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Abstract: The cerebral cortex comprises diverse excitatory and inhibitory neuron subtypes, each
with distinct laminar positions and connectivity patterns. Yet, the molecular logic underlying their
precise wiring remains poorly understood. To identify ligand—receptor (LR) interactions involved
in cortical circuit assembly, we tracked gene expression dynamics in mice across major neuronal
populations at 17 developmental stages using single-cell transcriptomics. This generated a
comprehensive atlas of LR-mediated communication between excitatory and inhibitory neuron
subtypes, capturing known and novel interactions. Notably, we identified NEOGENIN-1 as the
principal receptor for CBLN4 during the perinatal period, mediating synapse formation between
somatostatin-expressing interneurons and glutamatergic neurons. We also identified members of
the cadherin superfamily as candidate regulators of perisomatic inhibition from parvalbumin-
expressing basket cells onto deep and superficial excitatory neurons, exerting opposing effects on
synapse formation. These findings suggest a context-dependent role for cadherins in synaptic
specificity and underscore the power of single-cell transcriptomics for decoding the molecular
mechanisms of cortical wiring.
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Introduction:

The mammalian cerebral cortex is a six-layered structure at the brain’s surface that supports the
most complex cognitive functions. These functions rely on highly orchestrated and evolutionarily
conserved developmental processes that establish precise patterns of communication between two
major classes of neurons: excitatory glutamatergic neurons (GlutNs) and inhibitory GABAergic
neurons (GABANSs). Both GlutNs and GABANSs are further subdivided into numerous
transcriptionally defined subtypes, a diversity largely revealed by single-cell RNA sequencing
(scRNA-seq). Dozens of GlutN and GABAN subtypes have been identified 1-°, each characterized
by distinct morphological, electrophysiological, and molecular properties, preferential laminar
localization, specific synaptic partners and selective targeting of subcellular compartments. This
precise organization establishes the intricate cortical wiring that underpins cortical computation.
Disruption of connectivity between even a single pair of neuron subtypes at a given developmental
stage can impair circuit function and contribute to neurodevelopmental disorders °. Elucidating
how subtype-specific connections are established and regulated is therefore essential for
understanding both cortical development and disease.

In the past decade, major advances have been made in mapping the spatial organization and
synaptic connectivity rules of cortical neuron subtypes. In particular, high-resolution studies have
delineated the cellular and subcellular wiring patterns between GlutN and GABAN subtypes in the
adult mouse cortex, revealing remarkable specificity, stereotypy, and evolutionary conservation of
these connections across mammalian species “°. Despite these insights, the molecular
mechanisms that guide corticogenesis and ultimately produce this intricate architecture remain
poorly understood. Only a few studies have begun to identify the specific molecules that govern
the interactions and developmental processes shaping cortical circuit assembly 13,

It is likely that neuron-neuron communications via ligand-receptor (LR) interactions play a key
role, as these interactions are critical for the development of many tissues -3, This hypothesis is
supported by several studies suggesting that GlutNs may non-cell autonomously influence the
recruitment of specific GABAN subtypes. Indeed, GlutN subtypes settle into their final positions
earlier than the synchronically generated GABANs ! and altering specific GIutN subtype
identities during development modifies the allocation and synaptic connectivity of corresponding
GABAN subtypes 17,

In this study, we integrated newly generated and publicly available sScRNA-seq datasets from the
developing mouse cortex to investigate the molecular logic of cortical wiring through LR
inference. We first mapped gene expression dynamics across glutamatergic and GABAergic
neuron subtypes over development, with particular focus on the perinatal period when circuit
assembly intensifies. Using these data, we constructed a comprehensive atlas of putative LR-
mediated signaling between neuronal subtypes. We then validated this atlas through functional
experiments, showing that it recapitulates known interactions and identifies further interactions.
For example, we confirmed the role of CbIn4 in inhibitory synapse formation onto excitatory
neurons and identified Neogenin-1 as its likely cortical receptor. We also uncovered cadherin
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superfamily members exerting opposing effects on perisomatic inhibition in deep versus
superficial excitatory neurons. All data are available for interactive exploration at
https://sclrsomatodev.online/.

Results

Comprehensive single neuron transcriptomics atlas covering mouse somatosensory cortex
development

To infer LR-mediated cell-cell interactions during cortical development, we cross-referenced
scRNA-seq information from all cortical neuron subtypes across multiple stages with publicly
available LR information.

First, we generated a comprehensive scCRNA-seq transcriptomic dataset of all cortical neurons
throughout somatosensory corticogenesis. We conducted scRNA-seq and snRNA-seq at six key
stages within the underexplored PO-P30 circuit wiring period: PO-P2 (radial migration and laminar
allocation of GABANs 819 P5-P8 (programmed cell death of GlutNs and GABANs 2°-%), and
P16-P30 (circuit refinement and synaptogenesis completion). We integrated previously published
scRNA-seq data covering earlier embryonic (E11.5-E18.5) and adult stages (P53-P102) 32328,
including ganglionic eminences (GEs), to capture early transcriptional signature of future cortical
GABANSs 2>28 (see Methods). Our analysis spans 17 time points from E11.5 to adulthood (Fig.
1A).

After stringent quality control and filtering (Supplementary fig. 1A-B and Methods), we identified
postmitotic neuronal cell types and tracked their transcriptional dynamics. For final cell type
nomenclature, we used the most comprehensive resource of transcriptomic cell-types in the
somatosensory cortex that existed before December 2023, i.e., Yao et al. (2021) ® (hereafter
referred to as AllenRef21), corresponding to the adult stage (Supplementary fig. 1A). Assigning
cellular identities in early developmental stages proved difficult given that transcriptional
signatures of specific cell-types evolve drastically during development 22, To overcome this
difficulty, we developed a hierarchical pipeline assigning identities at increasing resolution levels,
similar to the method used by the Allen Institute * (Supplementary fig. 1A).

First, we assigned cell identities at the class level (Glutamatergic, GABAergic, Non-Neuronal,
Immature/Migrating, dorsal pallium progenitor and subpallium progenitor) 3. For datasets covering
early development (up to P5), we used the perinatal somatosensory cortex dataset from Di Bella
et al. 2%, the largest published at this stage, and the early ganglionic eminence (GE) GABANSs
dataset from Bandler et al. %', representing neurons fated for the cortex. For P8 to P30, as cells
were transcriptionally similar to the adult reference, we used the adult dataset * directly as the
reference (Supplementary fig. 1A). In order to investigate LR interactions mediating circuit wiring
between neuronal subtypes, we focused our downstream analyses on post-mitotic GlutNs and
GABANSs (Fig. 1A, B). In total, 182,084 high-quality post-mitotic neurons were analyzed. To
account for technical variation arising from different studies, RNA-seq methods (SCRNA-seq and
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snRNA-seq) and sequencing platforms (Fig. 1C), we integrated all data using the Seurat SCT
workflow (Supplementary fig. 1C). The integrated dataset was split into classes, i.e., GIutNs and
GABAN:Ss. For each class, cell identities were further delineated at increasing resolutions; first at
the subclass level, and then at the supertype level in each subclass, as defined in AllenRef21 3. To
identify biologically meaningful cell-types, we leveraged the correspondence provided by Yao et
al. between supertypes from scRNA-seq studies and morpho-electro-connectomic types (mec-
types) from patch-seq studies 132° (Supplementary fig. 2, S3). Pooling supertypes belonging to
the same mec-type allowed us to reach a biologically meaningful cell-type annotation
(Supplementary fig. 4). Ultimately, we identified 159 290 cells, representing 27 cell-types (Fig.
1D) including 11 GlutN cell-types grouped in 3 families — intratelencephalic (IT),
extratelencephalic (ET), Other GlutNs - and 16 GABAN cell-types grouped in 5 families - Lamp5,
Sst, Pvalb, Vip and Other GABANS - (Fig. 1B-D, Supplementary fig. 4). All intermediate steps of
the label transfer procedure, including bootstrapped prediction scores and cell-wise assignment
files, are available in the Zenodo folder, ensuring full transparency and reproducibility of the
classification process.

In the UMAP embedding of all neurons, each GIlutN and GABAN cell-type exhibited a largely
continuous temporal gradient of transcriptional variation across corticogenesis, with gene
expression profiles of individual cells correlating with mouse developmental age (Fig. 1B, C).

Temporal transcriptional dynamics

To track the temporal maturation of each neuronal cell-type in a continuous rather than discrete
manner, single cells were ordered along a continuous trajectory on the basis of their transcriptional
profile *° (see Methods) (Supplementary fig. 5A, Supplementary fig. 6A-B). This “pseudo-
maturation” axis correlated well with the actual age of the cells (Supplementary fig. 5A,
Supplementary fig. 6A-B), indicating gradual transcriptional variation over neuronal
differentiation.

For each cell type, genes showing significant variation along the “pseudo-maturation” axis were
identified and used to illustrate temporal gene dynamics in six waves (Supplementary fig. 5A,
Supplementary fig. 6A-B). During early development (E11.5-E18.5), most cell-types displayed
transcriptional signatures related to cell-intrinsic properties (Supplementary fig. 5B,
Supplementary fig. 6C), shifting later to programs controlling cell—cell and cell-environment
interactions (Supplementary fig. 5B, Supplementary fig. 6C) 312, These findings reveal the
molecular transitions through which each neocortical cell type shifts from intrinsic programs to
extrinsic, interaction-driven programs essential for integration into the cortical network.

Spatial transcriptional gradients
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In adult mice, glutamatergic IT neurons exhibit a spatial gradient of transcriptional variation along
the cortical sheet **, We investigated whether similar laminar transcriptional gradients exist
within each neuronal family between embryonic day 18.5 (E18.5) and postnatal day 30 (P30). To
do so, we cross-referenced our datasets with Patch-seq 2 and MERFISH 3 data to determine the
exact normalized laminar position of each cell type within its family, providing information about
their relative positions (Supplementary fig. 2, S3).

In parallel, for each neuronal family and at each developmental stage, we fitted a curve along the
UMAP transcriptional continuum and defined this axis as a “pseudo-layer” score. This approach
allowed us to assess whether transcriptional variation along the pseudo-layer axis corresponded to
the actual laminar organization of cell types, which would reflect the presence of spatial
transcriptional gradients across cortical layers.

Strikingly, the spatial gradient previously described for adult IT neurons * was already present at
all earlier developmental stages examined, from E18.5 to P30 (Supplementary fig. 7A). Similar
gradients were also observed for all other neuronal families analyzed; namely ET, Sst, Pvalb, Vip,
and Lamp5 (Supplementary fig. 7-S9). In summary, our results show that all major neuronal
families, both glutamatergic and GABAergic, exhibit transcriptional gradients aligned with
cortical lamination, consistently across development from E18.5 to P30.

We identified genes showing significant variation along the pseudo-layer axis and used them to
define six distinct spatial transcriptional gradients. In GlutNs, the upper waves, corresponding to
upper-layer (UL) displayed gene expression patterns enriched for features commonly observed in
earlier developmental states, particularly involving cell-intrinsic properties (Supplementary fig. 7,
B and D). In contrast, the lower waves, corresponding to deep-layer (DL) GlutNs, showed
comparatively reduced expression of these features. This is consistent with UL GlutNs being born
later than DL GlutNs, due to cortical inside-out patterning 2. In contrast, for GABANS,
environment-sensing programs were already active by E18.5 (Supplementary fig. 8, B and D),
supporting the hypothesis that cortical GABANs mature later than their earlier-settled GIlutN
counterparts and depend on cues from these excitatory neurons to reach their final positions and
establish proper connectivity 1>-1734,

Spatiotemporal transcriptional landscapes

Based on the pseudo-maturation and pseudo-layer scores, cells of each family were embedded
within 2D graphs to generate spatiotemporal transcriptional landscapes of gene expression (Fig.
2A-D and S10). For any gene queried within a given family, the 2D transcriptional map shows
temporal dynamics along the x axis and spatial dynamics on the y axis (Fig. 2B-D). This confirmed
the spatiotemporal expression of genes known to be involved in cortical layer patterning (Cux1,
Fezf2, Reln, Fig. 2B-C) or in neuropeptidergic system maturation in specific neuronal families
(Fig. 2D).
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To validate our approach, we examined whether LR transcriptional landscapes matched known
roles in migration or synaptogenesis. We focused on CXCL12 and its receptors CXCR4 and
ACKR3, which are essential for GABAN tangential migration 33, As previously reported,
CXCL12 is expressed perinatally by meninges ¥, immature GlutNs *, and possibly Cajal-Retzius
(CR) cells *°, while CXCR4/ACKRS3 are co-expressed on migrating GABANSs “>#! with CXCR4
also present in CR cells 4°. CXCL12 downregulation postnatally is thought to trigger GABAN
radial migration and cortical plate invasion 352642, Our data aligned with these patterns: Cxcl12
was enriched in CR cells, and Cxcl12, Cxcr4, and Ackr3 expression was restricted to E18.5-P0,
consistent with a role in migration but not in synaptogenesis (Fig. 2E).

It is well established that the formation of synapses requires specific adhesion molecules, including
the NRXN1-NLGN1 LR-pair (Fig. 2E) “**%. Our landscapes showed NRXN1 and NLGN1
expression across all cell types during developmental windows consistent with synaptogenesis
(Fig. 2E), supporting their role in synapse formation.

Applying PCA and subsequent k-means clustering enabled us to define 15 archetypal
spatiotemporal transcriptional landscapes (Fig. 2F). Some genes mapped to early or late
developmental trajectories, whereas others showed layer-specific or combined spatiotemporal
patterns. To functionally interpret these clusters, we performed KEGG enrichment analysis and
annotated each spatiotemporal cluster with its dominant ontology term (Fig. 2F; Supplementary
Data S8), revealing programs ranging from ribosome biogenesis and spliceosome activity to
calcium signaling and neuroactive ligand-receptor pathways. Intriguingly, members of the
Cadherin gene family were distributed across all 15 clusters (Fig. 2G), underscoring their broad
spatiotemporal diversity throughout cortical development.

We developed a Shiny application, scLRSomatodev, (https://scirsomatodev.online/) that enables
interactive exploration of spatiotemporal gene expression patterns across cortical neuronal
subtypes, using various visual representations (Supplementary fig. 11).

An atlas for inferring LR interactions between neuronal subtypes over corticogenesis

We hypothesized that LR interactions between neuronal subtypes, especially between GlutNs and
GABAN:Ss, are key to shaping stereotypical cortical wiring. If this hypothesis proved correct, we
would expect highly correlated transcriptional landscapes between GlutN-expressed ligands and
their cognate GABAN receptors, and vice versa. To test this, we assembled LR_DB_2025, the
most comprehensive curated LR database to date. It integrates existing LR datasets with manually
added pairs from published studies (Fig. 3A & S12, Supplementary Data S1, see Methods),
yielding 8,789 curated LR pairs involving 1,421 ligands and 1,233 receptors. Each molecule was
further classified by molecular function and known involvement in neurodevelopmental processes
(see Methods & Supplementary Data S2).
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For LR pairs in the cadherin superfamily, known to play key roles in neurodevelopment, we
observed strong correlations between ligand expression in GlutN neurons and receptor expression
in GABANSs (Fig. 3B). This underscores the importance of cadherin-mediated interactions in
GIlutN-GABAN communication during development and supports previous hypotheses
implicating cadherins in areal specialization ** and synaptic specificity 6. LR pairs tied to
migration, differentiation, cell death, cell adhesion, and synaptogenesis (Supplementary Data S2,
Methods) exhibited varying degrees of spatiotemporal correlation (Fig. 3B). Synaptogenesis
displayed the strongest LR pair correlation, suggesting that this process relies heavily on
intercellular communication. In contrast, LR pairs associated with processes such as cell death or
differentiation were less consistently correlated, possibly reflecting a greater reliance on cell-
intrinsic mechanisms or limitations in the completeness of GO annotations for these pathways
(Fig. 3B).

To identify ligand-receptor pairs driving intercellular interactions shaping cortical wiring, we built
a comprehensive LR atlas inferring high-confidence interactions between neuronal cell types from
E18.5 to adulthood, covering the full period of cortical circuit formation in mice. This approach
integrates temporal cell-by-gene expression matrices with our curated LR database (Fig. 3C,
Supplementary fig. 13; see Methods).

First, we implemented and adapted the scSeqComm method 4’ to our dataset. This method
computes an intercellular ligand-receptor (LR) score for each source—target cell-type pair, based
on the relative expression levels of ligands in source cells and receptors in target cells. The core
scSeqComm tool was not modified; intercellular scores were calculated exactly as described in the
original publication and returned for all pairs across all cell-type combinations.

To improve the biological plausibility of predicted interactions and increase stringency, we
introduced an additional cell pair score, applied independently of any particular LR pair. This score
enabled prioritization of LR interactions according to known developmental timing and the final
connectivity patterns between the cell-types. Specifically, the cell-pair score represents the
(normalized) sum of (i) a developmental score, reflecting the relative timing at which each cell
type populates the cortex and could transiently interact, (Fig. 3C & S13, Supplementary Data S3),
and (ii) a connectivity score, estimating the likelihood of synaptic connections inferred from adult
cortical architecture, derived from morphological reconstructions of ~1,000 neurons within a
cortical column from adult Patch-seq studies *® (Fig. 3C, S13-14, Supplementary Data S4). For
LRs with documented downstream genetic signaling from the receptor, our pipeline quantified
intracellular signaling activity in target cells by integrating information from public regulatory
gene databases 4’ (see Methods). This yielded an intracellular signaling score (Fig. 3C and S13),
which helped assess the robustness of inferred LR interactions and in determining the preferred
receptor(s) for ligands with multiple potential targets.
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Predicted LR interactions can be explored at https://sclrsomatodev.online/ (Supplementary fig.
16), where users can visualize both the number and identities of interactions between any of the
729 neuronal cell-type pairs across seven developmental stages covering cortical wiring (E18.5 to
adulthood). Interaction counts are shown as heatmaps (Fig. 3D, S16A), while specific LR pairs
and associated GO pathways are displayed as dot plots (Supplementary fig. 16B). LR pair
predictions were generally consistent between scRNA-seq and snRNA-seq (Supplementary fig.
15), demonstrating modality consistency. An exception is observed for certain short transcripts,
which are underdetected in SnRNA-seq, as previously reported. For instance, Neurod2, Slc12a5,
and DIx2 (~1 kb) show reduced detection in SnRNA-seq at P8, whereas larger genes such as Cux1
(~340 kb) are comparable across both modalities.

To determine which molecular codes underlie the specificity of LR-mediated cell positioning and
connectivity, we systematically analyzed LR predictions across 729 neuronal cell-type
combinations from E18.5 to adulthood. We quantified LR interactions maintained across at least
two consecutive stages and categorized them as “unique” (1 cell pairs), “widely shared” (> 400
cell pairs), or “rarely shared” (< 10 cell pairs) (Fig. 3D). While some cell pairs showed up to ~600
predicted LR interactions, uniquely used LR pairs were extremely rare. Widely shared LRs
represented less than 10% of all inferred interactions. In contrast, rarely shared LRs showed more
variability, with up to 60 detected in CR-CR interactions. These findings suggest that cortical
neurons employ a combinatorial code of common and rare ligand—receptor interactions, rather than
unique pairs, to establish subtype-specific communication and connectivity. To directly evaluate
whether LR expression patterns can distinguish neuronal subtypes, we developed a machine-
learning framework that generates single-cell replicates for each SOURCE — TARGET cell-type
pair across developmental stages. Each example encodes ligand x receptor product values, and the
model is tasked with predicting the correct cell-type pair identity (Supplementary fig. 17). While
the prediction task is extremely challenging (>600 classes), many individual cell-type pairs
achieved high ROC-AUC values, demonstrating strong discriminability and reinforcing the idea
of a combinatorial LR code (Supplementary fig. 17 A). We benchmarked models trained on five
LR feature sets: all significant pairs, widely shared pairs, rarely shared pairs, unique-only pairs,
and random non-LR pairs (Supplementary fig. 17 B-C). Across developmental stages, classifiers
trained on unique-only, shared-only, or random pairs performed at or near chance, whereas those
trained on rare-only pairs consistently provided predictive performance above chance. The highest
accuracy was obtained when combining feature sets (all significant = rare + shared + occasional
unique) with moderately strong performance for the rarely shared pairs, supporting our conclusion
that specificity is encoded by combinatorial patterns rather than by shared or unique pairs alone.
This trend was maintained across all developmental stages and remained consistent even when one
cell type was held constant while varying the other (Supplementary fig. 18-S20).

These findings suggest that a combinatorial LR code underlies neuronal specificity. A key question
is whether such codes are determined by laminar position, class identity, or whether fate-intrinsic
factors, such as the progenitor domain of origin of interneurons, also impose additional constraints.
To address this, we further quantified the distribution of interactions between GlutNs and
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GABANSs, as well as within each neuronal class. This analysis revealed progressive differences
between superficial and deep layers across development (Figs. S21, S22). To investigate whether
the origin of interneurons influences their predicted LR interactions with glutamatergic partners,
we grouped subtypes by MGE, CGE, or POA origin, which revealed a temporal shift from GE-
specific programs at embryonic/early postnatal stages to predominantly shared modules at P8—
P30, followed by renewed specificity in adulthood (Supplementary fig. 23A-C). GE-specific
modules were enriched for partner recognition and integration processes at early stages, while
shared modules were dominated by synaptic organization ontologies during peak synaptogenesis.
These results show that LR communication is shaped not only by class and laminar identity (Figs.
S21, S22), but also by interneuron progenitor domain (Supplementary fig. 23), adding a fate-
dependent dimension to cortical wiring.

Key roles for LR interactions during synaptogenesis and in neurodevelopmental diseases

We analyzed the temporal progression of LR predictions between GlutNs and GABANS as source
and target cells, respectively. The total number of predicted LRs increased over time (Fig. 4A),
consistent with the gradual establishment of synaptic connectivity. Among GABAN subtypes, Sst
and Pvalb neurons were the first to receive a high number of LR interactions from GlutNs (Fig.
4A), while Lamp5, Vip, and other GABAN populations showed a later increase. Notably, Pvalb
cells initially exhibited fewer LRs than Sst neurons but progressively reached comparable levels
to Sst neurons, consistent with studies showing that Sst neurons precede Pvalb neurons in cortical
network formation and in agreement with recent findings #°.

Next, we focused our analysis at the cell-type level, using IT neurons as source cells and GABAN
subtypes as targets. The number of predicted LR interactions increased over time (Fig. 4B),
consistent with the global trend (Fig. 4A). However, we noted only subtle differences in the
temporal profiles of upper layer (UL) and deep layer (DL) GABANS. LR interactions with UL
GABANSs were low at early stages but showed a gradual increase over time. DL GABANSs showed
a marginally higher level of LR engagement early on, though this difference was very subtle (Fig.
4B). While such a pattern could be compatible with earlier maturation of DL neurons, the effect
size is minimal, and we interpret this as a possible depth-related trend, although additional analyses
will be needed to confirm it.

We calculated the proportion of LRs associated with the five key neurodevelopmental processes.
Migration, differentiation, and cell death were sparsely predicted, suggesting that our atlas captures
fewer LR interactions associated with these processes. This could indicate a stronger reliance on
cell-intrinsic programs, but may also reflect underrepresentation of relevant signaling interactions
in current GO terms or from the limitations of transcriptomic inference. In contrast,
synaptogenesis-related LRs, and to a lesser extent those involved in adhesion, were consistently
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and robustly utilized from E18.5 through adulthood (Fig. 4C). Notably, Cadherins showed sharp
increases in inferred activity from P8 onward, underscoring their possible role in shaping cortical
wiring.

We investigated the engagement of LR pairs associated with neurodevelopmental disorders during
cortical development. LRs from our curated database were categorized based on their disease
associations: autism, epilepsy, schizophrenia (SCZ), and intellectual disability (ID)
(Supplementary Data S5). While the proportion of active SCZ- and ID-linked LRs remained
consistently low across all developmental stages (Fig. 4D), those associated with autism and
epilepsy showed markedly higher engagement, peaking at postnatal day 8 (P8) and remaining
elevated into adulthood. In some instances, up to 50% of autism- or epilepsy-associated LRs were
active at specific time points (Fig. 4D). These findings suggest that the etiology of autism and
epilepsy may be more closely related to LR-mediated intercellular communications in cortical
circuits than that of SCZ and ID. Several of the highly utilized LRs were implicated in multiple
disorders (Fig. 4E). Notably, CDH13 and CDH22, two cadherins, were the only significantly
utilized LRs shared between autism and SCZ (Fig. 4F). Overall, gene ontology analysis revealed
that predicted disease-associated LRs were enriched in neurodevelopmental biological processes
(Fig. 4G).

Validation of the LR prediction atlas: Nrg3-Erbb4

We queried our LR atlas to validate known interactions between GlutNs and GABANSs, focusing
on the NRG3-ERBB4 pair, which is recognized for mediating the development of excitatory
synapses onto GABANSs and is linked to neurodevelopmental disorders ° (Fig. 5A). Consistent
with the literature, transcriptional landscapes confirmed NRG3 expression in GlutNs and the
restriction of ERBB4 expression to GABANSs (Fig. 5B). NRG3 and ERBB4 expression levels
peaked in the second half of the developmental timeline, coinciding with synaptogenesis (Fig. 5B).
Our atlas predicts significant NRG3-ERBB4 interactions from E18.5-P0 through P30, with GlutNs
werving as the NRG3 source and most GABANSs as ERBB4-expressing targets (Fig. 5C). Across
all developmental stages, the intracellular signaling score for NRG3-ERBB4 was highest when
target cells were Pvalb BCs and Vip|L2/3—L5 BP/BTCs, two GABAN subtypes known to critically
depend on ERBB4 signaling for the formation of excitatory synapses (Fig. 5D) 121351, Qverall, our
atlas supports a role for the NRG3-ERBBA4 interaction in driving excitatory synapse formation
onto specific GABAN subtypes during corticogenesis.

NEOL1 is the primary CBLN4 receptor at Martinotti-glutamatergic developing synapses

To explore whether our atlas could illuminate previously incompletely understood intercellular
communications, we focused on CBLN4, a ligand that facilitates synapse formation between Sst
neurons axon terminals and the apical dendrites of GIutNs in the mouse cortex °? (Fig. 5E).
Which precise Sst subtype expresses CBLN4, and which receptor(s) mediate its effects on GIutNs,
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remain open questions °>°2 (Fig. 5F). Our transcriptional landscape analyses revealed that among
the 4 identified Sst cell-types (Sst|L2/3-L5 fan-MC, Sst|L4 IVC, Sst|L5 T-MC, and Sst|L5/L6
NMCs), only the Sst|L2/3-L5 fan-MCs exhibited clear CbIn4 expression (Fig. 5G). Our LR
interactome atlas predicted that CBLN4 is involved in relatively few intercellular interactions
during synaptogenesis (P5 to P30), specifically between Sst|L2/3-L5 fan-MCs as source cells and
select GIutN subtypes (L2/3 IT, L4 IT|SSC, L4/5 IT|PC, L5 IT and L5 PT) as target cells (Fig.
5G). Unexpectedly, most GABAN cell-types were also predicted as target cells. Intercellular
signaling scores further indicated that among the three known CBLN4 receptors (DCC, GLUD1
and NEO1), only GLUD1 and NEO1 were predicted to be involved (Fig. 5H). Intercellular scores

rose from P4 to P8, consistent with CBLLN4’s known role in synapse formation during this window
1

We used intracellular scores to assess whether GLUD1 or NEO1 predominates as the CBLN4
receptor in cortex. Although GLUDL1 has been identified as a CBLN4 receptor in GlutNs at P21—
P30 2 our data suggest that NEO1 signaling is more active during peak synaptogenesis (P4—
P8) in CBLNA4-receiving neurons (Fig. 5H). NEO1-associated genes were enriched for axon
guidance and TGF-p pathways. To test for direct interactions at P8, we performed in situ PLA and
observed strong CBLN4-NEO1 signals in cortical layers L1-2, while CBLN4-GLUD1
interactions were minimal or absent (Fig. 51). These results underscore the atlas’s ability to identify
key LR pairs and their cell-type specificity.

CDH13 and PCDH8 mediate perisomatic inhibition in deep and superficial layers

To determine whether our LR atlas can help identify novel LR pairs essential for cortical wiring,
we focused on the cadherin family of adhesion molecules. Cadherins were prioritized because they
are thought to play such a role %#5% and because our atlas revealed extensive spatiotemporal
diversity in S1 (Fig. 2G).

The atypical cadherin Cdh13, genetically associated with neurodevelopmental disorders %%,
exhibited a distinct and widespread expression pattern across cortical neuronal subtypes. In
transcriptional landscapes, Cdh13 was detected in all GABAergic neuron types except Lamp5
neurons, with the highest expression levels observed in MGE-derived Sst and Pvalb populations
(Fig. 6A). It was also broadly expressed across GlutN subtypes, with enrichment in DL subtypes.
During corticogenesis, Cdh13 expression in DL GlutNs was sustained, whereas in MGE-derived
GABAergic neurons, it peaked during the wiring period (P4-P30), suggesting a temporally
coordinated role in circuit formation (Fig. 6A). These spatiotemporal dynamics point to a potential
role for CDH13 in mediating homophilic interactions between MGE-derived GABAergic neurons
and DL GlutNs. Consistent with this hypothesis, our LR inference analysis predicted that the vast
majority of CDH13-CDH13 interactions occur between Sst/Pvalb interneurons and DL GlutNs
(L5 and L6) GlutNs (Fig. 6B, C, only ITs visualized as sources). These predictions are consistent
with recent evidence implicating CDH13 in perisomatic inhibition of L5 subtypes by Pvalb basket
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cells (BCs) *'. To experimentally validate this interaction, we performed in utero electroporation
to knock down Cdh13 in L5 GlutNs and assessed perisomatic innervation by Pvalb BCs. Cdh13
knockdown significantly reduced the area of GlutN somata contacted by SYT2* Pvalb BC boutons
(Fig. 6C), indicating that postsynaptic CDH13 is required for proper perisomatic inhibition.
Notably, chandelier cell (CHC) synapses onto the axon initial segment were unaffected (Fig. 6D),
highlighting the specificity of CDH13 function and supporting our atlas-based predictions.

We next focused on PCDHS8, whose spatial expression pattern appeared largely complementary to
that of CDH13, with enrichment in GlutNs and Pvalb neurons of the UL (Fig. 6E). In line with this
expression landscape, our LR atlas predicted that, aside from a few additional putative interactions,
PCDH8-PCDHS8 signaling would predominantly occur between L2/3 intratelencephalic (IT)
neurons and Pvalb basket cells (BCs) (Fig. 6F, G). To test this prediction, we performed in utero
electroporation of a Pcdh8 shRNA at E15.5 to knock down PCDH8 specifically in L2/3 IT neurons
and assessed their perisomatic innervation by Pvalb BCs. Strikingly, Pcdh8 knockdown
significantly increased SYT2* bouton coverage of L2/3 IT somata, indicating that PCDHS
negatively regulates perisomatic inhibition in this circuit (Fig. 6H). This effect contrasts sharply
with CDH13 function in L5 neurons, which acts as a positive regulator of Pvalo BC-mediated
inhibition.

Thus, our LR atlas supports the conclusion that distinct cadherins differentially regulate
perisomatic inhibition in a layer-dependent manner.

Discussion

Seminal studies in the last decades have shown that stereotyped cortical circuit wiring in mammals
is regulated by LR interactions between GlutNs and GABANSs . More specifically, these data
suggest that a molecular code, established by LR interactions between early-settling GlutNs and
later-arriving GABANS, orchestrates circuit assembly. To identify LR pairs critical for GlutN-
GABAN interactions and cortical circuit formation, we leveraged high-throughput single-cell
transcriptomics. Our LR predictions, along with gene expression visualizations, are available at
https://sclrsomatodev.online/.

We began by characterizing the transcriptomic profiles of the major neuronal classes across
cortical development. This dataset, generated through extensive integration and meticulous
annotation, is provided as a publicly accessible reference for exploring the dynamic transcriptional
landscape of corticogenesis (https://sclrsomatodev.online/). For our analysis of LR interactions,
we focused on the critical E18-P30 window, during which GABANS migrate to their target layers
and form synaptic connections with GlutNs and other GABAergic partners. We developed
computational tools to assess spatiotemporal expression of all genes in main cortical neuron types
and to infer the number and identities of significant LR pairs that may govern cortical wiring.
These tools can be applied to: (1) validate established interactions (e.g., NRG3 — ERBB4), (2)
extend knowledge of known LR interactions (e.g., CbIn4 — Neol for Sst MC -> GlutN interaction)
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and (3) identify novel LR pairs involved in the formation of specific connections (e.g., the CDH13
and PCDHS8 cases).

LR-mediated intercellular interactions are fundamental processes that shape the development and
function of most biological tissues. Before the development of SSRNA-seq, studying the molecular
underpinnings of cell-cell interactions was low-throughput, restricted to a short selection of genes
or proteins and a limited number of cell-type pairs. The emergence of sScCRNA-seq has enabled the
development of numerous computational tools to infer cell-cell communication. While many
existing methods predict LR interactions based solely on the expression levels of the LR pair across
cell types °8-%9, a subset of more recent approaches may better approximate biological ground truth
by also incorporating the downstream responses elicited in receptor-expressing cells 476163 For
this study, we benchmarked most available methods and selected scSeqComm #’, one of the most
recent tools capable of inferring both intercellular and intracellular signaling. The intracellular
score provided an additional layer of reliability for inferred interactions, and custom thresholds
can be set for both intercellular and intracellular scores to modulate confidence. To further increase
the reliability of the inferred interactions, we curated a comprehensive LR database by integrating
existing published databases and incorporating additional LR pairs from the literature.

Our LR predictions indicate that neuronal connections are determined by specific combinations of
LRs with distinct specificities. Notably, a core group of approximately 40 broadly expressed LRs
mediate interactions in over 50% of cell-type pairs, complemented by a larger subset of LRs with
varying degrees of specificity. Importantly, LRs unique to single neuronal connections are
extremely rare, suggesting that cortical wiring is predominantly shaped by a combination of shared
and context-dependent LRs rather than by unique or isolated interactions. Our predictive modeling
analysis further strengthens the “combinatorial code” hypothesis. Classifiers trained on distinct
LR feature subsets revealed that neither shared nor unique LR pairs alone could reliably
discriminate cell types. Instead, rare context-dependent interactions provided the key
discriminatory signal, with their predictive value maximized when combined with shared pairs.
These results suggest that synaptic specificity emerges from the combined deployment of common
and rare LR modules, rather than from exclusive dependence on unique interactions. This
combinatorial logic echoes classical molecular code theories in neural development and provides
a quantitative framework for how LR diversity encodes cell-type-specific connectivity.

Cadherin superfamily members are differentially expressed across subtypes of cortical excitatory
and inhibitory neurons 34, suggesting that a combinatorial cadherin code could guide the
structured assembly of cortical circuits. Our data support this idea by demonstrating, with
unprecedented resolution, that cadherins exhibit highly cell-type—specific and developmentally
dynamic expression patterns (Fig. 4C). Building on predictions from our LR atlas, we
experimentally identified two cadherins, CDH13 and PCDHS8, as regulators of perisomatic
inhibition by Pvalb basket cells (BCs) in deep and superficial layers, respectively (Fig. 6).
Specifically, we found that CDH13-CDH13 interactions are crucial for Pvalb BC-mediated
perisomatic inhibition of deep-layer GlutNs. Our atlas also shows that this interaction is not
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required for BCs expressing Sncg/CCK, which is consistent with recent findings *’. In contrast, in
superficial layers, PCDH8 negatively regulates Pvalb BC innervation, demonstrating that
cadherins can either promote or restrict synapse formation depending on the context. This duality
highlights the predictive power of our LR atlas, particularly in uncovering inhibitory or repulsive
interactions, an underappreciated dimension of forebrain circuit development. Our atlas also
predicts a higher number of LR interactions between excitatory neurons and Sst or Pvalb
interneurons compared to Vip or Lamp5 populations, which is consistent with these findings. This
may indicate that Sst and Pvalb rely more strongly on non-cell-autonomous signals for their
integration, although alternative explanations should be considered, including differences in cell
abundance or sampled developmental stages, which may not fully capture the wiring periods of
other interneuron subtypes.

Beyond laminar and cell-class distinctions, our data indicate that the progenitor domain of
interneurons (MGE, CGE, or POA) imposes an additional layer of specificity on predicted LR
interactions. We found that GE-derived interneurons exhibit dynamic shifts from early GE-specific
LR modules, enriched in partner recognition and integration processes, to shared programs during
peak synaptogenesis (P8—P30), and back to fate-specific modules in adulthood (Supplementary
fig. 23). These findings suggest that cortical wiring is not only structured by laminar position and
cell-class identity but also by developmental lineage, underscoring the combinatorial logic of fate-
and stage-dependent LR programs.

Interestingly, the suppressive role of PCDH8 in superficial layers mirrors that of another
protocadherin, PCDH18, which limits Sst neuron connectivity with GIutNs %, Given that both
Cdh13 and Pcdh8 are genetically linked to neurodevelopmental disorders >>°¢%4 our findings raise
the possibility that layer-specific disruption of Pvalb BC-mediated inhibition may contribute to the
etiology of these conditions.

It remains unclear how generalizable our somatosensory cortex-focused analysis is to other cortical
areas. Most GABAergic clusters defined in the Allen Institute taxonomy are shared across
isocortical regions, and the relative proportions of cells within these clusters are largely consistent
across areas °. For glutamatergic cell types, there is a modest, gradual transcriptomic variation
across regions, and some degree of regional specificity is observed, particularly at the cluster level
and in isocortical areas located at the rostral and caudal extremes 3. In contrast, adjacent cortical
areas largely share the same clusters. Importantly, our analysis is anchored at the supertype level,
a higher-order classification that is more stable than individual clusters and broadly conserved
across cortical areas. As described in Yao et al. 3, supertypes are consistently observed across the
isocortex, with only a few known exceptions, such as the L5 PT and Car3 supertypes. Because the
cell types in our study were defined at the supertype level, we expect that our findings are likely
to generalize to neighboring cortical regions.

Nonetheless, because our analyses were restricted to the somatosensory cortex, extrapolation to
other cortical areas should be approached cautiously. In addition to neurons, non-neuronal cells
also play a role in the early stages of cortical circuit assembly. For example, blood vessels and
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ventral oligodendrocyte precursor cells regulate the tangential migration of GABANSs from the
subpallium to the cortical plate through specific CXCL12-SEMAGA/B-PLXNA3 unipolar contact
repulsion ®. Future studies should leverage single-cell transcriptomics to systematically
investigate neuron-non-neuronal cell communication to further explore these interactions.

Limitations of the approach — Considerations for Future Improvements in Ligand-
Receptor Atlases

Despite the robustness and comprehensiveness of our approach, certain limitations should be
acknowledged. Reliance on mRNA levels as proxies for protein abundance can be misleading due
to post-transcriptional regulation, and even when ligand and receptor proteins are expressed, their
functional interaction depends on correct trafficking and subcellular localization, which single-cell
RNA-seq cannot capture. Advances in single-cell proteomics may soon allow integration of such
spatial information into developmental atlases. Our focus on glutamatergic and GABAergic
neurons also excludes non-neuronal cell types such as astrocytes, oligodendrocytes, and microglia,
which likely contribute to cortical circuit assembly and should be incorporated in future analyses.
Interpretations based on GO terms remain provisional, as they may underrepresent intercellular
contributions to broader processes such as cell death or differentiation. Finally, the use of an adult-
derived connectivity matrix constrains predictions to mature architectures, providing a
conservative but potentially incomplete view that may overlook transient developmental
connections.

Currently, our understanding of the spatial relationship between cortical cell types is largely
limited to adult stages ®*®’, which impedes precise inference of timely LR mediated cell-cell
interactions at specific developmental stages, whether transient or stable. The advent of spatial
transcriptomic technologies with high sensitivity, throughput, and resolution promises to bridge
this gap in the near future.
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Methods

Animals. Mice (mus musculus) were group housed (2-5 mice/cage) with same-sex littermates on
a 12-hour light-dark cycle with access to food and water ad libitum. They were bred and
maintained on a mixed SVeV-129/C57BL/6N background. Animal experiments were carried out
in accordance with European Communities Council Directives and approved by French ethical
committees (Comité d’Ethique pour I’expérimentation animale no. 14; permission number: 62-
12112012, Apafis #21683- 2019073011285386v4). Mice were housed on a 12-hour light-dark
cycle at 21-23 °C and 40-60% humidity. Sample sizes were not predetermined by statistical
methods; rather, they were guided by standards commonly used in single-cell transcriptomics and
developmental neurobiology, ensuring sufficient cell numbers and biological replicates to achieve
robust clustering, stable ligand—receptor inference, and reliable validation of observed phenotypes.
For tissue collection, mice were deeply anesthetized and euthanized in accordance with
institutional and governmental guidelines. Adult and postnatal mice were euthanized by
intraperitoneal injection of pentobarbital (150 mg/kg). Loss of reflexes was confirmed prior to
tissue collection. For histological analyses, animals were transcardially perfused with 0.9% saline
followed by 4% paraformaldehyde. For experiments requiring fresh tissue for single-cell isolation,
brains were rapidly dissected following euthanasia.

Single-cell isolation. Male and Female mice brains were dissected submerged in an ice-cold
bubbled artificial cerebrospinal fluid (ACSF) with carbogen (95% O2 and 5% CO). Our ACSF
consisted of NaCl (7.32 g/L), KCI (0.26 g/L), NaH2PO4,H20 (0.165 g/L), Cacl»,2H20 (0.438 g/L),
MgCl,,6H,0 (0.264 g/L), D(+)-Glucose (1.98 g/L), NaHCOs3 (2.1 g/L), and acid kynurenic (0.567
g/L). Brains were then sliced into a 300 pum (PO and P2 mice) or 500 um (P5, P8 and P30 mice)
coronal sections with a vibratome (Leica). Somatosensory cortex area was dissected under a
binocular loop. Enzymatic digestion was then processed by using pronase (Septomyces Argeus at
1 mg/mL) during 25 min at room temperature (RT) for PO to P8 datasets. Cells were dissociated
and triturated into single cell suspension in a solution consisting of ACSF, 1% FCS and DNAse
(1pl/20mL). Trituration was carried out by using 3 glass pasteur pipets prepared at 3 different
diameters. For P30 datasets, we used the Worthington Papain Dissociation System to carry out the
enzymatic digestion and the cell dissociation following the manufacturer instructions.

Single-nuclei isolation. Dissection of the somatosensory cortex was achieved by following the
same procedure as described for single-cell isolation. The dissected somatosensory cortices were
transferred immediately into 500 ul of Hibernate™-E Medium (#A12476-01), then frozen for 3
minutes in isopentane pre-cooled to -80°C. The samples were subsequently stored at -80°C for
long-term preservation. To process the tissue after conservation, the medium was first removed
from the Eppendorf tube. Chilled 0.1X NP40 Lysis Buffer was then added in a volume of 500 pl,
and the tissue was immediately homogenized using a Pellet Pestle with 15 strokes. The
homogenized samples were incubated on ice for 5 minutes. The suspension was then pipette-mixed
10 times using a wide-bore pipette tip and incubate for 10min on ice to ensure proper lysis.
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Following lysis, 500 pl of chilled wash buffer was added to the suspension, and the mixture was
pipette-mixed 5 times using a regular-bore pipette tip. The suspension was passed through a 30
pm cell strainer into a 50 ml tube to remove debris. The filtered suspension was subsequently
transferred to a 1.5 ml tube for centrifugation. Samples were centrifuged at 950 x g for 10 minutes
at 4°C. After centrifugation, the supernatant was carefully removed to avoid disrupting the nuclei
pellet, which was retained for further analysis.

cDNA Amplification and library construction. 10xv3 libraries were sequenced on Illumina
HiSeq 4000. For single-nuclueus RNAseq, nuclei suspensions were adjusted following 10X
recommendation. For GEM generation and barcoding, we utilized the Chromium Next GEM
Single Cell 3' Reagent Kits, following the manufacturer's protocol. In summary, the prepared
single-cell suspensions were loaded onto a Chromium Next GEM Chip G, along with the
appropriate reagents, and processed using the chromium controller to encapsulate individual cells
into GEMs. After GEM-RT incubation, cDNA was recovered and amplified through a series of
cleanup and amplification steps, including SPRIselect bead-based purification. The amplified
cDNA was then subjected to fragmentation, end repair, A-tailing, adaptor ligation, and sample
index PCR to construct the final 3' gene expression libraries. The constructed libraries were
sequenced 10xv3 libraries were sequenced on Illumina HiSeq 4000.

Sequencing data processing. Sequencing reads were aligned to the mouse pre-mRNA reference
transcriptome (mm10) using the 10x Genomics CellRanger pipeline (version 3.1.0 or 6.1.1) with
default parameters.

External datasets. All external datasets 322 were incorporated exactly as provided by the
original publications. In the Di Bella et al. (2021) * dataset, cells that were annotated as low-
quality cells, doublets and Red blood cells were discarded. Because only the somatosensory cortex
(SS CTX) was dissected in our experiments, we selected from the Allen Institute dataset only cells
coming from the primary somatosensory cortex (SSp) for 10x data, and from both SSp and SSs
for Smart-seq v4 data. To ensure that clusters were representative of the SS CTX, we discarded
clusters containing fewer than 5 cells within a given subclass (as defined by Yao et al. 2021b) and
retained only subclasses with at least two clusters. Furthermore, for supertypes containing fewer
than 100 cells, we supplemented them—where possible—to reach 100 cells passing quality control
(see Methods) by randomly selecting cells from cortical areas most correlated with the SS CTX
(primary motor, MOp; secondary motor, MOs; frontal pole, FRP; and auditory areas). Exceptions
were made for the CR Trp73, Meis2, Astro Gfap Apoe, and PVM Mrcl supertypes, for which all
cortical areas were used due to the low total cell numbers. The resulting dataset from Yao et al.
(2021b) 2 constitutes our reference for cell-type assignment (hereafter referred to as AllenRef21).

Quality control. In order to retain only high-quality cells in all datasets, cells that passed the
following criteria were kept (see Supplemental information QC metrics):

Cells with a mitochondrial gene percentage <10%.

Cells with a logio (number of detected genes) within three double median absolute deviations
(doubleMAD) of the population median, with a minimum low threshold of 500 genes.
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Cells with a logio (number of detected UMIs) above 3 doubleMADs of the population median.
We plotted logio (nFeature RNA) versus logio (nCount RNA) and fitted a linear regression model
between these variables. Cells falling below an offset of -0.09 were retained.

Doublets in sScRNA-seq datasets were identified using Scrublet %, with an expected doublet rate
of 10%. The number of simulated doublets was set to twice the number of observed transcriptomes,
and eight neighbors were used to construct the KNN classifier for observed and simulated doublets.

Assigning cell identity. Cells that passed QC criteria were used for the following analysis. Key
steps to determining cell identity consisted of (Figure S1):

Assigning Broad class identity. An in-house artificial neural network (ANN) was used to
determine the identity of the cells at the class level for E11.5 to P5 datasets. We selected the
datasets from Di Bella et al. (2021) 2* and Bandler et al. (2021) %’ as the training set for the ANN
as they encompassed all broad cell classes relevant to our studies. Cells from Di Bella et al. (2021)
were organized into five classes: GABAergic (Interneuron), Glutamatergic (CR, UL CPN, Layer
4, DL CPN, SCPN, NP, CThPN, Layer 6b), Immature/Migrating (Immature neurons, migrating
neurons), Non-Neuronal (Astrocytes, Oligodendrocytes, Microglia, Cycling glial cells,
Ependymocytes, Endothelial cells, VLMC, Pericytes) and Dorsal Pallium Progenitor (Apical
progenitors, Intermediate progenitors). Cells from Bandler et al. (2021) were organized into two
classes: GABAergic and SubPallium Progenitor. The weights derived from this model (hereafter
referred to as the class PAB21 model) were independently applied to datasets from E11.5 to P5,
excluding those used as reference.

For P8 to P30 datasets we used the map_sampling function of the R package scrattch.hicat to train
a centroid classifier, randomly selecting 80% of marker genes. Test data were mapped to the
AllenRef21 reference set at the class level (GIutNs, GABANSs and NN classes). Classification was
bootstrapped 1 000 times to estimate robustness. Cells with prediction probabilities below
0.5+1/(number of class) 2 were considered undetermined.

Seurat Louvain graph-based clustering was initially performed on each dataset independently at
the top level (k.param=round(sqrt(Number of cells)), annoy.metric="cosine” in the FindNeighbors
function and resolution=1 in the FindClusters function of the Seurat R package). One or more
additional rounds of clustering were performed to resolve subclusters within candidate major
clusters, with cluster heterogeneity evaluated using the Silhouette Score computed via a modified
ReclusterCells function from the R package SCISSORs ® (Leary et al., 2021)). Cluster identities
were assigned based on the most frequent prediction obtained either from the class PAB21 model
or using scrattch.hicat. A cluster was assigned a given identity only if the difference between the
most and second-most frequent predicted identities exceeded 40%. For downstream analyses, only
cells predicted as Glutamatergic or GABAergic were retained. In GE datasets, only GABAergic
cells were retained, as other postmitotic classes were considered potential contaminants.

Determining future cortical GABANSs in the ganglionic eminences datasets. Since not all
ganglionic eminence (GE)-derived cells migrate towards the cortex, we aimed to identify the
migratory population. Using the differentially expressed (DE) branch analysis by Mayer et al.
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(2018) 26, we identified the common DE genes for each branch within each GE and predicted cell
identities by applying the assign_cell function from the R package MetaMarkers "°. Cells were
then clustered using the method described above, and the most frequently predicted branch
identities were assigned to each cluster. As branch 1 was identified as giving rise to most future
cortical cells %6, only cells assigned to branch 1 were retained for downstream analysis.

Integration of all studies. To identify homologous cell types across 10X, Drop-seq, SSv4, SSv2,
C1 scRNA-seq and snRNA-seq datasets, both from this study and from external studies, datasets
were integrated using Seurat’s SCTransform integration workflow. For the integration analysis,
3’000 variable genes were selected. k.anchor= 5 and k.filter= 150 were the parameters set for the
FindIntegrationAnchors function used to identify anchors between the datasets. For Yao et al.
(2021Db), only cells from the SS CTX were integrated supplementary fig. 1c).

Assigning subclass and supertype identities. Datasets were split into glutamatergic and
GABAEergic classes.

Glutamatergic neurons: For the E11.5 to P5 datasets, the in-house ANN was initially trained with
the GIutNs part of the Di Bella et al. (2021) dataset 2* using their defined cell-type labels (referred
to as the ctPA21 model). The resulting model weights were then independently applied to each
dataset from E11.5 to P5. The clustering module described above was performed on the entire
E11.5 to P5 dataset. Cluster identities were assigned by comparing predictions from the ctPA21
model, and the most frequent predicted identity was designated as the cluster identity.
Correspondence between cell types annotations of Di Bella et al. (2021) and subclass annotation
of Yao et al. (2021b) was achieved as followed: UL CPN, Layer 4, DL CPN: IT, SCPN: L5 PT,
NP: L5 NP, CThPN: L6 CT, Layer 6b: L6b, Cajal-Retzius cells: CR.

Next, we aimed to distinguish IT cells among L2/3 IT, L4/5 IT, L5 IT, L6 IT, or Car3 subclass
identities. We used the map_sampling function of the scrattch.hicat package as previously
described, utilizing the IT cells from the AllenRef21 dataset as the reference set.

For P8 to P30 datasets, subclass identities were directly assigned using the map_sampling function
of the scrattch.hicat package, as these time points are less far transcriptionally from the adult
dataset. After applying our clustering module to the entire dataset, we assigned final subclass
identities to clusters based on the most frequently predicted identity. To ensure accuracy, the
difference between the top predicted subclass and the second most predicted subclass within each
cluster had to exceed 20%. If this difference was less than 20%, we assigned a mixed subclass
identity. For the adult dataset, we retained the original subclass labels.

Finally, for each unique subclass, we assigned the supertype level of Yao et al. (2021b) 2 by using
the same procedure used to assign subclass labels with the map_sampling function.

GABAergic neurons: For datasets sampled from SS CTX, we assigned the subclass labels by using
the same procedure as described above with scrattch.hicat. Once we obtained the subclass labels
in the SS CTX datasets, we used the MapQuery function from the R package Seurat v4 (with
weigh.reduction="cca” parameter) to transfer these labels to datasets sampled from the GEs using
the SS CTX subclass labels. Subclass labels were assigned by comparing each cell to the cluster
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defined by the clustering module. For GE cells whose subclass remained undetermined, typically
less mature cells, we performed an additional round of the MapQuery function, using the subclass
labels of more mature GE cells as reference. The final subclass labels were assigned by comparison
to the clusters obtained with the clustering module. The same procedure was applied to determine
supertype labels for each subclass. Because the Pvalb Lpl supertype (which corresponds to the
Pvalb FS BC) was distributed across de full cortical thickness Supplementary fig. 2e), we deepened
our analysis in order to discriminate between upper and lower Pvalb FS BC. This was achieved by
using the map_sampling function, with clusters of the Pvalb Lpl supertype in our AllenRef21
dataset serving as reference.

Assigning cell-type names. Cell-type names were assigned by incorporating morphology,
electrophysiological properties, and/or connectivity (mec-type) associated with each final identity.
Mec-types were determined using patch-seq and connectivity studies 2%, which showed that
many transcriptomic neuron types are correlated with known cortical neuron types by integrating
transcriptomic clustering with patch-seq datasets (simultaneous electrophysiological recording and
morphology reconstruction) and large-scale connectivity studies. These multimodal approaches
demonstrated reproducible correspondences between molecularly defined subtypes and canonical
cortical neuron classes. This integrative framework allowed us to anchor transcriptomic identities
to established cortical cell types with known functional and anatomical properties. Final cell-type
names were assigned by pooling original cell-type labels that shared a common mec-type.

Classification of cell-types into families. We classified our 27 identified cell-types into 8 families:
IT family encompassing L2/3 IT, L4 IT|SSC, L4/5 IT|PC, L5 IT, L6 IT cell-types; ET family
encompassing L5 PT, L6 CT, L6b cell-types; Other GlutNs encompassing CR, L5/6 NP and
Car3|Claustrum-like cell-types; Lamp5 encompassing Lamp5|L1 A7C/CNC and Lamp5|L1-L5
NGC cell-types; Vip encompassing Vip|L2/3-L4 BP/BTC, Vip|Uncharacterized and Vip|L2/3-L5
BP/BTC cell-types; Sst encompassing Sst|L2/3-L5 fan-MC, Sst|L4 IVC, Sst|L5 T-MC and
Sst|L5/L6 NMC cell-types; Pvalb encompassing Pvalb|L2/3 CHC, Pvalb|L2/3-L4 FS BC,
Pvalb|L4/5 FS BC and Pvalb|L5/6 FS BC cell-types; Other GABANs encompassing Sncg|CCK
BC, Sst|FS-like and Sst Chodl|LPC cell-types.

Pseudo-maturation score analysis. Pseudo-maturation analysis was performed from the earliest
time point at which a given cell-type was observed up to P30. For each cell-type, we first
performed an integration designed to preserve the developmental trajectory of the cells by using
the R package FastMNN %72 with prop.k set to 0.1 for most cell types and 0.4 for those with a
large number of cells (L2/3 IT, L6 CT). Pseudo-maturation scores were calculated by first
performing k-means clustering (k=2) and then by using the R package slingshot (Street et al., 2018)
which fits principal curves to identify lineages within each cell-type directly on the mutual nearest
neighbor graph generated from the integration. Maturation directionality along each lineage was
established by specifying a starting cluster. The resulting pseudo-maturation scores were
normalized between 0 and 1. At each age, cells with normalized pseudo-maturation scores
exceeding +3 double median absolute deviations (doubleMADSs) from the population median were
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considered outliers and discarded. After outlier removal, pseudo-maturation scores were scaled
into three bins spanning ages E11.5-E17.5, E18.5-P5, and P8-P30 corresponding to intervals
[0;1/3], [1/3;2/3] and [2/3;1] respectively. Cells in the E18.5-P5 and P8—P30 intervals were further
subdivided into 6 and 3 equally sized bins, respectively.

Temporal gene wave computation

Genes differentially expressed along this inferred maturation axis were identified using the
differentialGeneTest function of the R package Monocle 2 (v2.18.0) 7 using parameters
“fullModelFormulaStr = “sm.ns(pseudomaturation, df=3)+study.RNAseq.method.platform*, and
“reducedModelFormulaStr="study.RNAseq.method.platform”. \We maintained genes with ¢-
values less than 0.05 for downstream analysis. Genes with similar expression dynamics were
grouped in 6 clusters using partition around medoids on the smoothed expression profiles of the
significantly differentially expressed genes.

Pseudo-layer score analysis. Pseudo-layer analysis was performed from E18.5 to P30 by pooling
the 2 nearest time points 2 by 2 from E18.5 to P5. Furthermore, this analysis was done
independently for each family except for the Other GlutNs and Other GABANSs families as they
included cell-types that were not related to each other. UMAP was computed for IT and ET
families at each defined time point, with Seurat SCT integration applied beforehand when
necessary. For the Sst, Pvalb, Vip and Lamp5 families, all GABANSs present at each defined time
point were jointly embedded using UMAP, with dataset integration performed when necessary.
After generating unified embedding, families were subset while retaining their original UMAP
coordinates. Pseudo-layer scores were calculated following the same procedure used for the
pseudo-maturation described above. Briefly, k-means clustering was applied (k = 3 or 2, depending
on the dataset), except for the ET family, for which predefined cell-type annotations were used in
place of clustering, designating L5 PT as the starting state and L6b as the terminal state. Lineage
trajectories were inferred with slingshot 0. The pseudo-layer score was normalized between 0 and
1. Cells with normalized values above or below three doubleMADs of the population median were
considered as outliers. Once outliers were discarded, the pseudo-layer score was renormalized
between 0 and 1. To enable comparisons both across time points and across families, the pseudo-
layer scores were further scaled using the 5™ percentile and the 95" percentile of each cell-type
distribution (as determined in Supplementary fig. 2e and Supplementary fig. 3e). In addition, the
median score of each cell-type was aligned to the corresponding median position determined in
Supplementary fig. 2e and Supplementary fig. 3e, with the overall scaling set such that the 95th
percentile of the L6b distribution equaled 1.

Spatial gene gradient computation

Genes differentially expressed along this inferred layer axis were identified using Monocle 2 using
parameters “fullModelFormulaStr ="sm.ns(pseudolayer, df=3)+orig.ident”, and
“reducedModelFormulaStr="orig.ident ”. Genes with similar expression dynamics were grouped
in 6 clusters.
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Determining the distribution of cell types within a cortical column. We took advantage of two
patch-seq studies from Gouwens et al. (2020) ! and Scala et al. (2020) 2 and a multiplexed error-
robust fluorescence in situ hybridization (MERFISH) study . For each subclass, we applied the
map_sampling function of scrattch.hicat to independently map cells of the 2 patch-seq studies to
our reference AllenRef21 by taking the supertype level of the matching subclass Supplementary
fig. 2a, Supplementary fig. 2b). We assigned each of the clusters defined in these studies to the
most frequent predicted supertype identity. For the MERFISH dataset, which comprised only 254
genes, the limited gene coverage prevented us from reliably identifying the corresponding
supertype of the AllenRef21. We therefore took advantage of the published confusion matrix
between this MERFISH dataset and 7 scRNAseq and snRNAseq datasets 2°7* to guide cell-type
correspondence Supplementary fig. 2d). For each subclass, we applied the map_sampling function
to the 7 datasets and assigned supertype of AllenRef21 to the cluster defined in Callaway et al.
(2021) % fig. 2c). The confusion matrix between MERFISH dataset and the 7 datasets allowed us
to find the corresponding supertype in the MERFISH dataset. Clusters whose predicted subclass
did not match their original subclass assignment were excluded from further analysis. Finally,
supertype labels were merged into cell types defined in the section above to obtain the distribution
of our cell-types along the cortical thickness Supplementary fig. 2e). For certain cell-types, no
corresponding populations were identified in the patch-seq and MERFISH studies. We overcame
this issue by assigning laminar distribution of these cell-types as follows:

CR: we took 100 random values encompassed in the L1 (<0.07) to reconstruct the distribution.
Vip|L2/3—L4 BP/BTC is a mixed cell-type corresponding to the Vip Mypcl and Vip Lmol
supertypes in AllenRef21. We therefore pooled cells corresponding to these two cell-types to
reconstruct the distribution of this cell-type.

We further applied the map_sampling function from the scrattch.hicat R package to each “Pvalb
FS BC" clusters identified in the two patch-seq and MERFISH studies, using AllenRef21 cluster
labels to determine layer specific Pvalb FS BC (Supplementary fig. 3a, Supplementary fig. 3b,
Supplementary fig. 3c). The resulting AllenRef21 cluster assignments were then consolidated into
three cell types, defined on the basis of their corresponding distribution extrapolated from the
normalized soma depth of patch-seq and MERFISH studies: Pvalb | L2/3-L4 FS BC (114
Pvalb/113 Pvalb and 114 Pvalb clusters), Pvalb | L4/5 FS BC (115 Pvalb, 116 Pvalb/115 Pvalb,
and 117 Pvalb/116 Pvalb clusters), and Pvalb | L5/6 FS BC (111 Pvalb, 112 Pvalb, 116 Pvalb, 116
Pvalb/112 Pvalb, 117 Pvalb, and 119 Pvalb).

Transcriptional landscape analysis. For each family, cells were independently embedded in a
2D graph based on their pseudo-maturation and pseudo-layer scores from E18.5 to P30. Gene
expression values were represented as Log2(CPM +1). For all genes expressed in at least five cells,
we fitted a generalized additive model using the gam function from the mgcv R package, modelling
expression as a function of both the pseudo-maturation and the pseudo-layer axis. For each family,
to prevent oversmoothing of expression profiles, one third of the total number of cells were
artificially added with log2(CPM +1) expression values set to zero for all genes. As pseudo-layer
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score was not computed for other GlutNs and other GABANSs families, an artificial pseudo-layer
score was assigned to each cell included in these families according to their relative position
determined in Supplementary fig. 2e. As described above, the gam function was applied to these
two families. In a given family, genes were considered significantly expressed if and only if for at
least one cell-type and at least one age the number of cells was >5, the gene was expressed in more
than 20% of the cells and its mean expression was higher or equal to the median of the median of
the log2(CPM + 1) values across all cell-types at that age. Significant genes were used to perform
a PCA on their smoothed expression landscape. The resulting PCA space was discretized using a
k-mean clustering, with k=15 determined by the gap statistic method. Average smoothed
expression profiles were subsequently computed for each cluster. Enriched genes were split by
cluster within each sheet and converted from mouse gene symbols to Entrez IDs using
clusterProfiler and org.Mm.eg.db. KEGG pathway enrichment was performed for each (family,
cluster) gene set using enrichKEGG, with the background universe defined as all Entrez 1Ds
present across all clusters. Enriched pathways were retained at FDR < 0.05. KEGG functional
hierarchy (level 1 and level 2) was retrieved directly from KEGG via KEGGREST and assigned
to each enriched pathway. For each (family, cluster), we defined a wave-level functional label as
the KEGG level 2 category most significantly and frequently enriched within that cluster.
Representative pathways (top 3 by FDR) were recorded for interpretability. Global spatiotemporal
wave labels were derived analogously by aggregating enrichment across all neuronal families and
selecting, for each cluster, the dominant KEGG level 2 category and its most recurrent enriched
pathways Supplementary Data S8 and Fig 2F.

Gene ontology analysis. We used the clusterProfiler 7 R package (v4.0) to find enriched
biological processes in gene sets by using the enrichGO function. Gene ontology analyses were
applied for each wave identified along the pseudo-maturation axis, and along the pseudo-layer
axis.

Construction of the ligand-receptor database. LR_DB_2025 is the result of integrating and
curating 109 existing public databases, to which we manually added 203 LR pairs based on
literature (Supplementary Data S1). To the best of our knowledge, it is the largest curated LR
database. Public databases were found by using some R and python packages, in particular
OmnipathR 7', singleCellSignalR °°, CellPhoneDB 8 | NATMI %, CellCall ", scMLnet 2 and
CytoTalk . We retained only ligand—receptor pairs corresponding to strictly intercellular
interactions. LRs referenced in LR_DB_2025 were curated with supporting PMIDs documenting
the evidence for each the interaction (Supplementary Data S1). We assigned each LR to a category
and a family. Categories for LRs included in Omnipath were taken directly from the database,
whereas categories for additional LRs were manually curated. In total, there are 20 distinct ligand
categories and 10 distinct receptor categories. The LR family was attributed by using the HUGO
Gene Nomenclature Committee (HGNC) resource and to a lesser extent the Uniprot database.
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Overall, 344 distinct ligand families and 313 distinct receptor families were identified
(Supplementary Data S1).

Construction of the Transcription regulatory database. The transcription factor (TF) database
is the result of combining the merged mouse TRRUST v2 "® and high confidence RegNetwork ™
TFs provided by the scSeqComm R package 4’ with the transcription regulatory database from
Omnipath, retaining only entries supported by at least one literature reference.”

Receptor-Transcription factor a priori association. Directed graphs of Reactome and KEGG
signaling pathways, available from the GitLab repository associated with the scSeqComm package
47 were used to compute the score of a-priori association between a receptor and a TF using the
compute tfactor PPR function of scSeqComm.

LR landscape correlations in specific LR categories or LR neurodevelopmental ontologies
(Fig3B). We analyzed LR pairs where ligands showed significant transcriptional landscapes in IT
neurons and where receptors exhibited significant expression in GABANs. LRs belonging to
neurodevelopmental ontologies were identified using the MSigDB resource via the msigdbr R
package %8, focusing on gene sets from the H, C2, C5, and C8 ontologies, while excluding the
“cellular component (CC)” ontology. Using specific keywords, we identified LRs belonging to six
neurodevelopmental ontologies: Migration (2,008 LRs), Cell Death (1,135 LRs), Differentiation
(3,158 LRs), Cell Adhesion (961 LRs), Synaptogenesis (554 LRs), and Brain-associated processes
(1,243 LRs), the latter encompassing nervous system functions not directly tied to development.
LRs identified in these ontologies formed a new database: LR_DB_2025_Brain-Dev-Ontologies.
We calculated the average correlation between ligand and receptor expression landscapes for LRs
of specific categories (Fig. 3B, left plot) or neurodevelopmental ontologies (Fig. 3B, right plot),
with ITs as source cells and GABANS as target cells. Statistical significance was assessed using
Fisher Z-transformation.

Inferring ligand-receptor interactions. To infer ligand-receptor interactions between all cell-
type pairs, we used the R package scSeqComm #” using log2(CPM + 1) of expression values. The
interaction analysis was conducted from E18.5 to P30 by pooling the two nearest time points two-
by-two from E18.5 to P5 and at the cell-type level. Only cell-types with at least five cells were
kept for analysis. scSeqComm processed each LR pair referenced in LR_DB_2025 and computed
intercellular and intracellular scores (S_inter and S_intra respectively) for all pairs of cell-types.
For each ligand and receptor, scSeqComm assigned a score between 0 and 1 that quantified how
strongly their average expression in a given cell type exceeded the expression levels expected by
chance for randomly selected genes in the same cell type. The S_inter score was equal to the
minimum value obtained between the ligand and the receptor implicated in the LR pair. For each
known biological signaling pathway and a given receptor, S_intra was computed to quantify the
evidence that the receptor in a given cell type activated intracellular signaling within that pathway.
We also computed the S_inter-diff score allowed by scSeqComm which represents an alternative
version of the default scSeqComm intercellular signaling score. For each gene G in the input
matrix, gene expression levels of G were normalized by the average expression level of gene G
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across all cell-types before computing the intercellular scores. This score aimed to prioritize
ligands (receptors) that behaved differently across cell-types, thereby highlighting LR pairs
enriched in particular cell-type interactions. To reduce false positives and increase the robustness
of our approach, we generated a cell-type score that combined two metrics, incorporating prior
knowledge about the likelihood of interaction between two cell-types:

A connectivity score: We constructed a cortical column in 3D of the SS cortex including
our identified cell-types. To determine the distribution of our cell types within a cortical
column, we used the cross-reference approach described above with Gouwens et al. (2020)
! Scala et al. (2020) % Zhang et al. (2021) 2. To gain access to the morphology of our cell-
types, morphological reconstructions in SWC format
(https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/) from Scala et al.
(2020) 2 were used. Only three of our identified cell-type did not have matched cell- type
morphology: Vip Uncharacterized, Car3 Claustrum-like and CR. For Vip Uncharacterized,
corresponding morphological reconstruction from Vip | L2/3-L4 BP/BTC and Vip | L2/3-
L5 BP/BTC cell-types were used. Some studies suggest that Car3 Claustrum-like cells
were IT cell-types predominantly located in L6 2°®, consequently L6 IT cells were used
as proxies for Car3 Claustrum-like morphologies. For CR cells, a mouse neocortex
morphological reconstruction was obtained from the neuromorpho.org website
(<https://neuromorpho.org/neuron info.jspneuron name=Anstoetz NC CajalRetzius 9>).
This CR morphological reconstruction was rescaled in order to match the morphological
reconstruction scale of Scala et al. (2020). The constructed 3D cortical column
encompassed 1 000 cells. The proportion of cell types was set, as closely as possible, to
reflect their reported abundances in the somatosensory cortex based on the literature 839
(80%GIutNs: 28.25% L2/3 IT, 23.25% L4 IT (85% L4 IT|SSC (60% strictly SSC
morphology, 25% star pyramidal cell morphology (SPC)), 15% L4/5 IT|PC), 16.25% L5
(80% L5 PT, 20 % L5 IT), 29.25% L6 (85% L6 CT, 10% L6 IT, 5% L6b), 1% CR, 1%
L5/6 NP, 1% Car3|Claustrum-like; 20% GABANS: 45% Pvalb (42% Pvalb|FS BC (45%
Pvalb|L2/3-L4 FS BC, 29% Pvalb|L4/5 FS BC, 26% Pvalb|L5/6 FS BC), 3% Pvalb|L2/3
CHC), 28% Sst (15% Sst MC (50% Sst|L5 T-MC, 50% Sst|L2/3-L5 fan-MC), 6% Sst|L4
IVC, 5% Sst|L5/L6 NMC, 2% Sst|FS-like), 2% Sst ChodI|LPC, 10% Vip (60% Vip|L2/3-
L4 BP/BTC, 20% Vip|L2/3-L5 BP/BTC, 20% Vip|Uncharacterized), 6% Sncg|CCK BC,
9% Lamp5 (44% Lamp5 L1 A7C/CNC, 56% Lamp5 L1-L5 NGC). The centroid
corresponding to the position of the soma for each reconstructed cell was calculated by
using the nGauge python package 2. All the reconstructed cells were embedded in a 3D
cortical cortical column by using the natverse R package ® by positioning the soma
according to the normalized cortical depth provided in 2. If more cells than provided in?
were needed, a random normalized cell soma depth was selected between the 5+ and the
95~ percentile of the cell-type distribution along the cortical column. Values of soma
position were adjusted in such a way that the cortical column had a cortical depth of 1 500
pm (Y axis) and the X and Z axis had a length of 150 um. X and Z coordinates were
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randomly taken between 0 and 150 for each cell. Once the 1 000 cells were embedded in
the reconstructed cortical column, the potential synapses between each cell and the 999
other cells were computed by using the potential_synapses function of the natverse
package that implements the method of Stepanyants and Chklovskii “8. This method created
a technical artifact by facilitating potential synapses between cells belonging to the same
cell-type as they were similarly distributed within the cortical column. All the potential
synapses involving 2 cells belonging to the same cell-type were assigned as NA values. A
connectivity score between 2 cell-types was obtained as follows:

Va € [1:999], Vb € [1:999],

pOtScella—cellb

max(PotSce”a) + max(PotSce”b)
2

Norm. pOtScella—cellb =

where:

—a: cella

—b:cellb

— potS : Potential synapses

vj € [1:27], Vk € [1:27],

nCtj

Y.

ctjy—cty e _ 2=1

Nct Clj—ClEipy
Y X Norm.PotS e

Nt + Ny,

cellg—celly

Norm.potS

where :

—ctj : cell —typej

—cty : cell —typek

Mg Number of cells belonging to cell — type j

— N¢g, : Number of cells belonging to cell — type k

vj € [1:27], Vk € [1:27],

cti—cty, ;
ot ity Norm.potS~ I “kjzk
conn.score "/ j2k =

max(Norm. potSti) + max(Norm. potSctk)
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Due to the technical artifact affecting cell pairs belonging to the same cell-type, a
medium connectivity score was assigned:

vj € [1:27],Vk € [1:27],

cti—cty
conn.score” 7 “"ki=k = 0.5

e a development score: Some cell types colonize the cortex before others. For example,
GlutNs colonize the cortex before GABANSs and deep-layer GlutNs before superficial
layers GlutNs. We attributed a development score between cell-types to reflect the degree
of maturity of the different cell-types across cortical development. These scores span
values from 0.1 to 1 (Supplementary Data S3).

These 2 scores allowed us to define a cell-type score:

Vj € [1:m],Vk € [1:m],
cti—ct cti—ct cti—ct 1 cti—ct
ct.score“ Tk = dev.score STk X | conn.score ik 4 3 X (1 — dev.score i k)

where:
—ctj : cell — type j
—cty:cell —type k

—m: Total number of cell —types in the processed dataset

A ligand-receptor pair (LR); between 2 cell-types pairs was considered significant
if and only if:

Vi € [1:n],Vj € [1:m],Vk € [1:m], V] € [1: M],Vvr € [1: M],

ctl-—>ct

k . Ctj—m'tk Ctj—m‘tk
+ Wintergeore X S_inter, > Wetgore X (1 —CL +
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score

cti—ct,
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M M
/\PctLCltj > 15% & /\Pct;ik > 15%

1=1 r=1
where:
— (LR); : LR pair i
—n: Total number of LR pairs in LRintercellNetworkDB detected in the processed dataset
— 1 : subunit | composing the ligand L
— 1 : subunit r composing the receptor R
— M : Total number of subunits composing the ligand L or the receptor R

= Wetgore - Weight applied to the cell —type score.
If the ligand L of the (LR); was not a secreted

molecule thenw . = 0.6;

else if the ligand L of the (LR); was a secreted molecule then
w“score =0.4

= Wintergeore: Welght applied to the ligand — receptor interaction score.
If the ligand L of the (LR); was

not a secreted molecule then Wiyer .. = 0.4;
else if the ligand L of the (LR); was a secreted

molecule then Wiyser .. = 0.6
. Pctztj: Ligand L percentage expression in cell — type j

- Pctf(,t": Receptor R percentage expression in cell — type k

In order to prioritize cell-type specific interactions, we retained only significant LR pairs that had
a S_inter-diff score above the population median minus 1.5 DoubleMAD for each cell-type pair
and at each age.

In the case of homophilic interaction, i.e., LR pairs in which the same molecule acted as both
ligand and receptor, the mean S_inter values could differ according to the direction of the
interaction between two cell-types. Therefore, the threshold described was evaluated in both
directions to consider the LR pair between ktwo cell-types as significant. For LRs with secreted
ligands, we gave a lower weight to the cell pair score and a higher weight to the LR intercellular
score to account for their ability to act over greater distances. To further reduce false positives,
only LR pairs that were significantly present across contiguous developmental stages were
included (Supplementary fig. 13).

Definition and use of intercellular score thresholds
As detailed above, each ligand-receptor interaction was associated with an intercellular
score S;er, a Cell-type score combining the developmental score and the anatomical connectivity
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score of the two cell types, and ligand-type—specific weights (0.6/0.4 for membrane ligands and
0.4/0.6 for secreted ligands) that determine how the cell-type score and the S;,... score contribute
to the thresholding step. To clarify how these components were used to establish significance, we
applied a two-step thresholding procedure. First, for each LR—cell-type pair, we compared the
weighted observed value (cell-type score x weight + S, X weight) with the corresponding
weighted expected value (threshold derived from the same LR pair and its mean S, across all
cell-type pairs). An interaction was retained only when its observed value exceeded this threshold,
ensuring that LR pairs were accepted only when their intercellular score was stronger than
expected given the developmental and anatomical plausibility of the interacting cell types. Second,
LR pairs were required to pass an independent expression filter in which all ligand and receptor
subunits had to be detected in more than 15% of cells in their respective cell types. Among the
remaining interactions, only those with an S;,..qisScore above the median minus
1.5xDoubleMAD were kept ensuring cell-type specificity. Together, these steps convert
continuous scSeqComm scores into a strict binary classification (significant vs. non-significant)
while leaving the underlying scores unchanged.

Machine learning framework to test the combinatorial code hypothesis. To assess whether LR
expression patterns can distinguish cell-type pairs, we implemented a machine learning
classification framework in R/PyTorch. For each developmental stage, source—target cell-type
pairs were expanded into single-cell replicates by subsetting a fixed number of cells from each
source and target cell-type. For every replicate, we generated a ligand—receptor feature matrix in
which each entry corresponded to the product of the normalized RNA counts of a ligand in the
source cell and its cognate receptor in the target cell. This encoding captured the potential
interaction strength at the single-cell level and yielded a standardized feature set across all pairs.
These matrices were then used to train classifiers tasked with predicting the correct source—target
identity. Each example was encoded as ligand x receptor expression products (loglp, z-scaled).
Five LR feature sets were evaluated: (i) all significant pairs; (ii) shared-only pairs (=300 pairs);
(iii) rare-only pairs (<10 pairs); (iv) unique-only pairs (1 pair); and (v) size-matched random non-
LR pairs. Train/test splits were made by cells (no source or target cell seen in training was included
in testing). We trained a multi-layer perceptron (MLP) classifier with and without weight pruning,
optimizing with Adam and early stopping. Model performance was assessed by test accuracy,
ROC-AUC, and macro-F1 across >600 possible cell-type pairs. While overall accuracy was
necessarily modest due to the difficulty of the task, rare-only feature sets consistently exceeded
chance, and combining feature sets (all significant) achieved the best performance, consistent with
a combinatorial LR code.

Analysis on Ganglionic Eminences (Supplementary fig. 23). To characterize ligand-receptor
(LR) interactions within the ganglionic eminences (GE), we combined curated LR pairs from
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LR_DB_2025 with ontology annotations derived from MSigDB. After filtering out complexes,
unique ligand-receptor couples were intersected with neurodevelopmental gene sets to identify
processes relevant to GE maturation. We classified interactions according to their progenitor origin
(VZ-MGE, VZ—CGE, VZ—POA) and monitored their persistence across contiguous
developmental stages. Using UpSet plots and clustered heatmaps, we quantified the proportion of
LR pairs that were specific versus shared between domains and traced their evolution across ages.
Pairwise overlap was further assessed with Jaccard indices to measure the stability of interactions
between domains. Enrichment analysis of LR-associated ontologies was then performed separately
for specific and shared interactions, enabling the identification of domain- and age-dependent
signaling programs. Enrichment analysis of LR-associated ontologies was performed using the
clusterProfiler R package. First, ligand—receptor pairs were collapsed into ontology terms by
mapping both ligands and receptors to MSigDB biological process gene sets (C5 collection),
creating a custom TERM2GENE table. This annotation was joined to LR pairs detected in each
GE domain and age group. LR pairs were then split into “specific” (present in only one domain)
and ““shared” (present in two or more domains) subsets, and enrichment was tested independently
within each subset using the enricher function, with all detected LR pairs as the background
universe. Significant terms were defined by adjusted p-value <0.05. For visualization, the most
enriched terms were displayed as dot plots, separated by domain (VZ-MGE, VZ-CGE, VZ-POA),
developmental stage (E18.5-P0, P1-P2, P4-P5), and interaction type (specific vs shared), enabling
identification of signaling programs enriched at distinct ages or across domains.

General analysis of inferred LR interactions (Fig. 4). We analyzed the percentage of LR pairs
associated with neurodevelopmental processes and disorders predicted by our atlas, focusing on
their utilization at specific time points and between defined cell- pairs. In Fig. 4C, LRs were
categorized into six neurodevelopmental processes using an approach similar to the landscape
analysis (Fig. 3B). However, in this case, we included all significant LRs from the LR_DB_2025
database, as determined by intercellular and cell pair scores, regardless of their landscape
significance or prior classification within brain ontologies (Fig. 3B). This analysis identified 2,576
LRs associated with neuronal migration, 1,494 with neuronal cell death, 3,921 with
differentiation/morphogenesis, 1,391 with cell recognition/adhesion, 613 with synaptogenesis, and
238 specific to the Cadherin family. These groups were further stratified by developmental time
points (E18.5-P0 to adulthood) and cell families (Pvalb, Sst, Vip, Lamp5, and Other GABANS).
We used curated neurodevelopmental disorder gene lists to identify LRs implicated in specific
conditions (Fig. 4D-F). We found 29 LRs associated with epilepsy °, 104 with intellectual
disorders (from the ITHACA database: https://id-genes.orphanet.app/ithaca/), 14 with
schizophrenia %, and 100 with autism *® (from the SFARI Gene database, accessed December
2024) (Supplementary Data S5). For Fig. 4F, we visualized the disease-associated LR pairs as an
interaction network using the ggraph and igraph R packages. In Fig 4C and D to enable fair
comparison across ontologies with unequal numbers of possible ligand—receptor pairs or Diseases,
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the number of significant interactions was normalized by the total number of LR combinations
within each ontology or diseases category.

ShRNAs. RNAI experiments were conducted using sShRNAs targeting the coding sequence of Mus
musculus Cdh13 and Pcdh8 (GenBank accession number NM_019707 and NM_021543) based on
the following criteria (http://www.promega.com/siRNADesigner/program) :

- the sequence must start with either a Cysteine (C) or Guanine (G)

- It must have more than 50 % G or C bases

- No more than 3 consecutive base repetitions in the sequence

The sequences chosen to design oligonucleotides (Supplementary Data S7) for sShRNA genesis
recognized nucleotides 1521-1541 of Cdh13 coding sequence and nucleotides 2302-2322 of Pcdh8
coding sequence. BLAST searches against Mus musculus databases confirmed the specificity of
each target. As negative controls, we used corresponding non-targeting shRNAs with the same
nucleotide sequence except in four positions. These sShRNAs were subcloned into the mU6pro
vector (gift from Dr J. LoTurco) and validated in vitro using classical western blot assays
(Supplementary Data S7).

In utero electroporations. Timed pregnant C57BL6/J females were anesthetized with isoflurane
(75% for induction and 2 to 2.5% for surgery) at E13.5 to trace DL neurons, at E15.5 to trace SL
neurons. The uterine horns were exposed. A volume of 1-2 pL of small hairpin RNA-expressing
DNA plasmid (shRNA against Cdh13 or against Pcdh8 vs their respective control shRNAs, 1.5
Hg/ul) was mixed with pCAG-GFP plasmids (1 pg/ul) and Fast Green (2 mg/ml, Sigma) for
further injection into the lateral ventricle of each embryo with a pulled glass capillary and a
microinjector (Picospritzer 11, General Valve Corporation, Fairfield, NJ, USA). Electroporation
was then conducted by discharging a 4000 uF capacitor charged to 27 V using a BTX ECM 830
electroporator (BTX Harvard Apparatus, Holliston, MA, USA). Five electric pulses (5 ms
duration) were delivered at 950 ms intervals using electrodes. Embryos were allowed to be born
and develop before being sacrificed at P28, and 50 m coronal brain slices were cut using a sliding
microtome (Microm).

Histology and immunostainings. Mice were perfused transcardially with ice-cold 4%
paraformaldehyde (in PBS). Brains were removed and post-fixed overnight at 4 °C with the same
fixative. Coronal sections were cut at 50 pm thickness using a sliding microtome (Microm).
Briefly, for immunofluorescence experiments, free-floating sections were blocked and
permeabilized for 2 hours in a blocking buffer composed of 10% Normal Bovine Serum, 0.2%
Triton X-100 (Sigma) in PBS. Primary antibodies, diluted in blocking solution and added
overnight at 4 °C, were as follows: rabbit anti-Parvalbumin (1:1000, Swant), chicken anti-GFP
(1:500, Aves), rabbit anti-Synaptotagmin 2 (SYT2) (1:100, DSHB), mouse IgG2a anti-SYT2
(DSHB, 1:100), and rabbit anti-SPTBN4 (Thermofisher, 1:1000). Corresponding fluorescently
labeled secondary antibodies (AlexaFluor, Invitrogen) were added for 2 h in blocking solution at
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room temperature. Hoechst was added in PBS for 10 min, and sections were mounted on
microscope slides that were coversliped using Mowiol solution (Sigma).

Proximity ligation assay. 60 um sagittal sections were treated for rabbit anti-CBLN4 (Invitrogen,
PA5-36472) and anti-Mouse GLUD1 (Proteintech, 67026-1-1g) or anti-CBLN4 and goat anti-
NEOL1 (Biotechne, AF1079) co-immunolabeling before application of Rabbit Plus and Mouse
Minus or Rabbit Plus and Goat Minus probes, respectively (Merck, Duolink). Experiments were
then done according to the manufacturer’s instructions.

Image acquisition. Images were obtained from 50 pum thick sections using a Zeiss LSM-800
confocal microscope. Electroporated zones were imaged with a 10X objective (Plan-Apochromat,
Numerical aperture 0.3) to provide an overall view of all electroporated cells. For the proximity
ligation assay, we imaged layers 1 and 2 with an oil-immersed 40X objective using mosaic tiles,
or with an oil-immersed 63X objective (Olympus, Numerical aperture 1.4) for GFP colocalization
with puncta. For synaptic analysis, GFP+ GlutNs located in deep or superficial cortical layers were
imaged with the 63X objective. A 3X digital zoom was applied to achieve a lateral and z-axis
resolution of 85 nm. The Z-stack was adjusted for each slice to ensure complete imaging of the
entire neuron for subsequent 3D reconstruction. Laser power and detection filter settings were
optimized based on the staining quality of each slice.

Image analysis. All cell analyses were performed on GFP-electroporated neurons found in the DL
of the S1 cortex. All images were blinded using “blind analysis tool” plugins in ImageJ. 3D-Image
reconstructions and analyses were performed with IMARIS 9.9.0 software. First, a zoomed crop
was done on the GFP* soma compartment. Then, to assess Pvalb FS BC cell input onto GFP-
expressing electroporated cells, the Syt2* presynaptic boutons physically contacting the GFP*
soma of pyramidal electroporated cells were analyzed. First, spots (diameter 0.6 um)
corresponding to individual Syt2" presynaptic boutons were created by using the create spots
function. The GFP* soma was then reconstructed using the create surface tool. The density of
Syt2™ synaptic spots contacting the GFP*™ soma’s surface was then measured using the object-
object statistic tool with the filter “shortest distance from soma.” To analyze the mean volume of
presynaptic Syt2* puncta, these puncta were modelized using the create surface tool followed by
the filter “shortest distance from soma” adjusted to 0 to isolate only the Syt2* surfaces contacting
the GFP* soma surface.

Statistics. All statistical tests are described in the figure legends. Statistical methods to
predetermine sample size were not used. Unless otherwise stated, all values represent the averages
of independent experiments £ SEM. Shapiro-Wilk or Anderson-Darling test was used to test the
normality of the data. Statistical significance for comparisons of one variable was determined by
student’s t-test using two- tailed distribution for two normally distributed groups, and by Mann-
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Whitney non-parametric test when distributions were not normal. For proportion comparisons, x?
test was applied. Differences were considered significant when p-value <0.05. All statistical
analyses were performed with R and Rstudio or with Prism 8.0.2 software (GraphPad).

Data availability

Raw sc/snRNA-seq data generated in this study are available in the ArrayExpress database under
accession E-MTAB-16260, and bulk RNA-seq data are available under accession E-MTAB-
16355 (https://www.ebi.ac.uk/biostudies/arrayexpress/studies). Processed data, QC outputs, and
derived RDS files are deposited on Zenodo (https://zenodo.org/records/11634657). Interactive
exploration of inferred signaling networks is available through the scLRSomatoDev Shiny
application at https://sclrsomatodev.online/. Source data are provided with this paper.

Code availability

All scripts used for data preprocessing, quality control, ligand-receptor inference, ontology
annotation, and enrichment analysis were written in R and Python. The complete codebase,
including custom functions and documentation, is - publicly available on Zenodo
(https://zenodo.org/records/11634657). Additional documentation and tutorials are provided
online:

Documentation: https://cortical-interactome.github.io/scLRSomatoDev-Docs/

Video

tutorials: https://www.youtube.com/playlist?list=PLyfGSyn6Q6UY82ccuHRZQmRchVx6DskfJ
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Figure 1. Comprehensive neuronal transcriptomic atlas of mouse somatosensory cortex
development. (A) Sankey diagram depicting the experimental paradigm for data collections and
integration of published datasets. Yao*: Yao et al., 2021; J. Di Bella*: J. Di Bella et al., 2021,
Telley*: Telley et al., 2019; R.Lee*: R.Lee et al., 2022; Bandler: Bandler et al., 2021; Mayer*:
Mayer et al., 2018; Mi*: Mi et al., 2018; SSp: primary somatosensory cortex; SSs: supplemental
somatosensory cortex; MGE: medial ganglionic eminence; dMGE: dorsal MGE; vMGE: ventral
MGE; CGE: caudal ganglionic eminence; LGE: lateral ganglionic eminence; 10X: 10X Genomics;
SSv4: Smart-seq version 4; SSv2: Smart-seq version 2; C1: Fluidigm C1. (B) UMAP visualization
of post-mitotic neurons from the 17 time points after integration. Cells are colored by cell-type
assignment. (C) UMAP visualization is colored by age, study, region, RNA-seq method,
sequencing platform, and gene markers. (D) Left: Sankey plot representing the different
hierarchical levels of cell type assignment; middle: heatmap representing the fraction of each cell
type per age; right: heatmap representing some cell type-specific genes. “Normalized expression”
represents the 25% trimmed mean log2(CPM + 1) expression normalized by row. See also Figs.
S1-S4. Associated source data are provided.
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Figure 2. Spatiotemporal transcriptional dynamics of neuronal subtypes over cortical wiring.
(A) UMAP visualization of all neurons color coded with cell family labels. (B) Top: 2D map in
which cells are embedded according to their pseudo-maturation (x-axis) and pseudo-layer (y-axis)
scores for the IT family. Bottom: A generalized additive model (GAM) was applied to generate 2D
maps, i.e., “transcriptional landscapes”, for the spatiotemporal expression of genes throughout
cortical wiring; Cux1 expression is represented as an example. (C) Transcriptional landscapes for
Fezf2 in ET (top) and for Reln in Other GlutNs (bottom). (D) Transcriptional landscapes for
representative genes in each GABAN family. (E) Example of transcriptional landscapes for genes
implicated in GABAN migration (Cxcl12, Ackr3 and Cxcr4), and in synaptogenesis (Nlgnl and
Nrxnl). (F) Gene map obtained by performing a PCA on all the significantly expressed genes
colored by cell family (left) and by spatiotemporal cluster (right). Average transcriptional landscapes
of each cluster are displayed around the gene map, annotated with the corresponding top KEGG
ontology label (Supplementary Data S8). (G) Varying spatiotemporal clusters for the Cadherin gene
family among 3 neuronal families. CP, cortical plate ; 1Z, intermediate zone ; MZ, marginal zone ;
SVZ, subventricular zone ; VZ, ventricular zone ; WM, white matter. See also Figs S5-S16.
Associated source data are provided.
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Figure 3: scLRSomatoDeyv, an atlas to infer LRs involved in cortex wiring. (A) Curated ligand—
receptor database containing 8,789 LR pairs compiled from 109 sources (LR_DB_2025). To
increase biological relevance for our study, we generated a brain-focused subset
(LR_DB 2025 Brain) by retaining only ligands and receptors expressed in our single-cell
dataset, resulting in 5,341 LR pairs. See Supplementary Data S1 and S2 for full listings. (B)
Correlations between transcriptional landscapes of neurodevelopmental process-associated
ligands in ITs and receptors in GABANS, suggesting a ligand—receptor code for neuronal
adhesion and synaptogenesis that involves the cadherin family of adhesion molecules. (Left) bars
show the mean correlation between IT ligand and GABAN receptor landscapes for random
ligand-receptor (LR) pairs, ADAM metalloproteases, cadherins and Ig-like cell-adhesion
molecules. (Right) bars show the mean correlation for LR pairs assigned to neurodevelopmental
categories (brain-associated, migration, cell death, differentiation, cell adhesion and
synaptogenesis). Data are presented as mean values, statistical significance was assessed by
comparing each category to its respective reference group (Left: random non-LR gene pairs;
Right: “Brain associated” category) using a two-sided z-test based on Fisher’s r-to-z
transformation, with no adjustment for multiple comparisons. Exact P values were: cadherins vs
random LR pairs, P = 0.00125; cell adhesion vs * Brain associated ”, P = 2.215e-05 ;
synaptogenesis vs ““ Brain associated ”, P = 7.0357e-04. Asterisks indicate significance levels: P
< 0.05 (*), P <0.01 (**), P <0.001 (***). (C) Simplified method for the inference of LR-
mediated interactions. TF, transcription factor; TG, target gene; S_inter, score for intercellular
communication; S_intra, score for intracellular signaling. See Figs S13-14. (D) Heatmaps
illustrating the number of inferred LR interactions that persist across at least two consecutive
ages for all 729 cell-type pairs. From left to right and top to bottom: all possible interactions;
interactions unique to a single cell-type pair, widely shared interactions (by >400 pairs) and very
rare interactions (shared by <10 pairs). Associated source data are provided.
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Figure 4: Involvement of LR pairs based on neurodevelopmental ontologies and
diseases. (A) Number of LR pairs predicted to be utilized per GABAN family as
target cells, from E18 to adulthood. (B) Number of predicted LR interactions
between IT and GABAN cell-types as source and target cells, respectively, from
E18 to adulthood. (C) Percentage of LR pairs of five main neurodevelopmental
ontologies and of the cadherin LR family that are predicted as utilized between IT
and GABAN cell-types as source and target cells, respectively, from E18 to
adulthood. (D) Percentage of LR pairs with both ligand and receptor associated
with neurodevelopmental diseases that are predicted as utilized between IT and
GABAN cell-types as source and target cells, respectively, from E18 to adulthood.
(E) Intersections between LR pairs of the 4 diseases studied. (F) Interaction
network showing the LR pairs associated with each disease. (G) Gene ontologies
associated with inferred, disease-associated LR pairs. Associated source data are
provided.
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Figure 5. Experimental confirmation of the Ligand-Receptor Atlas. (A)
Diagram illustrating Nrg3-Erbb4 interaction between GlutNs and GABANS.
(B) Nrg3 and Erbb4 transcriptional landscapes in GIutN and GABAN families.
(C) Heatmap depicting predictions of Nrg3-Erbb4 mediated interactions
between GIutN and GABAN cell-types. (D) Left: Predicted Nrg3-Erbb4
mediated cell-cell interactions at P8 and P30. GlutNs (blue) are sources of Nrg3
and GABANSs are targets expressing Erbb4. Right: Schematic representation
illustrating the predicted interaction strength among three example cell pairs,
highlighting preferred connectivity patterns based on computational predictions,
which validates the 3 cited references. (E) Diagram illustrating CBLN4-
mediated inhibitory synapse formation from Sst cells to GIutNs in the cortex.
(F) Transcriptional landscapes of CbIn4 expression across different neuron
families. (G) Heatmap with LR pairs predicted to involve CBLN4 as a ligand.
(H) Predicted CBLN4-mediated cell-cell interactions at P4-P5 and P8. Pathways
on the left, CBLN4-receptor pairs on the right. (I) Proximity ligation assay
(PLA) for interactions between CBLN4 and GLUDL1, and between CBLN4 and
NEOL, in layers L1 and upper L2. A magnified view of a GFP-positive neuronal
process with PLA puncta (red) is shown on the lower right. Scale bar: 10 pum.
The PLA experiment was performed independently in 4 biological replicates,
each yielding similar results. (J) Summary of the experimental findings related
to investigations on CBLN4. S_inter, intercellular score; S_intra, intracellular
score.
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Figure 6. Distinct cadherins differentially regulate perisomatic inhibition in a
layer-dependent manner. (A) Transcriptional landscapes of Cdh13 expression.
(B) Heatmap of predicted CDH13-CDH13 interactions between GlutN ITs and
GABAN types, shared by at least two consecutive ages. (C) Predicted utilization
of CDH13-CDH13 interactions across ITs and GABANs at P4-P5 and P30;
interaction strength is quantified by the inter_diff score. (D) In vivo knock-down
of CDH13 in L5 GlutNs (left). Perisomatic (middle) and axon initial segment
(right) inhibitory inputs from Pvalb BC and CHC boutons onto L5 GlutNs were
quantified as SYT2 coverage. Statistical analysis was performed using Two-sided
Mann-Whitney tests with biological replicates: n = 4 mice per electroporation
condition (shCtl, shCdh13). Unit of analysis: individual electroporated L5 GlutN
somata; technical replicates: 36 somata (shCtl) and 37 somata (shCdh13). Exact
P value for perisomatic SYT2 coverage: P = 0.0227 *p < 0.05. No correction for
multiple comparisons. Data are presented as median values in box plots, which
show the median (centre line), 25th—75th percentiles (box), and whiskers
representing minimum and maximum values within 1.5% the interquartile range
(IQR). (E) Transcriptional landscapes of Pcdh8 expression. (F) Heatmap of
predicted PCDH8-PCDHS8 interactions between GlutN ITs and GABAN types
shared by at least two consecutive ages. (G) Predicted utilization of PCDH8-
PCDHB8 interactions at P1-P2 and P4-P5. (H) In vivo knock-down of PCDH8 in
L2/3 ITs (left). Perisomatic (middle) and axon initial segment (right) inhibitory
inputs from Pvalb BC and CHC boutons onto L2/3 ITs were quantified as SYT2
coverage. Statistical analysis was performed using Two-sided Mann-Whitney
tests with biological replicates: n = 4 mice per electroporation condition (shCtl,
shPcdh8). Unit of analysis: individual electroporated L2/3 IT somata; technical
replicates: 72 somata (shCtl) and 66 somata (shPcdh8). Exact P value for
perisomatic SYT2 coverage: P = 0.028 *p < 0.05. No multiple-comparison
correction. Data are presented as median values in box plots, with the median
(centre line), 25th—75th percentiles (box), and whiskers indicating minimum and
maximum values within 1.5x 1QR. Associated source data are provided.

Editorial summary: Ligand-receptor signaling between neuronal subtypes
during cortical development remain largely unknown. Here, authors show
spatiotemporal gene-expression maps across neuronal types revealing ligand
receptor interactions that support migration and circuit formation.
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