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Successful navigation requires extracting navigationally relevant signals from
a dynamically changing visual environment. The process by which we identify
navigable routes through the environment is termed navigational affordances.
Here, using a combination of functional magnetic resonance imaging, mag-
netoencephalography and behavioural testing we report that the extraction of
such navigational affordance information likely takes place rapidly within
dorsal early visual cortex before higher-level scene selective regions. Whilst we
replicate prior work showing the involvement of the occipital place area in
navigational affordance coding, whole-brain analyses indicate the most likely
cortical locus to be dorsal early visual cortex. Analyses comparing the spa-
tiotemporal pattern of navigational affordances suggest such information is

detectable within ~110 milliseconds post stimulus onset. Finally, through
varying the presentation durations of scenes, we demonstrate that naviga-
tional affordance representations are emergent, but not strong with stimulus
durations as short as 33-66 milliseconds but become robust with stimulus
durations >132 milliseconds. Taken together these data challenge previous
views regarding the critical cortical locus for navigational affordance coding
and suggest that such affordances can be extracted from very briefly pre-

sented stimuli.

Successful navigation through the local environment is a consistent
feature of life for mobile organisms'. In humans, this accomplishment
requires the seamless processing and interpretation of dynamically
shifting environments where changes occur rapidly (e.g. exiting the
London underground during rush hour).

The human visual system is ideally tuned for such rapid scene
processing”™*, enabling the extraction of relevant visual information to
guide navigational and affordance behaviours’. Whilst basic-level

scene characteristics (e.g. forest or lake) can be deciphered with an
exposure of ~50 ms, more global scene characterisations, such as
whether a scene is navigable or not, can occur with even briefer pre-
sentation times ~34 ms*. Cortically, scene processing is thought to rely
upon the interactions of a set of scene-selective regions spanning the
lateral, ventral and medial cortical surfaces, respectively® 2. Within this
scene-selective network, prior neuroimaging work of lasting impact
suggests the Occipital Place Area (OPA)’ on the lateral surface plays a
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special role in the coding of navigational affordances®. The lower
visual field bias exhibited by OPA* is consistent with computational
modelling approaches quantifying that the majority of navigational
affordance information is extracted from the lower visual field"”.

Within the temporal domain, relatively recent work suggests that
neural representations of visual features relevant to navigational
affordances within highly simplified artificial environments can
emerge as early as -134 ms post stimulus onset’, In contrast, compu-
tational work suggests a temporal order of feature extraction, such
that the spatial structure of a scene (2D and 3D) is processed first,
followed by semantic content and then navigational affordances™.
Very recent work has extended this temporal framework to show that
representations of locomotive action affordances (i.e. what type of
action can be performed within a scene), which may be considered
analogous to navigational affordances, are present within OPA ~200
ms post stimulus onset?.

Taken together, current models suggest a specific role for OPA in
the coding of navigational™"” and locomotive action affordances?*?
that occur within the first few hundred milliseconds post stimulus
onset. However, this picture is incomplete. For example, whether OPA
should be considered a single functionally homogeneous scene-
selective region is debated™'*?2, OPA spatially overlaps at least five
separate maps of the visual field (Fig. 1A)"¢, which differ in their visual
field representations and thus their potential for extracting naviga-
tionally relevant information*”. Moreover, while the spatiotemporal
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Fig. 1| Coding of navigational affordances in OPA and retinotopic subdivisions.
A A partially-inflated surface representation of the left hemisphere from a repre-
sentative participant is shown. The group-averaged OPA ROI (n=14, Scenes >
Faces, p <0.001, uncorrected) is overlaid in green. The borders of LO1, LO2, V3A,
V3B and V7 taken from a probabilistic atlas*® are overlaid in white. B Bars represent
the average correlation (n =14, Spearman’s rho) between the OPA RDMs in the left
hemisphere (LH) and right hemisphere (RH) and the navigational affordance RDM

pattern of responses in OPA has been linked to locomotive action
affordances®®”, this operationalization of affordances differs sub-
stantially from previous navigational affordance tasks, which essen-
tially require the identification of efficient routes of egress within
scenes™®", As such, it is currently unclear what the unique contribu-
tion of these maps is to the overall pattern of navigational affordance
coding in OPA.

Here, we aim to bridge this gap by leveraging the ability of func-
tional magnetic resonance imaging (fMRI) and Magnetoencephalo-
graphy (MEG) to capture the brain’s spatial and temporal response
properties at high-resolution. Participants (n=14) completed both
fMRI and MEG experiments in which they passively viewed scene
images taken from prior work on navigational affordances®. The spa-
tial and temporal pattern of responses from the fMRI and MEG data
were then compared to the navigational affordance representations of
these same scenes. An independent group of participants (n=72)
completed a behavioural experiment in which they were required to
identify potential routes of egress (i.e. navigational affordances) from
the same set of scenes as used in the fMRI and MEG experiments but
under different presentation duration conditions (unrestricted, 33 ms,
66 ms, 132 ms, 264 ms and 528 ms). To preview, our data suggests that
a likely locus for navigational affordance computations is not OPA, but
rather dorsal early visual cortex (V1d/V2d/V3d). Further, navigational
affordance representations emerged early in time (-110 ms post sti-
mulus onset) and were relatively transient (-110-450 ms post stimulus
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when considered alone (pale green bars) and when partialling out the V1 RDM (pale
purple bars). Values were compared to a no-correlation assumption (i.e. zero) using
two-tailed t-tests. C Same as (B) but for the Gist RDM. D Bars represent the average
correlation between the RDM of each retinotopic map and the navigational affor-
dance RDM (n =14, Bonferroni corrected for multiple comparisons). All: Error bars
represent the standard error of the mean (SEM). Individual participant data points
are shown and linked. *p < 0.05, *p < 0.01, **p < 0.001, ns= p > 0.05.
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onset). This early processing of navigational affordances is consistent
with our behavioural data showing that although navigational affor-
dance representations can be extracted with presentation times as
brief as 33-66 ms, these representations only become robust with
presentation times of 132 ms and longer.

Results

In this results section, we first present our fMRI findings that are
derived from largely replicating a previous study by Bonner et al.” This
is the necessary platform on which we address our approaches to
investigating the role of OPA’s retinotopic subdivisions and the timing
of navigational affordance coding, which are presented second. Third,
through MEG-fMRI fusion®, representational similarity analysis (RSA)**
and commonality analysis, we bring together the spatial and temporal
dynamics of navigational affordance coding and highlight both the
early emergence of navigational affordances and their tendency to be
strongest in dorsal early visual cortex. Finally, we ask when meaningful
and robust behavioural signatures of navigational affordances emerge,
and whether they align with the temporal characteristics of the neural
responses we observed.

Replication of navigational affordance coding in OPA

Our initial analysis goal was to attempt to replicate prior work in which it
was shown that the pattern of fMRI responses in OPA to different scene
images correlated positively with the pattern of navigational affordance
trajectories through those same scenes derived behaviourally”. To
achieve this, we first computed the pairwise dissimilarity (1-r, where r is
the Pearson correlation coefficient) in the fMRI response to all scenes
within the left and right OPA, storing these in a representational dis-
similarity matrix (RDM)*. Next, these participant-specific RDMs were
correlated with the behavioural RDM from Bonner et al.” to assess the
degree of navigational affordance coding in OPA (Fig. 1B). The sig-
nificance of the correlations with the navigational affordance model was
determined via a series of two-tailed t-tests against a zero-correlation
assumption. Assumptions were met in all cases.

We observed strong evidence for the coding of navigational
affordances in OPA bilaterally (LH: t(13) =6.14, p<0.001, Cohen’s
d=1.70; RH: t(13) =2.77, p=0.015, Cohen’s d = 0.77—two-tailed t-tests
against zero), replicating prior work. One possibility is that this navi-
gational affordance coding in OPA simply reflects responses to low-
level visual features that are inherited from antecedent visual areas like
V1. To account for this, we calculated the correlation between the OPA
and navigational affordance RDMs in each hemisphere, partialling out
the RDM computed from V1. The evidence for navigational affordance
coding in OPA remained even after partialling out the V1 RDM in the
left hemisphere (t(13)=4.83, p<0.001, Cohen’s d=1.33—two-tailed
t-test against zero), but not the right hemisphere (t(13)=2.05,
p=0.060, Cohen’s d=0.57—-two-tailed t-tests against zero). Con-
sistent with prior work®® we also tested whether the OPA RDMs cor-
related with low-level image statistics derived from the Gist model that
describes the orientation and spatial frequency content of images®.
Importantly, although the OPA RDMs also correlated significantly with
one derived from Gist model descriptors®? in both hemispheres
(Fig. 1C) (LH: t(13) =3.64, p=0.003, Cohen’s d =1.01; RH: t(13) =3.12,
p=0.008, Cohen’s d=0.86 - two-tailed t-tests against zero), these
were found not to survive when considering the contribution of V1 (LH:
t(13)=0.42, p=0.678, Cohen’s d=0.11; RH: t(13)=1.22, p=0.24],
Cohen’s d = 0.34—two-tailed t-tests against zero). These data replicate
evidence for the coding of navigational affordances in OPA, particu-
larly in the left hemisphere®.

Navigational affordance coding within retinotopic

subdivisions of OPA

OPA spatially overlaps at least five separate retinotopic maps (LO1,
LO2, V3A, V3B and V7) to differing degrees™'®, which raises the

question as to whether it should be considered functionally homo-
geneous. Recently, we showed that the retinotopic subdivisions of
OPA do not represent scenes equally, but rather the similarity in their
responses is driven largely by the similarity in their visual field repre-
sentations. That is, maps that are more retinotopically similar (e.g. LO1
and LO2) respond to scenes more similarly®. Given this, we next
assessed the unique contribution to navigational affordance coding
across the retinotopic subdivisions of OPA (Fig. 1D). We were unable to
define all five OPA subdivisions in each participant and hemisphere. To
account for this, we made use of a probabilistic atlas®® to define reti-
notopic ROIs which were constrained to contribute an equal number
of nodes (see ‘Methods’). Within each map, an RDM was computed
based on the pairwise dissimilarity in responses (as above) and these
map-specific RDMs were then correlated with the same navigational
affordance RDM™. Given prior work suggesting that the majority of
variance in navigational affordance coding comes from information in
the lower visual field” we predicted higher correlations in retinotopic
maps with a more prominent lower visual field bias (i.e. LO1/LO2)
rather than those with either hemifield (V3A/V3B) or more upper visual
field representations (i.e. V7). To quantify this effect, the map-specific
RSA correlations were submitted to a linear mixed model with Hemi-
sphere (LH, RH) and ROI (LO1, LO2, V3A, V3B and V7) as fixed-effects.
Participant was modelled as a random factor. We observed significant
main effects of Hemisphere (F(1, 108) = 30.95, p < 0.001) and ROI (F(4,
108) =3.41, p=0.010) but no Hemisphere by ROI interaction (F(4,
108) =1.13, p = 0.345). On average, correlations were higher in the left
than right hemispheres (t(108) =5.56, p <0.001, Cohen’s d =2.25) and
post-hoc comparisons (Bonferroni corrected) revealed only two sig-
nificant differences with correlations higher in V3A and V3B compared
to V7 (V3A versus V7: t(108) =2.93, p=0.040, Cohen’s d=0.11; V3B
versus V7: t(108)=3.18, p=0.019, Cohen’s d=0.08; p>0.05, in all
other cases). We next tested each map-specific RSA correlation against
zero (i.e. no correlation assumption) via one-sampled t-tests (Bonfer-
roni corrected). A significant positive correlation was observed for LO1
(t(13) =4.83, p=0.002, Cohen’s d =1.39), LO2 (t(13) =3.08, p=0.040,
Cohen’s d=0.89), V3A (t(13)=3.86, p=0.011, Cohen’s d=1.11), V3B
(t(13)=4.36, p=0.004, Cohen’s d=1.26), but not V7 (t(13)=132,
p =0.210, Cohen’s d = 0.38)

Temporal coding of navigational affordances

We next sought to examine the temporal profile of navigational
affordance coding using MEG. Here, RDMs were first constructed from
the dissimilarity in the pairwise responses across all MEG sensors at
each time-point (see ‘Methods’) before computing the correlation
(Spearman’s rho) between (1) the MEG and navigational affordance
RDMs and (2) the MEG and navigational affordance RDMs partialling
out the contribution of the gist RDM (Fig. 2A, B). Time points with RSA
correlations above zero were assessed using Bayesian t-tests** (for
comparison we also include significant time points identified via a
frequentist approach on this and all subsequent time-dependent fig-
ures, see ‘Methods’). We note that overall, the two approaches identify
largely equivalent time points (although there are certain cases in
which Bayesian evidence for the alternative hypothesis is not identified
via a frequentist approach, see ‘Methods’).

As shown in Fig. 2A, there were at least two distinct time-points
with moderate to strong Bayesian evidence (BF;o > 3) for a correlation
between the MEG and navigational affordance RDMs. An early and
relatively transient period peaking ~137 ms post stimulus onset and a
later and more sustained period between ~269-381 ms post stimulus
onset. Interestingly, the Bayesian evidence for the early transient
period weakens when partialling out the contribution of the Gist RDM,
but the later more sustained period remains, albeit for a slighter later
and narrower time window ~302-389 ms post stimulus onset (Fig. 2B).

Next, we examined the temporal coding of responses within OPA
specifically. To achieve this, we employed MEG-fMRI fusion analyses®.
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Fig. 2 | Temporal coding of navigational affordances and MEG-fMRI fusion

in OPA. A The mean RSA timeseries correlation (+SEM) between MEG and navi-
gational affordance RDMs (solid and shaded red). Stimulus onset (time = 0 ms) and
stimulus offset (time = 500 ms) are shown by vertical lines. B Same as (A) but when
partialling out the contribution of the Gist RDM (solid and shaded orange). C The
mean MEG-fMRI fusion timeseries (+SEM) for the left OPA (solid and shaded
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hypothesis (BF;o > 3). Dark grey circles indicate Bayes evidence in favour of the null
hypothesis (BF;o <1/3). Coloured symbols along the x-axes identify significant time

points identified via a frequentist approach (see ‘Methods’).
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The aim of this analysis was to identify when in time the representa-
tional structure of responses in OPA best matched the representational
structure in the MEG time course (see ‘Methods’). We calculated the
correlation (Spearman’s rho) between each participant's OPA RDM
(derived from fMRI data) with that participant’s MEG RDM at each time
point, before averaging across participants (Fig. 2C, D). As above, we
assessed time points with fusion correlations above zero using Baye-
sian t-tests, but also identify significant time points via a frequentist
approach for the interested reader. In the left hemisphere, we
observed moderate to strong Bayesian evidence (BF,o>3) for MEG-
fMRI fusion during two early and relatively transient time-windows,
peaking -118 ms and ~246 ms post-stimulus onset. A later and more
sustained period of fMRI-MEG fusion was also present between
~754-980 ms post-stimulus onset (Fig. 2C). In general, evidence for
MEG-fMRI fusion was weaker in the right hemisphere, but was never-
theless present for both an early (-113 ms post stimulus onset) and a
late (-806-863 ms post-stimulus onset) time window (Fig. 2D).

Whole-brain searchlight analyses

Thus far, our analyses have largely considered the spatiotemporal
pattern of responses in OPA and its retinotopic subdivisions. To
ascertain whether regions outside of OPA also contribute to the coding
of navigational affordances we implemented a searchlight approach®.
For each sphere (6 mm radius around each voxel) we computed the
correlation between the fMRI RDM and navigational affordance RDM
whilst partialling out the contribution of the Gist RDM (see ‘Methods’).
Prior work implementing a searchlight approach on fMRI data in
response to the same stimuli used here reported evidence for navi-
gational affordance coding in the vicinity of OPA in the right hemi-
sphere, but not the left hemisphere®.

In our data, whilst we do observe evidence for navigational
affordance coding within the left hemisphere OPA, the peak of navi-
gational affordance coding was shown to correspond to dorsal early
visual cortex (V1d/V2d/V3d), respectively in both hemispheres
(Fig. 3A). Indeed, the spatial extent of significant navigational affor-
dance coding in the right hemisphere approached but did not overlap
with our group-based OPA ROI. Importantly, a defining feature of
dorsal early visual cortex is an explicit representation of the lower
visual field*, where the vast majority of variance in navigational
affordance coding reportedly comes from".

We conducted two further analyses to rule out the possibility that
this lateralisation was due to systematic leftward biases in path tra-
jectories. First, we have calculated the mean leftward frequency for all
50 scenes in the Bonner and Edinburgh replication datasets. The dif-
ference in mean leftward angular frequency across scenes was statis-
tically non-significant (t(49) = 2.00, p = 0.056). This result suggest that
unequal sampling of path trajectories is unlikely to explain the differ-
ences in lateralisation of the fMRI searchlight data between the two
studies. Next, we compared the left versus right trajectories in the
Edinburgh replication dataset to rule out a potential trajectory bias in
this dataset alone. We calculated how many of the 50 scenes contained
trajectories in only one half of the image (i.e. either all left or all right).
None of the 50 scenes met this criterion. This indicates that in all
50 scenes path trajectories were in both left and right halves of the
image. Given this, we next calculated the mean angular frequency in
the left half or right halves of each scene. Such an analysis provides a
means to test for a leftward or rightward bias in path trajectories. A
paired t-test indicated the difference in mean angular frequency
between left and right halves of the scenes to be statistically non-
significant (t(49) =1.10, p =0.274).

To better visualise the magnitude of navigational affordance
coding as a function of visual field position we combined the
searchlight analyses with population receptive field (pRF) data
(Fig. 3A middle). We first sampled all cortical nodes with significant
evidence for navigational affordance coding (t-value >3.75) and
extracted the x, y centre positions of those nodes from the group-
average pRF data. The visual field positions of these nodes were
then visualised and colour-coded according to the searchlight
strength (t-value). In line with prior computational modelling”,
these data indicate that more of the variance in navigational affor-
dance coding is explained by nodes whose pRFs represent the lower
rather than upper visual field. To quantify this effect further, we
computed an elevation bias in each participant, by taking the
average searchlight t-value for pRFs with x, y centre positions in the
upper visual field (UVF) minus the lower visual field (LVF), respec-
tively (Fig. 3B). These biases were then tested against zero (no bias
assumption) using paired t-tests. In both hemispheres, significantly
more of the variance in navigational affordance coding was present
in pRFs with centres in the LVF (LH: t(13) =12.01, p < 0.001, Cohen’s
d=3.46; RH: t(13) = 6.71, p<0.001, Cohen’s d =1.93).
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are indicated by the coloured circles along the bottom bar, with evidence in favour
of the alternative hypothesis (BFo > 3). Dark grey circles indicate Bayes evidence in
favour of the null hypothesis (BF;o <1/3). Coloured symbols along the x-axes
identify significant time points identified via a frequentist approach (see
‘Methods’).
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Temporal pattern of MEG-fMRI fusion for dorsal early

visual cortex

The searchlight peaks within dorsal early visual cortex suggests that a
likely cortical locus for navigational affordance coding might be earlier
in the visual hierarchy than the OPA, despite evidence for OPA’s
involvement. If responses in dorsal early visual cortex code naviga-
tional affordances, then one might predict to see strong and early
MEG-fMRI fusion when considering these regions specifically. As a
confirmatory step, we applied the same MEG-fMRI fusion analyses
above, but now using the fMRI-derived RDMs from V1, V2d and V3d
defined using participant-specific pRF mapping data (Fig. 4A-C). It is
worth noting that this was not a pre-specified hypothesis, but more a
confirmatory check. As above, we primarily assessed the strength of
MEG-fMRI fusion using Bayesian t-tests, but also include a frequentist
analysis for comparison. In general, a similar pattern of MEG-fMRI
fusion was evident across all three ROISs. In V1, we observed moderate
to strong Bayesian evidence (BF, > 3) for MEG-fMRI fusion during an
early and sustained period in the left (-100-480 ms, Fig. 4A) and right
hemispheres (-100-450 ms, Fig. 4B). A later period of MEG-fMRI fusion
was also present between ~780-980 ms post-stimulus onset in the left
hemisphere that was not present in the right. In V2d, we observed
moderate to strong Bayesian evidence (BF;o > 3) for MEG-fMRI fusion
during an early and sustained period (-100-400 ms) in both the left
(Fig. 4C) and right hemispheres (Fig. 4D). Similar to V1, a later period of
MEG-fMRI fusion was also present between -780-980ms post-
stimulus onset in the left hemisphere that was not present in the
right (Fig. 4D). A similar pattern was observed in V3d, with moderate to
strong Bayesian evidence for an early and sustained period of MEG-
fMRI fusion (-100-400 ms) in both the left (Fig. 4E) and right hemi-
spheres (Fig. 4F). A later period of MEG-fMRI fusion (-880-970 ms) was
present in both the left and right hemispheres (Fig. 4F), The MEG-fMRI
fusion timecourses are not themselves directly related to the beha-
vioural operationalisation of navigational affordances. To make such a
link, we also conducted a commonality analysis between the MEG-fMRI
data and the navigational affordance RDM (Fig. 5A, B).

Temporal coding of navigational affordances in V2d, V3d

and OPA

Broadly speaking, the MEG-fMRI fusion data reported above identified
two time-windows where the representational structure of the fMRI
responses in each ROI best matched the representational structure of
the MEG responses; an early time-window (-100-450 ms) and a later
time-window (-800-1000 ms). Importantly, the MEG-fMRI fusion
analyses do not relate specifically to the representation of navigational
affordances. To quantify the unique variance attributable to naviga-
tional affordances a commonality analysis was implemented as in ref.
35 (see ‘Methods’). Figure 6 depicts the commonality timeseries for
V2d, V3d and OPA in both hemispheres, respectively. A similar pattern
is evident across hemispheres with unique variance attributable to the
navigational affordance model emerging in two stages within the first
500 ms post stimulus onset. An early stage emerging ~75-100 ms,
followed by a slightly later stage ~200-400 ms post stimulus onset.
Notably, unlike the MEG-fMRI fusion analyses, which indicated both
early and late time-windows, the unique variance attributable to the
navigational affordances model appears to be restricted to the sti-
mulus presentation window (i.e. 0-500 ms).

Speed of navigational affordance coding

Taken at face value, the MEG-fMRI fusion and commonality analyses
would suggest that the time needed to extract navigationally relevant
information from scenes in order to determine efficient routes of
egress may, in fact, be surprisingly short. To test this prediction, we ran
a behavioural experiment in which we systematically varied the pre-
sentation time of each scene across six timing conditions (unrest-
ricted, 33 ms, 66 ms, 132 ms, 264 ms and 528 ms). In each condition,

separate groups of participants (n=12) viewed each scene before
indicating the available navigational routes. These path trajectories
were analysed according to the approach described previously” (see
‘Methods’). In brief, path trajectories were summed across participants
before being converted into angular histograms (Fig. 6A). A pairwise
dissimilarity RDM of angular histograms was then computed. Initially,
we sought to compare the original navigational affordance RDM® with
our baseline replication RDM (unrestricted condition). A strong posi-
tive correlation was observed between the two RDMs (r=0.63,
Fig. 6A). This result provides reassurances that our unrestricted con-
dition captures navigational affordance behaviour in a similar way to
that reported previously®.

Next, RDMs summed across participants were computed for each
timing conditon (Fig. 6B). To assess the relationship between condi-
tions we computed the pairwise dissimilarity (1- Pearson’s r) between
these time-dependent RDMs (Fig. 6C). From the resulting matrix, three
general patterns emerged. First, the representation of navigational
affordances elicited at 33 ms was very different from all other condi-
tions with the difference increasing as a function of presentation time.
Second, the representation of navigational affordances elicited at
66 ms remained different from all other conditions, albeit to a lesser
extent than the 33 ms condition. Third, and most crucially, the repre-
sentations elicited at 132 ms, 264 ms and 528 ms were highly similar to
each other. This pattern suggests that robust navigational affordance
representations can emerge from presentation times of 132 ms and
beyond.

Next, we asked how these time-dependent navigational affor-
dance representations related to both our unrestricted baseline RDM
and, for completeness, the original RDM from Bonner et al.” To assess
the similarity between each time-dependent RDM and our baseline
RDM we implemented a bootstrapping analysis. For each timing con-
dition, we randomly shuffled the RDM values before computing the
correlation between the baseline RDM and shuffled RDM (repeated 10k
times). The resulting distributions represent the relationship between
the baseline and time-dependent RDMs one might expect by chance.
The observed correlation between the baseline and each time-
dependent RDM was then compared against the 95th percentile of
the null distributions. The observed correlation fell to the right of the
95th percentile of the null distribution in each timing condition
(Fig. 6D). In accord with the relationship between time-dependent
conditions mentioned above (Fig. 6C) the correlation with our baseline
RDM increased rapidly from weak at 33 ms (r=0.06), to strong and
robust at 132ms and beyond (132ms: r=0.55 264 ms: r=0.56;
528 ms: r=0.56).

For completeness, we also performed the same analysis, but now
comparing the observed correlation between the original navigational
affordance RDM of Bonner et al.”® against the time-dependent shuffled
distributions (Fig. 6D). Only at the earliest time point (33 ms) did the
observed correlation fall to the left of the 95th percentile of the null
distribution. In all other conditions, the observed correlation falls to
the right of the 95th percentile of the null distribution and becomes
strong and robust at 132 ms and beyond. Taken together, we observed
strong evidence that the visual information relevant for navigational
affordances can be extracted robustly with as little as 132 ms of sti-
mulus presentation. The significant correlations present with briefer
stimulus durations (33 ms and 66 ms) should be treated with caution as
these navigational affordance representations were shown to be less
robust than those elicited at longer durations.

Discussion

The primary goal of this study was to provide a comprehensive
account of the spatiotemporal pattern of navigational affordance
coding in human visual cortex. Using fMRI, we found evidence that a
likely cortical locus instrumental in navigational affordance coding is
dorsal early visual cortex, despite also replicating evidence supporting
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hypothesis (BF;o > 3). Dark grey circles indicate Bayes evidence in favour of the null
hypothesis (BFo <1/3). Coloured symbols along the x-axes identify significant time
points identified via a frequentist approach (see ‘Methods’). As reported in ref. 35
data are plotted on a quadratic scale. No clusters survived cluster correction via the
frequentist approach.

the involvement of OPA in this process. Using MEG and RSA analysis we
observed evidence for strong navigational affordance coding within
two narrow time-windows, peaking ~110 ms and ~400 ms post stimulus
onset and MEG-fMRI fusion analyses within OPA revealed evidence of
fusion at both early and late timepoints. Importantly, strong evidence
of early MEG-fMRI fusion was also observed in V1, V2d and V3d,
respectively. Commonality analyses linking the MEG-fMRI fusion in
V2d, V3d and OPA to the representation of navigational affordances
directly, suggests that navigational affordances account for unique
variance during stimulus presentation only. Finally, we demonstrate
that identifying efficient routes of egress can be accomplished with
very brief presentation times (33-66 ms), but that these representa-
tions only become robust with presentations times of 132ms and
beyond.

Prior work highlighted the human visual systems ability to rapidly
extract visual information relevant to complex behaviours at a
glance’ . With respect to navigability, it has been shown that stimulus
durations of ~34 ms are sufficient for human observers to discern the
navigability of scenes very accurately (75% correct)®. Our behavioural
results are partially inline with this despite the very different way in
which affordance behaviour is operationalised between studies. In the

current work, participants were required to identify efficient routes of
egress through scenes, which is a qualitatively different behaviour than
a binary decision of whether a scene is navigable or not. Although we
were able to observe a significant correlation with as little as 33-66 ms
presentation, these representations were not strong and only became
robust with stimulus durations of 132ms and beyond. The longer
presentation times needed to establish robust representations of
navigational affordances, relative to a navigable or non-navigable
judgement?, likely explain the slightly longer durations reported here.

It is not just navigability or navigational affordances that can be
gleaned from such brief presentations®*. Indeed, scene categories (e.g.
Beach or Forest), naturalness and openness can be deciphered simi-
larly quickly*. Feature-level descriptions of scenes briefly presented
(-27-500 ms) also tend to precede the reporting of semantic-level
information even in the absence of an overt task®. It appears therefore
that the visual system is capable of extracting visual information
valuable to complex cognitive behaviours, such as navigation, from the
briefest of glances. Of course, the behavioural goal of the observer
likely interacts with the ability to extract goal-relevant visual
information**’. More complex goals, such as deciding the correct
navigational route to reach a destination, as opposed to simply
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dynamic mask (5 x 50 ms). Post mask, the outline of the image remained in red and
participants were asked to draw the available routes of egress. The start position of
the mouse was fixed on each trial to be the centre and bottom of the scene outline
(red square). C Time-dependent RDM-RDM matrix. Cells represent the dissimilarity
(1-Pearson’s r) between all pairs of time-dependent navigational affordance RDMs.
RDMs that are more similar are shown in blue with RDMs that are more different in
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identifying the available routes or even simpler, whether a route is
navigable or not, will likely increase the exposure time required to
reach commensurate performance levels. Very recent work, employ-
ing EEG-fMRI fusion suggests that OPA plays an important role in
representing locomotive action affordances and that such repre-
sentations emerge ~200ms post stimulus onset’*?. As mentioned
above, the task of identifying the types of movements one can perform
within a scene is a different task from identifying efficient routes of
egress, although some similarities likely also exist. While the current
data suggests that dorsal early visual cortex plays a crucial early role in
the latter, it is possible that the more complex task of identifying
locomotive affordances relies more heavily on computations within
downstream regions, such as the OPA and/or PPA"®?° and takes
advantage of the connections between those regions and other
systems.

Our results are both consistent and inconsistent with prior
work™2, Our fMRI RSA analyses replicated early work showing the
involvement of OPA in navigational affordance coding®. We extended
this work to include an analysis of the retinotopic subdivisions of OPA,
with the prediction that the RSA correlations might be higher for
retinotopic maps with stronger lower visual field biases, as this is
where the majority of navigational affordance information exists". Our
hypothesis was not fully supported by the data. Across hemispheres,

the strongest numerical correlations were observed for V3A and V3B,
which contain full hemifield representations, as opposed to LO1 and
LO2, which in our data were predominantly lower visual field maps.
Interestingly, correlations in LO1, LO2, V3A and V3B were all numeri-
cally higher than those in V7, which according to our pRF mapping data
exhibits the weakest lower visual field bias. This pattern of map specific
results should be considered carefully. We were unable to identify each
retinotopic subdivision in each individual and so relied upon the use of
probabilistic map definitions, which can only be less precise than
individually specific map definitions. Further, the fMRI, and MEG-fMRI
fusion effects we observed tended to be stronger in the left hemi-
sphere, although very similar patterns were present in the right
hemisphere. We urge the interpretation of this difference with caution.
It is not immediately clear why a left hemisphere bias should be pre-
sent in these analyses but could reflect subtle yet consistent differ-
ences in temporal signal to noise (tSNR). Additional analyses testing
for differences in the path trajectories between the original and
replication datasets were statistically non-significant, suggesting a
limited effect on the lateralisation we observe.

Our searchlight analysis suggests that the strongest coding of
navigational affordances is within dorsal early visual cortex in both
hemispheres, although significant evidence for navigational affor-
dances did extend into OPA in the left hemisphere and into ventral
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early visual cortex (V1v/V2v/V3v). This contrasts with prior work, which
found evidence for navigational affordance coding using the same
stimuli in the vicinity of OPA in the right hemisphere only. On the one
hand, the localisation of navigational affordances to dorsal early visual
cortex is consistent with the premise that the most salient visual fea-
tures for navigational affordances are derived from the lower visual
field”, which they represent explicitly**. One could interpret this result
as being due to the contribution of low-level visual features. Impor-
tantly, our searchlight analysis is based on the correlation between the
fMRI and behavioural RDMs when partialling out the contribution of
the Gist RDM, which suggests a low-level visual feature explanation to
be unlikely.

In the temporal domain, prior work has suggested that naviga-
tional affordance coding occurs relatively late as compared with either
the low-level spatial structure or semantic properties of scenes'. Our
MEG-fMRI fusion analyses in OPA, V2d, V3d and V1 suggest shared
representations at both early and later timepoints. On the one hand,
the bimodal nature of these temporal responses could be suggestive of
an initial and rapid feedforward sweep, followed by a later period of
feedback from downstream areas involved in action planning and/or
recurrent processing. On the other hand, the commonality analysis,
which relates the MEG-fMRI fusion patterns to the navigational affor-
dance model directly, suggests that unique variance attributable to
navigational affordances is only present during stimulus presentation.
It is important to note that this prior work comparing the EEG
responses to behavioural and model RDMs is methodologically dif-
ferent from the MEG-fMRI fusion analyses performed here. Indeed,
prior work'® also comparing EEG and behavioural RDMs found evi-
dence for an early coding of navigational affordances (-134 ms) within
a similar time window to that reported here (-110 ms), although it is
worth noting that the stimuli used in this prior work were simplified
artificial environments and not real-world scenes like those used here.

It is important to distinguish between presentation time and
processing time in the context of the current data. Although a sig-
nificant correlation was present at 33 ms that does not mean that the
neural computation occurs as quickly. Indeed, across all the time-
resolved analyses reported above, effects emerged ~110 ms post sti-
mulus onset at the earliest. As discussed above, the effects reported at
33-66 ms presentation time should be treated with caution. These
representations were shown to be very different from all other time-
dependent representations. In contrast, the representations of navi-
gational affordances were robust at 132 ms and beyond. It is note-
worthy that the duration at which robust representations emerged
behaviourally (132 ms) aligns well with the emergence of strong effects
in our time-resolved analyses (-110 ms).

If, as our data suggests, navigational affordances can be extracted
robustly from brief presentations, what are the implications for the
types of visual features that likely drive this process? Prior work
highlights the impact that changes in low-level visual features can have
on responses within the scene-selective network?**2%*, which are
likely to also be reflected by changes in the responses of early visual
cortex regions. Our data, combined with computational work indicate
that whatever those features are, they are most likely found in the
lower visual field as this is where the most navigationally relevant
information is located™". One possibility is that identifying efficient
routes of egress requires identifying continuity in the lower visual field.
In other words, identifying an absence of obstacles, which in urban
environments likely correspond to high spatial frequencies and recti-
linear objects®**° (e.g. tables, chairs). Future studies should explore the
impact of visual feature changes, particularly in the lower visual field,
on navigational affordance coding. Finally, it is worth noting that the
neuroimaging and behavioural effects reported here and
previously>"”" relate only to a small set of relatively homogenous
scene stimuli. All of the scenes used here and previously™”" are
indoor urban environments with very clear (but variable) routes of

egress. It is currently unclear whether the same pattern of results,
particularly the behavioural results, would generalise to a more het-
erogeneous stimulus set.

In conclusion, by capturing the spatiotemporal dynamics of
navigational affordance coding we demonstrate that a likely locus
critical to such coding is dorsal early visual cortex. Our characterisa-
tion of navigational affordance behaviour also suggests that we can
extract visual information relevant to identifying efficient routes of
egress through a scene robustly with durations as short as 132 ms.

Methods

The ethics committee at York Neuroimaging centre at the University of
York approved the fMRI and MEG experiments. Ethical approval for the
behavioural experiment was provided by the School of Philosophy,
Psychology and Language Sciences ethics committee at the University
of Edinburgh.

Participants

14 (10 female) participants with normal or corrected-to-normal vision
and a mean age of 24.43 (+4.85) years were recruited for the fMRI and
MEG experiments. All participants took part in ~2 h of fMRI sessions
and 1h of MEG at the York Neuroimaging Centre. The ethics com-
mittee at York Neuroimaging centre at the University of York approved
this experiment. 72 (52 female) participants with normal or corrected-
to-normal vision and a mean age of 28.51 (+4.10) were recruited for the
navigational affordance behavioural experiment. All participants
completed the task in one condition only (n =12 per condition). Ethical
approval was provided by the School of Philosophy, Psychology and
Language Sciences ethics committee at the University of Edinburgh.
All participants provided informed consent and were compensated
monetarily for their participation.

Visual stimuli and tasks

Across all experiments (fMRI, MEG and Behaviour) visual stimuli were
presented using PsychoPy. The delivery system used for the visual
stimulus in fMRI scans was a ViewPixx projector which projected the
stimulus onto a custom-made acrylic screen. The participant viewed
the screen with a mirror fixed to the head coil in the scanner. In MEG
the stimuli were presented using a ViewPixx Projector which projected
the stimulus onto a screen in the MEG suite. Visual stimuli for the
behavioural experiment were presented via a HP EliteDesk monitor
(resolution: 1920 x 1080 pixels; refresh rate: 60 Hz; visible display size:
531.36 mm x 298.89 mm). We did not receive reports of dropped
frames during the experiment. Post data collection we nevertheless
tested for dropped frames using the in-built timeByFramesEx.py
module within PsychoPy. Out of a sample of 500 frames none were
detected as dropped (mean refresh rate=16.67ms, standard
deviation=0.03 ms).

Navigational affordance stimuli fMRI

50 colour images of indoor scenes identical to those used in experi-
ment two of Bonner and Epstein®. The navigational affordance of each
scene was determined by the previous researchers, who recruited 11
participants to draw the potential routes of egress through each scene.
The navigable paths of each scene were summed across participants
into a heat map of responses. The 50 scenes used in both the current
and the previous study were selected so that the correlations between
navigational affordance models and visual models of gist were not
reliably greater than chance. For more information on stimuli gen-
eration and selection see ref. 13. Each scene consisted of 1024 x 768
pixels and subtended 17 x13 degrees of visual angle. During fMRI
scans, each image was shown for 1.5s with a 2.5s inter stimulus
interval. Participants took part in 10 runs which each lasted 4 min and
16 s. Each of the 50 scene stimuli were shown in every run. Five catch
trials (bathroom images) were also randomly presented in each run
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and the participant was instructed to press a button when a bathroom
was presented.

Navigational affordance stimuli MEG

Participants were presented with the same 50 scenes as used in the
fMRI navigational affordance experiment. Each scene was presented
for 500 ms followed by a 800-1000 ms ISI. Every stimulus was pre-
sented eight times in a run, for five runs, leading to 40 presentations
per stimulus. Each run lasted 10 min 16 s. 13 participants took part in
the experiment as described, one participant took part in ten runs of
half the length per run, leading to the same number of presentations
per image.

Behaviour

Participants across all conditions were presented with the same
50 scenes as used in the fMRI and MEG experiments. Following a
variable inter-trial-interval (1-1.5s), a scene was presented briefly
(either 33, 66 or 132 ms) followed by a dynamic mask (5 x 50ms). Post
mask, the outline of the image remained in red and participants were
asked to draw the available routes of egress. The unrestricted condi-
tion was similar apart from the lack of a dynamic mask as the scene
remained visible throughout the path drawing phase. The start posi-
tion of the mouse was fixed on each trial to be the centre and bottom of
the scene (unrestricted condition) or scene outline (time-dependent
conditions). Mask stimuli were created by first dividing each scene
(768 x1024 pixels) into 64 equal sized rectangles (96 x 128 pixels)
before shuffling rectangles both within and across scenes.

Model comparisons

Our initial analyses relied upon the navigational affordance RDM
reported for experiment two of Bonner and colleagues®. Additionally,
we also computed image statistics using the gist descriptor (http://
people.csail.mit.edu/torralba/code/spatialenvelope/) to capture the
low-level features of each scene. For each scene, a vector composed of
512 values was created by passing each scene through a series of Gabor
filters across four spatial frequencies and eight orientations. The
resulting vector characterises the image in terms of the spatial fre-
quencies and orientations at different spatial locations within the
image. We computed the pairwise Euclidean distance between vectors
to produce an RDM across stimuli.

Scene localiser fMRI

In ablock design, participants were presented with images of faces and
scenes (different from those used in the navigational affordance
experiment), with blocks lasting 16 s. Each block consisted of 20 ima-
ges presented for 300 ms followed by 500 ms fixation. There were a
total of 18 blocks per run. Participants performed a one-back task
(button press when same image presented twice in a row). Each run
lasted for 5 min and 20 s and each participant completed two runs.

pRF mapping fMRI

Sweeping bars moved in 8bar aperture directions which revealed
random scene fragments. Each sweep took 36 s to traverse a 17 degree
diameter circular aperture in 18 steps. For each step, 5 images were
rapidly displayed (2.5 Hz) out of a possible 90 without repeating, so
each possible image was displayed once per sweep. Participants per-
formed a colour change detection task at fixation, indicated with a
button press. Each run lasted for 5min 20 s and was repeated four
times per participant. This procedure is described in detail in other
work™,

Data acquisition

MRI/fMRI. A single, high resolution, anatomical, T1-weighted scan (TR,
2500 ms; TE, 2.26 ms; TI, 900 ms; voxel size, 1 x 1 x 1 mm?>; flip angle, 7;
matrix size, 256, 256, 176, total acquisition time, 306 s) was acquired

for each participant. All functional scans consisted of 48 multiband-
multiecho EPI interleaved slices (acceleration factor=2, TEs=14.6,
32.83, 51.06 ms) within a FOV of 240 x 240 mm with 2.7 mm isotropic
voxels (TR =2000 ms, flip angle =150°).

MRI/fMRI preprocessing. MRI scans were preprocessed using AFNI*,
freesurfer*? and SUMA®. During preprocessing, dummy volumes were
first removed from the start of each run (AFNI 3dTcat). Large devia-
tions in signal were removed (3dDespike) followed by slice time cor-
rection (3dTshift) aligning each slice with a time offset of zero. The
skull was removed from the first echo 1 scan (TE = 14.6 ms) and used to
create a brain mask (3dSkullStrip and 3dAutomask), as this echo con-
tained the most signal. The first echo 2 scan (TE = 35.79 ms) was used as
a base for motion correction and registration with the T1 structural
scan (3dbucket), as this echo was the most similar to standard EPI
acquisition. Motion parameters were estimated for the echo 2 scans
(3dVolreg) and applied to the other echos (3dAllineate). After com-
pleting the standard preprocessing, the data were processed using
Tedana*** to denoise the multi-echo scans (version 0.0.12, using
default options). Tedana optimally combined and denoised output
was then scaled. To do this, we divided the signal in each voxel by its
mean value and multiplied the signal by 100 (3dTstat and 3dcalc). This
means that the fMRI values can be interpreted as a percentage of the
mean signal, and effect estimates can be viewed as percentage change
from baseline*®. For the pRF scans, an average was then calculated
across runs to leave a single time series for further analysis. Freesurfer
reconstructions were estimated from the T1 anatomical scans (recon-
all), and the output used to create surfaces readable in SUMA
(SUMA _Make_Spec_FS). The SUMA structural was then aligned to the
Session lexperimental structural to ensure alignment with the func-
tional images (SUMA _AlignToExperiment). Surface-based analyses
were conducted using the SUMA standard cortical surface (std.141).

MEG acquisition and preprocessing. MEG data was recorded on a
248-channel 4D Neuroimaging Magnes 3600 MEG with electronics
upgraded by York Instruments Ltd. Data was acquired at a sampling
rate of 1001 Hz with reference channels used to reduce contributions
from external noise. Data pre-processing was performed using MNE-
Python and consisted of band-pass filtering between 0.05 and 500 Hz,
and notch filtering power source noise at 50 Hz and harmonics up to
250 Hz. The time-series data was divided into epochs from 200 ms
prior to stimuli onset through to 1200 ms post-onset, and the epochs
were demeaned with respect to the 200 ms pre-onset period. Bad
channels were automatically detected using the Maxwell filtering uti-
lity implemented in MNE-Python, this resulted in a mean exclusion of
5.4 £1.2 channels across all recordings.

MRI analysis

Regions of interest. To localise the OPA, a general linear model was
estimated for the scene localiser scans using a block design with a 16-s
Gamma basis function (GAM: 8.6, 0.547, 16, 3dDeconvolve and
3dREML(it). The output of the model was then projected onto the
SUMA cortical surface (3dVol2Surf), and smoothed with a FWHM of
2 mm (SurfSmooth). OPA ROIs were drawn manually for each subject
on the surface (SUMA draw ROI) after thresholding the contrast of
scenes versus faces at t>3.5 (height defining threshold, P <0.0001,
uncorrected). These participant-specific data were applied to a group-
level analysis (3dttest++) in order to define group-level ROIs in both
hemispheres. Population receptive fields were estimated using AFNI's
non-linear fitting algorithm (3dNLfim) and the Gamma (GAM) basis
function'. The outputs were used to delineate subject-specific V1 ROIs
which were drawn manually on the SUMA standard (std.141) surface
using the polar angle and eccentricity estimates. Retinotopic maps
subdividing OPA (LOI1, LO2, V3A, V3B and V7)"'® were taken from a
probabilistic atlas®®. To equate ROI size across maps we selected the
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top 100 nodes in all ROIs. All ROIs (OPA and retinotopic maps) were
converted into 1D files (ROI2dataset) to facilitate future node selection.

Navigational affordance coding. The activity associated with each
stimulus in the navigational affordance scans were deconvolved using
a GAM basis function aligned to the onset of each stimulus. All runs
were modelled together, and each stimulus regressor included ten
onsets. The data within each participant-specific ROl was then
extracted for analysis in MATLAB (ConvertDset) using an RSA
framework*. The t-values for each stimulus at each node in the ROI
were taken from the event-related general linear model (GLM) output.
The pairwise dissimilarities between stimulus t-values were then cal-
culated in MATLAB (1—corr, Pearson, v.2021a MathWorks). To quantify
the degree of navigational affordance coding in each ROI, we com-
puted the Spearman’s correlation (rho) between the navigational
affordance RDM and each ROI RDM. To account for the influence of V1
on the observed correlations we employed partial correlation, par-
tialling out the V1 RDM.

Searchlight analyses were performed in Matlab using
CoSMoMVPA* and the regress_dsms function. For each sphere (6 mm
radius around each voxel) we computed the correlation between the
fMRI RDM and navigational affordance RDM whilst partialling out the
contribution of the Gist RDM. We used centreing of the RDM and
converted the correlation values to Fisher’s z scores for group level
analysis. Volumetric searchlight analyses were submitted to whole-
brain voxel-wise t-tests of random effects across subjects before being
projected into surface space in SUMA (std.141).

MEG analysis. Correlation matrices were generated for each MEG
recording run by calculating the Pearson correlation between the pre-
processed sensor activity vectors from all pairs of stimuli, at each time
sample. Relative dissimilarity matrices were generated by subtracting
the resulting correlation values from 1.0, to yield an N-stimuli square
matrix for each time sample and each run. The RDMs were averaged
across runs by calculating the element-wise mean. This approach was
adopted to minimise the impact of head movement between runs.

MEG-fMRI fusion. We implemented MEG-fMRI fusion using a repre-
sentational dissimilarity analysis framework®. The aim of this
approach is to identify when in time the representational structure
across a set of stimuli in a given fMRI ROI is matched in the MEG time
course. One benefit of this RSA fusion approach is that the signal is
extracted away from the primary MEG and fMRI data formats, which
vary considerably in their respective spatial and temporal
resolutions®. It is worth noting a downside to this approach; if two
fMRI regions represent a stimulus set in a very similar way then they
will have correlated similarity matrices and therefore similar fusion
timeseries, even if this representation emerged at different points in
time. However, it is generally accepted that information travelling
across regions is transformed non-linearly, meaning that the repre-
sentational format will likely differ across the brain®. To calculate the
similarity between the stimulus representation across time and space,
we then correlated (Spearman’s rho) the MEG RDMs at each time point
with the corresponding fMRI RDM for each ROI in each hemisphere.
Time points with fusion correlations above zero were assessed using
Bayesian t-tests. This was implemented using a half-Cauchy prior with a
default width of 0.707 and a range of 0.5 to increase the detection of

small effects under the null hypothesis*°.

Permutation testing of time-resolved data. Our primary approach for
assessing the strength of evidence of time-resolved effects used a
Bayesian approach. We note, however, that frequentist approaches are
also commonly used and so for completeness we also implemented a

permutation-based approach for all time-resolved analyses. Correc-
tion for multiple comparisons was implemented in CoSMoMVPA
(cosmo motecarlo cluster stat®) using threshold-free cluster-
enhancement’>3, For each analysis we ran 10,000 permutations. For a
one-sample t-test and an alpha of 0.05, z-score values greater than 1.65
indicate that the statistic is significant. As we allow for clustering over
time, we can make inferences at the cluster level rather than at indi-
vidual timepoints. A similar approach was adopted for the MEG-RSA
analysis taking into account the gist model, for the MEG-fMRI fusion
analyses and the commonality analysis. We emphasise here that our
approach for assessing the strength of evidence of time-resolved
effects used a Bayesian approach. Comparing the results of Bayesian
and frequentist approaches can be difficult. For example, it is not clear
to us how one should interpret a result if an effect is present in one
framework (e.g. Bayesian) but not another (e.g. frequentist). As such,
our results are discussed with reference to the Bayesian statistics, but
frequentists statistics are also provided for the interested reader.

Commonality analysis. We implemented a commonality analysis fol-
lowing the approach described previously®. Under this framework, for
each ROI, we compared the coefficients of determination (R?) at each
timepoint between (1) the group-averaged MEG and fMRI RDMs and
(2) the group-averaged MEG and fMRI RDMs when partialing out the
navigational affordance RDM. In order to determine significant time-
points we implemented the cluster based analysis described above.
For every time-point we randomly shuffled the MEG RDM (1000 times)
before calculating the correlation (Spearman’s rho). We computed the
difference between these two coefficients of determination (for the
observed and permuted data) and for each timepoint we assessed
whether the observed correlation was greater than the 95th percentile
of that timepoints permuted null distribution. We considered windows
with more than 3 contiguous timepoints to be significant.

Behaviour. Analysis procedure was identical for all conditions and
followed the approach outlined previously”. Analyses were conducted
in Matlab and R (R Studio Version 2024.12.0). The X,y pixel locations of
path trajectories for each scene were extracted for each participant.
Next, trajectories were spatially blurred (imfilter) before being sum-
med across participants for each scene. Summed heat maps were
converted into angular histograms by calculating the summed value in
each of 180 angular bins. Angular histograms were then normalised
(zscore) and smoothed (smoothn). Finally, RDMs were created by
calculating the pairwise dissimilarity in the squared euclidean distance.
To create the null distributions for each timing condition, we first
randomly shuffled the time-dependent RDM before computing the
correlation (Pearson’s r) between the shuffled RDM and our replication
RDM. This procedure was repeated 10,000 times creating a null dis-
tribution of expected correlations by chance. The same procedure was
performed to compare the time-dependent RDMs with the original
navigational affordance RDM from Bonner and colleagues®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Pre-processed MRI, MEG and behavioural data are available via the
open science framework (https://doi.org/10.17605/0SF.10/PQ2M3).
Raw MRI and MEG data will be made available upon request.

Code availability
Analysis code is available via the open science framework via the open
science framework (https://doi.org/10.17605/0SF.I0/PQ2M3).
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