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Acute exercise rewires the proteomic
landscape of human immune cells

David Walzik 1,9, Niklas Joisten 1,9, Alan J. Metcalfe2,3, Sebastian Proschinger1,
Alexander Schenk1, Charlotte Wenzel1, Alessa L. Henneberg 4,
Martin Schneider5, Silvia Calderazzo6, Andreas Groll 7, Carsten Watzl 8,
Christiane A. Opitz 4, Dominic Helm 5 & Philipp Zimmer 1

The positive effect of exercise on the immune system is widely acknowledged,
but the molecular response of immune cells to exercise remains largely
unknown. Here, we perform mass-spectrometry-based proteomic analysis on
peripheral blood mononuclear cells (PBMC) at a depth of >6000 proteins.
Comparing high-intensity interval exercise (HIIE) and moderate-intensity
continuous exercise (MICE), matched for time and workload, we identify
versatile changes in the proteomic makeup of PBMCs and reveal profound
alterations, related to effector function and immune cell activation pathways
within one hour following exercise. These changes aremore pronounced after
HIIE compared to MICE and occur despite identical immune cell mobilization
patterns between the two exercise conditions. We further identify an immu-
noproteomic signature that effectively predicts cardiorespiratory fitness, thus
allowing insights into potential exercise-triggered adaptations and immuno-
logical health benefits that are mediated by exercise. This study provides a
reliable data resource that expands our knowledge on how exercisemodulates
the immune system, and delivers biological evidence supporting the WHO
2020 guidelines, which highlight exercise intensity as a relevant factor to
maintain health.

Physical exercise is one of the most powerful strategies to prevent and
counteract acute and chronic diseases across the entire human lifespan.
The health benefits of exercise are demonstrated by numerous clinical
and observational trials1,2, but the underlying biological mechanisms are
poorly understood. Given the broad implications of the immune system
in protecting from disease, there is a clear rationale for comprehensive
investigations of the impact of exercise on immune cells.

Both the exercise-induced mobilization of specific immune cells
into circulation as well as an increased cytokine release are well-
described phenomena in exercise immunology3. However, few inves-
tigations have evaluated the molecular alterations in immune cells
triggered by exercise. Bulk RNA sequencing revealed a complex
interplay of up- and downregulated transcripts that peaked two min-
utes after exercise and returned to baseline within 30–60min in
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peripheral blood mononuclear cells (PBMC). Enriched pathways were
predominantly related to inflammatory signaling and immune activa-
tion, but also included other processes such as cell growth and
mobility4. While the number and kinetics of transcripts suggest that
many expected and some novel signaling pathways are initiated by
acute exercise, the proteomic response of PBMCs remains unclear.

Given that the proteomicmakeup of cells defines their phenotype
and function, bulk proteomic analyses depict a suitable starting point
to evaluate the impact of exercise on circulating immune cells. Besides
offering a comprehensive overview of the proteomic response of
PBMCs to exercise, this also paves the way to an unbiased, data-driven
discovery of exercise-induced signaling pathways that may underlie
immunological adaptations to exercise. In addition, hypothesis-gen-
erating, explorative approaches create a malleable foundation for
follow-up investigations applying more targeted strategies with a
focus on specific immune cell subsets. In analogy to the World Health
Organization (WHO) 2020 guidelines on physical activity, which
highlight exercise intensity as a crucial variable for health promotion5,
and considering that high-intensity interval exercise (HIIE) is asso-
ciated with greater cardiovascular strain compared to moderate-
intensity continuous exercise (MICE)6, we hypothesize that HIIE indu-
ces stronger proteomic alterations in PBMCs compared to MICE.

Here, we apply state-of-the-art mass spectrometry-based pro-
teomics and flow cytometry-based immune cell phenotyping in a
randomized crossover study to compare how time- and energy-
matched HIIE and MICE reshape the immune cell proteome of 23
young healthy adults. We demonstrate that the proteomic makeup of
PBMCs is rewired towards immune cell activation and effector func-
tion pathways in the recovery phase following exercise and that these
changes are indeedmore potently induced by HIIE compared toMICE,
despite no differences in immune cell mobilization between the two
exercise modalities. Using prediction models, we additionally identify
an immunoproteomic signature associated with cardiorespiratory fit-
ness, which enables insights intomolecular targets that are potentially
responsive to exercise training and might thus be involved in immu-
nological health adaptations mediated by exercise. Overall, our data
indicate that exercising at higher intensity is necessary to induce
proteomic changes associated with immune function, providing bio-
logical support for exercise intensity as a central component of the
WHO 2020 physical activity guidelines.

Results
Study design and participant characteristics
We designed a randomized crossover study comparing time- and
workload-matchedHIIE andMICE to investigate the impact of exercise
intensity on the proteome of immune cells. PBMCs were isolated at
baseline, immediately after, and 1 h after each exercise condition
(Fig. 1A). In total, data from 23 overnight-fasted recreationally active
runners (12 female, 11 male) was collected. Participants exhibited a
mean (± SD) age of 30 ± 4 years, a body mass index (BMI) of
22.2 ± 2.38 kgm−2, and a cardiorespiratory fitness (measured as peak
oxygen uptake, V̇O2peak) of 56.64 ± 6.43mlmin−1kg−1 (Table 1 and
Supplementary Data S1).

The collected samples were analyzed via state-of-the-art liquid-
chromatography mass-spectrometry (LC-MS/MS) and spectral flow
cytometry. Comparable to other studies in the field of immunology,
our proteomics analysis yielded an excellent coverage with a total of
7385 identified and 6759 quantified proteins. So far, large-scale pro-
teomic analyses on immune cells have mostly been applied in animal
models7 or on resting samples fromhealthy donors8,making our study
the first to apply thesemethods in a randomized interventional setting
with repeated baselines. After data preprocessing, our dataset com-
prised 6,039 proteins across 23 participants in 2 exercise conditions
with 3 measurement timepoints, respectively. This makes our dataset
the largest immune cell proteomics data source available in exercise

context to date (Fig. 1B). Immune cell phenotyping by spectral flow
cytometry was performed on a total of 3,537,855 vital lymphocytes
(Supplementary Data S2) to assess exercise-induced shifts within the
PBMC compartment (Supplementary Fig. S1A). So far, this has been
disregarded in exercise studies applyingomics approaches on immune
cells4.

Immune cell mobilization and redistribution is independent of
exercise intensity
The mobilization and redistribution of immune cells in response to
acute exercise is one of the core phenomena of exercise immunology,
and it is nowadays agreed upon that the recovery phase following
exercise is characterized by a transmigration of lymphocytes from the
bloodstream into peripheral tissues, with crucial implications in many
disease settings, including anticancer immunity9,10, and immunological
defense11,12. A remaining topic of debate, however, is whether exercise
intensity influences the magnitude of immune cell mobilization since
previous studies on this topic werematched for exercise duration, but
not workload13,14. Thus, before dissecting proteomic alterations of
PBMCs in response to exercise, we aimed to clarify whether immune
cell kinetics differ in dependence on exercise intensity, since this
would lead to a different composition of our PBMC samples in
response to HIIE and MICE.

By applying unsupervised immune cell clustering using self-
organizing maps (SOM), we identified 6 main clusters in our PBMC
samples, which were mapped to the corresponding immune cell
populations based on theirmarker expression. Visual inspection of the
identified clusters (Fig. 1C) and quantification of exercise-induced
cluster shifts resulted in a similar distribution pattern of immune cell
clusters between HIIE and MICE with a mean delta of 0.004 ±0.9 %
(Fig. 1D and Supplementary Data S2). Confirming these findings,
absolute numbers of immune cell populations did not reveal time ×
condition interaction effects when applying linear mixed models
(Supplementary Fig. S1B; Supplementary Data S3) and the propor-
tional contribution of each immune cell population to the PBMC
compartment was similar between HIIE and MICE (Fig. 1E and Sup-
plementary Data S4). This suggests that exercise triggers similar
mobilization and redistribution patterns independent of exercise
intensity and indicates that exercise-induced changes in PBMC com-
position do not differ between HIIE and MICE.

Measures of variability indicate high reliability of the generated
proteomics dataset
Inter-individual variability of all quantified proteins resulted inmedian
coefficients of variation (CV) of < 5 % for all measurement timepoints
and conditions (Fig. 2A). This is considerably lower than in other
proteomics studies in exercise context4,15 and underlines the homo-
geneity of our study population and the analytic quality of our pro-
teomicspipeline. The applied crossover design additionally enabled us
to calculate intra-individual protein variability. The overall mean dif-
ference between the two baselines amounted to 0.13 ± 0.75% for
females and 0.06 ± 0.59 % for males (Fig. 2B). To assess variability on a
per-protein level, we combined multiple measures of variability (i.e.,
mean CV at baseline, mean CV in response to exercise, and mean dif-
ferencebetween the two baselines) into an integrated variability score.
99.34 % of all quantified proteins revealed a proteomic variability of
< 10 % and 83.34 % achieved a score of < 5 % (Fig. 2C and Supplemen-
tary Fig.S2A, S2B). In summary, the low variability emphasizes the high
quality of our study setup, making our generated proteomics dataset
highly reliable.

Acute exercise alters the immune cell proteome
To obtain first insights into the proteomic alterations induced by
exercise, we performed principal component analysis (PCA). Visual
inspection of the PCA suggested that the variation within our samples
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wasmainly accounted for bymeasurement timepoints but not exercise
condition per se (Fig. 2D). PCA also suggested that sex and interven-
tion day had little impact on the variation of our data (Supplementary
Fig. S2C). Performing PCA separated by condition and measurement

timepoint indicated that HIIE accounted for more variation 1 h after
exercise than MICE (Supplementary Fig. S2D, E).

Next, we compared the impact of HIIE and MICE on proteomic
alterations in PBMCs using linear mixed models. We identified 1408

Fig. 1 | Study design, analysis plan, and exercise-induced immune cell mobili-
zation. A Overview of the study design, including time- and workload-matched
high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise
(MICE).BOverview of the bioanalytical and bioinformaticmethods used to analyze
peripheral blood mononuclear cells (PBMCs). C Uniform Manifold Approximation
and Projection (UMAP) of immune cell clusters identified by unsupervised clus-
tering using self-organizing maps (SOM). Immune cell clusters are displayed color-

coded and separated by exercise condition and measurement time point. Each
UMAP corresponds to 3000 vital lymphocytes from 22 samples, resulting in a total
of 66,000 events. For the UMAP representing 1 h post MICE, only 21 samples were
available, resulting in 63,000 events. D Comparison of exercise-induced shifts in
the identified clusters. E Proportions of lymphocyte subsets in response toHIIE and
MICE. See also Supplementary Fig. S1 and Supplementary Data S2, S3, and S4.
Created in BioRender. Walzik, D. (2025) https://BioRender.com/y85v219.
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time effects, 119 group effects, and 27 time× group interaction effects
(Fig. 2E). Including sex as a fixed effect in our analysis did not yield
significant results. Dissection of the obtained results revealed more
time, group, and time × group interaction effects 1 h after exercise
compared to immediately after exercise and more alterations in HIIE
compared to MICE (Fig. 2E). In detail, HIIE was marked by 1377 sig-
nificantly altered proteins, while MICE only caused significant altera-
tions in 64. The fact that immune cell counts and proportions did not
differ between HIIE and MICE 1 h after exercise (Fig. 1E and Supple-
mentary S1B) suggests that the proteomic differences are not caused
by a distinct PBMC composition. In line with our results obtained by
PCA, this suggests thatHIIE leads to amoreprofound reorganizationof
the PBMC proteome compared to MICE.

Proteomic alterations differ between HIIE and MICE
To evaluate proteins that were distinctly regulated by HIIE compared
to MICE, we first dissected the interaction effects of our linear mixed
models (Supplementary Data S5). Immediately after exercise, we
observed 5 proteins with distinct kinetics in HIIE compared to MICE
(Fig. 2F). Among these proteins, synaptotagmin-like protein 2 (SYTL2),
a crucial contributor to cytotoxic granule exocytosis in lymphocytes16,
displayed a strong increase in response to HIIE, while it remained
unaltered in MICE (log2 FC = 1.195, p = 3.1 × 10−2). Similarly, bone mar-
row stromal antigen 2 (BST2) – known for its role in blocking virus
release from infected cells17 – increased in response to HIIE but
decreased in MICE (log2 FC = 1.4, p = 2.2 × 10−2; Fig. 2F, G). This gives
first insights into the immunomodulatory potential of HIIE and sug-
gests immunological adaptations dependent on exercise intensity
immediately after exercise.

In the recovery phase after exercise, we observed 25 interaction
effects. Hierarchical clustering yielded two major clusters of proteins
marked by opposed kinetics in HIIE compared toMICE (Fig. 2F, G). For
instance, we observed an increase 1 h after HIIE, but a decrease until 1 h
after MICE for toll-like receptor 1 (TLR1; log2 FC = 1.06, p = 1.6 × 10−3),
BST2 (log2 FC = 1.92, p = 3.4 × 10−9), and cluster of differentiation 302
(CD302; log2 FC =0.85, p = 1.5 × 10–2). TLR1 is the most abundantly
expressed TLR on NK cells18 and serves as a membrane-bound pattern
recognition receptor for microbial lipopeptides that triggers cytokine
production and NK cell cytotoxicity upon stimulation19,20. Several
studies have demonstrated that TLR1 is crucial for antimicrobial
defense21,22, suggesting that exercise-induced increases in TLR1 might
reinforce NK cell-mediated immunity against invading pathogens. Of
note, BST2 was the only protein that continued to increase from post-
exercise to 1 h post exercise in HIIE, suggesting sustained intensity-
dependent adaptions in immunological defense.

In contrast, proteins such as SH2 domain-containing protein 1B
(SH2D1B), which serves as a cytoplasmic adapter regulating NK cell
effector functions23, or asparagine synthetase (ASNS), which was pre-
viously shown to regulate CD8 +T cell activation, differentiation, and
effector function24,25 were marked by a decrease in the recovery
period following HIIE, while they remained unaltered or increased in

MICE (Fig. 2F, G; SH2D1B: log2 FC = − 1.25, p = 1.0 × 10–3; ASNS: log2
FC = − 1.25, p = 7.2 × 10−3). Of note, our statistical analysis also yielded
several group differences between HIIE and MICE (Fig. 2H, I and Sup-
plementary Data S5).

In summary, our results suggest that the recovery phase following
HIIE is marked by more profound alterations of the immune cell pro-
teome compared to MICE. We provide evidence that several proteins
related to immune effector function are differentially expressed over
time between HIIE and MICE. Against the backdrop of our flow cyto-
metry results, these effects occur despite identical immune cell
mobilization patterns between the two exercise conditions.

Exercise reshapes the immune cell proteome towards effector
function
To add a functional dimension to our results, wemade use of the Gene
Ontology (GO) Resource26. GO over-representation analysis yielded 27
enriched GO terms in HIIE and 9 enriched GO terms in MICE. Inter-
estingly, enriched GO terms were centered around immune effector
functions in both HIIE and MICE, with biological processes like “dis-
ruption of cell in another organism” or “killing of cells of another
organisms” yielding high enrichment (Fig. 3A).

For proteins altered by MICE, GO over-representation analysis
additionally yielded several biological processes related to lympho-
cyte effector function, such as “lymphocyte mediated immunity” or
“T cell mediated immunity”. Given that the over-representation
analysis was conducted with much more proteins for HIIE, we addi-
tionally identified several cellular components and molecular func-
tions in this analysis. Semantic evaluation of the identified GO terms
underlined their association with immune effector function. For
instance, “exogeneous protein binding”, “virus receptor activity”,
and “endopeptidase activity” are known molecular functions in the
context of immunological defense against viruses27,28. Similarly,
“proteasome core complex” and “peroxisomal membrane” depict
cellular components associated with such molecular function and
biological processes (Fig. 3A). Collectively, our GO over-
representation analysis points towards enhanced regulation of
immune effector functions in response to both HIIE and MICE
(Supplementary Data S6).

Time-resolved protein changes differ between HIIE and MICE
Within all proteins altered by exercise (n = 1408), we found 1344 pro-
teins thatwere uniquely altered by HIIE, 31 proteins thatwere uniquely
altered by MICE, and 33 proteins that were altered by both exercise
conditions (Fig. 3B). Analysis of proteins altered byHIIE suggested two
major protein clusters that were characterized by increased or
decreased protein abundance 1 h after HIIE compared to baseline
(Fig. 3C). Considering the large number of proteins altered by HIIE
compared toMICE, we took different approaches in analyzing the time
effects of each exercise condition.

For proteins altered by both exercise conditions and proteins
uniquely altered by MICE, we performed hierarchical clustering to

Table 1 | Overview of participant characteristics

Overall HIIE-MICE MICE-HIIE p-value

Age [years] 29.67 ± 4.33 30 ± 3.94 29.43 ± 4.72 0.7577

Height [cm] 176.96 ± 8.26 175.6 ± 6.43 177.93 ± 9.47 0.5081

Weight [kg] 69.7 ± 11.17 68.83 ± 7.51 70.33 ± 13.45 0.7538

BMI [kg m−2] 22.2 ± 2.38 22.16 ± 1.3 22.24 ± 2.98 0.9408

V̇O2peak [ml min−1 kg−1] 56.64 ± 6.43 56.75 ± 7.08 56.56 ± 6.19 0.9441

HRmax [min-1] 181.43 ± 11.27 177 ± 13.07 184.85 ± 8.7 0.0986

RPEmax [A.U.] 19.38 ± 1.01 19.7 ± 0.67 19.14 ± 1.17 0.1903

RER [A.U.] 1.07 ± 0.05 1.06 ±0.06 1.07 ± 0.04 0.5217

All data is reported as mean ± standard deviation [minimum; maximum]. A two-sided unpaired t test was performed to compare intervention sequences.
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Fig. 2 | Measures of variability and proteomic changes in response to exercise.
A Inter-individual variability of all quantified proteins expressed as coefficients of
variation (CVs) separated by exercise condition and timepoint. B Intra-individual
variability of all quantified proteins expressed as delta between the two baselines
separated by sex and study participant. C Proteomic variability of all quantified
proteins. D Principal component analysis of all samples using exercise condition
and measurement timepoint as metadata. Small symbols indicate individual sam-
ples. Big symbols and circles indicate themean and 95 % confidence interval of the
corresponding data subset. E Quantification of proteomic changes in response to

exercise. Linear mixed models containing exercise condition, measurement time-
point, and the interaction between both as fixed factors were applied (N = 23).
F Interaction effects between time and exercise condition for HIIE and MICE.
Dendrograms depict clusters identified by full-linkage hierarchical clustering.
G Kinetics of proteins displaying interaction effects separated by the identified
clusters (1–3).HGroup differences between HIIE andMICE. Significant proteins are
colored by exercise condition. IDelta of protein quantities betweenHIIE andMICE.
Proteins displaying significant group differences are colored by exercise condition.
See also Supplementary Fig. S2 and Supplementary Data S5.
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identify proteins displaying similar kinetics. Interestingly, when
analyzing proteins that were altered by both exercise conditions,
hierarchical clustering yielded 2 major protein clusters: one cluster
containing proteins with similar kinetics between HIIE and MICE and
one cluster containing proteins with different kinetics (Fig. 3D). In
absolute terms, most of the proteins responded similarly with only 4

proteins showing higher values in HIIE, including the antiviral protein
BST2, which we previously identified in our analysis of time × group
interaction effects (Fig. 2F). In addition, many of the proteins that
were shared between HIIE and MICE were associated with immune
effector functions, suggesting a shared regulation of several immu-
nological processes by exercise. Examples of such proteins include

Fig. 3 | Exercise reshapes the immune cell proteome towards effector function
and causes distinct alterations in protein abundance in response to HIIE
and MICE. A Gene Ontology (GO) over-representation analysis comparing sig-
nificantly altered proteins in HIIE (n = 1377) and MICE (n = 64) with all proteins
quantified in this study (n = 6039).BOverview of proteins altered by HIIE,MICE, or
both exercise conditions. C Overview of proteins uniquely altered by HIIE.

D Overview of proteins altered by both exercise conditions. The first two clusters
identified by hierarchical clustering separate proteins displaying different kinetics
in HIIE and MICE (1) from proteins displaying similar kinetics (2). E Overview of
proteins uniquely altered by MICE. The first two clusters identified by hierarchical
clustering separate proteins increasing in response to MICE (1) from proteins
decreasing in response to MICE (2). See also Supplementary Data S5 and S6.
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granzymes (e.g., GZMB, GZMH, GZMM), perforin-1 (PRF1), or
guanylate-binding proteins 5 (GBP5; Fig. 3D).

Similarly, hierarchical clustering of proteins uniquely altered by
MICE identified 2 major clusters that separated proteins that
decreased in response to MICE from proteins that increased, while
showing no alterations in HIIE, respectively (Fig. 3E). In line with the
observed time× group interaction effects (Fig. 2F) most proteins dis-
played lower abundance in response to MICE (Fig. 3E). Of note,
although the lower number of time effects and the decreased abun-
dance of many proteins might suggest reduced immune effector
functions in response to MICE, it is crucial to emphasize that several
proteins with immunological functions, especially those jointly regu-
lated between HIIE and MICE, revealed increased abundance in
response to MICE as well. Thus, while our data suggests that the
immunoproteomic impact of MICE seems to be less pronounced than
that of HIIE, there is no conclusive evidence suggesting reduced
immune effector function per se in response to MICE.

Identification of shared and unique immune effector functions
regulated by HIIE
Todissect the proteomic alterations in response toHIIE, we performed
fuzzy c-means clustering andmapped the altered proteins (n = 1377) to
four distinct clusters by means of their relative membership (Fig. 4A
and Supplementary Data S7). The four identified clusters confirmed
what hierarchical clustering had previously suggested, i.e., two major
clustersmarked by increased or decreased protein abundance 1 h after
HIIE (Figs. 3C and 4A). We next leveraged biological theme
comparisons29 and identified 576 biological processes, 132 molecular
functions, and 187 cellular components associated with the proteins
altered by HIIE (Supplementary Data S8). By generating gene-concept
networks of the five most significant GO terms in each ontology, we
observed both shared and unique GO terms across our four protein
clusters (Supplementary Fig. S3A–C).

To quantify functional differences and similarities between the
identified protein clusters, we performed gene set enrichment ana-
lyses (GSEA)30 and observed a total of 169 enriched GO terms (Fig. 4B
and Supplementary Data S9). Interestingly, cluster 4 did not yield any
enriched GO terms and re-evaluation of the underlying statistics
demonstrated that the individual GO terms did not reach the sig-
nificance threshold. These findings were validated using the STRING
resource31. We then focused our attention on GO terms that were
shared across protein clusters 1 – 3 and obtained 11 shared biological
processes. Semantic evaluation confirmed their close connection to
immune function, as exemplified by GO terms like “cell killing”, “leu-
kocyte activation”, or “defense response” (Fig. 4B). Analysis of the
underlying proteins resulted in a core proteome consisting of 369
proteins, most of which changed in abundance in the recovery phase
following HIIE (Fig. 4C). This suggests that the biological processes
regulated by HIIE are driven by proteomic alterations in the recovery
phase. We observed similar results for the 27 GO terms that were
shared between clusters 1 and 2, and the 15 GO terms that were shared
between clusters 2 and 3 (Fig. 4B and Supplementary Fig. S4A–C).

Concerning GO terms that were uniquely enriched in a specific
protein cluster, we identified 29 GO terms uniquely enriched in cluster
1, 62 GO terms uniquely enriched in cluster 2, and 25 GO terms
uniquely enriched in cluster 3 (Fig. 4B, D). Among the GO terms enri-
ched in cluster 1 we found enriched regulation of “endopeptidase
activity” and “cellular response to organic substance” (Fig. 4D). Simi-
larly, cluster 2 demonstrated enriched regulation of “glycosami-
noglycan binding” and “cell migration”, which are crucial processes in
the context of exercise-induced transmigration of immune cells from
the bloodstream into peripheral tissues. In contrast, cluster 3 was
characterized by a decreased regulation of several cellular compo-
nents and biological processes 1 h after exercise, which can be attrib-
uted to the underlying protein kinetic (Fig. 4A). In summary, GSEA

suggested a profound regulation of immune effector processes in the
recovery phase following HIIE, which were in part shared and in part
unique for specific protein kinetics.

Identification of an immunoproteomic signature associated
with cardiorespiratory fitness
We ultimately leveraged our generated dataset to explore potential
long-term immune adaptations to exercise training since this depicts a
crucial starting point in understanding the immune-mediated health
benefits triggered by exercise. Taking a data-driven approach, we
started by pooling the baseline data of all our analyses, including
participant characteristics as well as flow cytometry and LC-MS/MS
results. This comprehensive dataset was then used to investigate
potential pairwise associations with V̇O2peak, a gold standardmarker of
cardiorespiratory fitness that is highly responsive to exercise training.
In a first step, we calculated Spearman’s rank correlation coefficients
(rS) and preselected features that displayed moderate to high corre-
lation (rS > 0.4 or < −0.4) with V̇O2peak. This resulted in a reduction of
our dataset from 6063 to 260 features (Supplementary Data S10).

To establish an elaborate connection between these features and
cardiorespiratory fitness, we next performed prediction analyses.
Ridge regression yielded an R-squared of 0.61 and a mean squared
error (MSE) of 14.1 and visual inspection of the ranked coefficients
revealed a homogeneous distribution of features with positive or
negative impact on V̇O2peak prediction, respectively (Fig. 5A). We next
focusedon the 20 featureswith the highest positive or negative impact
on V̇O2peak prediction and defined these as immunoproteomic sig-
nature predictive of cardiorespiratory fitness (Fig. 5B). Interestingly,
among these proteins, nicotinamide phosphoribosyltransferase
(NAMPT), a key enzyme of nicotinamide adenine dinucleotide (NAD+)
metabolism, demonstrated the highest positive impact on V̇O2peak

prediction. NAMPT plays a crucial role in salvaging intracellular NAD+

and was previously shown to be exercise-responsive in skeletal
muscle32–34, but also other target tissues like immune cells35–37. In
addition, several studies have suggested a direct antiviral function of
NAMPT in host defense38,39. Our results support this notion and sug-
gest that repeated exposure to exercise, which results in greater car-
diorespiratory fitness, equips immune cells with a higher metabolic
capacity, thereby linking to the immune effector functions previously
identified in this work. Similarly, we observed a positive impact on
V̇O2peak prediction for succinate receptor 1 (SUCNR1), a G-protein
coupled receptor that was previously shown to control exercise
capacity and systemic glucose homeostasis in mice40,41.

Besides features with positive impact on V̇O2peak prediction, our
immunoproteomic signature also contained several proteins with a
negative impact (Fig. 5B). Among these features, phosphatidylserine
decarboxylase (PISD), anenzyme involved in lipid droplet biogenesis42,
and caspase recruitment domain family, member 8 (CARD8), a pattern
recognition receptor that regulates inflammasome activation and
production of pro-inflammatory cytokines43, stood out due to their
involvement in metabolism and inflammation. Interestingly, we also
observed various inter-feature correlations within our immunopro-
teomic signature (Fig. 5C).

To confirm that our immunoproteomic signature was associated
with cardiorespiratory fitness, we next calculated individual immuno-
proteomic signature scores using the mean beta coefficients of the
ridge regression and individual protein abundancies (see methods for
details). Individual scores yielded a significant positive correlationwith
V̇O2peak (R = 0.84, p = 5.1 × 10−7) and were higher in participants with
greater cardiorespiratoryfitness basedon amedian split performedon
our study cohort (p =0.00068, Fig. 5D). Similarly, NAMPT protein
levels displayed a positive correlation with V̇O2peak (R =0.54,
p =0.0073, Fig. 5E). This confirms that the immunoproteomic sig-
nature and underlying proteins such as NAMPT, are associated with
cardiorespiratory fitness.
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Having identified this signature, we ultimately aimed to investi-
gate vice versa, whether cardiorespiratoryfitness also explainsmost of
the variance in the immunoproteomic signature and the underlying
proteins. To assess this, weapplied a variancepartitioning approach, in
which we compared the variance explained by V̇O2peak to the variance
explained by other participant characteristics such as age, sex, BMI,
and participant ID. These comparisons were performed across three
different feature sets: a feature set containing all flow cytometry and
LC-MS/MS data, a feature set containing the preselected features for
V̇O2peak prediction (Fig. 5A), and a feature set containing the immu-
noproteomic signature (Fig. 5B). While participant ID accounted for
significantly more variance than V̇O2peak in the overall feature set and

the feature set containing the preselected features, this difference was
no longer apparent in the immunoproteomic signature (Fig. 5F). In
addition, in both, the preselected feature set and the immunopro-
teomic signature, V̇O2peak explained significantly more variance than
age, sex, or BMI (Fig. 5F and Supplementary Fig. S5A). This demon-
strates that cardiorespiratory fitness is closely related to the immu-
noproteomic signature.

We next dissected the variance explained by participant char-
acteristics for each protein contained in the immunoproteomic sig-
nature to evaluate which of the proteins are most strongly influenced
by cardiorespiratory fitness. Interestingly, V̇O2peak explained 13.62 % of
the total variance (Supplementary Fig. S5B) and 93.66 % of the

Fig. 4 | Identification of shared and cluster-specific immune effector functions
in the recovery phase following HIIE. A Protein clusters identified by fuzzy
c-means clustering in response to HIIE. B Shared and unique GO terms across
protein clusters 1–3. C Identification of core biological processes shared across

clusters 1– 3 and temporal regulation of the underlying proteins.D Cluster-specific
GO terms regulated by HIIE. See also Supplementary Fig. S3 and S4, and Supple-
mentary Data S9.
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explained variance within NAMPT (Fig. 5F). This rendered NAMPT the
protein with the highest relative contribution of V̇O2peak to the total
amount of explained variance, thus confirming our previous finding
that PBMC NAMPT levels are dependent on cardiorespiratory fitness.

Collectively, our results suggest that the identified immunopro-
teomic signature is strongly related to cardiorespiratory fitness and
that vice versa, cardiorespiratory fitness also explains most of the
variance in the immunoproteomic signature. In addition, many of the
underlying proteins, such as NAMPT, are dependent on cardior-
espiratory fitness. This suggests a potential involvement of these

proteins in reshaping the phenotype of immune cells in response to
exercise training. In a broader context, these findings could serve as a
molecular foundation for immunological health benefits mediated by
regular exercise.

Discussion
A better understanding of the molecular underpinnings of physical
exercise is needed to individualize exercise training recommendations
and maximize their efficacy in mediating health benefits. While some
human studies have addressed exercise responses in skeletal muscle

Fig. 5 | Identification of an immunoproteomic signature associated with car-
diorespiratory fitness. A Ridge regression coefficients of preselected features (rS
V̇O2peak > 0.4 or < −0.4) used for V̇O2peak prediction.BRidge regression coefficients
of the 20 proteins with the highest predictive power for V̇O2peak. These proteins
were defined as immunoproteomic signature (N = 21).C Correlation network of the
20 proteins included in the immunoproteomic signature. Dot sizes and colors
represent the strength and direction of correlation with V̇O2peak. Connection width
and colors represent the strength and direction of correlation between proteins.
Connections are displayed for rS > 0.3 or < −0.3. D Immunoproteomic signature
scores correlate with V̇O2peak and differ between cardiorespiratory fitness levels.
Boxplots are based on a V̇O2peak median split of our cohort (median
V̇O2peak = 55.6mlmin−1 kg−1). Welch’s two-sample t-tests were conducted to com-
pare immunoproteomic signature scores between cardiorespiratory fitness groups

(N = 23). E NAMPT protein levels correlate with cardiorespiratory fitness (N = 23).
F Variance explained by participant characteristics across different feature sets.
Two-sided pairwise Wilcoxon rank-sum tests with Bonferroni-correction were
conducted to compare the variance explained by each participant characteristic to
the variance explained by V̇O2peak (N = 21). Significant results are displayed for
participant ID vs. V̇O2peak and when V̇O2peak yielded significantly higher results than
other participant characteristics. ns, not significant. G Contribution of participant
characteristics to the explained variance for each protein of the immunoproteomic
signature (N = 23). Gray shading of the regression lines represents the 95% con-
fidence interval. Boxplots show the median (center line), the 25th and 75th percen-
tiles (bounds of the box), and whiskers extending to 1.5 × the interquartile range.
Points beyond the whiskers represent outliers. See also Supplementary Fig. S5 and
Supplementary Data S10.
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and blood plasma using state-of-the-art systems biology
approaches44–48, the impact of exercise on the immune system is less
well understood. Here, we provide a comprehensive resource on how
two different aerobic exercise stimuli rewire the proteomicmakeup of
PBMCs. We applied a robust randomized crossover design, including
two standardized baseline measurements in a large sample size for
proteomic analyses in humans. Our findings expand the literature by
> 1000 proteomic changes in response to acute exercise in PBMCs.
Particularly, immune effector function and cell activation pathways are
regulated, and higher intensity is needed to stimulate these changes.
Finally, we demonstrate that baseline proteomics data can predict
V̇O2peak and identify potential exercise-responsive targets in PBMCs
that warrant further investigation as immunological mediators of
health adaptations triggered by exercise.

The acute exercise-induced mobilization of effector cells like NK
cells and cytotoxic (CD8 + ) T cells is well-investigated3,49 but less is
known on changes in their proteomic makeup and the resulting cell
functions. We identified comprehensive alterations in the immune cell
proteome associated with cell function and activation pathways that
match previous studies evaluating functional outcomes in different
effector populations50–52. The regulation of immune effector functions
suggests a transient state of immunomodulation following acute bouts
of exercise, thereby elucidating the mechanisms of action underlying
the benefits of exercise training for disease prevention. The present
findings support the concept that acute exercise, particularly at higher
intensities, canboost immune responses topathogens,which stands in
contrast to an alternative concept of immunosuppressive states fol-
lowing acute exercise53. The acute exercise-induced activation of
immune effector pathways such as “cell killing”, “leukocyte activation”,
or “defense response” suggests a transient state of elevated immune
surveillance, which may be specifically beneficial for the prevention of
infectious diseases or cancer.

Furthermore, there is the general premise that acute exercise
stimulates immune system components, while chronic exercise train-
ing mediates anti-inflammatory effects54. Longer-term anti-inflamma-
tory effects driven by immune cell adaptations, e.g., through the
differentiation of regulatory T-cells55, may be induced in response to
each single bout of acute exercise. Given that we observed profound
proteomic alterations in the recovery phase following HIIE, future
investigations are needed with longer-term follow-up periods to not
only detect transient acute effects but also focus on more persistent
adaptations in immune cell subsets. The associations between the
PBMCproteomeand V̇O2peak further support this premise and indicate
that exercise-induced immunoregulation may also be beneficial for
chronic diseases such as type 2 diabetes or obesity, particularly when
considering long-term anti-inflammatory effects. In this context, an
interesting finding of our analysis is that proteins associated with
mitochondrial processes were decreased following HIIE (Supplemen-
tary Fig. S3), however, baseline V̇O2peak prediction yielded several
proteins associated with increased metabolic/functional capacity
(Fig. 5B). Overall, the mobilization and redistribution of immune cells
with exercise and the parallel activation of different cellular pathways,
depicts a promising physiological framework for future studies on the
health-promoting effects of exercise mediated by immune cells,
especially considering theirmobile nature and versatile recruitment to
different peripheral tissues54.

Interestingly, our results indicate that the observed changes in the
proteomic makeup of PBMCs occur independent of exercise-induced
mobilization and redistribution of immune cells. This is demonstrated
by the fact that we observed far more proteomic alterations in
response to HIIE compared to MICE, although the underlying PBMC
composition did not differ between the two exercise conditions.
Although previous investigations have neglected this crucial compo-
nent of exercise immunology, our proteomics results are temporally in
line with transcriptomic alterations identified before4. In this context,

our open source web application, which can be found at https://
sportsmedicine-dortmund.shinyapps.io/beat, offers the opportunity
to mine the underlying dataset for specific proteins of interest, thus
informing new hypothesis-driven research in the field of exercise
immunology.

Our results support the WHO recommendations on physical
activity, which highlight the superior role of high exercise intensity for
health promotion5. From an immunological perspective, we found
distinct responses of HIIE and MICE when matching the interventions
for duration andworkload, and thus conclude that exercising at higher
intensity is crucial to induce more profound changes in the PBMC
proteome. This might serve as a potential biological foundation for a
recent comprehensive analysis revealing a superior effect of exercise
intensity versus volume on longevity at a population-based level56.

Finally, while previous work has elucidated the molecular under-
pinnings of cardiorespiratory fitness4,46,48, a possible link to immune
cells has not yet been explored. We observed strong associations with
V̇O2peak for several proteins, including NAMPT, which is crucial for
cellular energy metabolism. Confirming these findings, we have
recently demonstrated that NAMPT expression of human PBMCs
increases in response to acute exercise36. Overall, this suggests an
interrelation between acute exercise stimuli, immunometabolic com-
petence, and cardiorespiratory fitness and suggests a putative role of
PBMCs as a peripheral mirror for systemic health.

Our work has some important limitations. One main limitation is
the lack of cytokine profiling and additional omics layers, such as
transcriptomic or metabolomic data. These data would have provided
amore holistic systems biology perspective and should be considered
in future investigations. In addition, the absence of functional assays
prevents clear conclusions on immune cell function in response to
acute exercise. Importantly, the generalizability of the findings is lim-
ited to young, healthy, and trained individuals, as the study investi-
gated a relatively homogeneous cohort. In this cohort, HIIE was
required to induce pronounced changes in PBMC effector pathways.
However, these findings may be influenced by age- or training-related
effects. It remains unclear whether MICE would be sufficient to elicit
similar proteomic responses in PBMCs in older, sedentary, untrained,
or diseased populations.

Future investigations are warranted to address these limitations
to better understand and apply the findings of the present study, also
in other cohorts with different age groups and fitness levels. Specifi-
cally, follow-up studies using sorted immune cell subsets, and parti-
cularly effector immune cells, for multi-omics analysis will deepen our
understanding of how exercise modulates immune cells from a sys-
tems biology perspective. Applying cytotoxicity, cytokine secretion,
differentiation and proliferation assays will add important knowledge
on the functional consequences of these immune cell subsets.

In conclusion,we identified> 1000exercise-induced alterations in
the PBMC proteome and provide a valuable data resource for future
research. The identified changes were particularly related to immune
effector function, serving as a mechanistic link for the preventive and
therapeutic impact of regular exercise. In line with the WHO 2020
guidelines on physical activity, acute exercise at higher intensity eli-
cited greater changes in the regulation of cell function and activation
pathways, providing supportive biological evidence for the relevance
of exercise intensity as an important factor when planning and struc-
turing exercise training programs for health promotion. Finally, the
associations between the PBMC proteome and V̇O2peak shed light on
potential molecular mediators of immunological health.

Methods
Participant recruitment and informed consent
Prior to enrollment of the first participants, the study received ethical
approval by the local ethics committee of the German Sport University
Cologne, which works according to the World Medical Association’s
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Declaration of Helsinki. The study meets the National Institutes of
Health definition of a clinical trial and was prospectively registered in
the German Clinical Trials Register (DRKS00017686). Study eligibility
was assessed for 28 healthy adults aged between 18 and 35. To ensure
complication-free execution of the high-intensity interval exercise on
the treadmill, participants required a weekly running volume of 2–5 h
and a body mass index < 30. Any previous medical history of muscle
disorders, cardiac or kidney diseases, as well as regular intake of
medication or nutritional supplements, were treated as exclusion cri-
teria. For female participants, breast-feeding or an ongoing pregnancy
were also treated as exclusion criteria. Of the 28 subjects assessed for
eligibility, two were considered ineligible due to acute infections. The
remaining 26 participants provided written informed consent and
were enrolled in the study. After baseline testing, two further partici-
pants droppedoutdue toorthopedic problemswhile running (Achilles
injuries). For one participant, the biomaterial did not suffice to run
analyses, which resulted in a total of 23 participants. An overview of all
participant characteristics is displayed in Table 1.

Study design
Participants enrolled in this randomized crossover study were sched-
uled for three visits to an exercise physiology laboratoryof theGerman
Sport University Cologne: Baseline testing, a HIIE session, and a MICE
session. For each visit, participants were asked to arrive overnight-
fasted and refrain from alcohol and caffein intake in the 24 h prior.
Water intake was permitted ad libitum. All visits were scheduled
between 07:00 and 10:00 am to account for a potential circadian
impact on performance and biological outcomes. The minimum
timeframe between each of the three visits was 72 h, to prevent
potential carryover effects.

Baseline testing
During baseline testing, written informed consent was obtained from
participants and demographic and anthropometric characteristics
were recorded. Afterwards, participants underwent cardiopulmonary
exercise testing.

Cardiopulmonary exercise test (CPET). To standardize the exercise
intensity between participants for the HIIE and MICE sessions,
respectively, cardiorespiratory fitness was assessed as peak oxygen
consumption (V̇O2peak) in an incremental CPETduring baseline testing.
The CPETwas performed on amotorized treadmill (Woodway ELG 90,
Weil amRhein, Germany) thatwas set to 1 % incline for all sessions. The
warm-up consisted of 5min at 6–8 kmh−1. Afterwards, participants
began running at 8 kmh−1. The speed of the treadmill was then
increased by 1 kmh−1 every 60 s until participants reached volitional
exhaustion. During the test, heart rate was recorded continuously
(Polar FS1C, Kempele, Finland), and rate of perceived exertion was
recorded prior to each increase in intensity. Participants were verbally
encouraged to continue running by the supervising researcher. After
reaching volitional exertion, participants were given a 5min break
before taking up exercise again for a V̇O2peak verification test. For this
test, the speed of the treadmill was set 1 kmh−1 higher than what the
participants had finished with. Just before the verification test, parti-
cipants ran for 3min at 8 kmh−1. The speed was then increased to the
target speed within 20 seconds, and participants were instructed to
run as long as possible. During the entire CPET, participants wore a
face mask that was connected to a spirometer (Cortex Metalyzer 3B,
CORTEX Biophysik GmbH, Leipzig, Germany) to collect breathing
gases breath-by-breath. The highest 15 s interval during the CPET was
used to calculate V̇O2peak.

Randomization
To prevent sequence effects arising from the order in which HIIE and
MICE were conducted, participants were randomized into one of two

exercise intervention sequences after baseline testing: HIIE-MICE or
MICE-HIIE. Following the minimization procedure by Pocock and
Simon57, randomization was performed via concealed allocation (1:1)
using the software Randomization in Treatment Arms (RITA; Evidat,
Lübeck, Germany). Age, BMI, and V̇O2peak were used as stratification
factors. The intervention sequences did not differ in terms of partici-
pant characteristics, indicating that our randomization was unbiased
(Table 1).

Exercise interventions
Exercise intensities for the HIIE and MICE sessions were calculated as
percent of V̇O2peak for each participant to ensure that all participants
exercised at the same intensity. The exercise protocols for HIIE and
MICE were designed in a time- and workload-matched manner as
previously described58,59 to isolate exercise intensity as the only dif-
fering variable between the two exercise conditions. This time- and
workload-matched design is crucial to draw unbiased conclusions on
the impact of exercise intensity. In addition, we chose these exercise
protocols because a duration of 50min represents a conventional
length for acute exercise bouts across different settings (e.g., perfor-
mance- or health-oriented contexts). Both exercise sessions were
performed on the same treadmill that was also used for the CPET at
baseline (Woodway ELG 90, Weil am Rhein, Germany). During MICE,
participants performed a warm-up for 10min at a self-selected inten-
sity, followed by a 5min break. Participants then ran for 50min at 70 %
of their V̇O2peak. DuringHIIE, participants performed 7min of warm-up
and cool-down at 70% V̇O2peak with six bouts of high-intensity running
at 90 % V̇O2peak in between. Each high-intensity bout lasted 3min,
followed by 3min of active recovery at 50 % V̇O2peak. Of note, although
our MICE protocol was originally described as “moderate-intensity
exercise”58,59, current consensus statements on physical activity and
exercise intensity terminology classify exercise at 70% V̇O2peak as high-
intensity exercise60. However, the continuous character and com-
paratively long duration of our MICE protocol (50min), suggests that
exercise was performed below metabolic threshold 2, i.e., below
maximal lactate steady state. We have thus chosen to adopt the term
“moderate-intensity exercise” as originally described by Bartlett and
colleagues58,59.

Blood collection and sample preparation
Bloodwasdrawn fromamedian antecubital vein in the supine position
at baseline, immediately after exercise, and 1 h after exercise for the
HIIE andMICE session, respectively. The timing of blood sampling was
selected to capture standardized resting conditions (baseline), effects
observable directly post exercise (immediately after exercise), and to
build upon work previously published by Contrepois et al. 4, in which
PBMC transcriptomics indicated a strong response between 2 and
60min after acute exercise (1 h after exercise). Each blood draw con-
sisted of 24ml of whole blood collected in EDTA tubes (Vacutainer,
BD). After the last blood draw, PBMCs were isolated via density gra-
dient centrifugation. To achieve this, whole bloodwasfirst dilutedwith
phosphate-buffered saline (PBS) and then carefully layered on top of a
lymphocyte separation medium (Cytiva Ficoll-PaqueTM PLUS, Fisher
Scientific). After centrifugation for 30min at room temperature and
800g−1, the PBMC-containing interphase was collected, washed with
PBS, and centrifuged again for 10min at room temperature and
800g−1. PBMCs were then resuspended in freezing medium
(RecoveryTM cell culture freezing medium, Thermo Fisher Scientific)
and stored at − 80 °C before being transferred to a − 150 °C freezer on
the next day until further analysis.

Flow cytometry
Sample preparation and data acquisition. Flow cytometry analysis
was performed using a Cytek® Aurora full-spectrum flow cytometer
(Cytek Biosciences, California, USA). Cryopreserved PBMCs were
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gently thawed in a water bath at 37 °C with a mean recovery of 81.28 %
viable cells assessed with the Zombie NIR™ Fixable Viability Kit (Bio-
Legend, San Diego, CA, USA). After incubating 1 × 106 PBMCs in 2.5 µg
Fc block for 10min at room temperature, cells were stained with anti-
CD3 (BUV395, clone SK7), anti-CD4 (PerCP, clone SK3), anti-CD8
(BV750, clone SK1), anti-CD16 (PE-Cy7, clone 3G8), anti-CD25 (BUV805,
cloneM-A251), anti-CD56 (BUV563, clone NCAM16.2), anti-CD20 (APC,
clone L27), and anti-CD19 (BV480, clone SJ25C1) antibodies (all from
BD Biosciences, NJ, USA). In brief, cells were incubated in the dark with
a master mix containing Brilliant Stain buffer (BD Biosciences) and
antibodies against surface antigens for 30min at 4 °C. After washing
with FACSbuffer, the BD Pharmingen™Transcription Factor Buffer Set
wasused, and cellswerefixed for40min at4 °C in thedark. Thereafter,
intracellular staining was done by incubating cells with an anti-Foxp3
antibody (PE, clone 259D/C7) for 45min at 4 °C in the dark. After
washing, cells were resuspended in FACS buffer and acquired on the
flow cytometer within 2 h after finishing the staining protocol.

Data processing. Gating was performed using FlowJo™ 10.10.0
(Fig. 1C). B cells were phenotyped as CD3-CD56-CD19+CD20+, Natural
Killer T (NKT) cells as CD3+CD56+, Natural Killer (NK) cells either as
CD56brightCD16- (NKbright) or CD56dimCD16+ (NKdim), and regulatory
T cells (Tregs) as CD4

+CD25+Foxp3+. The person analyzing the samples
was blinded to the participants’ group allocation. Analysis of total
blood cell countswas performed fromEDTAbloodusing a hematology
analyzer (SYSMEX XP-300, Norderstedt, Germany). The lymphocyte
count was then used to calculate the absolute number of peripherally
circulating lymphocyte subsets according to the cell proportions
derived by flow cytometry.

LC-MS/MS-based untargeted proteomics
Samples were processed and measured in a block randomized order61

to prevent any technical bias that might occur during sample pre-
paration or LC-MS/MS measurement.

Sample preparation. Isolated PBMCs were lysed in a RIPA buffer
containing 10mM sodium fluoride, 1mM sodium orthovanadate,
cOmplete™ Protease Inhibitor Cocktail (Merck KGaA), PhosSTOP™

(Merck KGaA), 250 µml−1 benzonase, and 10 µml−1 DNase I. Samples
were incubated on ice for 1 h and then centrifuged at 4 °C and
13,000 × g−1 for 15min. Protein concentration was determined in the
supernatant with a BCA assay. An amount of 10 µg of protein per
sample was digested (Trypsin) using an AssayMAP Bravo liquid hand-
ling system (Agilent Technologies) running the autoSP3 protocol62.
After sample preparation, the remaining peptides were vacuum dried
and stored at − 20 °C until LC-MS/MS analysis.

MS method Orbitrap Exploris 480. The dried peptide sample was
reconstituted (97.4 % Water, 2.5 % Hexafluoro-2-propanol and 0.1 %
trifluoroacetic acid (TFA)), and 10 % of the sample were used. The LC-
MS/MS analysis was carried out on an Ultimate 3000 UPLC system
(Thermo Fisher Scientific) directly connected to an Orbitrap Exploris
480 mass spectrometer for a total of 120min. Peptides were online
desalted on a trapping cartridge (Acclaim PepMap300 C18, 5 µm,
300Å wide pore; Thermo Fisher Scientific) for 3min using 30 µl/min
flow of 0.1 % TFA in water. The analytical multistep gradient
(300 nL/min) was performed using a nanoEase MZ Peptide analytical
column (300Å, 1.7 µm, 75 µmx200mm,Waters) using solvent A (0.1%
formic acid in water) and solvent B (0.1% formic acid in acetonitrile).
For 102min the concentration of B was linearly ramped from 4% to
30%, followed by a quick ramp to 78%, after twomin the concentration
of B was lowered to 2% and a 10min equilibration step appended.
Eluting peptides were analyzed in the mass spectrometer using data-
independent acquisition (DIA) mode. A full scan at 120 k resolution
(380–1400m/z, 300% AGC target, 45ms maxIT) was followed 47 DIA

windows. The DIA acquisition covered a mass range of 400–1000m/z
using windows of a variable width with 1m/z overlap, an AGC target of
1000% with a maxIT set to 54ms and recorded at a resolution of 30k.
Each sample was followed by a wash run (40min) to avoid carry-over
between samples. Instrument performance and suitability was mon-
itored by regular (approx. one per 48h) injections of a standard
sample and an in-house shiny application over the whole timeline of
the experiment.

Data analysis. Analysis of DIA RAW files was performed with Spec-
tronaut (Biognosys, version 19.1.240724.62635)63 in directDIA + (deep)
library-free mode. Default settings were applied with the following
adaptions. Within DIA Analysis under Identification, the Precursor PEP
Cutoff was set to 0.01, the Protein Qvalue Cutoff (Run) set to 0.01, and
the Protein PEP Cutoff set to 0.01. In Quantification, the Proteotypicity
Filter was set to Only Protein Group Specific, the Protein LFQ Method
was set to MaxLFQ and the quantification window was set to Not
Synchronized (SN 17). The data was searched against the human pro-
teome from Uniprot (human reference database with one protein
sequence per gene, containing 20,597 unique entries from the ninth of
February 2024) and the contaminants FASTA from MaxQuant (246
unique entries from the twenty-second of December 2022).

Data processing. Before further analysis, the obtained dataset was
checked for proteins that were identified more than once. For these
duplicate results, the event with the highest number of identified
precursors across all samples was kept, and all other events were
deleted from the dataset. The data was then filtered for proteins that
were quantified in ≥ 70 % of the samples in at least one exercise con-
dition and measurement timepoint (i.e., HIIE/MICE baseline, post
exercise, 1 h post exercise). Subsequently, we imputed the data sepa-
rated by exercise condition and measurement time point using the
missForest package64. Ultimately, proteins were annotated to match
the gene names provided in the org.Hs.eg.db package for subsequent
Gene Ontology (GO) analysis. Translation between gene names and
Entrez gene identifiers was accomplished with the bitr function from
the ClusterProfiler package29,65.

Quantification and statistical analysis
Samples from a total of 23 participants were available for statistical
analyses. For one participant, there was no sample from 1 h after MICE
due to difficulties during PBMC isolation. Statistical analysis and
visualization were performed in R. If not otherwise noted, data wran-
gling was achieved using the dplyr66 and tidyr67 package and subse-
quently visualized with ggplot268 and ggpubr69.

Unsupervised immune cell clustering using self-organizing maps.
Flow cytometry data of each sample was cleaned using the FlowAI
plugin (v3.2.3) in FlowJo™ 10.10.0. The remaining events were gated as
described above, and live cells were downsampled to 3000 events per
sample using the DownSample plugin (v3.3.1). Subsequently, down-
sampled events were concatenated to obtain an overall dataset con-
taining all exercise conditions (HIIE, MICE) and measurement
timepoints (baseline, post- exercise, 1 h post-exercise). This dataset
was then used to perform unsupervised immune cell clustering using
self-organizing maps (SOM) with the FlowSOM plugin (v4.1.0). The
resulting 6 clusters were identified as CD4 +T cells, CD8 +T cells,
NKT cells, CD56dim cells, CD56bright cells and B cells in the build-in
Cluster Explorer in FlowJo™ 10.10.0. The overall dataset was visualized
using UniformManifold Approximation and Projection (UMAP) via the
UMAP plugin (v4.1.1), and FlowSOM clusters were superimposed via
color-coding. Overall, color-coded immune cell clusters were used as a
template map for subsequent clustering per exercise condition and
measurement time point. To achieve this, the downsampled events
were concatenated for baseline, post-exercise and 1 h post-exercise in
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HIIE and MICE, respectively. Ultimately, FlowSOM clustering and
UMAP were performed on each of these concatenated dataframes by
applying them on the previously generated map.

Exercise-induced mobilization of immune cells. Exercise-induced
alterations in cell counts of ten different immune cell populations
(Supplementary Fig. S3) were analyzed by applying linear mixed
models to the flow cytometry results (N = 22). Measurement timepoint
and exercise condition were implemented as fixed effects, and parti-
cipant ID as random effect using the lmer function from the lme4
package70. Results of the linear mixed models were then analyzed for
time and time × condition interaction effects via analyses of variance
(ANOVA) with the built-in ANOVA function from R stats without cor-
recting for testing of multiple immune cell populations. In case of
significant results, pairwise comparisons of measurement timepoints
and/or exercise conditions were performed by applying the emmeans
function from the emmeans package. P-values of pairwise compar-
isons were Bonferroni-corrected for multiple testing. Immune cell
proportions were analyzed in the same manner (Supplementary
Data S4).

Measures of variability. All measures of variability were calculated
with unimputed data to avoid potential bias arising from imputation.
Inter-individual variability was calculated as the coefficient of variation
(CV) for each protein across all participants separated by exercise
condition (HIIE, MICE), and measurement timepoint (baseline, post
exercise, 1 h post exercise). CVs were calculated as the ratio of the
standard deviation σ to the mean µ. Intra-individual variability was
assessed by comparing the baseline values of the two intervention
days. Relative differences between day 1 and day 2 were calculated (in
percent) for each protein separated by study participant. Proteomic
variability was quantified for each protein by calculating (i) the mean
CV across all participants in HIIE andMICE at baseline, (ii) themean CV
across all participants in HIIE and MICE post exercise and 1 h post
exercise, and (iii) the mean difference between the two baselines
across all participants. Proteomic variability was also calculated,
separated by exercise conditions and measurement timepoints (see
Supplementary Fig. S2A, B).

Principal component analysis. Principal component analysis (PCA)
was carried out using the built-in prcomp function from R stats. All
samples were plotted with the fviz_pca_ind function from the fac-
toextra package. Exercise condition, measurement timepoint, inter-
vention day, and sex were used asmetadata to color-code PCA results.
PCAs were also computed on datasets separated by exercise condition
or measurement timepoint to visually assess the impact of these
variables on each other (see Fig. S2C–E).

Linear mixed models to identify proteins altered by HIIE and/
or MICE. To identify proteins altered by HIIE and/or MICE, a linear
mixed model was fitted on the log2-transformed, normalized, and
imputed protein intensities via the limma R package71. Intra-individual
correlation was estimated via the duplicateCorrelation function. The
model included the exercise condition (HIIE, MICE), the measurement
timepoint (baseline, post-exercise, 1 h post-exercise), and the interac-
tion between both as fixed factors. A moderated t statistic72 was
obtained for each contrast of interest via the eBayes function with
estimated variance trend and robustification. The resulting p-values
for each contrast were adjusted with the Benjamini-Hochberg
procedure73 to control the false discovery rate, and significance was
declared at the adjusted 5% two-sided level. The model was subse-
quently extended to include sex and all two-way interactions.

Gene ontology (GO) over-representation analysis. Time effects of
the statistical analysis with limma71 were used to map proteins that

were significantly altered by HIIE and MICE to GO terms, respectively.
GO over-representation analysis was performed with the ClusterPro-
filer package29,65. For HIIE andMICE, significantly altered proteins were
compared with the entire dataset of quantified proteins, applying
Benjamini-Hochberg correction of p-values with a p-value cutoff of
0.05 and a q-value cutoff of 0.2.

Fuzzy c-means clustering. Fuzzy c-means clustering was performed
with the Mfuzz package74,75. Data was standardized using the standar-
dize function, and the optimal number of clusters was determined by
calculating the minimum centroid distance for a range of cluster
numbers using the Dmin function. The optimal fuzzifier was identified
with the mestamiate function.

Biological theme comparison. Biological theme comparison was
carriedout using the compareCluster function fromtheClusterProfiler
package29,65. Entrez gene identifiers of the proteins contained in the
identified clusters were used as input with the function command set
to “enrichGO”. Benjamini-Hochberg correctionwas applied to p-values
with a cutoff of 0.05 and theminimum gene set size was set to 10. The
results were simplified via the simplify function using a cutoff of 0.7
and visualized separated by ontology with the cnetplot function from
the enrichplot package76.

Gene ontology (GO) gene set enrichment analysis. Gene set
enrichment analysis was performedusing the gseGO function from the
ClusterProfiler package29,65. Entrez gene identifiers and fold changes
from baseline of the proteins contained in the identified clusters were
used as input, with the minimum gene set size set to 10. In case fold
changeswere only positive or negative, the “scoreType” commandwas
set to “pos” or “neg”, respectively. P-values were corrected using the
Benjamini-Hochberg procedure with a p-value cutoff of 0.05. The
underlying proteins mapping to each significant GO term were iden-
tified using the select function from the AnnotationDbi package.
Shared and unique GO terms across the identified clusters were
visualized with the UpSetR package77.

Immunoproteomic signature
Preselection of features. To identify features with high association to
V̇O2peak, we conducted a preselection in Python (v.3.9)78. The features
were standardized using z transformation and included the average of
mass spectrometry-based proteomics data and flow cytometry-based
immunophenotyping data at baseline of intervention day 1 and 2, as
well as sex, height, weight and BMI. V̇O2peak was scaled to body weight.
Data from 2 participants were excluded from the analysis due to
incomplete feature sets. Pairwise Spearman’s rank correlations
between all features and V̇O2peak were calculated (Supplementary
Data S10), and features with a correlation coefficient of > 0.4 or < −0.4
were included in the subsequent analysis. From a total of 6063 initial
features, 260 remained after this selection.

V̇O2peak prediction. We ran LASSO79,80 and ridge regression81 as well as
a random forest82 as a non-linear, tree-based approach. A leave-one-out
(LOO) cross-validation was performed in Python (v.3.9) to assess the
predictive performance of these methods based on the 260 features.
To optimize the hyperparameters for each model by grid search, a
second inner cross-validation was performed. For each training set, we
selected themodel thathad the lowest test error. Thepredictedoutput
value resulted from the cross-validation iteration, where the corre-
sponding output data point and its associated features were not
included in the training set. These predicted values were used to cal-
culate the mean squared error (MSE) and the r-squared. Ridge
regression outperformed the other models. To preclude that our
prediction model was affected from overfitting, we reran the model
with permuted outcome variables to simulate data without any true
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signal. The resultingmodel yielded anR-squaredof0.0062 and anMSE
of 36.4, suggesting that the predictive performance under random
conditions is close to zero. This comparison supports the conclusion
that our original model does not appear to suffer from overfitting. All
features with coefficients from the ridge regression are listed in the
supplementary information (Supplementary Data S10).

Immunoproteomic signature. The immunoproteomic signature was
defined as the 10 features displaying themost positive ridge regression
coefficients and the 10 features displaying the most negative ridge
regression coefficients in V̇O2peak prediction. Proteins included in the
immunoproteomic signature were used to create a weighted, undir-
ected network using Spearman’s rank correlations. The network was
visualized in R (v.4.4.1) with the packages Hmisc (v.5.2.1) and igraph
(v.2.1.1.). The immunoproteomic signature score for each participant i
was calculated as the weighted sum of the 20 z-transformed protein
abundances (zp) using the corresponding average beta coefficients
ð�βpÞ from ridge regression models:

Immunoproteomic signature scorei =
X20

p= 1

�βp�zi,p

Variance partitioning. Variance partitioning was performed using the
variancePartition package inR83. V̇O2peak, BMI and agewere included as
fixed effects and participant ID and sex were included as random
effects in the linear mixed models. Variance partitioning was per-
formed on three different feature sets containing either all flow cyto-
metry and LC-MS/MS data, the 260 preselected features from V̇O2peak

prediction or the proteins contained in the immunoproteomic sig-
nature. To compare the variance explained by each participant char-
acteristic to the variance explained by V̇O2peak, two-sided pairwise
Wilcoxon rank-sum tests with Bonferroni correction were conducted.
The variance explained by participant characteristics was then asses-
sed for each protein contained in the immunoproteomic signature. In
addition, the relative contribution of participant characteristics to the
explained variance of each protein was calculated.

Correlation analyses. Correlation analyses were performed for the
association between immunoproteomic signature scores and V̇O2peak

and NAMPT z-scores and V̇O2peak. Pearson correlation coefficients
were calculated and reported with corresponding two-sided p-values.
A median split of our study cohort based on V̇O2peak was performed
(median V̇O2peak = 55.6mlmin−1 kg−1) and used to compare immuno-
proteomic signature scores between participants with a cardior-
espiratory fitness above vs. below the median. Cardiorespiratory
fitness groups were compared using Welch’s two-sample t tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data associated with this article can be explored via our interactive
web application at https://sportsmedicine-dortmund.shinyapps.io/
beat. Raw data files of all samples processed in the proteomics analy-
sis are hosted on the PRoteomics IDEntifications Database (PRIDE)
under the following URL: https://www.ebi.ac.uk/pride/archive/
projects/PXD058573. Raw data files of all samples processed in the
flow cytometry analysis are hosted on https://figshare.com under the
following URL: https://doi.org/10.6084/m9.figshare.30543317. To
ensure reproducibility of our analysis, allocation of raw data files to
study participants is provided in Supplementary Data S1. All figures
were created from the provided rawdata using the indicated software,
R or python packages.

Code availability
No custom code was generated for this analysis. All applied analysis
tools are specified in the methods section of the article.
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