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Abstract 

In reward foraging tasks, prefrontal neurons track reward history, yet animals also show persistent choice-

history biases. How these histories are represented in prefrontal circuits and guide animals’ decisions 

remains unknown. We asked whether past rewards and choices are incorporated by leaky integration or 

carried as discrete, history-specific codes, and how these codes are recruited under different task 

demands. We recorded medial prefrontal cortex (mPFC) activity while mice performed probabilistic 

reward foraging task and fit a reinforcement-learning model whose decision variable, combining reward 

and choice histories, captured behavior. Neurons represented history-specific rewards and choices while 

integrating them consistent with their behavioral impact. We then altered reward contingencies and inter-

choice intervals and transiently inactivated mPFC. Neural representations adapted to changing task 

demands, yet the behavioral impact of inactivation was sensitive to inter-choice interval and reward 

contingencies. We conclude that mPFC hosts redundant computations whose influence is gated by timing 

and task structure. 

 

Introduction 
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Reinforcement learning (RL) models achieved tremendous success in explaining animal behavior and 

helped us interpret the activity of neurons in diverse brain areas1–3. This success is particularly prominent 

in reward foraging tasks where animals or artificial agents have to come up with the policy to maximize 

reward harvesting efficiency amid changing environmental conditions4.  Some of the well-established 

reward foraging tasks that mimic naturalistic habitats assume nonstationary reward statistics 5–8. For 

example, in two alternative choice tasks with variable interval reinforcement schedule (VI) reward 

statistics on the unchosen options do not remain fixed, instead they grow, simulating the accumulation of 

food on unvisited patches9. In such tasks, the decision-making process is influenced not only by past 

rewards but also by past choices, as the probability of rewards on unchosen options increases, 

incentivizing animals to alternate between options, even if they have previously received rewards 5–8.  

RL models developed to solve this type of foraging tasks incorporate both reward history and choice 

history components into the decision process6,7,10. These models have played a pivotal role in explaining 

animal behavior and shed a new light on the representation of action values, typically computed as the 

weighted sum of past rewards. However, the significance of choice history representations and how they 

interface with reward history representations in these tasks remains unclear. The nature of representations 

within the prefrontal areas warrants further investigation, as cortical representations are distributed 

widely11–13, all the while maintaining functional specificity14,15. Additionally, due to the nature of the 

multimodal input prefrontal areas receive16 representations are highly diverse17 and mixed18,19 , although 

others argued for categorical representations20.  Consequently, when animals engage in reward foraging 

tasks, neurons in these brain regions are often found to represent a multitude of behavioral variables. This 

is especially true at the population level, since in a high-dimensional space various behavioral variables 

can be decoded simultaneously21. The theoretical and experimental work further suggests that prefrontal 

areas constitute self-sufficient learning systems containing all the necessary representations to master the 

tasks at hand22,23. Therefore, a fundamental question that has received little attention in previous studies, 
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with few exceptions15 is: which representations are functionalized by the animals and influence their 

decision-making processes ? 

A survey of the function of the medial prefrontal cortex (mPFC) reveals two prominent trends. One line 

of research, initiated several decades ago, links mPFC to working memory24, while another set of studies, 

as mentioned above, grounded in the field of RL, contends that mPFC guides animals' decisions by 

representing decision variable (DV) of the RL model3,7,25,26. Yet, it remains unclear whether the DV 

representations and their behavioral deployment are independent of the mPFC’s memory function or do 

they work in tandem. In other words, does the mPFC represent and use DV, regardless of the temporal 

intervals between task relevant events or the representations of DV and its behavioral deployment depend 

on the memory load?  

To address those issues, we set up a probabilistic reward foraging task for mice involving two alternative 

ports which required animals to maintain a memory of their past rewards and past choices to make 

decisions 5–7. The probability of reward at each port was a function of “set reward probabilities” that 

determined the chance of a reward arriving at each port, while also being a function of past choices. Using 

a previously developed reinforcement learning model, the double trace (DT) model, which integrates 

choice and reward history into the DV27, we investigated how the integration of reward history and choice 

history representations aligned with the animals' behavior. 

To investigate whether choice history representations conformed to the task structure and were not purely 

motoric in nature, we utilized two tasks: one with reward probabilities contingent on previous choices as 

described above (VI task) and another, a Variable Ratio Reinforcement task (VR), in which this 

dependency was removed. 

While we identified all components of the RL model in the mPFC, it remained unclear whether these 

representations were actively employed by the animals. To address this, we temporarily inactivated the 

mPFC and examined how animals integrated reward and choice history. For this, we manipulated reward 
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contingencies through VI and VR tasks and varied the temporal intervals between events to investigate 

whether the computation of the DV and its deployment by the mPFC were influenced by the memory load 

and task structure. 

Results 

Past rewards and choices maximize reward-harvest efficiency. 

We set up a discrete version of the variable interval (VI) schedule of reinforcement task for two options 

5,7(Fig.1A, see Materials and Methods). In this task, the mice initiated a trial by poking their noses into the 

center port. After a brief period of waiting (uniformly distributed, from 0.2 to 0.5 s), the mice had to 

choose between the left and right ports to collect water rewards (2 µl). The inter-trial interval with the 

mean of 1.1557  0.0327 (standard error of the mean, s.e.m.) seconds was determined solely by animals’ 

decision to initiate the next center port poke after completing a previous trial. In every trial, rewards on 

two ports (left and right) were assigned according to independent set reward probabilities. Once a reward 

was assigned to a given port, it remained available until the animal chose that port. The probability of 

obtaining a reward from a given port in each trial changed as a function of past choices (see equations 

(eqs.) 1 and 2, Materials and Methods). The set reward probabilities changed for every block of 35 to 200 

trials. Such randomized block lengths helped us to minimize the expectation from animals for block 

transitions. The pair of set reward probabilities for left and right ports were the following tuples [0.1:0.4], 

[0.4:0.1], [0.25:0.25], [0.6:0.1] and [0.1:0.6], respectively (Materials and Methods). We collected a total 

of 82 behavioral sessions from 5 mice comprising 71,737 trials. On average each session included 875  

37 trials with the number of trials per session ranging from minimum of 129 to a maximum of 1814.  

In the VI task, choice ratios closely matched reward ratios on a local scale (Fig.1B) and on a global scale 

5,7 (Fig.1C), showing slightly undermatching28. To investigate what strategies animals used to maximize 

reward harvesting efficiency we compared reward rates (fraction of rewards per trial) to those of several 

artificial agents. In the VI task, it becomes advantageous to switch ports even after experiencing the 
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rewards, because reward probabilities increment on unchosen port. For instance, simply alternating 

choices yields higher reward rates when compared to consistently selecting the port with higher set 

reward probabilities (Fig.1D). Hence, it is reasonable to assume that animals may use some form of 

alternation strategy as it was documented in previous studies5,7,29,30. Remarkably, mice in the VI task 

surpassed the performance of the alternation strategy (both for the example animals and all animals 

combined, Mann–Whitney U-test p <0.001), prompting us to investigate the precise strategy employed by 

the animals (Fig.1D). As shown before5–7,11,27  logistic regression of current choices on past rewards and 

past choices revealed that past rewards increased the probability of the port being chosen again, however 

the further back in time the reward was observed, the less effect it had on the port being chosen. Past 

choices had non-monotonic effects on current choices, meaning immediate past choices had the negative 

effect and choices further back in history had positive effects on current choices (Fig.1E and SFig.1A). 

Non monotonic choice history effects could be partially explained as a result of animals alternating when 

experiencing no rewards on immediate past trials and persevering on choices that happened two or more 

trials back in history (SFig.1B). To test if animals used alternation as a low-level default strategy or 

adjusted the alternation as a function of difference in set reward probabilities, we measured rate of 

alternation as a function of difference in set reward probabilities. We saw modest, but significant decrease 

in alternation rate as difference in set reward probabilities increased (Fig.1F).   

Response time (RT) defined as the time elapsed from leaving the center port to poking left or right port 

was used as an alternative measure of performance. We found RTs were largely consistent with the effect 

of past rewards and past choices on current choices. RTs for the current choice were reduced when 

animals recently experienced a reward for that option (SFig.1C, regression coefficients, were -1.7537*10-

3  1.05 *10-3
  for rewards one trial back on the same side and -0.443*10-3

  0.714*10-3 for rewards one 

trial back on the opposite side), and RTs increased when the animal chose the same option. Consequently, 

RTs decreased when the animal chose the alternative option in the previous trial (SFig.1C, regression 

coefficients were 4.85 *10-3  2.2*10-3 for combined choice effects one trial back on the same side).  
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Supported by previous work27 and based on our findings, we conclude that the incorporation of reward 

and choice history into the decision-making process contributes to animals' ability to maximize their 

reward harvesting efficiency. 

mPFC integrates past rewards and choices consistent with behavior 

If choice and reward history effects are impacting animals’ decisions, how are they represented on a 

single neuron level? More specifically, we asked whether individual neurons combine reward and choice 

histories in a way that matches their observed impact on the animal’s current choices. 

We recorded the activity of neurons (709 neurons from 5 mice) in the mPFC31 (SFig.2A), using tetrodes. 

We used the manual spike sorting software MClust (AD Redish) to isolate single neurons (median LRatio 

= 0.0287, 95% confidence interval < 0.2325, median isolation distance = 20.8075, 95% confidence 

interval >10.4417, violation of refractory period <0.2763% of total spikes32). The recorded neurons 

showed the characteristic distribution of firing rates vs. spike waveforms (SFig.2B)33.  

Next, we sought to understand how behavior of animals could be explained by neural activity. As 

behavioral analysis showed, regression coefficients on average for immediate past trials for rewards and 

choices showed opposite signs (Fig.1E). Whereas immediate past rewards promote choice for the same 

port, immediate past choices promote choices for the alternative port. Hence, should individual neurons 

integrate the immediate past reward and choice in accordance with their impact on current choices, we 

would expect neurons to discriminate between these events in a contrasting manner. Individual example 

neuron (Fig.2A) showed opposite modulation of firing rate for immediate past reward vs. no reward for 

the right port and for immediate past choices for the right vs. left port. To determine how neurons 

discriminated between recent rewards and choices, we measured their selectivity using a method based on 

the difference in firing rate distributions. This was done using the area under the receiver operating curve 

(AUC) as the key metric, with the AUC scores normalized between -1 and 1 (see Materials and Methods 

for details). For choice selectivity positive AUC scores indicated preference for the right port and 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS 

 

negative scores preference for the left port. We calculated the selectivity scores for the immediate past 

rewards from both the left and right separately. Then, to align these scores with the choice selectivity 

score, we reversed the sign of the AUC scores for the left port and combined them with the selectivity 

scores for the right port. This approach allowed us to measure the selectivity for rewards at the chosen 

port (further details in Materials and Methods). We observed subtle yet statistically significant negative 

correlation between selectivity of neurons for immediate past rewards and immediate past choices. (Fig. 

2B).  

The selectivity analysis was limited to one trial back history, while past rewards and choices beyond one 

trial back in history had effects on current choices. This was particularly clear when analysing choice 

history effects as they have non monotonic effects on current choices. Namely, negative contribution of 

immediate past choices on current choices may be overridden by positive contribution of past choices 

further back in history. To consider entire reward and choice history effects we approximated these 

effects using three exponentials. One for reward history and two for choice history to capture its non-

monotonic shape. We used a reinforcement learning model - the double trace (DT) model - that 

incorporates reward and choice histories (Fig.2C, Materials and Methods section DT model for detailed 

description) into the decision rule27. In the DT model past reward contributions are captured by the Q 

values, that are updated for left and right ports separately as a function of reward outcome from those 

ports. Non-monotonic choice history effects (Fig.1E) are captured by the weighted sum of fast F and slow 

S choice traces for each port that approximate immediate past and distant past choice history effects on 

current choices, respectively. The integration of weighted sum of choice traces (we also refer to it as 

choice history effects) and Q values (or reward history effects) for the left and right ports define the 

decision variable (h), which via softmax selection rule is converted to choice probability P(c).  

Prior work found that the DT model was superior in performance compared to other RL models of the 

same class (Q-learning models) in terms of its predictive adequacy of the animals’ choices and in terms of 

its normative performance (SFig.2C and D, see the Methods section on the model selection)27. Here we 
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further explored if animals deployed the DT model to maximize reward harvesting efficiency and if 

neurons represented current choices consistent with the effects of past choices and past rewards.  

First, we showed that reward harvesting efficiency measured as regret, difference in reward harvesting 

efficiency between model and optimal agent (Optimal_Baiting model) that has access to the reward 

probabilities on a trial by trial basis negatively correlated with the DT model’s ability to predict animals 

choices (Fig.2D). Furthermore, we showed that as animals progressed over the sessions the DT models 

predictive accuracy improved (SFig.2E) suggesting that animals were learning to deploy the DT model 

over time. 

Second, we noted that in majority of the sessions reward history effects captured by the Q value and 

choice history effects captured by weighted sum of F and S components of the DT model had 

predominantly opposing effects on current choices (Fig.2E and SFig.2F). If individual neurons are 

encoding Q value and choice history effects, it would follow that neurons should inherit the structure of 

these correlations. To test this, we analysed trial by trial correlation of firing rate of each neuron to Q 

value and choice history effects. We observed that on average the strongest correlations with DT model 

variables were at the decision epoch (SFig.2G) with the fast choice component F having the best 

correlation with individual firing rates of neurons (SFig.2H). Next, we observed that neurons encoded Q 

value and choice history effects consistent with their impact on current choices (Fig.2F and SFig.2I). We 

tested whether neurons encoded Q-value and choice history effects in opposing directions using a linear 

mixed effect model (LMM). The dependent variable was each neuron’s correlation between firing rate 

and Q-value; the fixed effect was the neuron’s correlation with choice history effect and animal ID was 

included as a random intercept. P-values (p < 0.001) were obtained via a within-animal permutation test 

that shuffled the correlations of choice-history effects. While majority of neurons represented Q value or 

fast and slow component of the choice trace, some also encoded mixture of the model variables (Fig.2G) 

as expected from prefrontal cortical areas that have highly mixed representations.  
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Decoding accuracy of the mPFC neurons of choices predicted by the DT model showed positive 

correlations with the DT model’s performance (fit of the DT model, SFig.2J), while there was no 

correlation with the reward harvesting efficiency (SFig.2K). 

Neurons show discrete coding of past rewards and choices 

In both experimental and theoretical studies representations in mPFC are not limited to variables given by 

the RL model but encompass also other variables that can be used to derive the RL model variables. For 

example, individual neurons may preferentially represent rewards for particular trials back in history with 

more neurons representing more recent rewards. Such diminishing responses to past rewards on a 

population level can be used to derive the Q values25,34.  

We found that in many sessions reward and particularly choice history could be decoded comparable to 

the choices predicted by the DT model (Fig.3A). To further understand the nature of these representations 

at the individual neuron level we looked at how neurons discriminated reward and choices for particular 

trials back in history. We looked at the responses of neurons conditioned on reward outcomes for specific 

trials back in history. If mPFC individual neurons represent Q values, we could expect them to operate as 

leaky integrators 35 following standard RL value update form (eq. 14 also see Fig.2C) and distinguish 

immediate past rewards from no rewards with highest accuracy. Alternatively, if mPFC neurons 

discriminate reward and choices preferentially from various past trials, their representations may be 

constrained to specific trials or temporal intervals in the history.  

We observed that some neurons (13% of analysed neurons out of total 709 analysed neurons) 

discriminated rewarded from non-rewarded trials (selectivity AUC scores, with p < 0.05 in permutation 

test) that happened two trials back in history (Materials and Methods). The example neuron (Fig.3B) that 

showed higher selectivity for right rewards 2 trials back (AUC score = 0.34, p <0.001) than 1 or 3 trials 

back (AUC score = 0.56, p value = 0.01, for 1 trial back and AUC score = 0.45, p = 0.02 for three trials 

back right rewards) discriminated rewarded trials from non-rewarded trials, and this discrimination was 
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strongest when rewards happened two trials back in history. This was also seen on a population level 

when we selected cells tuned to rewards for specific trials back in history (SFig.3A).  

To account for representations of rewards and choices not limited to two trials back in history, we 

conducted a comprehensive analysis of single neuron responses in the mPFC. Using regularized 

regression analysis, we examined the firing rate of each neuron during the decision epoch (Fig.3C) and 

regressed it against rewards and choices from up to 10 trials back, as well as the current choices 

(Materials and Methods, see section on linear regression analysis for neurons). 

45% of the recorded cells (320 cells) showed a significant regression coefficient for at least one of the 

events analysed (SFig.3B). The number of neurons with significant regression coefficients for both 

rewards and choices showed surprising preference to events two or more trials back in history (Fig.3C). 

The preferential encoding of rewards and choices for the past trials was not due to exclusion of the 

regressors that did not pass the statistical test or regularization method (SFig.3C). We further tested the 

reliability of the regressors by splitting into half each session and estimating the preferred regressor (lag) 

for each neuron. Scatter plot showed significant number of neurons (p < 0.001) having the same preferred 

lags for two halves of the session (Fig.3D). P values were derived by permutation test, shuffling the lags 

for one half of the session 1000 times and counting how many times the neurons had the same preferred 

lag for two halves. Regressors in addition showed monotonically decaying trends towards past trials 

(Fig.3E) consistent with the idea that at the population level mPFC represented the DVs.  

We further tested whether neurons were preferentially responsive to rewards and choices occurring at 

specific time intervals in history as opposed to occurring at specific trials in history. We used time 

windows of 0.2 s. (total duration of 8 s) to chunk the history into time intervals and performed the same 

regression analysis described above. We observed that the maximum regression coefficients were specific 

to time intervals in the past (SFig.3D). As in the previous analysis, most neurons showed the most robust 

modulation to immediate past events (SFig.3E). 
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To test if history-specific representations arise as a function of recurrency within the cortical circuits we 

used recurrent neural network (RNN) model (layrecnet function from Matlab) that was trained to output 

the DV given the choice and reward input. More specifically the RNN with one hidden layer received the 

same reward and choice data as animals on its two input neurons and was trained to produce the same Q 

value and choice history effects for left and right ports on its output (Fig.3F). We observed the history-

specific tuning of neurons to rewards and choices (Fig.3G). The number of neurons showed monotonic 

decay as function of the history (Fig.3H). We also note that choice history effects with its non-monotonic 

shape can be recovered in both biological neurons and in RNN (SFig.3F). Overall, the reward and choice 

history-specific neurons and their distribution resembled the representations from biological neurons 

(SFig.3G-I)  

To take advantage of the history-specific responses in neurons 36 we built a support vector machine 

(SVM) classifier to see how well population activity (all neurons recorded in a session) could linearly 

separate current choices, past choices, and past rewards up to two trials back (total number of states 16). 

We built multiple weak pairwise linear classifiers to discriminate among different states (Materials and 

Methods) 19.The neural population could separate above chance level past immediate choices, current 

choices, and past rewards up to two trials back (SFig. 4). 

We independently validated trial and time history representations on a different cohort of mice (n = 6). 

We used the Kilosort2 37 spike sorting algorithm and post-processing steps to identify single units 

(Materials and Methods). 99% of isolated units with <0.63% of spikes violated the refractory period. We 

recorded 3805 neurons in the VI task in the mouse mPFC (SFig.5A), finding 1458 neurons (with the false 

discovery rate p <0.00001) in 214 sessions with a total of 129,072 trials that showed significant 

regression coefficients to any of the behavioral events (past rewards and past choices up to 10 trials back). 

Our analysis confirmed the previous results (Fig.3B-D) that neurons showed preferential activity for trial- 

and time-specific events (SFig.5B–E for trial history-specific regression analysis and SFig.5F–G for time 
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history-specific regression analysis). Choice history regression coefficients also showed non-monotonic 

decay towards past trials (SFig.5I).  

We conclude that neurons in mPFC besides representing DV also show preference to encode history 

specific past rewards and choices.  

Neural responses in mPFC capture change in task demand 

In prior studies, it was demonstrated that medial prefrontal cortex controls flexibility of animals to update 

the task contingencies as opposed to executing already well learned rules38. Since our mice were run on 

VI task for extended sessions one could speculate that the task became less mPFC and more basal ganglia 

dependent39. To test if mPFC neurons could track and update the changing task demands we subjected 

animals to VI and VR tasks. We first ran animals on VI tasks for few sessions (6.8  3.4351) and then 

switched to run on VR task. The total number of sessions per animals was 26  3. 

Because in VI task reward probabilities are conditioned on the past choices, animals often develop 

alternation choice bias, reflecting baiting rates 5–7. Unlike the VI task, in the VR task, reward probabilities 

are determined only by set reward probabilities. In VR tasks, animals tend to choose the higher reward 

probability option independent of the reward outcome, resulting in perseverance choice bias 8. If neurons 

in the mPFC represent change in task demand, they should represent change of past choice effects on 

current choices.   

We collected 67 sessions from 5 mice (total number of trials = 126083), with 865  43.4 trials per session 

in the VI task, and 62 sessions with a 794  39.8 trials per session for the VR task. First, we tested 

whether mice could estimate the preference for options consistent with VI and VR task demands. We 

verified that reward rates on alternation (left-right or right-left choices) minus reward rates on 

perseverance (right-right or left-left choices) for the example animal (Fig.4A, dark green line), were 

significantly different (Mann-Whitney U-test p <0.001) in VI task (0.058  0.001) and in the VR tasks 

(0.081  0.001). The same reward rates for all animals and all sessions combined in the VI task were 
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higher than for those in the VR task (Fig.4B, left panel). We observed a higher alternation rate in the VI 

task compared to the VR task at the individual animal level (Fig.4A light green line, 0.61  0.004 in VI 

task and 0.32  0.004 in VR tasks were significantly different (Mann-Whitney U-test p <0.001). The 

same was true for all animals and sessions combined (Fig. 4B, right panel).  

The behavioral adjustment from the VI to the VR task was seen on learning rates (SFig.6A upper panel) 

and on choice history effects. Immediate choice history effects had a sign reversal from negative in the VI 

task to positive values in the VR task (Fig. 4C, rightmost panel). Past rewards, unlike immediate past 

choices, had mixed effects on the current choices in VI or VR tasks. Left immediate rewards were 

slightly, but significantly higher in the VI task than in the VR task and right rewards two or more trials 

back in history had stronger effects on the current choices. We also noted that correlations between Q 

values and choice history effects shifted towards more negative scores (Fig. 4D) from VR (correlation of 

Q and 𝜙*F + 𝜃*S for left option 0.415  0.033 and for right option 0.414   0.036) to VI task (for left 

option 0.099  0.043 and right option 0.085  0.047, permutation test p <0.001) also seen on the 

correlation of Q values with the individual choice history effects (SFig.6A lower panel). This result again 

reaffirmed that Q values and choice history effects antagonise each other in the VI task but have the same 

effects on choices in the VR task.  

Next, we recorded from mPFC (SFig.6B) 1642 neurons in the VI and 1465 neurons in the VR tasks from 

the same animals (n = 5 animals, n = 67 in VI and n = 62 sessions in VR tasks) using the Kilosort2-based 

sorting algorithm as described previously (violation of refractory period in 99% of single units was 

<0.38%). Neurons for VI and VR tasks were recorded from different sessions. Using the same analysis as 

before (Fig.2B) the reward selectivity for chosen port and choice selectivity showed slightly negative and 

positive correlations in VI and VR tasks respectively (Fig.4E), aligning well with their effects on current 

choices. To test whether task context modulates the coupling between choice- and reward-history 

selectivity, we fit a LMM: AUC_choice ~ AUC_reward * Task_type + side + (1 | AnimalID). Here, 

AUC_choice is the AUC for immediate-past choices, AUC_reward is the AUC for immediate-past 
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rewards, Task_type indicates VI vs. VR, and side codes left vs. right ports. The interaction (AUC_reward 

* Task_type) tests whether the reward–choice relationship depends on task type. Significance (p < 0.05) 

was assessed via 1,000 label permutations of Task_type within each animal to generate the null 

distribution. We extended the analysis to the full history of rewards and choices using a DT model. For 

each neuron, we correlated firing rate with DT-derived variables: Q-value and choice-history effects (the 

weighted sum of fast and slow choice traces). These correlations were task dependent (Fig. 4F; SFig. 6C). 

To test this formally, we fit an LMM: Coeff_choice ~ Coeff_value * Task_type + (1 | AnimalID), where 

Coeff_choice is the neuron’s correlation with choice-history effects and Coeff_value is its correlation 

with Q-value. Significance (p < 0.001) was assessed by shuffling Task_type within each animal. 

Together, these results indicate that the coupling between value and choice-history encoding varies with 

task demands. Next, we asked if performance of the animal on VI and VR tasks were adaptive, in a sense 

that the change of behavioral strategy led to increase in reward harvesting efficiency. To assess this, we 

tested the performance of the DT model in a simulated environment. We used the same reward 

probabilities and block lengths that the animal experienced in the task from which its parameters were 

derived for intra-task testing. For cross-task testing, we applied these parameters to an alternative task. 

For example, in intra-task testing DT model parameters that were derived from a given session of VI (or 

VR) task were tested on simulated environment with the same reward statistics from VI (or VR) task of 

the remaining sessions. In cross-task testing VI (or VR) model parameters derived from a given session 

were tested on simulated sessions with the VR (or VI) task (Fig.4G). As a metric of performance, we used 

reward rates (rewards per trial) collected by the model. Our analysis showed that intra-task testing was 

achieving more reward rates then cross-task testing (Fig.4H). Next, we speculated that if neurons in the 

mPFC track the DT model decision variable to maximize the reward harvesting efficiency, then 

population decoding accuracy should correlate with the task performance. The task performance was 

(computed as a difference between intra-task and cross-task reward rates) showed positive correlations 

with the decoding accuracy (Fig.4I left panel). Elastic-net regression revealed that among other variables 

such as intertrial interval (ITI), DT model fit and response time (RT), task performance was better at 
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explaining the decoding accuracy (Fig.4I, right panel). Furthermore, DT model fit and population 

decoding accuracy showed positive, but not significant correlations suggesting that the observed 

correlations between cross task performance and population decoding accuracy was not due to the 

correlations between DT model fit and population decoding accuracy (SFig.6D).  

This result aligns well with the published work40 on the involvement of prefrontal areas in adapting to 

task demands and shows that individual neurons integrate reward and choice histories in agreement with 

task demands. 

Behavioral impact of mPFC rises with longer inter trial intervals 

If mPFC neurons deploy representations of behavioral variables (reward and choice history, Q values, 

choice history effects, etc) the inactivation of the mPFC should hinder animals' performance. We tested 

the role of mPFC in VI and VR tasks. We trained 38 mice on VR (6.3  0.15, sessions per animal) and VI 

tasks (9.4  0.14, sessions per animal), with a total of 545 sessions and 746  13 trials per session. Next, 

we injected the AAV virus AAV- CaMKIIa -hM4D-mCherry (hM4D  receptor belongs to class of Gi-

DREADDs)41 or AAV- CaMKIIa -GFP (referred to GFP) expressing hM4D or GFP protein respectively 

in the mPFC (Fig.5A) and performed acute inactivation by alternating injections of clozapine N-oxide 

(CNO) and saline on consecutive days (Fig.5B).  

To test the effect of the inactivation on the activity of neurons, we recorded neurons in a separate animal 

unilaterally injected with the AAV- CaMKIIa -hM4D-mCherry virus in mPFC. As a control for the 

inactivation, we also recorded neurons in parietal cortex not injected with the virus. The inactivation 

reduced the firing rate of neurons that was specific to the injection site (SFig.7A-C).  

Significant differences were found in the reward harvesting efficiency in VR tasks between experimental 

(hM4D expressing animals treated with saline and CNO), but not in the control (GFP animals) groups 

(SFig.7D, left panel). No significant drop was found in the reward harvesting efficiency in the hM4D 

expressing animals treated with saline and CNO in the VI task (SFig.7D, right panel). 
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Next, we examined the effect of the inactivation on the reward and choice history effects. In animals that 

expressed hM4D treated with CNO, we observed change in both choice and reward history effects in the 

VR task (Fig.5C, left panel). Only reward history effects were affected in the VI task (Fig.5C, right 

panel). We could not see any change in the bias in VR (0.4009 ± 0.0321 for Saline and 0.4382 ± 0.0375 

CNO groups in hM4D animals, p = 0.54 LMM with animal ID as random effects and drug manipulation 

as fixed effects, residuals did not show deviation from normal distribution.) task and no change in VI task 

(0.3021 ± 0.0201 Saline treatment group and 0.3354 ± 0.0230 CNO treatment group of hMD4D animals. 

p = 0.18 using LMM with animal ID as random and drug manipulation as fixed effects, residuals did not 

show deviation from normal distribution). We did not see any significant change in bias in either VI or 

VR task in GFP animals. The exclusive effect of the inactivation in VI task on reward history effects is 

difficult to explain if we assume that mPFC implements the DV according to DT model, since 

inactivation should affect both reward and choice history effects. Here we provide an alternative 

interpretation of these results. Animals spend more time in alternating between ports in VR task and more 

time in perseverance in VI task. This is because, in the VI task, animals receive higher reward rates when 

they alternate (as shown in Fig. 4B) compared to the VR task. Similarly, in the VR task, perseverance is 

more beneficial since reward probabilities remain fixed. Therefore, even in cases where there's no 

immediate past reward, it still makes sense for the animal to persist in choosing the same port with the 

higher reward probability. We checked the time interval between consecutive choices for perseverance 

and alternation in VI and VR tasks in CNO-treated and saline-treated animals. In the VI task, mice spent 

more time between consecutive choices (we defined this as inter-choice interval (ICI)) on perseverance 

than on alternation, and the opposite was true for the VR task (Fig.5D, SFig.7E). A three-way ANOVA 

(Supplementary Table 1) revealed a significant main effect of the behavioral task (F(1,538) = 14.77, p <0.001 

for alternation and F(1,538) = 5.62, p <0.05 for perseverance) on ICI, while no other grouping variables (drug, 

virus) or interaction terms showed significant effects.  We also tested the effect of the task type (VI or 

VR) on ICI for alternation and perseverance separately using LMM. We used ICI as dependent variable, 

task type as fixed effect and animalID as random effects. P values (p < 0.01 for alternation and p < 0.001 
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for perseverance) were derived from the shuffled distribution by permuting the task type within each 

animal. Thus, we speculated that choice, and reward history effects could be explained by variance in the 

time interval between the choices. 

To directly test if mPFC is specifically deployed for time-separated events, we increased the time interval 

between choices (Fig.5E) in both VR and VI tasks. The waiting interval time for the centre port was 

between 2.0–2.5 s. We collected 143 sessions with 572   trials per session from 14 mice (11.1  0.1 

session per animal) in VI task and 36 sessions, with 355.7 ±16.7 trials per session from 6 mice (5.7 ± 1.2 

sessions per animal) in VR task. In VR task with long delay animals were run on 0.3 vs. 0.3 and 0.1 vs. 

0.6 probability with the block length of 15-30 trials. The effect of mPFC inactivation was clear on both 

reward and choice history effects in VI task and in VR task (Fig.5F). We did not see any change in the 

bias in VR (0.4326 ± 0.0482 for Saline and 0.4236 ± 0.1034 CNO groups in hM4D animals, p = 0.48 

using linear mixed model with animal ID as random effects and drug manipulation as fixed effects, 

residuals showing no deviation from normal distribution) and VI tasks with long delay (0.3303 ± 0.0313 

for Saline and 0.3316 ± 0.0430 CNO groups in hM4D animals, p = 0.1 using linear mixed model with 

animal ID as random effects and drug manipulation as fixed effects, residuals showing no deviation from 

normal distribution). Furthermore, effect size of the inactivation was significantly higher in long delay 

versions of the VI task (Fig.5G) but not in VR task. We tested the significance of the effect size 

separately for VR and VI tasks using LMM. Here effect size for all regressors were tested if they had a 

linear dependence with the delay condition as fixed effects and animalID as random effects (Effect_size ~ 

delay + (1|AnimalID).  P values were derived from permutation test by shuffling the drug condition (CNO 

vs. Saline) within each animal 1000 times. We found significant effects p < 0.01 in VI task only for the 

hM4D(Gi) expressing animals but not for the GFP animals in VI and VR tasks and hM4D(Gi) animals in 

VR task.  In an alternative way to test the effect of temporal gap between trials on the reward and choice 

history effects we again split the ICI interval into perseverance and alternation trials, focusing on the 

regressors for immediate past rewards and choices and combining VI sessions with short and long delay. 
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The same was done for the VR task. Using LMM, we evaluated how regression coefficients depended on 

the fixed effects of the drug, ICI interval (ICI_X), and their interaction, with animalIDs as random effects. 

The model specification was: Regressor ~ drug + ICI_X*drug + (1|AnimalID), where ICI_X represents 

the inter-choice interval for alternation (A) or perseverance (P). Significant interaction effects (p < 0.01) 

were observed only for hM4D(Gi) animals for rewards and choices one trial back in VI task and only for 

choices in VR task (Supplementary Table 2 and 3).  To directly compare the effect of inactivation 

between VI and VR tasks as a function of delay we used the LMM that tested the interaction effect of 

delay with the task type (VI or VR). We used the following model Effect_size ~ delay*Task + 

(1|AnimalID) and run it for GFP and hM4D(Gi) animals separately. P values were derived from the 

shuffled distribution by permuting the drug labels (CNO vs. Saline) within the same animal. We show 

that delay had stronger effects in VI task compared to VR task (p < 0.001) only in hM4D(Gi) expressing 

animals but not in GFP animals. 

We observed more pronounced reduction in reward rates in the long-delay version of the VI task 

compared to the VR task for the experimental group administered with CNO (SFig.7F).  

Overall, we observed stronger effects of mPFC inactivation in VI task compared to VR task and this 

effect showed dependence on temporal separation of the task relevant events. 

Delays reshape reward and choice history representations in mPFC 

If above conclusion is true, then one should also see the change in neural representations when we 

manipulate the delay between temporal intervals between task relevant events. This notion aligns with a 

substantial body of literature supporting the prefrontal areas' involvement in tasks demanding the 

retention of event memories in short-term working memory42–46  

We examined this question using a version of the VI task that imposed long temporal delays between 

choices. We kept the set reward probabilities and block length the same, but we introduced two block 

types with variable delays. Mice had to wait for 0.2–0.5 and 2–2.5 s in the short and long delay block 

types, respectively (Fig. 6A). We collected 84 sessions from 4 mice with a total of 42,654 trials (504  47 
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trials per session). We recorded 2006 single units (99% of neurons showed a violation of refractory 

period, with less than <0.5% of total spikes) in mPFC from these animals (SFig.8A).  

On a behavioral level we observed that mice alternated their choices more in short delay blocks compared 

to long delay blocks (first regression coefficient showed -2.4609  0.03 in short delay blocks and -0.6483 

 0.02 in long delay blocks. Fig.6B). The reward history effects showed no statistical difference (first 

regression coefficient for short and long delay blocks, p = 0.65 for right rewards and p = 0.54 for left 

rewards, Fig.6B). Consistent with this, the DT model’s Q values and choice history effects showed more 

negative correlations in short delay than in long delay blocks (Fig.6C and SFig.8B) confirmed by the 

LMM that tested the delay condition on the correlation between Q values and choice history effects. 

Namely we tested the following model Corr ~ delay + side + (1|animalID). Here Corr stands for the 

session-by-session correlation of Q values and choice history effects, delay is the condition (short or long) 

and side separates left and right sides, both as fixed effects. animalID is used as a random effect from 

each animal. p values (p < 0.01) were derived from the shuffled distribution by permuting the delay 

condition within each animal.  DT model parameters did not show significant difference between short 

and long delay conditions (SFig.8C).  To test in which environment was the animal more efficient in 

reward harvesting efficiency, we measured regret in short vs. long delay blocks. Surprisingly, in the long 

delay blocks regret was lower, suggesting that animals were using more optimal strategies (Fig.6D).   

On the single neuron level choice history representations were more dominant in short than in long delay 

blocks, mirroring the behavioral effects of past choices. Meanwhile, reward history representations were 

more dominant in long delay blocks (Fig.6E). However, while the same neurons maintained choice 

history representations a distinct set of neurons was responsible for reward history representations in short 

vs. long delay blocks (Fig.6F).  

To test if mPFC representations tracked the animals performance, we decoded the choices given by the 

DT model and correlated the decoding accuracy of the recorded population with the accuracy of the DT 

model’s prediction. We found that the correlation between population decoding accuracy and DT model’s 
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performance was stronger in long than in short delay blocks (SFig.8D). This is despite that DT model’s fit 

was higher in short (0.7382 ± 0.0265) vs. long (0.6440 ± 0.0239) delay task (Mann-Whitney U test p < 

0.001) and population decoding accuracy was not different in short (0.1512 ± 0.0177)  vs. long delay 

blocks (0.1014 ± 0.0206). Furthermore, regret was also negatively correlated with the population 

decoding accuracy only in long delay blocks (SFig.8E). The absence of the correlation in the short delay 

blocks in comparison to the VI task without delay manipulation (SFig.2J and K) could be due to the small 

number of trials in delay manipulation (237.77±22.00 in short blocks and 219.73±22.00 in long blocks) 

compared to the one without delay manipulation (875  37).  

Overall, our data show that reward and choice history representations are dynamically adjusted as 

temporal separation of task relevant events increases.  

Discussion 

Reward foraging animals in nature are faced with non-stationary environment47. Typically rewards in 

unvisited food patches grow. Thus, animals need to keep track of not only how rich the current patch is 

but also how long they have stayed in the current patch. The VI task approximates such scenarios 5,48 and 

allowed us to explore how reward history and choice history were represented and used by prefrontal 

circuits. While choice history effects have been well documented in various animals in VI tasks5–7,11,30 

their representations and especially its integration with reward history has not been explored. The DT 

model, designed to integrate the effects of choice and reward history into the decision-making process, 

demonstrated superior predictive accuracy for the animals' choices compared to existing RL models of the 

same category 27. We showed that neurons incorporate choice and reward history effects consistent with 

animals’ decisions. The representations in mPFC as expected were highly mixed and comprised of 

different DT model variables like Q values, choice history effects and the combination of Q values. 

Furthermore, neural representations preferentially encoded reward and choice events from specific trials 

in history. As the temporal distance from the current trial increased, fewer neurons encoded events. This 

phenomenon could enable downstream targets to compute DT model variables at the population level. 
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Such history-specific tuning of neural responses was seen also in recurrent neural network model. These 

findings indicate that the recurrency in the network may have generated trial-history specific 

representations. Manipulating the task structure that imposed opposing choice history effects in VI and 

VR tasks was followed by concomitant changes in the behavior and representations, suggesting that 

mPFC was playing an adaptive function to adjust animals’ behavior to the changing task demands. 

However, the inactivation of the mPFC revealed the task and temporal context specific effects. Namely, 

we observed that delay manipulation affected VI task stronger than the VR task. Different from the work 

of Bari et al.7 inactivation of mPFC produced no significant change in bias. 7This discrepancy may arise 

from variations in task specifics, such as head-fixed versus freely behaving conditions, differing lengths 

of inter-trial intervals (ITI), and the pretraining methods employed.  

Finally, we note that it is difficult to understand the behavioral function of the mPFC based solely on the 

neural activity and its representations. The neural representations with the delay manipulation in VI task 

and inactivation effects in short and long delay version of the VI task are consistent with each other.  

Namely that as the population decoding accuracy and DT model’s fit show positive correlations in long 

delay version of the VI task, inactivation effects also show stronger effects in long delay version of the VI 

task. However, the mere presence of these correlations does not guarantee that decision variables given by 

the DT model are used by the animals. In the short version of the VI task, we did observe also positive 

correlations between DT model’s fit and population decoding accuracy (SFig.2J), however mPFC 

inactivation had modest behavioral effects, changing only the reward history effects (Fig.5C). This was 

not clear from mere neural representations, suggesting that it is difficult to infer from the pure 

representations which decision variables are used by the animals. 

mPFC has been implicated in a wide range of tasks with a diversity of functions. In early studies, mPFC 

was considered to maintain a working memory in spatial navigation tasks42,43 and later this function was 

expanded to non-spatial working memory tasks24. In parallel to working memory studies, research using 
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decision making paradigms have shown that mPFC participates in conflict resolution49 , learning the 

action sequences50, effort-based decisions51, learning the action values52, learning the structure of the 

task26, just to name a few. While these studies are shedding light on the diverse role mPFC plays in 

behavior they all view mPFC as the learning system that updates the action values based on the 

environmental state the animal is in. This is consistent with the wider theoretical framework that 

suggested mPFC comprises the meta reinforcement learning system that contains all the sufficient 

ingredients to implement the reinforcement learning model22. Our work is consistent with that idea, with 

one caveat. The implementation of the RL model is sensitive to the temporal separation of behaviorally 

relevant events. Which brings the original proposed function of mPFC of working memory into the RL 

framework. Indeed, the tasks that argue for mPFC involvement in value computations impose long inter-

trial intervals that naturally make the task mPFC dependent7,25.   

What makes mPFC uniquely positioned to serve this function? The basal ganglia circuits are also well 

positioned to learn the action values53. With the help of dopaminergic system broadcasting reward 

prediction errors54 striatal neurons have been shown to implement the RL algorithm by learning the action 

values6. We conjecture that the basal ganglia circuit can function when outcomes and actions are 

happening in close temporal proximity. So that proper credit is assigned to the right actions. However, 

when actions and outcomes are separated with long temporal delays the basal-ganglia circuit (or other 

subcortical circuits) alone cannot assign the credit to the right actions. Instead, cortical circuits that 

possess highly recurrent dynamics are in a good position to keep track of the past actions55 and with the 

help of the reward prediction error are able to update the value of past actions. The mPFC's history-

specific representations of past choices 56 indicate that credit can be assigned to those previous choices 

which contributed to obtaining rewards. This leads to the next question, what makes mPFC engage in task 

with long temporal delays?  

Ventral tegmental area (VTA) dopaminergic neuron responses are positively correlated with the temporal 

gaps between unexpected reward outcomes57. Based on this we hypothesize that cortico-striatal 
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connections are gated during long temporal delays because during long intervals dopaminergic neurons 

respond more vigorously to the unexpected reward. This idea is supported by anatomical connections 

between mPFC and dorsomedial striatum medium spiny neurons that express dopamine receptors58 and 

receive strong dopaminergic input from VTA59. If representations from mPFC propagate to the striatal 

circuits, it is not surprising to find the representation of reward and choice history in striatal neurons that 

receive direct connections from mPFC60.  

We find little evidence that mPFC maintains event memories via persistent activity. Instead, we identify 

neurons whose selectivity peaks for rewards and choices occurring two or more trials back, a pattern that 

is difficult to reconcile with simple leaky integration models. Prior reports in dorsal anterior cingulate 

cortex of rhesus monkeys 56 and rodent cortex11,25,34 documented reward-history signals one or two trials 

back but did not address whether these reflect leaky integration or history-selective coding, leaving the 

issue open. Our results address this gap by showing individual neurons with maximal tuning to two or 

more trials back in history, rather than the monotonic, decay predicted by leaky integration35.  

Temporal filtering of events suggests that the memory representations can depend on the current context. 

Indeed, in mouse auditory cortex current sensory input determines the memory representation of the past 

sensory input36 and such postdictive effects have been described in human electroencephalogram 

recordings61. While such effect has not been reported in mouse mPFC according to the DT model (which 

is true also for many of the other Q-RL models) the unchosen option values decay while chosen option 

values are updated. This suggests that the memory of rewards is conditioned on the current choice which 

can be considered as the postdictive effects. The more direct evidence of the postdictive effects showed 

up when we examined the choice history representations. Choice history representations in VI and VR 

tasks showed clear adaptation to the changing task structure, although this was not performed on the same 

neurons and inferences were made from different sessions.  

The choice history effects, and its neural representations received little attention in previous studies. Part 

of the reason is that it is not clear, at least in the VI task, what generates non monotonic function of choice 
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history effects. We previously speculated that this functional form may arise from animals assuming 

uniform distribution of set reward probabilities27. However, we also showed that choice history effects 

change as set reward probabilities change27 so understanding what drives choice history effects is 

fundamental to derive its generative mechanism. In either case choice history effects suggest the parallel 

computations taking place in mPFC, one that computes values based on the reward outcome and the other 

that forms a habit-like policy and ignores the trial-by-trial outcome. What was surprising that both of 

these representations may be harboured in the same neurons as mixed selectivity in our dataset was 

widespread. This suggests that individual neurons in mPFC implement two complementary strategies: one 

that is flexible and adaptive on a trial-by-trial basis and other that is more rigid but still quite efficient. 

Efficiency of a choice-based strategy was close to what animals achieved when using both reward history 

and choice history effects. The balance between these two strategies must depend on the environmental 

statistics. Although we show that choice-based strategy can be updated as animals change their behavior 

from VI to VR task, parametrically manipulating the choice-based strategy is needed to understand the 

interplay between these two systems.  

One conceptual framework that can normatively explain the tradeoff between adaptive and more rigid 

strategies is policy compression62  which posits that capacity-limited agents trade off expected reward 

against policy complexity, measured by the mutual information between states and actions, I(S;A). 

Low-complexity (compressed) policies are relatively state-agnostic and manifest as choice bias (strong 

choice-history influences), whereas higher-complexity policies are more state-dependent and emphasize 

reward-history information. Formally, the optimal policy maximizes expected reward subject to a bound 

on I(S;A); equivalently, behavior can be viewed as minimizing policy complexity for a desired reward 

rate (aspiration level). Under this view, when attainable reward rates are depressed (e.g., VI with added 

delays), maintaining a given aspiration level requires allocating more policy complexity—i.e., using more 

state information. This predicts stronger reward-history representations and weaker choice-history 

signals; when rewards are richer or states are less informative, policies compress and the opposite pattern 
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emerges. This reward–complexity trade-off provides a normative explanation of increase in reward 

history representations and decrease in choice history representations in long delay VI task compared to 

the short one. 

Our work, while shedding light on the role of the mPFC in decision-making, also had several 

shortcomings. 1. We could not answer which part of mPFC is responsible for the observed behavioral 

effects.  While there are divisions in mPFC with different functions63, our analysis of recorded data could 

not reveal region-specific representations. This may be due to the fact that we never recorded the different 

regions of mPFC within the same sessions and will require future work to record concurrently different 

parts of mPFC. 2. We did not explore how neural representations change as animals adapt their strategies 

when transitioning from VI to VR tasks. This was primarily because it was challenging to train animals to 

switch between the two tasks within a single session. The difficulty likely stems from the low reward 

probabilities used in these tasks (commonly 0.1 vs. 0.4 and 0.25 vs. 0.25), which required animals to 

perform a large number of trials to integrate outcome histories and discern whether they were in a VI or 

VR task. Future studies using greater differences in reward probabilities may help address this limitation. 

3. We inactivated the mPFC using CNO and saline injections on an alternating schedule, which could 

have potentially biased animal behavior by causing them to anticipate drug versus vehicle injections. 

However, we believe this is unlikely because control animals expressing GFP showed no behavioral 

differences between CNO and saline injections. 
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Methods 

Experiments on mice were conducted in compliance with institutional and national guidelines for the 

ethical treatment of animals. Approval was obtained from the Danish Animal Experiments Inspectorate 

under the Ministry of Justice (Permit 2017-15-0201-01357) and adhered to the U.S. National Institutes of 

Health Guide for the Care and Use of Laboratory Animals. Additionally, all procedures were approved by 

the Southern Illinois University Institutional Animal Care and Use Committee (IACUC protocol 23-005) 

on 20th May 2024. 

 

Animals and surgery 

The animals were (until microdrive implantation) group-housed with a maximum of 4 animals per cage 

under a regular 12 hours light/dark cycle. 

We used a total of 65 male mice. These mice were 4-6 weeks old (C57BL\J6 background) at the time of 

viral injections or microdrive implantation. 21 animals were implanted with microdrive, all on their right 

hemisphere. The remaining 44 mice were used for hM4D(Gi) mediated inactivation experiments. Out of 

21 animals used for recording single neurons, 11 mice were implanted for regular VI task, of which 5 

mice were used to identify single units with spike sorting algorithm MClust and 6 mice were used to 

identify single units with modified version of the Kilosort2 (see details below). The remaining 4 mice 

were run with the delayed version of the VI task and 5 were used for running concurrently on VI and VR 

tasks. One mouse was used for concurrent recording and inactivation experiments. All these 10 animals 

were used to identify single neurons using modified version of Kilosort2 algorithm. 

Before the microdrive implantation, animals were anesthetized by intraperitoneally injected Ketaminol 

(10 mg/ml)/ Xylazine (1.6 mg/ml) mixture. We injected 0.1mg per gram of body weight Ketaminol and 

0.01mg of body weight Xylazine. Animals received a supplemental dose of anesthetics in 30-90 min. 

intervals to maintain the depth of anesthesia. After we confirmed the absence of pain reflexes, we shaved 

the head of the animal, disinfected with 70% ethanol and subcutaneously injected a mixture of lidocaine 

(10mg/ml) and norepinephrine(5µgr/ml) with a total volume ~10-20 µl. around the head area. 

Subsequently, the animal was head-fixed into a stereotaxic frame (David Kopf Instruments, USA). 

Following this, the head skin was either completely removed (for microdrive implantation) or cut in the 

middle (for viral injections), and the skull was exposed and dried thoroughly with hemostatic sponges 

(Ferrosan Medical Devices, Denmark). Taking Bregma as the reference point, the implantation site was 

marked at 1.6mm. anterior and 0.3-0.5mm lateral to Bregma. The skull surrounding the implantation site 

was covered with C\B-Metabond (Parkell, USA) to enhance the adhesion of the implant to the skull. The 
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brain surface was exposed by drilling the cranial window. The microdrive that housed 8 tetrodes 

composed of nichrome wires (PX000004, Sandvik) was positioned above the brain surface according to 

the coordinates and lowered slowly until the guiding tube surrounding the tetrodes touched the skull. 

During the lowering process, the position of the slightly exposed tetrodes (300-500 micron extended from 

the guide tube) was monitored to measure penetration of the brain surface. One 0.25-mm diameter 

stainless steel wire (Alpha Wire Company, USA) was stripped at the end and inserted ~0.5mm below the 

dura to serve as ground and reference. We secured this wire to the skull by a thin layer of ultraviolet light 

curable dental cement (Vitrebond Plus, 3M Company, USA). The other end connected to the electrode 

interface board (EIB-36-PTB, Neuralynx,Inc) of the microdrive that also housed the tetrodes. Finally, the 

tetrodes and brain were protected by applying a drop of ocular lubricant (Dechra, USA) followed by the 

thick layer of the dental cement Paladur (Kulzer, Germany). Tetrodes were further lowered by 320µm 

using the screw on the microdrive. Ketoprofen, (5 mg/kg) was administered postoperatively. 

 

Behavioral training 

The water deprivation of the mice was initiated 72 hours before the training began. The behavioral 

sessions were performed in a custom-built behavior box equipped with three nose pokes (ports). Each port 

contained a stainless-steel hypodermic tube (15GA) tube connected to solenoid valve (LHDA1233115H, 

Lee Co. USA) to deliver water reward, an infrared light emitting diode (480-1969-ND, Digikey, USA) 

and a phototransistor (480-1958-ND, Digikey, USA) which allowed precise detection of the exact entry 

and exit times of the animals. The nose ports were also equipped with white light emitting diodes 

(VAOL-3LWY4-ND, Digikey, USA) to signal active ports during training sessions (see below). The 

LEDs, phototransistors and valves were connected via custom circuit to Bpod (Sanworks, USA).  The 

behavioral protocols were written in MATLAB (Mathworks,Inc. USA) and were controlled by Bpod 

software.  

Animals were trained to poke their noses to the center port, followed by poking into either of the side 

ports according to the following schedule. At first, rewards were automatically delivered to both side 

ports after center port entrance. As soon as the animals completed 20-30 such trials, we conditioned the 

reward delivery on the side port entrance. After another 20-30 trials, the final training stage had begun. 

Here, after correct trial initiation via the center port entry, a light in one of the side ports indicated the side 

of the next reward. The animals performed the task daily for 45-60 minutes until they reached 

approximately 70% correct responses. Each side port was calibrated to deliver 2ul of distilled water. 

We used sound attenuated chambers (MAC3, IAC Acoustics, Denmark) for training and testing mice 

behavior. 

Behavioral tasks 

Each trial was initiated by a poke into the center port, where the animal had to wait for a variable delay 

period (0.2-0.5s. in VI and VR tasks). Following the delay, a small water reward (less than 0.5µl) was 

delivered in the center port, and lights switched on in the side ports signaling the decision stage. Animals 

reported their decision by poking into one of the two side ports. If the chosen port had been assigned a 

reward, this reward was delivered after a variable delay of 0.2-0.5 seconds. Upon leaving the side port, a 

new trial could be initiated immediately without any inter-trial interval. Early withdrawals from the center 

port or before reward delivery, or if the animal did not make a decision within 5 seconds, were considered 

missed trials. We did not impose any punishments. 

The task was subdivided into blocks consisting of a variable number of trials, between 35 and 200 trials. 

For each block, the pair of set reward probabilities were kept constant but changed randomly between 

blocks. Overall, the following probability pairs were tested. The bold ones indicate probability pairs that 
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we used in all of the animals except in 5 mice that were run on VI task with spikes sorted using MClust 

software (Fig.1 and Fig.2) and 6 mice that were run with VR task with long delay (Fig. 5F).  

 
0.1 : 0.4 
0.25 : 0.25 
0.1:0.6 
0.1:0.5 
0.17:0.33 
0.3 : 0.3 

 
In the VI tasks once, an option had been loaded with a reward, it remained available until the animal 

collected it (baiting schedule). Thus, the reward probabilities were updated in each trial according to the 

following rule: 

 

 Pbt(𝑅|𝑇𝑐 , 𝑖) = 1 − (1 − Pset(𝑅|𝑖))𝑇𝑐 , 1 
 

   
 

𝑃𝑏𝑡(𝑅|𝑇𝑐 , 𝑖), represents the probability of receiving reward R at trial t for action i; this probability 

depends on the number of trials Tc since the last time action i was chosen and on the set reward 

probability  𝑃𝑠𝑒𝑡(𝑅|𝑖) of scheduling a reward for the option i determined by the experimenter. A more 

general equation that describes the reward probabilities looks like 

 Pbt(𝑅|𝑇𝑐 , 𝑖) = 1 − (1 − Pset(𝑅|𝑖)) (1 − (1 − 𝛿𝑖,𝑡)Pbt−1(𝑅|𝑖)). 2 

 

Here 𝛿𝑖,𝑡 =1 if animal chooses the option i at trial t and 𝛿𝑖,𝑡=0  is otherwise. 

 

Microdrive design 

Extracellular recordings were performed via chronically implanted microdrives that housed 8 tetrodes. 

The microdrive was equipped with a screw-driven shuttle system, which provided a precise means of 

controlling the electrode depths via manual configuration. The microdrive consisted of 3D printed 

skeleton (Shapeways, Inc Netherlands) housing a single screw (320 um thread pitch, SSCF-M1.4-12-A2, 

Accugroup, Inc, UK) that moved tetrodes. The 8 tetrodes were loaded into the polyamide tube 

(TSP320450-AVXA03A, Polymicro technologies,Inc, USA) with an internal diameter of 320 um. This 

polyamide tube was glued to 21GA stainless steel hypodermic tube (Microgroup, Inc. USA) that was 

epoxied to the 3D printed shuttle after loading the tetrodes. The shuttle was connecting the screw with the 

tetrodes. The 21GA tube was sliding inside the 18GA stainless steel hypodermic tube or the guide tube 

(Microgroup, Inc. USA)  that was glued (Loctite superglue, Silvan,Inc. Denmark)  to the microdrive 

skeleton.    

Electrophysiology 

Before implantation, the tetrodes were gold-plated using nanoZ device  (Neuralynx,Inc, USA). The final 

impedance of the tetrodes before implantation was within the 300-600 KΩ range. The tetrodes were 

lowered by 40 µm after each successfully completed behavioral session. For signal acquisition, we used 

OpenEphys system (https://open-ephys.org). The signal was acquired at 30KHz frequency and filtered 

https://open-ephys.org/
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between 600-6000Hz for MClust sorted spikes and between 300-5000Hz for kilosort2 sorted spikes (see 

below). 

 

Viral injection and chemogenetic inactivation 

For VR and VI task with short delay and VI task with the long delay we used 38 mice at 4 weeks of age 

bilaterally injected with 1.5 µl of adeno-associated viruses (AAV) 2/5 serotype produced at the University 

of Zurich vector core facility. We injected AAV-CaMKIIa-hM4Di-mCherry (titer of the virus 7.3*10^12 

genome copies per ml) in 22 mice, AAV-CAG-EGFP (5.4*10^12 genome copies per ml) in 16 mice per 

each hemisphere. One additional mouse was injected unilaterally with the AAV-CaMKIIa-hM4Di-

mCherry virus for concurrent inactivation and recording experiments. For VR task with long delay, we 

bilaterally injected AAV-hSyn-hM4Di-mCherry (titer of the virus 1*10^13 genome copies per ml, gift 

from Bryan Roth lab Addgene plasmid #50477 ) in 3 mice and AAV-hSyn-EGFP (titer of the virus 

7*10^12 genome copies per ml, gift from Bryan Roth lab, Addgene plasmid #50465) in 3 mice of 4 

weeks old age. The injection was performed using glass micropipette using a picospritzer (General Valve, 

USA). Pulses of ~10ms duration were delivered at ~2Hz intervals. The volume was equally distributed at 

three depths in order to achieve uniform expression across the entire medial wall. The injection sites were 

1.6 mm anterior and, ±0.3 mm lateral to bregma. We injected the virus at -1.8, -1.4, and -1.0 mm depths 

from the brain surface. At each depth, we paused injections for 2-3 min and 5 min at the final injection 

site. At the end of the virus injection, we glued (Vetbond, 3M Company, USA) skin halves together.     

One week after the recovery from surgery, we trained animals on VR and VI tasks with two different 

delays (as described in the main text). Four weeks after the virus injection, we performed mPFC 

inactivation. For this, mice were intraperitoneally injected with either Clozapine N-oxide (C0832, Sigma 

Aldrich, Switzerland) (1 mg/kg) dissolved in 0.9% saline or 0.9% saline (300µl) on alternating days. The 

behavioral testing began 30 minutes post-injection.  

Histology 

After the behavior tests were concluded, the animals were anesthetized by either 500 ul of 10% urethane 

(U2500, Sigma Aldrich, USA) diluted in distilled water or Ketaminol/ Xylazine mixture that was used for 

surgery. The mice that had microdrive implants were connected to an impedance testing device (nanoZ) 

and a lesion was induced on 1-3 channels by delivering a 10µA of negative current for 10 seconds 

through the electrode wires. Afterward, the animals were perfused with 4% paraformaldehyde, and the 

brains were dissected and post-fixed for 1.5 hours. The dissected brains were stored in phosphate buffer at 

4°C until further use. 

The brains were sliced by a vibratome (Leica VT1200, Leica Biosystems, Germany) into 70 µm thick 

coronal sections. The regions where the recording took place were identified either by the lesion site or by 

anatomical landmarks of tetrode tracks. The slices were mounted on microscope slides by Vectashield 

mounting medium containing DAPI (Vector Laboratories, Burlingame, USA) and imaged by a 

fluorescence microscope (Zeiss Axiocam 712, Zeiss, Germany, or Leica DM 4500, Leica, Germany). 

 

Data analysis 

All data analysis was performed using MATLAB software (MathWorks). All data in the main text is 

reported as mean  s.e.m. 

Behavioral analysis 

Trials, when the animals withdrew from the center port before the required waiting time or did not make a 

choice within the set time limit were removed from the data. Furthermore, trials, where the animals 
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withdrew too early from the reward port were treated as non-rewarded trials. In the case of the 

inactivation experiments, sessions with less than 150 trials were excluded. 

Logistic regression analysis for behavior 

A logistic linear regression model was used to examine the influence of the choice and reward histories 

on the current choices. For this analysis, the behavioral data were analyzed session by session after the 

removal of missed trials (as described in the above section). To calculate the regression coefficients, first, 

we defined the rewards and choices as follows: 𝑅𝑅𝑡 = 1 if a reward was delivered on the right side at trial 

t, and 0 if there was no reward delivery or the left side was chosen. The equivalent was true for the left 

reward vector (𝐿𝑅𝑡). The choice vector (C) was defined as 𝐶𝑡 = 1 if the right option was chosen in the 

given trial, and 𝐶𝑡 = 0 otherwise. The probability of current choice 𝐶𝑡 at trial t can be expressed as a 

logistic function that takes into account linear combination of the choice and reward histories multiplied 

by their corresponding coefficients 𝛽𝑚, M trials back plus bias term 𝛽0: 

 

ht = ∑ 𝛽𝑚

𝑀

𝑚=1

∗ RRt−m + ∑ 𝛽𝑚+𝑀

𝑀

𝑚=1

∗ LRt−m + ∑ 𝛽𝑚+2∗𝑀

𝑀

𝑚=0

∗ 𝐶𝑡−𝑚 +  𝛽0 
3a 

 P(𝐶𝑡) = 1/(1 + exp(−ht)) 3b 

   

In order to account for the collinearity between rewards and choices and to improve the interpretability of 

the results, elastic net regularization was used64. The cost function involves negative log likelihood and 

penalty term of the elastic net, where β are the coefficients to estimate, interpolates between the L1 and L2 

norms: 

 

Cost(𝛃) =  − ∑[𝐶𝑡(log P(𝐶𝑡)) + (1 − 𝐶𝑡)(1 − (log P(𝐶𝑡))]

𝑁

𝑡=1

+  𝜆 ∑ (0.25
𝑝

𝑗=1
𝛽𝑗

2

+ 0.5|𝛽𝑗|) 

 

4 

Therefore, the coefficients that minimized the cross-validated deviance (i.e., penalized negative log-

likelihood) as a function of 𝜆 in a five-fold cross-validation process were selected as β.̂ We used 

MATLAB built-in function lassoglm with the linker function logit to perform regression..... 

Bias estimation 

To assess the choice bias for left or right ports, we calculated it as previously described7. Bias = 2 *|NR 

/(NR + NL) – 0.5|. Here NR is the total number of choices for the right port and NL is the total number of 

choices for the left port in a session.  

Linear Mixed Models (LMM) 

LMM was implemented using MATLAB built in function fitlme. When residuals met the normality 

assumption - passing both the Lilliefors and Jarque-Bera tests - we reported the p-values derived from the 

LMM’s t-statistics. Otherwise, we used shuffled distribution to derive the p values. We describe for each 

case how shuffled distributions were generated.  

Reinforcement learning models of behavior 

Here we describe how each of the RL models computed the Q value and/or choice history effects. 

Indirect actor model. The indirect actor model updates the values (or state-action value) Q only for the 

chosen option, 

 𝑄𝑖,𝑡 = 𝑄𝑖,𝑡−1 + 𝛿𝑖,𝑡−1𝛼(𝑅𝑡−1 − 𝑄𝑖,𝑡−1), 6 
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𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡 = 𝑄𝑖,𝑡 , 

Here 𝛿𝑖,𝑡 = 1 if animal chooses the option i at trial t and 𝛿𝑖,𝑡 = 0  is otherwise. 𝑄𝑖,𝑡 is the value of a given 

action i at time t.  𝛼 is a learning rate and 𝑅𝑡−1 = 1 in rewarded and  𝑅𝑡−1 = 0 in unrewarded trials 

t.  This model is the most simple version of the RL models65. 

The same notations are used for all the models below unless new variables are introduced. 

Direct actor model. The value (Q) of the direct actor model is updated based on the probability of the 

chosen action and the reward outcome. This rule also affects the value of the unchosen actions. 

 𝑄𝑖,𝑡 = 𝑄𝑖,𝑡−1 + 𝛼 (𝛿𝑖,𝑡−1 − 𝑃(𝑖𝑡−1)) (𝑅𝑡−1 − 𝑐), 7 

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡 = 𝑄𝑖,𝑡 . 

Here c is a parameter that we fit to the behavioral data and can be seen as the average reward rate in R-

learning models 66.  

F-Q down model. The F-Q model is a slight modification of the indirect actor model, where the value of 

the unchosen actions is forgotten with the same learning rate 𝛼 and vanishes to zero. 

 𝑄𝑖,𝑡 = 𝑄𝑖,𝑡−1 + 𝛼(𝛿𝑖,𝑡−1𝑅𝑡−1 − 𝑄𝑖,𝑡−1), 8 

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡 = 𝑄𝑖,𝑡 . 

The F-Q model is equivalent to linear-nonlinear Poisson model 67. 

F-Q with the choice effects model. According to the F-Q W/C model, the probability of taking the next 

action depends not only on the reward expectation, but also on choice history F updated according to the 

following equation: 

 𝑄𝑖,𝑡 = 𝑄𝑖,𝑡−1 + 𝛼(𝛿𝑖,𝑡−1𝑅𝑡−1 − 𝑄𝑖,𝑡−1), 9 

 𝐹𝑖,𝑡 = 𝐹𝑖,𝑡−1 + 𝜏𝐹(𝛿𝑖,𝑡−1 − 𝐹𝑖,𝑡−1), 10 

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡 = 𝑄𝑖,𝑡 + 𝜑𝐹𝑖,𝑡 . 

In this case, 𝜏𝐹 is the weighting of the choice history 𝐹𝑖,𝑡, while 𝜑 characterizes the decay rate of it 68. 

F-Q up model. While the F-Q down model decreases the value (Q) of the unchosen actions, the proposed 

model increases the value up to a constant C with its own learning rate 𝛼𝑢𝑝, which acts as a positive 

counter for unchosen actions that increments the value. 

 𝑄𝑖,𝑡 = 𝑄𝑖,𝑡−1 + 𝛿𝑖,𝑡−1𝛼(𝑅𝑡−1 − 𝑄𝑖,𝑡−1) + (1 − 𝛿𝑖,𝑡−1)𝛼𝑢𝑝(𝐶 − 𝑄𝑖,𝑡−1), 11 

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡 = 𝑄𝑖,𝑡 . 

The initial value of 𝑄𝑖,𝑡 is set from a uniform random distribution constrained between [0, 1]. This model 

is just inverted version of the F-Q down model. 

Delta-F-Q model. The proposed model (adapted from Hattori et al. 2009) implements the different 

learning rates 𝛼𝑅 and 𝛼𝑁𝑅 for rewarded and non-rewarded trials, respectively. For chosen options 𝑄𝑖,𝑡 is 

updated according to the following equation. 

 
𝑸𝒊,𝒕 =  {

𝑸𝒊,𝒕−𝟏 + 𝜹𝒊,𝒕−𝟏𝜶𝑹 ∗ (𝑹𝒕−𝟏 − 𝑸𝒊,𝒕−𝟏)  + (𝟏 − 𝜹𝒊,𝒕−𝟏)(𝟏 − 𝜸) ∗ 𝑸𝒊,𝒕−𝟏, 𝒊𝒇 𝑹𝒕−𝟏  = 𝟏 

𝑸𝒊,𝒕−𝟏 + 𝜹𝒊,𝒕−𝟏𝜶𝑵𝑹 ∗ (𝑹𝒕−𝟏 − 𝑸𝒊,𝒕−𝟏) + (𝟏 − 𝜹𝒊,𝒕−𝟏)(𝟏 − 𝜸) ∗ 𝑸𝒊,𝒕−𝟏, 𝒊𝒇 𝑹𝒕−𝟏 = 𝟎,
 

12 
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when an option is not chosen  

 𝑸𝒖𝒏𝒄𝒉,𝒕 = (𝟏 − 𝜸) ∗ 𝑸𝒖𝒏𝒄𝒉,𝒕−𝟏, 13 

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡 = 𝑄𝑖,𝑡 . 

Here, 𝛾 is the forgetting rate of the unchosen option and is bounded between [0 1]. 

DT model 

The value 𝑄𝑖,𝑡  for option i at a trial t is updated in the following way:  

 𝑄𝑖,𝑡 = 𝑄𝑖,𝑡−1 + 𝛼(𝛿𝑖,𝑡−1𝑅𝑡−1 − 𝑄𝑖,𝑡−1). 

 

14 

The fast F and slow choice history effects S are updated with the learning rate 𝜏𝐹 and 𝜏𝑆 respectively in 

the following way: 

                                                                     𝐹𝑖,𝑡 = 𝐹𝑖,𝑡−1 + 𝜏𝐹(𝛿𝑖,𝑡−1 − 𝐹𝑖,𝑡−1), 15 

                                                                     𝑆𝑖,𝑡 = 𝑆𝑖,𝑡−1 + 𝜏𝑆(𝛿𝑖,𝑡−1 − 𝑆𝑖,𝑡−1). 16 

                                                      𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡 = 𝑄𝑖,𝑡 + 𝜙 ∗ 𝐹𝑖,𝑡 +  𝜃 ∗ 𝑆𝑖,𝑡 17 

                                               

The choice history effects F and S are weighted by 𝜙 and 𝜃 parameters, respectively. As in previous 

equations 𝛿𝑖,𝑡 = 1 if the animal chooses option i at a trial t and 𝛿𝑖,𝑡 = 0 is otherwise. This model is better 

described in27. 

Action selection rule 

Preference (which is identical to the value in simple RL models) computed by all RL models is converted 

to choice probability 𝑃(𝑎𝑡 = 𝑖) for each option i, by softmax selection rule.     

 
P(𝑎𝑡 = 𝑖) =

e
𝛽(𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖,𝑡)

∑ e
𝛽(𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑘,𝑡)𝐴

𝑘=1

. 
18 

 

In the denominator, k will take up the number of available options. 

 

Model optimization and comparisons 

The modeling of behavior was conducted by maximizing the log-likelihood between the RL choice 

prediction and actual choice. We used the reward and choice history, 𝑅(1,2 … 𝑡 − 1) and 𝛿𝑖,𝑡(1,2, … 𝑡 −

1) respectively, to find the best parameters of each RL model described above.  We searched the 

parameters of each model to maximize the log-likelihood of choice prediction. For this, we sampled a 

combination of parameters from initial random distribution to generate choice probability by a softmax 

action selection rule. 

The probability 𝑃(𝑎𝑡 = 𝑖) and the action taken by the animal 𝛿𝑖.𝑡  at trial t  with the set of n parameters 

𝜃𝑅𝐿(𝑛) per model determines the log-likelihood 𝑙𝑡  on each trial t: 

           lt(𝑛)(𝜃𝑅𝐿(𝑛)|𝑥) = 𝛿𝑖,𝑡 ln (𝑃(𝑎𝑡 = 𝑖|𝜃𝑅𝐿(𝑛))) + ln (1 − P(𝑎𝑡 = 𝑖|𝜃𝑅𝐿(𝑛))). 19 

 

To find the optimal parameters, first 1000 combinations of parameters were selected for each RL from a 

uniform distribution. The boundaries of the parameters were 𝛼 ∈ [0,1], 𝛽 ∈ [0,50], 𝜑 ∈ [−25,25], 𝜗 ∈
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[−25,25], 𝜄 ∈ [−25,25], 𝜏𝐹 ∈ [0,1] and  𝜏𝑆 ∈ [0,1]. Next, 1% of the combinations with the maximum 

mean log-likelihood was taken and a new set of 1000 combinations was drawn as follows: 

 θ𝑅𝐿,2(𝑛)~N (θ̅𝑅𝐿,1,1%, σ(θ𝑅𝐿,1,1%)) 20 

This process was repeated five times to narrow the original parameter space and search for higher log-

likelihood values. The optimal parameters for the prediction of each model 𝜃𝑅𝐿 were then the 

combination of parameters with the highest mean log-likelihood of the last iteration in the optimization 

process. 

The optimized parameters for each model and the estimated coefficients were trained and tested via five-

fold cross-validation on the behavioral data in order to obtain the average of the minimum negative log-

likelihood. In addition we computed the average area under the receiver operating characteristic (AUC) 

scores (Green DM Signal detection theory and psychophysics). To compute the AUC, the probability 
𝑃(𝑎𝑡 = 𝑖|𝑄̂𝑅𝐿) was set as the score and the original action 𝛿𝑖,𝑡 as the label. We used MATLAB function 

perfcurve to compute the AUC scores. These metrics were used for model selection and the goodness of 

prediction for each model, respectively.  

Behavior of artificial agents 

The random agent draws probabilities for left and right ports from uniform p ∈ [0 1] probability 

distribution and selects ports with the higher probability. If the probabilities are the same, they are drawn 

again from the same uniform distribution and the process of port selection repeats.  

The alternation agent constantly alternates between left and right choices. 

Rew_prob agent selects ports with higher set reward probability. If the set reward probabilities are the 

same then agent randomly selects the port and sticks to the same port until change of probabilities favors 

alternative port.  

Optimal_Baiting agent uses the baiting update equation (eq.2) to select higher reward probability port. If 

probabilities are the same the agent randomly (using p ∈ [0 1]  uniform distribution) selects either left or 

right port. 

Regret 

The regret of the animal or model is computed by subtracting the reward harvesting efficiency (reward 

rates per trial) of the animal or model from the Optimal_Baiting agent. 

Selectivity of single neurons 

The selectivity of individual cells for various behavioral events was computed using AUC. In brief, trial 

average firing rates in the decision epoch from the time animal entered the center port till the exit 

(minimum 0.2-0.5s) were divided into two distributions. These distributions corresponded to behavioral 

events such as immediate past rewards vs. no rewards, immediate past choices for the left vs. right and 

etc. as indicated for each selectivity analysis in the main text. Thus computed AUC scores were 

normalized from -1 to 1 that reflected the separability of firing rate distributions indicating the selectivity 

of the cells to the behavioral events. The scores close to -1 (suppression)  and 1 (activation) indicated 

good separability and scores close to 0 indicated poor separability. For example, neurons that had a high 

firing rate (on average) for immediate past right rewarded vs. non -rewarded trials would have a positive 

AUC score.  The same was true for neurons that had high firing rate (on average) for immediate past left 

rewarded trials vs. non- rewarded trials.   Right reward selectivity and left reward selectivity were 

combined by inverting the sign of the left selectivity score to align it to the selectivity scores for 

immediate past choices. This was done because immediate past choice selectivity were computed for right 

vs. left choices, meaning that neurons that had high firing rate (on average) for immediate past right vs. 
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left choices showed positive AUC scores. Significance of AUC scores were computed by a permutation 

test, in which each dataset was pseudo-randomly shuffled 1,000 times to yield a p value.  

Linear regression analysis for neurons 

Here we used events (past rewards, past choices and current choices) to regress against firing rates of 

neurons in the decision epoch. This analysis was done using the elastic net regularization as described 

above (Linear regression analysis for behavior) except that we used firing rates of neurons as a dependent 

variable. For trial-based analysis we used regressors (β coefficients) events up to M = 10 trials back in 

history and for time based analysis we used events taking within 0.2 s. windows for up to M = 40 time 

bins back in history with respect to current trials. 

 

Zt = ∑ 𝛽𝑚

𝑀

𝑚=1

∗ 𝑅𝑅𝑡−𝑚 + ∑ 𝛽𝑚+𝑀

𝑀

𝑚=1

∗ LRt−m + ∑ 𝛽𝑚+2∗𝑀

𝑀

𝑚=0

∗ RCt−m. 
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RR defines the right rewards, LR - left rewards and RC right choices for m trials back with respect to the 

current trial t. Z is z-scored trial average firing rate of neurons in the decision epoch for each n neuron. 

The linear regressors were then regularized with an elastic net. 

 
P(𝛃) = 𝜆 ∑ (0.25

𝑝

𝑗=1
𝛽𝑗

2 + 0.5|𝛽𝑗|). 
22 

The coefficients that had the minimum mean squared error as a function of 𝜆 in a five-fold cross-

validation process were selected as β̂. This process was repeated 100 times with different train/validation 

sets in order to compute the mean of the β̂  as  

 

𝛃̅ =
1

100
∑ 𝛽̂𝑖𝑡𝑒𝑟 ,

100

𝑖𝑡𝑒𝑟=01
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and the probability that 𝛽̅ = 0. This probability, corresponding to a p-value, computed from the 

cumulative empirical distribution from 𝛽̂ ’s. More specifically for each  𝛽̂, we resampled 100 times the 

data and refit the elastic net model to obtain a distribution of 𝛽̂ coefficients. We then estimated the 

probability that a coefficient was effectively zero by evaluating its empirical cumulative distribution 

function (ECDF) near zero. This probability was taken as the empirical p-value: high values indicate that 

the regressor’s coefficient was frequently zero across resamples (weak evidence for an effect), whereas 

low values indicate that the coefficient was consistently non-zero (stronger evidence for an effect). We 

correct for the false positive discoveries using Benjamini-Hochberg procedure and only the regressors 

that have a probability below of 0.00001 (1 in 100,000) of being falsely discovered were selected. 

Without this correction almost all (97%) of neurons would show the significant regressors. Elastic net 

regularization also strikes a balance between being too relaxed and too restrictive. 

Neural population decoding of behavioral variables 

For population decoding of DT model and other behavioral variables (like current and past choices, 

immediate past left and right rewards) we used generalized linear model (MATLAB function lassoglm 

with binomial distribution). We used z-scored trial-averaged firing rate of neurons in the decision epoch 

to regress against either choices predicted by the DT model, current, immediate past choices or immediate 

past left and right rewards.  

 

BVt = ∑ 𝛽𝑚

𝑀

𝑚=1

∗ 𝑁𝑚. 
24 

 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS 

 

Here N stands for z-scored firing rate of a neurons from a total population of M neurons. 𝐵𝑉𝑡 stands for 

the behavioral variable (choice probability, current choice and etc) on a current trial. The regressors were 

regularized as described above using elastic net regularization. We used 10 fold cross validation for 

regressors. The same regression analysis was performed on shuffled data. For shuffling we randomly 

permuted the BV  across the trials. The final decoding accuracy was computed as an average of the 

difference between unshuffled and shuffled decoding accuracy scores. 

Support vector machine classification of behavioral states 

The trial averaged firing rate of neurons were analyzed in the decision epoch to solve the multiclass 

classification problem by training many binary classifiers to discriminate pair of unique states. Binary 

classifiers were pooled by a majority of votes to separate one unique state from the rest of the 

states.  Each state comprised a unique set of combinations of rewards and choices for each trial back in 

history plus choices for current trials. Thus, for each trial back there are 4 different states (rewards, no 

rewards left and right choices). There are  4n possible states for states that contained n trials in history, 

multiplied on 2 additional states for current trials (left and right choices).   
 
We trained support vector machine classifier (fitcsvm function in MATLAB) on 1/2 of the trials from 

each session and tested performance on the remaining 1/2 of the test data. We performed classification on 

a different number of states starting with 2 states (left and right current choices) and ending with 16 states 

(SFig.4). The performance of classifier was compared to shuffled data by shuffling the labels for only one 

pair of events (for rewards or for choices for specific trials in history) while holding the remaining labels 

the same.  

 

Recurrent neural network model 

 

The recurrent neural network (RNN) was implemented using MATLAB function layerecnet. The two 

inputs of the RNN at time t are the reward 𝑅𝑡 and choice 𝐶𝑡 experienced by the animal. The network 

consists of a fully connected hidden layer with 30 units, a sigmoid function for non-linearity and a layer 

with the tap delay of 1. The net has two targets as outputs, each of them correspond to the value of the DT 

model for the left (𝑄𝑙𝑒𝑓𝑡,𝑡 +  𝜙 ∗ 𝐹𝑙𝑒𝑓𝑡,𝑡 + 𝜃 ∗ 𝑆𝑙𝑒𝑓𝑡,𝑡) and right (𝑄𝑟𝑖𝑔ℎ𝑡,𝑡 + 𝜙 ∗ 𝐹𝑟𝑖𝑔ℎ𝑡,𝑡 +  𝜃 ∗ 𝑆𝑟𝑖𝑔ℎ𝑡,𝑡) 

ports. The training of the net weights was done by a Levenberg-Marquardt optimization. We split data 

into half for training and testing. The test sets give in average a correlation higher than 0.98 for the 

outputs of the trained network with respect to the desired targets. The z-scored firing rate of each hidden 

layer neuron was analyzed in the same way as real neurons. 

 
Spike sorting using Kilosort2 based algorithm  

We used Kilosort2 37 to initially isolate and build spatial-temporal templates for each unit. Template for 

each unit and each channel is defined as  

 

𝐊 = ∑ 𝑊𝑗𝐸𝑗𝑈𝑗 .

𝑁

𝑗=1
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Here K is the template defined by the sum of its j temporal W and spatial U components. E is the singular 

value matrix. We used up to N = 3 components. 

These Kilosort2 identified units underwent further “cleaning” steps to remove the noise. Namely we 

performed the following steps: 

1. For each unit we identified the set of channels that passed a specific criterion. Namely, we identified 

for each unit, “top channel” that had the highest first singular component U (spatial component) 
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across all channels. Along with the “top channel” we retained all the remaining channels whose first 

singular component was above 30% of the “top channel”. This resulted in the selection of channels 

for each unit not restricted to the tetrode configuration. Note that MClust sorting algorithm restricts 

single unit isolation to four channels. 
2. We used Hartigan’s dip test to see if spikes projected on the “top channel’s” template (defined by the 

first singular component) violate unimodal distribution.  
3. If Hartigan’s test was violated we applied Gaussian mixture model to partition spikes into two 

clusters. For this we again used projections of spikes into the template waveforms reconstructed by 

first two singular components. 
4. Units were inspected manually and further steps were determined by the user. 
5. On autocorrelograms (100 ms. window)  if unit had no violation of refractory period (1ms window 

centered around zero) of less than of 0.05% of total counts we retained that unit.  
6. We discarded all the units that passed the step 5, but had fewer than 1000 spikes or waveforms did 

not resemble typical spike waveforms.  

We deposit the Matlab code that implements all the steps described above in github repository 

(https://github.com/1804MB/Kvistiani-lab_Dsort). 

 

Data availability: All behavioral and spike sorted data are available from public repository Code Ocean 

https://codeocean.com/capsule/6312901/tree,  DOI : 10.24433/CO. 6312901.v1. Source data are provided 

with this paper. 

Code availability: All code is available from public repository Code Ocean 

https://codeocean.com/capsule/6312901/tree , DOI : 10.24433/CO. 6312901.v1 
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Figure Legends 

Figure 1. Choice- and reward-history exert opposing effects on animals decisions. A) Discrete 

version of the VI task illustrating trial structure and behavioral epochs. The upper panel shows 

task-relevant events. The lower panel shows the event timeline; dashed lines mark variable 

intervals and solid lines fixed intervals. B) Top: performance of animal D004 in one session. Black 

vertical lines indicate block transitions and the change in set reward probabilities. Choices were 

convolved with a Gaussian filter (length = 10 trials, s.d. = 5). Right choices were coded as 1 and 

left choices as −1. Rewards were convolved identically. Bottom: left panel shows experienced 

reward rates across block transitions; right panel shows filtered choices across the same 

transitions. C) Relationship between reward ratio and choice ratio across sessions. A significant 

positive association was observed (two-sided linear regression: slope = 0.65, 95% CI = 0.578–

0.724, t(df = 127) = 17.69, r = 0.89, P = 2.25×10⁻²⁹). No adjustment for multiple comparison tests 

(NAMCT) were applied.  D) Mean ± s.e.m. reward-harvesting efficiency for artificial agents and 

animals. Agents include Random, Alternation, Rew_Prob, and Optimal_Baiting. Performance 

from animal D004 (left) and all animals combined (right; n = 4 animals, 76 sessions) is shown. 

Animals were compared to agents using two-sided Mann–Whitney U tests; *** indicates P < 

0.001. Artificial agents were evaluated on the same reward schedules as animals. E) Logistic 

regression for past right rewards, past left rewards, and past choices predicting current choice 

(mean ± s.e.m.; n = 82 sessions). F) Alternation rate (mean ± s.e.m.) as a function of the difference 

in set reward probabilities (low = 0; medium = 0.3; high = 0.5–0.6). Differences across the three 

conditions were assessed using a linear mixed-effects model (LMM) with alternation rate as the 

dependent variable, reward-probability difference as a fixed effect, and animal identity as a 

random intercept. Two-sided P-values from the LMM were FDR-corrected using the Benjamini–

Hochberg procedure; ** indicates P < 0.01 (P = 0.003 and 0.009). Data were collected from n = 2 

animals across 45 sessions. Source data are provided as a Source Data file. 

Figure 2.  mPFC representations are consistent with the behavioral effects of reward and 

choice history. A) Example neuron showing spike raster and PETH aligned to past rewarded and 
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non-rewarded trials (top) and to past right and left choices (bottom). PETH is computed across all 

trials and smoothed with a Gaussian kernel (2 ms window, s.d. = 50 ms). Lines and shaded bands 

indicate mean ± s.e.m. B) Selectivity (AUC) scores for immediate past rewards vs no reward and 

for past choices. Associations between reward-related and choice-related AUCs were tested using 

a two-sided linear mixed-effects model with AUC_choice as the dependent variable, AUC_reward 

as a fixed effect, and animal identity as a random intercept. A significant negative effect was 

observed (slope = −0.30, 95% CI = −0.554 to −0.054, P = 0.037, two-sided permutation test, 

NAMCT). C) DT model description. Q-values incorporate reward input R(t). Fast (F) and Slow 

(S) choice traces integrate past choices with parameters ϕ and θ. Q, F, and S jointly determine 

choice probability P(c|t) via a softmax function. D) Relationship between regret (difference 

between Optimal_Baiting and DT model performance) and DT model fit (AUC) across sessions. 

A significant negative association was found using two-sided Pearson correlation (r = −0.351, 

95% CI [−0.545, −0.121], t(65) = −3.02, P = 0.0036, NAMCT). E) Pearson correlations between 

reward-history/value signals (Q) and choice-history signals (ϕF + θS) for left and right options 

(one point per session). Confidence intervals and significance, using two-sided permutation tests 

(1,000 shuffles of session labels); P < 0.001 indicates that fewer than 0.1% of shuffled correlations 

exceeded the observed absolute correlation. F) Trial-by-trial correlations between firing rate and 

DT-model variables for left-port and right-port trials. Numbers of neurons per quadrant, 

confidence intervals, and significance derived using two-sided Pearson correlations and two-sided 

permutation tests (1,000 shuffles; P < 1×10⁻¹⁵). G) Regression coefficients relating DT-model 

variables to trial-averaged firing rates during the decision epoch. Coefficients were estimated 

using two-sided elastic-net regression, with empirical P-values derived from resampling of 

coefficient estimates and corrected using the Benjamini–Hochberg FDR procedure (P < 1×10⁻⁵ 

threshold). Source data are provided as a Source Data file. 

 

 

 

 

 

 

Figure 3. mPFC neurons encode history-specific rewards and choices. A) Prediction accuracy 

of the neural population for DT-model choice probability (x-axis) vs. prediction accuracy for 

immediate past choice (top left), the animal’s current choice (top right), immediate past right 

reward (bottom left), and immediate past left reward (bottom right). Each point is one session. B) 

Example neuron’s spike raster and PETH aligned to center-port entry. Trials are grouped by left 

(upper row) or right (lower row) choices and by rewarded or unrewarded outcomes n trials back 

(shown in columns). PETHs were smoothed with a Gaussian kernel (2 ms window, s.d. = 50 ms). 

Lines indicate mean; shading shows s.e.m.C) Heatmap of regression coefficients obtained by 

regressing each neuron’s trial-averaged firing rate during the decision epoch against rewards and 

choices up to 10 trials back. Only coefficients that remained significant after cross-validation 

(held-out 1/5 of trials) and false-discovery-rate correction are shown. Neurons are sorted by the lag 

with the largest absolute coefficient and grouped by sensitivity to past right rewards, past left 

rewards, current choice, or past choices (separated by dashed blue lines). D) Stability of preferred 
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lag across the session. For neurons whose dominant coefficient retained the same sign in both 

halves of the session, preferred lag was computed separately for the first and second halves 

(defined as the predictor with the largest absolute coefficient and non-zero in ≥85% of 100 

bootstrap resamples). Each point shows paired lag indices for one neuron; marker size and gray 

shade indicate how many neurons share that value (scale bar, right). Diagonal points reflect stable 

lag preference; off-diagonal points denote shifts across the session. E) Percentage of neurons with 

significant regression coefficients to any past event. F) Architecture of the recurrent neural 

network (RNN) trained to reproduce DT-derived Q-values and choice-history effects. Inputs 

encode reward and choice outcomes; the recurrent layer contains 30 units; the output layer 

computes Q and history signals for each option. G) Regression coefficients for recurrent-layer 

units computed as in (C). H) Percentage of recurrent-layer units with significant history-based 

coefficients as in (E). Source data are provided as a Source Data file. 

Figure 4. Behavioral and mPFC representations adjust to VI and VR task structure. A) 

Alternation rate and reward rate difference from one animal performing VI and VR tasks. Signals 

were smoothed with Gaussian filter (window = 75 trials, s.d. = 25 trials). B) Left: reward rates in 

VI and VR across all animals (n = 5) and sessions (n = 129). Right: alternation rates. Two-sided 

LMMs, task type (VI vs VR) fixed effect and animal identity - random intercept revealed for 

reward rate (β = 0.178, 95% CI 0.143–0.214, t(127) = 9.89, P = 1.9×10⁻¹⁷) and alternation rate (β 

= 0.247, 95% CI 0.205–0.289, t(127) = 11.73, P = 5.5×10⁻²²). NAMCT was applied. C) 

Regressors (mean ± s.e.m.) were estimated using elastic-net regression. Lag-wise VI–VR 

differences were tested with two-sided LMMs and within-animal permutation tests (1,000 

shuffles), followed by Benjamini–Hochberg FDR correction. Asterisks mark FDR-corrected P < 

0.05. D) Correlations between values (Q) and choice-history effects (ϕF + θS) for VI and VR 

sessions. Task differences were evaluated with two-sided LMM (task fixed; animal ID random) 

and a two-sided within-animal permutation test (1,000 shuffles; P = 0.0009), NAMCT was applied 

. E) Selectivity (AUC) for immediate past rewards and immediate past choices. Selectivity in VI 

was negative but not significant (top; P = 0.578), whereas VR showed a significant positive effect 

(bottom; P = 1.2×10⁻⁵). F) Trial-by-trial correlations between neuronal firing rate and DT-model 

variables (Q, ϕF + θS) for VR and VI sessions. G) Schematic of intra-task and cross-task 

evaluation of the DT model. Intra-task testing uses parameters derived within the same task 

(VI→VI or VR→VR). Cross-task testing applies VI-derived parameters to VR sessions and vice 

versa. H) DT-model performance (mean ± s.e.m.) under intra-task and cross-task testing (n = 5 

animals, 65 sessions, P = 0.005, two-sided Mann–Whitney U test). I) Left: cross-task performance 

vs neural decoding accuracy (two-sided Pearson correlation, P = 0.0009). Right: decoding 

accuracy regressed on mean ITI, DT-model fit, mean RT, and cross-task performance using two-

sided t-tests; NAMCT was applied. Source data are provided as a Source Data file. 
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Figure 5. mPFC inactivation results in behavioral effects that exhibit both task and temporal 

dependency. A) Coronal brain section showing representative hM4D(Gi)-mCherry expression 

(red) with DAPI counterstaining (blue) in the mPFC (replicated in 19 animals). B) Schematic of 

the behavioral timeline, indicating epochs of task performance and drug (CNO) or saline 

injections. C) Influence of past rewards (top) and past choices (bottom) up to 5 trials back on 

current choice, shown as logistic regression coefficients in VR (left) and VI (right) tasks (mean ± 

s.e.m.; n = 16 GFP and n = 22 hM4D(Gi) animals). For each lag, coefficients were compared using 

two-sided LMM (fixed effects: genotype, drug, genotype × drug; random intercept: animal ID). 

Significance was determined using within-animal permutation tests (1,000 shuffles) and 

Benjamini–Hochberg FDR correction across lags. Green asterisks denote FDR-corrected P < 0.05, 

0.01, or 0.001 for GFP animals; red asterisks denote the same thresholds for hM4D(Gi) animals. 

D) Inter-choice intervals (ICI) in VR and VI tasks for alternation (top) and perseverance (bottom) 

across GFP (n = 16) and hM4D(Gi) (n = 22) animals, drug conditions combined. Differences 

between VI and VR were tested with a two-sided LMM (task fixed; animal ID random). ** 

indicates FDR-corrected P < 0.01 (P = 0.007 for alternation; P = 0.002 for perseverance). Box-

plots: center line = median; box = 25th–75th percentiles (IQR); whiskers = full data range. E) 

Schematic of the delayed-decision version of the task indicating when the delay period was 

introduced. F) Same analysis as in (C), applied to the delay version of the VR (left; n = 3 GFP, n = 

3 hM4D(Gi)) and VI (right; n = 5 GFP, n = 9 hM4D(Gi)) tasks. Two-sided LMMs (genotype × 

drug fixed effects; animal ID random) and 1,000-shuffle within-animal permutation tests were 

used at each lag, followed by Benjamini–Hochberg FDR correction. Asterisks indicate FDR-

corrected P < 0.05, 0.01, or 0.001. G) Effect sizes of past-reward and past-choice regressors in 

short- and long-delay versions of the VR (top) and VI (bottom) tasks, computed from logistic 

regression coefficients. Source data are provided as a Source Data file. 

 

Figure 6. mPFC representations adjust to temporal delays in VI task. A) Schematic of the VI 

task incorporating short (0.2–0.5 s) and long (2–2.5 s) waiting periods (colored segment)  in the 

center port. B) Past rewards and past choices up to 10 trials back regressed onto current choice 

(pooled across n = 4 mice). Logistic regression coefficients for past right/left rewards and choices 

are shown (mean ± s.e.m.) for short- and long-delay blocks. For each lag, coefficients were 

compared using two-sided linear mixed-effects models with delay (short vs long) as a fixed effect 

and animal identity as a random intercept. Significance was assessed using within-animal 

permutation tests (1,000 shuffles of delay labels), followed by Benjamini–Hochberg FDR 

correction across lags. Asterisks denote FDR-corrected P < 0.05 (exact P = 0.03). C) Correlations 

between value signals (Q) and choice-history effects (ϕF + θS) for left and right options in short- 

and long-delay VI sessions. Each point represents one session. D) Regret (computed as in Fig. 2D) 

for short- and long-delay blocks across sessions (n = 94). Error bars show mean ± s.e.m. Short vs 

long delay was compared using a two-sided Wilcoxon rank-sum test (U = 10729, z = 4.95, P = 

7.53×10⁻⁷). No multiple-comparison correction was applied. E) Absolute regression coefficients of 

all neurons in short- and long-delay periods (mean ± s.e.m.). For each regressor, delay effects were 

tested with two-sided LMMs (delay fixed; animal ID random). Significance was assessed using 

within-animal permutation tests (1,000 shuffles), and P-values were corrected across regressors 

using the Benjamini–Hochberg FDR procedure. Asterisks indicate FDR-corrected P < 0.05 or < 

0.01. F) Contingency table of neuron counts in short-delay (rows) versus long-delay (columns) 

blocks, grouped by their strongest regression coefficient (past rewards, past choices, current 

choice, or untuned). For each category, short–long differences were tested using a two-sided 
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permutation test (1,000 within-neuron label shuffles). P-values were taken directly from the 

permutation null (uncorrected). Stars denote permutation-derived significance (P < 0.05, 0.01, or 

0.001). NAMCT was applied. Source data are provided as a Source Data file. 

 

 

 

  

 Editor’s summary: 

Neural basis of decision-making is not fully understood. Here authors show that mouse prefrontal neurons encode 

history-specific rewards and choices. However, their influence is gated by task structure and timing, affecting 

decisions primarily in variable interval tasks and when temporal delays separate events. 

 

Peer review information: Nature Communications thanks Michael Halassa and the other anonymous reviewer(s) 

for their contribution to the peer review of this work. A peer review file is available. 
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Coefficients for ΦFL + θSL
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 1 0

Right reward  Left reward      Choice

 **

*
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effects

Left reward
effects

Choice
effects
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Long

0 5 10 0 5 10 0 5 10
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  *
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Short
Long

Red stars: 
above null
Blue stars -  
below null 
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