

selecting, for each cluster, the dominant KEGG level 2 category and its most recurrent enriched 

pathways Supplementary Data S8 and Fig 2F. 

 

Gene ontology analysis. We used the clusterProfiler 75,76 R package (v4.0) to find enriched 

biological processes in gene sets by using the enrichGO function. Gene ontology analyses were 

applied for each wave identified along the pseudo-maturation axis, and along the pseudo-layer 

axis. 

Construction of the ligand-receptor database. LR_DB_2025 is the result of integrating and 

curating 109 existing public databases, to which we manually added 203 LR pairs based on 

literature (Supplementary Data S1). To the best of our knowledge, it is the largest curated LR 

database. Public databases were found by using some R and python packages, in particular 

OmnipathR 77, singleCellSignalR 59, CellPhoneDB 58 , NATMI 60, CellCall 17, scMLnet 62 and 

CytoTalk 63. We retained only ligand–receptor pairs corresponding to strictly intercellular 

interactions. LRs referenced in LR_DB_2025 were curated with supporting PMIDs documenting 

the evidence for each the interaction (Supplementary Data S1). We assigned each LR to a category 

and a family. Categories for LRs included in Omnipath were taken directly from the database, 

whereas categories for additional LRs were manually curated. In total, there are 20 distinct ligand 

categories and 10 distinct receptor categories. The LR family was attributed by using the HUGO 

Gene Nomenclature Committee (HGNC) resource and to a lesser extent the Uniprot database. 
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Overall, 344 distinct ligand families and 313 distinct receptor families were identified 

(Supplementary Data S1). 

Construction of the Transcription regulatory database. The transcription factor (TF) database 

is the result of combining the merged mouse TRRUST v2 78 and high confidence RegNetwork 79 

TFs provided by the scSeqComm R package 47 with the transcription regulatory database from 

Omnipath, retaining only entries supported by at least one literature reference.” 

Receptor-Transcription factor a priori association. Directed graphs of Reactome and KEGG 

signaling pathways, available from the GitLab repository associated with the scSeqComm package 
47, were used to compute the score of a-priori association between a receptor and a TF using the 

compute tfactor PPR function of scSeqComm. 

LR landscape correlations in specific LR categories or LR neurodevelopmental ontologies 

(Fig3B). We analyzed LR pairs where ligands showed significant transcriptional landscapes in IT 

neurons and where receptors exhibited significant expression in GABANs. LRs belonging to 

neurodevelopmental ontologies were identified using the MSigDB resource via the msigdbr R 

package 80,81, focusing on gene sets from the H, C2, C5, and C8 ontologies, while excluding the 

“cellular component (CC)” ontology. Using specific keywords, we identified LRs belonging to six 

neurodevelopmental ontologies: Migration (2,008 LRs), Cell Death (1,135 LRs), Differentiation 

(3,158 LRs), Cell Adhesion (961 LRs), Synaptogenesis (554 LRs), and Brain-associated processes 

(1,243 LRs), the latter encompassing nervous system functions not directly tied to development. 

LRs identified in these ontologies formed a new database: LR_DB_2025_Brain-Dev-Ontologies. 

We calculated the average correlation between ligand and receptor expression landscapes for LRs 

of specific categories (Fig. 3B, left plot) or neurodevelopmental ontologies (Fig. 3B, right plot), 

with ITs as source cells and GABANs as target cells. Statistical significance was assessed using 

Fisher Z-transformation. 

Inferring ligand-receptor interactions. To infer ligand-receptor interactions between all cell-

type pairs, we used the R package scSeqComm 47 using log2(CPM + 1) of expression values. The 

interaction analysis was conducted from E18.5 to P30 by pooling the two nearest time points two-

by-two from E18.5 to P5 and at the cell-type level. Only cell-types with at least five cells were 

kept for analysis. scSeqComm processed each LR pair referenced in LR_DB_2025 and computed 

intercellular and intracellular scores (S_inter and S_intra respectively) for all pairs of cell-types. 

For each ligand and receptor, scSeqComm assigned a score between 0 and 1 that quantified how 

strongly their average expression in a given cell type exceeded the expression levels expected by 

chance for randomly selected genes in the same cell type. The S_inter score was equal to the 

minimum value obtained between the ligand and the receptor implicated in the LR pair. For each 

known biological signaling pathway and a given receptor, S_intra was computed to quantify the 

evidence that the receptor in a given cell type activated intracellular signaling within that pathway. 

We also computed the S_inter-diff score allowed by scSeqComm which represents an alternative 

version of the default scSeqComm intercellular signaling score. For each gene G in the input 

matrix, gene expression levels of G were normalized by the average expression level of gene G 
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across all cell-types before computing the intercellular scores. This score aimed to prioritize 

ligands (receptors) that behaved differently across cell-types, thereby highlighting LR pairs 

enriched in particular cell-type interactions. To reduce false positives and increase the robustness 

of our approach, we generated a cell-type score that combined two metrics, incorporating prior 

knowledge about the likelihood of interaction between two cell-types: 

• A connectivity score: We constructed a cortical column in 3D of the SS cortex including 

our identified cell-types. To determine the distribution of our cell types within a cortical 

column, we used the cross-reference approach described above with Gouwens et al. (2020) 
1, Scala et al. (2020) 2 Zhang et al. (2021)  33. To gain access to the morphology of our cell-

types, morphological reconstructions in SWC format 

(https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/) from Scala et al. 

(2020) 2 were used. Only three of our identified cell-type did not have matched cell- type 

morphology: Vip Uncharacterized, Car3 Claustrum-like and CR. For Vip Uncharacterized, 

corresponding morphological reconstruction from Vip | L2/3-L4 BP/BTC and Vip | L2/3-

L5 BP/BTC cell-types were used.   Some studies suggest that Car3 Claustrum-like cells 

were IT cell-types predominantly located in L6 29,82, consequently L6 IT cells were used 

as proxies for Car3 Claustrum-like morphologies. For CR cells, a mouse neocortex 

morphological reconstruction was obtained from the neuromorpho.org website 

(<https://neuromorpho.org/neuron info.jspneuron name=Anstoetz NC CajalRetzius 9>). 

This CR morphological reconstruction was rescaled in order to match the morphological 

reconstruction scale of Scala et al. (2020). The constructed 3D cortical column 

encompassed 1 000 cells. The proportion of cell types was set, as closely as possible, to 

reflect their reported abundances in the somatosensory cortex based on the literature 83–91 

(80%GlutNs: 28.25% L2/3 IT, 23.25% L4 IT (85% L4 IT|SSC (60% strictly SSC 

morphology, 25% star pyramidal cell morphology (SPC)), 15% L4/5 IT|PC), 16.25% L5 

(80% L5 PT, 20 % L5 IT), 29.25% L6 (85% L6 CT, 10% L6 IT, 5% L6b), 1% CR, 1% 

L5/6 NP, 1% Car3|Claustrum-like; 20% GABANs: 45% Pvalb (42% Pvalb|FS BC (45% 

Pvalb|L2/3-L4 FS BC, 29% Pvalb|L4/5 FS BC, 26% Pvalb|L5/6 FS BC), 3% Pvalb|L2/3 

CHC), 28% Sst (15% Sst MC (50% Sst|L5 T-MC, 50% Sst|L2/3-L5 fan-MC), 6% Sst|L4 

IVC, 5% Sst|L5/L6 NMC, 2% Sst|FS-like), 2% Sst Chodl|LPC, 10% Vip (60% Vip|L2/3-

L4 BP/BTC, 20% Vip|L2/3-L5 BP/BTC, 20% Vip|Uncharacterized), 6% Sncg|CCK BC, 

9% Lamp5 (44% Lamp5 L1 A7C/CNC, 56% Lamp5 L1-L5 NGC). The centroid 

corresponding to the position of the soma for each reconstructed cell was calculated by 

using the nGauge python package 92. All the reconstructed cells were embedded in a 3D 

cortical cortical column by using the natverse R package 93 by positioning the soma 

according to the normalized cortical depth provided in 2. If more cells than provided in2 

were needed, a random normalized cell soma depth was selected between the 5th and the 

95th percentile of the cell-type distribution along the cortical column. Values of soma 

position were adjusted in such a way that the cortical column had a cortical depth of 1 500 

µm (Y axis) and the X and Z axis had a length of 150 µm. X and Z coordinates were 
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randomly taken between 0 and 150 for each cell. Once the 1 000 cells were embedded in 

the reconstructed cortical column, the potential synapses between each cell and the 999 

other cells were computed by using the potential_synapses function of the natverse 

package that implements the method of Stepanyants and Chklovskii 48. This method created 

a technical artifact by facilitating potential synapses between cells belonging to the same 

cell-type as they were similarly distributed within the cortical column. All the potential 

synapses involving 2 cells belonging to the same cell-type were assigned as NA values. A 

connectivity score between 2 cell-types was obtained as follows: 

 

 

 

∀𝑎 ∈ [1: 999], ∀𝑏 ∈ [1: 999], 

𝑁𝑜𝑟𝑚. 𝑝𝑜𝑡𝑆𝑐𝑒𝑙𝑙𝑎−𝑐𝑒𝑙𝑙𝑏
=

𝑝𝑜𝑡𝑆𝑐𝑒𝑙𝑙𝑎−𝑐𝑒𝑙𝑙𝑏

𝑚𝑎𝑥(𝑃𝑜𝑡𝑆𝑐𝑒𝑙𝑙𝑎
) + 𝑚𝑎𝑥(𝑃𝑜𝑡𝑆𝑐𝑒𝑙𝑙𝑏

)

2

 

 

𝑤ℎ𝑒𝑟𝑒: 

− 𝑎 ∶  𝑐𝑒𝑙𝑙 𝑎 

− 𝑏 ∶  𝑐𝑒𝑙𝑙 𝑏 

− 𝑝𝑜𝑡𝑆 ∶  𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠 

 

∀𝑗 ∈ [1: 27], ∀𝑘 ∈ [1: 27], 

𝑁𝑜𝑟𝑚. 𝑝𝑜𝑡𝑆
𝑐𝑡𝑗⟶𝑐𝑡𝑘𝑗≠𝑘 =

∑ ∑ 𝑁𝑜𝑟𝑚
𝑛𝑐𝑡𝑘
𝑘=1

𝑛𝑐𝑡𝑗

𝑗=1
. 𝑃𝑜𝑡𝑆𝑐𝑒𝑙𝑙𝑎−𝑐𝑒𝑙𝑙𝑏

𝑐𝑡𝑗⟶𝑐𝑡𝑘𝑗≠𝑘

𝑛𝑐𝑡𝑗
+ 𝑛𝑐𝑡𝑘

 

 

𝑤ℎ𝑒𝑟𝑒 ∶ 

− 𝑐𝑡𝑗 ∶  𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑗 

− 𝑐𝑡𝑘 ∶  𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑘 

− 𝑛𝑐𝑡𝑗 : 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑗 

− 𝑛𝑐𝑡𝑘 : 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑘  

 

∀𝑗 ∈ [1: 27], ∀𝑘 ∈ [1: 27], 

𝑐𝑜𝑛𝑛. 𝑠𝑐𝑜𝑟𝑒
𝑐𝑡𝑗⟶𝑐𝑡𝑘𝑗≠𝑘 =

𝑁𝑜𝑟𝑚. 𝑝𝑜𝑡𝑆
𝑐𝑡𝑗⟶𝑐𝑡𝑘𝑗≠𝑘

𝑚𝑎𝑥(𝑁𝑜𝑟𝑚. 𝑝𝑜𝑡𝑆𝑐𝑡𝑗) + 𝑚𝑎𝑥(𝑁𝑜𝑟𝑚. 𝑝𝑜𝑡𝑆𝑐𝑡𝑘)
2
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Due to the technical artifact affecting cell pairs belonging to the same cell-type, a 

medium connectivity score was assigned: 

 

∀𝑗 ∈ [1: 27], ∀𝑘 ∈ [1: 27], 

𝑐𝑜𝑛𝑛. 𝑠𝑐𝑜𝑟𝑒
𝑐𝑡𝑗⟶𝑐𝑡𝑘𝑗=𝑘 = 0.5 

 

 

 

 

 

• a development score: Some cell types colonize the cortex before others. For example, 

GlutNs colonize the cortex before GABANs and deep-layer GlutNs before superficial 

layers GlutNs. We attributed a development score between cell-types to reflect the degree 

of maturity of the different cell-types across cortical development. These scores span 

values from 0.1 to 1 (Supplementary Data S3). 

These 2 scores allowed us to define a cell-type score: 

∀𝑗 ∈ [1: 𝑚], ∀𝑘 ∈ [1: 𝑚], 

𝑐𝑡. 𝑠𝑐𝑜𝑟𝑒𝑐𝑡𝑗⟶𝑐𝑡𝑘 = 𝑑𝑒𝑣. 𝑠𝑐𝑜𝑟𝑒𝑐𝑡𝑗⟶𝑐𝑡𝑘 × (𝑐𝑜𝑛𝑛. 𝑠𝑐𝑜𝑟𝑒𝑐𝑡𝑗⟶𝑐𝑡𝑘 +
1

2
× (1 − 𝑑𝑒𝑣. 𝑠𝑐𝑜𝑟𝑒𝑐𝑡𝑗⟶𝑐𝑡𝑘)) 

𝑤ℎ𝑒𝑟𝑒: 

− 𝑐𝑡𝑗  : 𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑗 

− 𝑐𝑡𝑘 : 𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑘 

− 𝑚 ∶  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒𝑠  𝑖𝑛  𝑡ℎ𝑒  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑  𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

 

A ligand-receptor pair (LR)i between 2 cell-types pairs was considered significant 

if and only if: 

∀𝑖 ∈ [1: 𝑛], ∀𝑗 ∈ [1: 𝑚], ∀𝑘 ∈ [1: 𝑚], ∀𝑙 ∈ [1: 𝑀], ∀𝑟 ∈ [1: 𝑀], 

𝑤𝑐𝑡𝑠𝑐𝑜𝑟𝑒
× 𝑐𝑡𝑠𝑐𝑜𝑟𝑒

𝑐𝑡𝑗⟶𝑐𝑡𝑘
+ 𝑤𝑖𝑛𝑡𝑒𝑟𝑠𝑐𝑜𝑟𝑒

× 𝑆_𝑖𝑛𝑡𝑒𝑟(𝐿𝑅)𝑖

𝑐𝑡𝑗⟶𝑐𝑡𝑘
> 𝑤𝑐𝑡𝑠𝑐𝑜𝑟𝑒

× (1 − 𝑐𝑡𝑠𝑐𝑜𝑟𝑒

𝑐𝑡𝑗⟶𝑐𝑡𝑘
) +

𝑤𝑖𝑛𝑡𝑒𝑟𝑠𝑐𝑜𝑟𝑒
×

∑ 𝑆_𝑖𝑛𝑡𝑒𝑟(𝐿𝑅)𝑖

𝑐𝑡𝑗⟶𝑐𝑡𝑘𝑛
𝑖=1

𝑛
  

& 
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⋀ 𝑃𝑐𝑡𝐿𝑙

𝑐𝑡𝑗

𝑀

𝑙=1

> 15% & ⋀ 𝑃𝑐𝑡𝑅𝑟

𝑐𝑡𝑘

𝑀

𝑟=1

> 15% 

𝑤ℎ𝑒𝑟𝑒: 

− (𝐿𝑅)𝑖 ∶  𝐿𝑅  𝑝𝑎𝑖𝑟  𝑖 

− 𝑛 ∶  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐿𝑅  𝑝𝑎𝑖𝑟𝑠  𝑖𝑛  𝐿𝑅𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑙𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐷𝐵  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝑖𝑛  𝑡ℎ𝑒  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑  𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

− 𝑙 ∶  𝑠𝑢𝑏𝑢𝑛𝑖𝑡  𝑙  𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑛𝑔  𝑡ℎ𝑒  𝑙𝑖𝑔𝑎𝑛𝑑  𝐿 

− 𝑟 ∶  𝑠𝑢𝑏𝑢𝑛𝑖𝑡  𝑟  𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑛𝑔  𝑡ℎ𝑒  𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟  𝑅 

− 𝑀 ∶  𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝑠  𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑛𝑔  𝑡ℎ𝑒  𝑙𝑖𝑔𝑎𝑛𝑑  𝐿  𝑜𝑟  𝑡ℎ𝑒  𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟  𝑅 

− 𝑤𝑐𝑡𝑠𝑐𝑜𝑟𝑒 
: 𝑤𝑒𝑖𝑔ℎ𝑡  𝑎𝑝𝑝𝑙𝑖𝑒𝑑  𝑡𝑜  𝑡ℎ𝑒  𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒  𝑠𝑐𝑜𝑟𝑒. 

𝐼𝑓 𝑡ℎ𝑒 𝑙𝑖𝑔𝑎𝑛𝑑 𝐿 𝑜𝑓 𝑡ℎ𝑒 (𝐿𝑅)𝑖 𝑤𝑎𝑠 𝒏𝒐𝒕 𝒂 𝒔𝒆𝒄𝒓𝒆𝒕𝒆𝒅 

𝒎𝒐𝒍𝒆𝒄𝒖𝒍𝒆 𝑡ℎ𝑒𝑛 𝒘𝒄𝒕𝒔𝒄𝒐𝒓𝒆
= 𝟎. 𝟔; 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑔𝑎𝑛𝑑 𝐿 𝑜𝑓 𝑡ℎ𝑒 (𝐿𝑅)𝑖  𝑤𝑎𝑠 𝑎 𝒔𝒆𝒄𝒓𝒆𝒕𝒆𝒅 𝒎𝒐𝒍𝒆𝒄𝒖𝒍𝒆 𝑡ℎ𝑒𝑛 

𝒘𝒄𝒕𝒔𝒄𝒐𝒓𝒆
= 𝟎. 𝟒 

− 𝑤𝑖𝑛𝑡𝑒𝑟𝑠𝑐𝑜𝑟𝑒
: 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑔𝑎𝑛𝑑 − 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒. 

𝐼𝑓 𝑡ℎ𝑒 𝑙𝑖𝑔𝑎𝑛𝑑 𝐿 𝑜𝑓 𝑡ℎ𝑒 (𝐿𝑅)𝑖  𝑤𝑎𝑠 

𝒏𝒐𝒕 𝒂 𝒔𝒆𝒄𝒓𝒆𝒕𝒆𝒅 𝒎𝒐𝒍𝒆𝒄𝒖𝒍𝒆 𝑡ℎ𝑒𝑛 𝒘𝒊𝒏𝒕𝒆𝒓𝒔𝒄𝒐𝒓𝒆
= 𝟎. 𝟒; 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑔𝑎𝑛𝑑 𝐿 𝑜𝑓 𝑡ℎ𝑒 (𝐿𝑅)𝑖  𝑤𝑎𝑠 𝒂 𝒔𝒆𝒄𝒓𝒆𝒕𝒆𝒅 

𝒎𝒐𝒍𝒆𝒄𝒖𝒍𝒆 𝑡ℎ𝑒𝑛 𝒘𝒊𝒏𝒕𝒆𝒓𝒔𝒄𝒐𝒓𝒆
= 𝟎. 𝟔 

− 𝑃𝑐𝑡𝐿

𝑐𝑡𝑗
: 𝐿𝑖𝑔𝑎𝑛𝑑 𝐿 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑗  

− 𝑃𝑐𝑡𝑅
𝑐𝑡𝑘: 𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟 𝑅 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑐𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒 𝑘 

 

In order to prioritize cell-type specific interactions, we retained only significant LR pairs that had 

a S_inter-diff score above the population median minus 1.5 DoubleMAD for each cell-type pair 

and at each age. 

In the case of homophilic interaction, i.e., LR pairs in which the same molecule acted as both 

ligand and receptor, the mean S_inter values could differ according to the direction of the 

interaction between two cell-types. Therefore, the threshold described was evaluated in both 

directions to consider the LR pair between ktwo cell-types as significant. For LRs with secreted 

ligands, we gave a lower weight to the cell  pair score and a higher weight to the LR intercellular 

score to account for their ability to act over greater distances. To further reduce false positives, 

only LR pairs that were significantly present across contiguous developmental stages were 

included (Supplementary fig. 13). 

Definition and use of intercellular score thresholds  

As detailed above, each ligand–receptor interaction was associated with an intercellular 

score Sinter, a cell-type score combining the developmental score and the anatomical connectivity 
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score of the two cell types, and ligand-type–specific weights (0.6/0.4 for membrane ligands and 

0.4/0.6 for secreted ligands) that determine how the cell-type score and the Sinter score contribute 

to the thresholding step. To clarify how these components were used to establish significance, we 

applied a two-step thresholding procedure. First, for each LR–cell-type pair, we compared the 

weighted observed value (cell-type score × weight + Sinter × weight) with the corresponding 

weighted expected value (threshold derived from the same LR pair and its mean Sinter across all 

cell-type pairs). An interaction was retained only when its observed value exceeded this threshold, 

ensuring that LR pairs were accepted only when their intercellular score was stronger than 

expected given the developmental and anatomical plausibility of the interacting cell types. Second, 

LR pairs were required to pass an independent expression filter in which all ligand and receptor 

subunits had to be detected in more than 15% of cells in their respective cell types. Among the 

remaining interactions, only those with an Sinter-diff score above the median minus 

1.5×DoubleMAD were kept ensuring cell-type specificity. Together, these steps convert 

continuous scSeqComm scores into a strict binary classification (significant vs. non-significant) 

while leaving the underlying scores unchanged. 

 

Machine learning framework to test the combinatorial code hypothesis. To assess whether LR 

expression patterns can distinguish cell-type pairs, we implemented a machine learning 

classification framework in R/PyTorch. For each developmental stage, source→target cell-type 

pairs were expanded into single-cell replicates by subsetting a fixed number of cells from each 

source and target cell-type. For every replicate, we generated a ligand–receptor feature matrix in 

which each entry corresponded to the product of the normalized RNA counts of a ligand in the 

source cell and its cognate receptor in the target cell. This encoding captured the potential 

interaction strength at the single-cell level and yielded a standardized feature set across all pairs. 

These matrices were then used to train classifiers tasked with predicting the correct source→target 

identity. Each example was encoded as ligand × receptor expression products (log1p, z-scaled). 

Five LR feature sets were evaluated: (i) all significant pairs; (ii) shared-only pairs (≥300 pairs); 

(iii) rare-only pairs (≤10 pairs); (iv) unique-only pairs (1 pair); and (v) size-matched random non-

LR pairs. Train/test splits were made by cells (no source or target cell seen in training was included 

in testing). We trained a multi-layer perceptron (MLP) classifier with and without weight pruning, 

optimizing with Adam and early stopping. Model performance was assessed by test accuracy, 

ROC–AUC, and macro-F1 across >600 possible cell-type pairs. While overall accuracy was 

necessarily modest due to the difficulty of the task, rare-only feature sets consistently exceeded 

chance, and combining feature sets (all significant) achieved the best performance, consistent with 

a combinatorial LR code. 

 

Analysis on Ganglionic Eminences (Supplementary fig. 23). To characterize ligand–receptor 

(LR) interactions within the ganglionic eminences (GE), we combined curated LR pairs from 
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LR_DB_2025 with ontology annotations derived from MSigDB. After filtering out complexes, 

unique ligand–receptor couples were intersected with neurodevelopmental gene sets to identify 

processes relevant to GE maturation. We classified interactions according to their progenitor origin 

(VZ→MGE, VZ→CGE, VZ→POA) and monitored their persistence across contiguous 

developmental stages. Using UpSet plots and clustered heatmaps, we quantified the proportion of 

LR pairs that were specific versus shared between domains and traced their evolution across ages. 

Pairwise overlap was further assessed with Jaccard indices to measure the stability of interactions 

between domains. Enrichment analysis of LR-associated ontologies was then performed separately 

for specific and shared interactions, enabling the identification of domain- and age-dependent 

signaling programs. Enrichment analysis of LR-associated ontologies was performed using the 

clusterProfiler R package. First, ligand–receptor pairs were collapsed into ontology terms by 

mapping both ligands and receptors to MSigDB biological process gene sets (C5 collection), 

creating a custom TERM2GENE table. This annotation was joined to LR pairs detected in each 

GE domain and age group. LR pairs were then split into “specific” (present in only one domain) 

and “shared” (present in two or more domains) subsets, and enrichment was tested independently 

within each subset using the enricher function, with all detected LR pairs as the background 

universe. Significant terms were defined by adjusted p-value <0.05. For visualization, the most 

enriched terms were displayed as dot plots, separated by domain (VZ–MGE, VZ–CGE, VZ–POA), 

developmental stage (E18.5–P0, P1–P2, P4–P5), and interaction type (specific vs shared), enabling 

identification of signaling programs enriched at distinct ages or across domains. 

 

General analysis of inferred LR interactions (Fig. 4). We analyzed the percentage of LR pairs 

associated with neurodevelopmental processes and disorders predicted by our atlas, focusing on 

their utilization at specific time points and between defined cell- pairs. In Fig. 4C, LRs were 

categorized into six neurodevelopmental processes using an approach similar to the landscape 

analysis (Fig. 3B). However, in this case, we included all significant LRs from the LR_DB_2025 

database, as determined by intercellular and cell pair scores, regardless of their landscape 

significance or prior classification within brain ontologies (Fig. 3B). This analysis identified 2,576 

LRs associated with neuronal migration, 1,494 with neuronal cell death, 3,921 with 

differentiation/morphogenesis, 1,391 with cell recognition/adhesion, 613 with synaptogenesis, and 

238 specific to the Cadherin family. These groups were further stratified by developmental time 

points (E18.5-P0 to adulthood) and cell families (Pvalb, Sst, Vip, Lamp5, and Other GABANs). 

We used curated neurodevelopmental disorder gene lists to identify LRs implicated in specific 

conditions (Fig. 4D-F). We found 29 LRs associated with epilepsy 94, 104 with intellectual 

disorders (from the ITHACA database: https://id-genes.orphanet.app/ithaca/), 14 with 

schizophrenia 95, and 100 with autism 96 (from the SFARI Gene database, accessed December 

2024) (Supplementary Data S5). For Fig. 4F, we visualized the disease-associated LR pairs as an 

interaction network using the ggraph and igraph R packages.  In Fig 4C and D to enable fair 

comparison across ontologies with unequal numbers of possible ligand–receptor pairs or Diseases, 
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the number of significant interactions was normalized by the total number of LR combinations 

within each ontology or diseases category. 

 

ShRNAs. RNAi experiments were conducted using shRNAs targeting the coding sequence of Mus 

musculus Cdh13 and Pcdh8 (GenBank accession number NM_019707 and NM_021543) based on 

the following criteria (http://www.promega.com/siRNADesigner/program) :  

- the sequence must start with either a Cysteine (C) or Guanine (G) 

- It must have more than 50 % G or C bases 

- No more than 3 consecutive base repetitions in the sequence 

The sequences chosen to design oligonucleotides (Supplementary Data S7) for shRNA genesis 

recognized nucleotides 1521-1541 of Cdh13 coding sequence and nucleotides 2302-2322 of Pcdh8 

coding sequence. BLAST searches against Mus musculus databases confirmed the specificity of 

each target. As negative controls, we used corresponding non-targeting shRNAs with the same 

nucleotide sequence except in four positions. These shRNAs were subcloned into the mU6pro 

vector (gift from Dr J. LoTurco) and validated in vitro using classical western blot assays 

(Supplementary Data S7). 

 

In utero electroporations. Timed pregnant C57BL6/J females were anesthetized with isoflurane 

(75% for induction and 2 to 2.5% for surgery) at E13.5 to trace DL neurons, at E15.5 to trace SL 

neurons. The uterine horns were exposed. A volume of 1–2 µL of small hairpin RNA-expressing 

DNA plasmid (shRNA against Cdh13 or against Pcdh8 vs their respective control shRNAs, 1.5 

µg/µl) was mixed with pCAG-GFP plasmids (1 µg/µl) and Fast Green (2 mg/ml, Sigma) for 

further injection into the lateral ventricle of each embryo with a pulled glass capillary and a 

microinjector (Picospritzer II, General Valve Corporation, Fairfield, NJ, USA). Electroporation 

was then conducted by discharging a 4000 µF capacitor charged to 27 V using a BTX ECM 830 

electroporator (BTX Harvard Apparatus, Holliston, MA, USA). Five electric pulses (5 ms 

duration) were delivered at 950 ms intervals using electrodes. Embryos were allowed to be born 

and develop before being sacrificed at P28, and 50 µm coronal brain slices were cut using a sliding 

microtome (Microm). 

Histology and immunostainings. Mice were perfused transcardially with ice-cold 4% 

paraformaldehyde (in PBS). Brains were removed and post-fixed overnight at 4 °C with the same 

fixative. Coronal sections were cut at 50 µm thickness using a sliding microtome (Microm). 

Briefly, for immunofluorescence experiments, free-floating sections were blocked and 

permeabilized for 2 hours in a blocking buffer composed of 10% Normal Bovine Serum, 0.2% 

Triton X-100 (Sigma) in PBS. Primary antibodies, diluted in blocking solution and added 

overnight at 4 °C, were as follows: rabbit anti-Parvalbumin (1:1000, Swant), chicken anti-GFP 

(1:500, Aves), rabbit anti-Synaptotagmin 2 (SYT2) (1:100, DSHB), mouse IgG2a anti-SYT2 

(DSHB, 1:100), and rabbit anti-SPTBN4 (Thermofisher, 1:1000). Corresponding fluorescently 

labeled secondary antibodies (AlexaFluor, Invitrogen) were added for 2 h in blocking solution at 
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room temperature. Hoechst was added in PBS for 10 min, and sections were mounted on 

microscope slides that were coversliped using Mowiol solution (Sigma). 

Proximity ligation assay. 60 m sagittal sections were treated for rabbit anti-CBLN4 (Invitrogen, 

PA5-36472) and anti-Mouse GLUD1 (Proteintech, 67026-1-Ig) or anti-CBLN4 and goat anti-

NEO1 (Biotechne, AF1079) co-immunolabeling before application of Rabbit Plus and Mouse 

Minus or Rabbit Plus and Goat Minus probes, respectively (Merck, Duolink). Experiments were 

then done according to the manufacturer’s instructions. 

 

Image acquisition. Images were obtained from 50 µm thick sections using a Zeiss LSM-800 

confocal microscope. Electroporated zones were imaged with a 10X objective (Plan-Apochromat, 

Numerical aperture 0.3) to provide an overall view of all electroporated cells. For the proximity 

ligation assay, we imaged layers 1 and 2 with an oil-immersed 40X objective using mosaic tiles, 

or with an oil-immersed 63X objective (Olympus, Numerical aperture 1.4) for GFP colocalization 

with puncta. For synaptic analysis, GFP+ GlutNs located in deep or superficial cortical layers were 

imaged with the 63X objective. A 3X digital zoom was applied to achieve a lateral and z-axis 

resolution of 85 nm. The Z-stack was adjusted for each slice to ensure complete imaging of the 

entire neuron for subsequent 3D reconstruction. Laser power and detection filter settings were 

optimized based on the staining quality of each slice. 

 

Image analysis. All cell analyses were performed on GFP-electroporated neurons found in the DL 

of the S1 cortex. All images were blinded using “blind analysis tool” plugins in ImageJ. 3D-Image 

reconstructions and analyses were performed with IMARIS 9.9.0 software. First, a zoomed crop 

was done on the GFP+ soma compartment. Then, to assess Pvalb FS BC cell input onto GFP-

expressing electroporated cells, the Syt2+ presynaptic boutons physically contacting the GFP+ 

soma of pyramidal electroporated cells were analyzed. First, spots (diameter 0.6 µm) 

corresponding to individual Syt2+ presynaptic boutons were created by using the create spots 

function. The GFP+ soma was then reconstructed using the create surface tool. The density of 

Syt2+ synaptic spots contacting the GFP+ soma’s surface was then measured using the object-

object statistic tool with the filter “shortest distance from soma.” To analyze the mean volume of 

presynaptic Syt2+ puncta, these puncta were modelized using the create surface tool followed by 

the filter “shortest distance from soma” adjusted to 0 to isolate only the Syt2+ surfaces contacting 

the GFP+ soma surface. 

 

Statistics. All statistical tests are described in the figure legends. Statistical methods to 

predetermine sample size were not used. Unless otherwise stated, all values represent the averages 

of independent experiments ± SEM. Shapiro-Wilk or Anderson-Darling test was used to test the 

normality of the data. Statistical significance for comparisons of one variable was determined by 

student’s t-test using two- tailed distribution for two normally distributed groups, and by Mann-
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Whitney non-parametric test when distributions were not normal. For proportion comparisons, χ² 

test was applied. Differences were considered significant when p-value <0.05. All statistical 

analyses were performed with R and Rstudio or with Prism 8.0.2 software (GraphPad). 

Data availability 

Raw sc/snRNA-seq data generated in this study are available in the ArrayExpress database under 

accession E-MTAB-16260, and bulk RNA-seq data are available under accession E-MTAB-

16355 (https://www.ebi.ac.uk/biostudies/arrayexpress/studies). Processed data, QC outputs, and 

derived RDS files are deposited on Zenodo (https://zenodo.org/records/11634657). Interactive 

exploration of inferred signaling networks is available through the scLRSomatoDev Shiny 

application at https://sclrsomatodev.online/. Source data are provided with this paper. 

Code availability 

All scripts used for data preprocessing, quality control, ligand–receptor inference, ontology 

annotation, and enrichment analysis were written in R and Python. The complete codebase, 

including custom functions and documentation, is publicly available on Zenodo 

(https://zenodo.org/records/11634657). Additional documentation and tutorials are provided 

online: 

Documentation: https://cortical-interactome.github.io/scLRSomatoDev-Docs/ 

Video 

tutorials: https://www.youtube.com/playlist?list=PLyfGSyn6Q6UY82ccuHRZQmRchVx6DskfJ 
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Figure 1. Comprehensive neuronal transcriptomic atlas of mouse somatosensory cortex 

development. (A) Sankey diagram depicting the experimental paradigm for data collections and 

integration of published datasets. Yao*: Yao et al., 2021; J. Di Bella*: J. Di Bella et al., 2021, 

Telley*: Telley et al., 2019; R.Lee*: R.Lee et al., 2022; Bandler: Bandler et al., 2021; Mayer*: 

Mayer et al., 2018; Mi*: Mi et al., 2018; SSp: primary somatosensory cortex; SSs: supplemental 

somatosensory cortex; MGE: medial ganglionic eminence; dMGE: dorsal MGE; vMGE: ventral 

MGE; CGE: caudal ganglionic eminence; LGE: lateral ganglionic eminence; 10X: 10X Genomics; 

SSv4: Smart-seq version 4; SSv2: Smart-seq version 2; C1: Fluidigm C1. (B) UMAP visualization 

of post-mitotic neurons from the 17 time points after integration. Cells are colored by cell-type 

assignment. (C) UMAP visualization is colored by age, study, region, RNA-seq method, 

sequencing platform, and gene markers. (D) Left: Sankey plot representing the different 

hierarchical levels of cell type assignment; middle: heatmap representing the fraction of each cell 

type per age; right: heatmap representing some cell type-specific genes. “Normalized expression” 

represents the 25% trimmed mean log2(CPM + 1) expression normalized by row. See also Figs. 

S1-S4. Associated source data are provided. 
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Figure 2. Spatiotemporal transcriptional dynamics of neuronal subtypes over cortical wiring. 

(A) UMAP visualization of all neurons color coded with cell family labels. (B) Top: 2D map in 

which cells are embedded according to their pseudo-maturation (x-axis) and pseudo-layer (y-axis) 

scores for the IT family. Bottom: A generalized additive model (GAM) was applied to generate 2D 

maps, i.e., “transcriptional landscapes”,  for the spatiotemporal expression of genes throughout 

cortical wiring; Cux1 expression is represented as an example. (C) Transcriptional landscapes for 

Fezf2 in ET (top) and for Reln in Other GlutNs (bottom). (D) Transcriptional landscapes for 

representative genes in each GABAN family. (E) Example of transcriptional landscapes for genes 

implicated in GABAN migration (Cxcl12, Ackr3 and Cxcr4), and in synaptogenesis (Nlgn1 and 

Nrxn1). (F) Gene map obtained by performing a PCA on all the significantly expressed genes 

colored by cell family (left) and by spatiotemporal cluster (right). Average transcriptional landscapes 

of each cluster are displayed around the gene map, annotated with the corresponding top KEGG 

ontology label (Supplementary Data S8). (G) Varying spatiotemporal clusters for the Cadherin gene 

family among 3 neuronal families. CP, cortical plate ; IZ, intermediate zone ; MZ, marginal zone ; 

SVZ, subventricular zone ; VZ, ventricular zone ; WM, white matter. See also Figs S5-S16. 

Associated source data are provided. 
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Figure 3: scLRSomatoDev, an atlas to infer LRs involved in cortex wiring. (A) Curated ligand–

receptor database containing 8,789 LR pairs compiled from 109 sources (LR_DB_2025). To 

increase biological relevance for our study, we generated a brain-focused subset 

(LR_DB_2025_Brain) by retaining only ligands and receptors expressed in our single-cell 

dataset, resulting in 5,341 LR pairs. See Supplementary Data S1 and S2 for full listings. (B) 

Correlations between transcriptional landscapes of neurodevelopmental process-associated 

ligands in ITs and receptors in GABANs, suggesting a ligand–receptor code for neuronal 

adhesion and synaptogenesis that involves the cadherin family of adhesion molecules. (Left) bars 

show the mean correlation between IT ligand and GABAN receptor landscapes for random 

ligand–receptor (LR) pairs, ADAM metalloproteases, cadherins and Ig-like cell-adhesion 

molecules. (Right) bars show the mean correlation for LR pairs assigned to neurodevelopmental 

categories (brain-associated, migration, cell death, differentiation, cell adhesion and 

synaptogenesis). Data are presented as mean values, statistical significance was assessed by 

comparing each category to its respective reference group (Left: random non-LR gene pairs; 

Right: “Brain associated” category) using a two-sided z-test based on Fisher’s r-to-z 

transformation, with no adjustment for multiple comparisons. Exact P values were: cadherins vs 

random LR pairs, P = 0.00125; cell adhesion vs “ Brain associated ”, P = 2.215e-05 ; 

synaptogenesis vs “ Brain associated ”, P = 7.0357e-04. Asterisks indicate significance levels: P 

< 0.05 (*), P < 0.01 (**), P < 0.001 (***). (C) Simplified method for the inference of LR-

mediated interactions. TF, transcription factor; TG, target gene; S_inter, score for intercellular 

communication; S_intra, score for intracellular signaling. See Figs S13-14. (D) Heatmaps 

illustrating the number of inferred LR interactions that persist across at least two consecutive 

ages for all 729 cell-type pairs. From left to right and top to bottom: all possible interactions; 

interactions unique to a single cell-type pair, widely shared interactions (by >400 pairs) and very 

rare interactions (shared by <10 pairs). Associated source data are provided. 
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Figure 4: Involvement of LR pairs based on neurodevelopmental ontologies and 

diseases. (A) Number of LR pairs predicted to be utilized per GABAN family as 

target cells, from E18 to adulthood. (B) Number of predicted LR interactions 

between IT and GABAN cell-types as source and target cells, respectively, from 

E18 to adulthood. (C) Percentage of LR pairs of five main neurodevelopmental 

ontologies and of the cadherin LR family that are predicted as utilized between IT 

and GABAN cell-types as source and target cells, respectively, from E18 to 

adulthood. (D) Percentage of LR pairs with both ligand and receptor associated 

with neurodevelopmental diseases that are predicted as utilized between IT and 

GABAN cell-types as source and target cells, respectively, from E18 to adulthood. 

(E) Intersections between LR pairs of the 4 diseases studied. (F) Interaction 

network showing the LR pairs associated with each disease. (G) Gene ontologies 

associated with inferred, disease-associated LR pairs. Associated source data are 

provided. 
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Figure 5. Experimental confirmation of the Ligand-Receptor Atlas. (A) 

Diagram illustrating Nrg3-Erbb4 interaction between GlutNs and GABANs. 

(B) Nrg3 and Erbb4 transcriptional landscapes in GlutN and GABAN families. 

(C) Heatmap depicting predictions of Nrg3-Erbb4 mediated interactions 

between GlutN and GABAN cell-types. (D) Left: Predicted Nrg3-Erbb4 

mediated cell-cell interactions at P8 and P30. GlutNs (blue) are sources of Nrg3 

and GABANs are targets expressing Erbb4. Right: Schematic representation 

illustrating the predicted interaction strength among three example cell pairs, 

highlighting preferred connectivity patterns based on computational predictions, 

which validates the 3 cited references. (E) Diagram illustrating CBLN4-

mediated inhibitory synapse formation from Sst cells to GlutNs in the cortex. 

(F) Transcriptional landscapes of Cbln4 expression across different neuron 

families. (G) Heatmap with LR pairs predicted to involve CBLN4 as a ligand. 

(H) Predicted CBLN4-mediated cell-cell interactions at P4-P5 and P8. Pathways 

on the left, CBLN4-receptor pairs on the right. (I) Proximity ligation assay 

(PLA) for interactions between CBLN4 and GLUD1, and between CBLN4 and 

NEO1, in layers L1 and upper L2. A magnified view of a GFP-positive neuronal 

process with PLA puncta (red) is shown on the lower right. Scale bar: 10 µm. 

The PLA experiment was performed independently in 4 biological replicates, 

each yielding similar results. (J) Summary of the experimental findings related 

to investigations on CBLN4. S_inter, intercellular score; S_intra, intracellular 

score. 
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Figure 6. Distinct cadherins differentially regulate perisomatic inhibition in a 

layer-dependent manner. (A) Transcriptional landscapes of Cdh13 expression. 

(B) Heatmap of predicted CDH13–CDH13 interactions between GlutN ITs and 

GABAN types, shared by at least two consecutive ages. (C) Predicted utilization 

of CDH13–CDH13 interactions across ITs and GABANs at P4–P5 and P30; 

interaction strength is quantified by the inter_diff score. (D) In vivo knock-down 

of CDH13 in L5 GlutNs (left). Perisomatic (middle) and axon initial segment 

(right) inhibitory inputs from Pvalb BC and CHC boutons onto L5 GlutNs were 

quantified as SYT2 coverage. Statistical analysis was performed using Two-sided 

Mann-Whitney tests with biological replicates: n = 4 mice per electroporation 

condition (shCtl, shCdh13). Unit of analysis: individual electroporated L5 GlutN 

somata; technical replicates: 36 somata (shCtl) and 37 somata (shCdh13). Exact 

P value for perisomatic SYT2 coverage: P = 0.0227 *p < 0.05. No correction for 

multiple comparisons. Data are presented as median values in box plots, which 

show the median (centre line), 25th–75th percentiles (box), and whiskers 

representing minimum and maximum values within 1.5× the interquartile range 

(IQR). (E) Transcriptional landscapes of Pcdh8 expression. (F) Heatmap of 

predicted PCDH8–PCDH8 interactions between GlutN ITs and GABAN types 

shared by at least two consecutive ages. (G) Predicted utilization of PCDH8–

PCDH8 interactions at P1–P2 and P4–P5. (H) In vivo knock-down of PCDH8 in 

L2/3 ITs (left). Perisomatic (middle) and axon initial segment (right) inhibitory 

inputs from Pvalb BC and CHC boutons onto L2/3 ITs were quantified as SYT2 

coverage. Statistical analysis was performed using Two-sided Mann-Whitney 

tests with biological replicates: n = 4 mice per electroporation condition (shCtl, 

shPcdh8). Unit of analysis: individual electroporated L2/3 IT somata; technical 

replicates: 72 somata (shCtl) and 66 somata (shPcdh8). Exact P value for 

perisomatic SYT2 coverage: P = 0.028 *p < 0.05. No multiple-comparison 

correction. Data are presented as median values in box plots, with the median 

(centre line), 25th–75th percentiles (box), and whiskers indicating minimum and 

maximum values within 1.5× IQR. Associated source data are provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editorial summary: Ligand–receptor signaling between neuronal subtypes 

during cortical development remain largely unknown. Here, authors show 

spatiotemporal gene-expression maps across neuronal types revealing ligand 

receptor interactions that support migration and circuit formation. 
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