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Abstract

In reward foraging tasks, prefrontal neurons track reward history, yet animals also show persistent choice-
history biases. How these histories are represented in prefrontal circuits and guide animals’ decisions
remains unknown. We asked whether past rewards and choices are incorporated by leaky integration or
carried as discrete, history-specific codes, and how these codes are recruited under different task
demands. We recorded medial prefrontal cortex (mPFC) activity while mice performed probabilistic
reward foraging task and fit a reinforcement-learning model whose decision variable, combining reward
and choice histories, captured behavior. Neurons represented history-specific rewards and choices while
integrating them consistent with their behavioral impact. We then altered reward contingencies and inter-
choice intervals and transiently inactivated mPFC. Neural representations adapted to changing task
demands, yet the behavioral impact of inactivation was sensitive to inter-choice interval and reward
contingencies. We conclude that mPFC hosts redundant computations whose influence is gated by timing

and task structure.

Introduction


mailto:dkvitsiani38@siumed.edu

Reinforcement learning (RL) models achieved tremendous success in explaining animal behavior and
helped us interpret the activity of neurons in diverse brain areas'3. This success is particularly prominent
in reward foraging tasks where animals or artificial agents have to come up with the policy to maximize
reward harvesting efficiency amid changing environmental conditions®. Some of the well-established
reward foraging tasks that mimic naturalistic habitats assume nonstationary reward statistics 2. For
example, in two alternative choice tasks with variable interval reinforcement schedule (V1) reward
statistics on the unchosen options do not remain fixed, instead they grow, simulating the accumulation of
food on unvisited patches®. In such tasks, the decision-making process is influenced not only by past
rewards but also by past choices, as the probability of rewards on unchosen options increases,

incentivizing animals to alternate between options, even if they have previously received rewards °2.

RL models developed to solve this type of foraging tasks incorporate both reward history and choice
history components into the decision process®”°. These models have played a pivotal role in explaining
animal behavior and shed a new light on the representation of action values, typically computed as the
weighted sum of past rewards. However, the significance of choice history representations and how they
interface with reward history representations in these tasks remains unclear. The nature of representations
within the prefrontal areas warrants further investigation, as cortical representations are distributed
widely**-3 all the while maintaining functional specificity'*!°. Additionally, due to the nature of the
multimodal input prefrontal areas receive®® representations are highly diverse!” and mixed®!® | although
others argued for categorical representations®®. Consequently, when animals engage in reward foraging
tasks, neurons in these brain regions are often found to represent a multitude of behavioral variables. This
is especially true at the population level, since in a high-dimensional space various behavioral variables
can be decoded simultaneously?'. The theoretical and experimental work further suggests that prefrontal
areas constitute self-sufficient learning systems containing all the necessary representations to master the

tasks at hand??2%, Therefore, a fundamental question that has received little attention in previous studies,



with few exceptions® is: which representations are functionalized by the animals and influence their

decision-making processes ?

A survey of the function of the medial prefrontal cortex (mPFC) reveals two prominent trends. One line
of research, initiated several decades ago, links mPFC to working memory?*, while another set of studies,
as mentioned above, grounded in the field of RL, contends that mPFC guides animals' decisions by
representing decision variable (DV) of the RL model®"%2, Yet, it remains unclear whether the DV
representations and their behavioral deployment are independent of the mPFC’s memory function or do
they work in tandem. In other words, does the mPFC represent and use DV, regardless of the temporal
intervals between task relevant events or the representations of DV and its behavioral deployment depend

on the memory load?

To address those issues, we set up a probabilistic reward foraging task for mice involving two alternative
ports which required animals to maintain a memory of their past rewards and past choices to make
decisions >, The probability of reward at each port was a function of “set reward probabilities” that
determined the chance of a reward arriving at each port, while also being a function of past choices. Using
a previously developed reinforcement learning model, the double trace (DT) model, which integrates
choice and reward history into the DV#, we investigated how the integration of reward history and choice

history representations aligned with the animals' behavior.

To investigate whether choice history representations conformed to the task structure and were not purely
motoric in nature, we utilized two tasks: one with reward probabilities contingent on previous choices as
described above (VI task) and another, a Variable Ratio Reinforcement task (VR), in which this

dependency was removed.

While we identified all components of the RL model in the mPFC, it remained unclear whether these
representations were actively employed by the animals. To address this, we temporarily inactivated the

mPFC and examined how animals integrated reward and choice history. For this, we manipulated reward



contingencies through VI and VR tasks and varied the temporal intervals between events to investigate
whether the computation of the DV and its deployment by the mPFC were influenced by the memory load

and task structure.
Results
Past rewards and choices maximize reward-harvest efficiency.

We set up a discrete version of the variable interval (V1) schedule of reinforcement task for two options
>7(Fig.1A, see Materials and Methods). In this task, the mice initiated a trial by poking their noses into the
center port. After a brief period of waiting (uniformly distributed, from 0.2 to 0.5 s), the mice had to
choose between the left and right ports to collect water rewards (2 pl). The inter-trial interval with the
mean of 1.1557 + 0.0327 (standard error of the mean, s.e.m.) seconds was determined solely by animals’
decision to initiate the next center port poke after completing a previous trial. In every trial, rewards on
two ports (left and right) were assigned according to independent set reward probabilities. Once a reward
was assigned to a given port, it remained available until the animal chose that port. The probability of
obtaining a reward from a given port in each trial changed as a function of past choices (see equations
(egs.) 1 and 2, Materials and Methods). The set reward probabilities changed for every block of 35 to 200
trials. Such randomized block lengths helped us to minimize the expectation from animals for block
transitions. The pair of set reward probabilities for left and right ports were the following tuples [0.1:0.4],
[0.4:0.1], [0.25:0.25], [0.6:0.1] and [0.1:0.6], respectively (Materials and Methods). We collected a total
of 82 behavioral sessions from 5 mice comprising 71,737 trials. On average each session included 875 +

37 trials with the number of trials per session ranging from minimum of 129 to a maximum of 1814.

In the VI task, choice ratios closely matched reward ratios on a local scale (Fig.1B) and on a global scale
>7 (Fig.1C), showing slightly undermatching?. To investigate what strategies animals used to maximize
reward harvesting efficiency we compared reward rates (fraction of rewards per trial) to those of several

artificial agents. In the VI task, it becomes advantageous to switch ports even after experiencing the



rewards, because reward probabilities increment on unchosen port. For instance, simply alternating
choices yields higher reward rates when compared to consistently selecting the port with higher set
reward probabilities (Fig.1D). Hence, it is reasonable to assume that animals may use some form of
alternation strategy as it was documented in previous studies®’2°3°, Remarkably, mice in the VI task
surpassed the performance of the alternation strategy (both for the example animals and all animals
combined, Mann—Whitney U-test p <0.001), prompting us to investigate the precise strategy employed by
the animals (Fig.1D). As shown before®> 7127 logistic regression of current choices on past rewards and
past choices revealed that past rewards increased the probability of the port being chosen again, however
the further back in time the reward was observed, the less effect it had on the port being chosen. Past
choices had non-monotonic effects on current choices, meaning immediate past choices had the negative
effect and choices further back in history had positive effects on current choices (Fig.1E and SFig.1A).
Non monotonic choice history effects could be partially explained as a result of animals alternating when
experiencing no rewards on immediate past trials and persevering on choices that happened two or more
trials back in history (SFig.1B). To test if animals used alternation as a low-level default strategy or
adjusted the alternation as a function of difference in set reward probabilities, we measured rate of
alternation as a function of difference in set reward probabilities. We saw modest, but significant decrease

in alternation rate as difference in set reward probabilities increased (Fig.1F).

Response time (RT) defined as the time elapsed from leaving the center port to poking left or right port
was used as an alternative measure of performance. We found RTs were largely consistent with the effect
of past rewards and past choices on current choices. RTs for the current choice were reduced when
animals recently experienced a reward for that option (SFig.1C, regression coefficients, were -1.7537*10
3+ 1.05 *1073 for rewards one trial back on the same side and -0.443*1073+ 0.714*10°3 for rewards one
trial back on the opposite side), and RTs increased when the animal chose the same option. Consequently,
RTs decreased when the animal chose the alternative option in the previous trial (SFig.1C, regression

coefficients were 4.85 *107 + 2.2*107 for combined choice effects one trial back on the same side).



Supported by previous work?” and based on our findings, we conclude that the incorporation of reward
and choice history into the decision-making process contributes to animals' ability to maximize their

reward harvesting efficiency.
mMPFC integrates past rewards and choices consistent with behavior

If choice and reward history effects are impacting animals’ decisions, how are they represented on a
single neuron level? More specifically, we asked whether individual neurons combine reward and choice

histories in a way that matches their observed impact on the animal’s current choices.

We recorded the activity of neurons (709 neurons from 5 mice) in the mPFC3! (SFig.2A), using tetrodes.
We used the manual spike sorting software MClust (AD Redish) to isolate single neurons (median LRatio
=0.0287, 95% confidence interval < 0.2325, median isolation distance = 20.8075, 95% confidence
interval >10.4417, violation of refractory period <0.2763% of total spikes®?). The recorded neurons

showed the characteristic distribution of firing rates vs. spike waveforms (SFig.2B)*.

Next, we sought to understand how behavior of animals could be explained by neural activity. As
behavioral analysis showed, regression coefficients on average for immediate past trials for rewards and
choices showed opposite signs (Fig.1E). Whereas immediate past rewards promote choice for the same
port, immediate past choices promote choices for the alternative port. Hence, should individual neurons
integrate the immediate past reward and choice in accordance with their impact on current choices, we
would expect neurons to discriminate between these events in a contrasting manner. Individual example
neuron (Fig.2A) showed opposite modulation of firing rate for immediate past reward vs. no reward for
the right port and for immediate past choices for the right vs. left port. To determine how neurons
discriminated between recent rewards and choices, we measured their selectivity using a method based on
the difference in firing rate distributions. This was done using the area under the receiver operating curve
(AUC) as the key metric, with the AUC scores normalized between -1 and 1 (see Materials and Methods

for details). For choice selectivity positive AUC scores indicated preference for the right port and



negative scores preference for the left port. We calculated the selectivity scores for the immediate past
rewards from both the left and right separately. Then, to align these scores with the choice selectivity
score, we reversed the sign of the AUC scores for the left port and combined them with the selectivity
scores for the right port. This approach allowed us to measure the selectivity for rewards at the chosen
port (further details in Materials and Methods). We observed subtle yet statistically significant negative
correlation between selectivity of neurons for immediate past rewards and immediate past choices. (Fig.

2B).

The selectivity analysis was limited to one trial back history, while past rewards and choices beyond one
trial back in history had effects on current choices. This was particularly clear when analysing choice
history effects as they have non monotonic effects on current choices. Namely, negative contribution of
immediate past choices on current choices may be overridden by positive contribution of past choices
further back in history. To consider entire reward and choice history effects we approximated these
effects using three exponentials. One for reward history and two for choice history to capture its non-
monotonic shape. We used a reinforcement learning model - the double trace (DT) model - that
incorporates reward and choice histories (Fig.2C, Materials and Methods section DT model for detailed
description) into the decision rule?’. In the DT model past reward contributions are captured by the Q
values, that are updated for left and right ports separately as a function of reward outcome from those
ports. Non-monotonic choice history effects (Fig.1E) are captured by the weighted sum of fast F and slow
S choice traces for each port that approximate immediate past and distant past choice history effects on
current choices, respectively. The integration of weighted sum of choice traces (we also refer to it as
choice history effects) and Q values (or reward history effects) for the left and right ports define the

decision variable (h), which via softmax selection rule is converted to choice probability P(c).

Prior work found that the DT model was superior in performance compared to other RL models of the
same class (Q-learning models) in terms of its predictive adequacy of the animals’ choices and in terms of

its normative performance (SFig.2C and D, see the Methods section on the model selection)?’. Here we



further explored if animals deployed the DT model to maximize reward harvesting efficiency and if

neurons represented current choices consistent with the effects of past choices and past rewards.

First, we showed that reward harvesting efficiency measured as regret, difference in reward harvesting
efficiency between model and optimal agent (Optimal_Baiting model) that has access to the reward
probabilities on a trial by trial basis negatively correlated with the DT model’s ability to predict animals
choices (Fig.2D). Furthermore, we showed that as animals progressed over the sessions the DT models
predictive accuracy improved (SFig.2E) suggesting that animals were learning to deploy the DT model

over time.

Second, we noted that in majority of the sessions reward history effects captured by the Q value and
choice history effects captured by weighted sum of F and S components of the DT model had
predominantly opposing effects on current choices (Fig.2E and SFig.2F). If individual neurons are
encoding Q value and choice history effects, it would follow that neurons should inherit the structure of
these correlations. To test this, we analysed trial by trial correlation of firing rate of each neuron to Q
value and choice history effects. We observed that on average the strongest correlations with DT model
variables were at the decision epoch (SFig.2G) with the fast choice component F having the best
correlation with individual firing rates of neurons (SFig.2H). Next, we observed that neurons encoded Q
value and choice history effects consistent with their impact on current choices (Fig.2F and SFig.2l). We
tested whether neurons encoded Q-value and choice history effects in opposing directions using a linear
mixed effect model (LMM). The dependent variable was each neuron’s correlation between firing rate
and Q-value; the fixed effect was the neuron’s correlation with choice history effect and animal ID was
included as a random intercept. P-values (p < 0.001) were obtained via a within-animal permutation test
that shuffled the correlations of choice-history effects. While majority of neurons represented Q value or
fast and slow component of the choice trace, some also encoded mixture of the model variables (Fig.2G)

as expected from prefrontal cortical areas that have highly mixed representations.



Decoding accuracy of the mPFC neurons of choices predicted by the DT model showed positive
correlations with the DT model’s performance (fit of the DT model, SFig.2J), while there was no

correlation with the reward harvesting efficiency (SFig.2K).

Neurons show discrete coding of past rewards and choices

In both experimental and theoretical studies representations in mPFC are not limited to variables given by
the RL model but encompass also other variables that can be used to derive the RL model variables. For
example, individual neurons may preferentially represent rewards for particular trials back in history with
more neurons representing more recent rewards. Such diminishing responses to past rewards on a

population level can be used to derive the Q values?>*,

We found that in many sessions reward and particularly choice history could be decoded comparable to
the choices predicted by the DT model (Fig.3A). To further understand the nature of these representations
at the individual neuron level we looked at how neurons discriminated reward and choices for particular
trials back in history. We looked at the responses of neurons conditioned on reward outcomes for specific
trials back in history. If mMPFC individual neurons represent Q values, we could expect them to operate as
leaky integrators ** following standard RL value update form (eq. 14 also see Fig.2C) and distinguish
immediate past rewards from no rewards with highest accuracy. Alternatively, if mPFC neurons
discriminate reward and choices preferentially from various past trials, their representations may be

constrained to specific trials or temporal intervals in the history.

We observed that some neurons (13% of analysed neurons out of total 709 analysed neurons)
discriminated rewarded from non-rewarded trials (selectivity AUC scores, with p < 0.05 in permutation
test) that happened two trials back in history (Materials and Methods). The example neuron (Fig.3B) that
showed higher selectivity for right rewards 2 trials back (AUC score = 0.34, p <0.001) than 1 or 3 trials
back (AUC score = 0.56, p value = 0.01, for 1 trial back and AUC score = 0.45, p = 0.02 for three trials

back right rewards) discriminated rewarded trials from non-rewarded trials, and this discrimination was



strongest when rewards happened two trials back in history. This was also seen on a population level

when we selected cells tuned to rewards for specific trials back in history (SFig.3A).

To account for representations of rewards and choices not limited to two trials back in history, we
conducted a comprehensive analysis of single neuron responses in the mPFC. Using regularized
regression analysis, we examined the firing rate of each neuron during the decision epoch (Fig.3C) and
regressed it against rewards and choices from up to 10 trials back, as well as the current choices

(Materials and Methods, see section on linear regression analysis for neurons).

45% of the recorded cells (320 cells) showed a significant regression coefficient for at least one of the
events analysed (SFig.3B). The number of neurons with significant regression coefficients for both
rewards and choices showed surprising preference to events two or more trials back in history (Fig.3C).
The preferential encoding of rewards and choices for the past trials was not due to exclusion of the
regressors that did not pass the statistical test or regularization method (SFig.3C). We further tested the
reliability of the regressors by splitting into half each session and estimating the preferred regressor (lag)
for each neuron. Scatter plot showed significant number of neurons (p < 0.001) having the same preferred
lags for two halves of the session (Fig.3D). P values were derived by permutation test, shuffling the lags
for one half of the session 1000 times and counting how many times the neurons had the same preferred
lag for two halves. Regressors in addition showed monotonically decaying trends towards past trials

(Fig.3E) consistent with the idea that at the population level mPFC represented the DVs.

We further tested whether neurons were preferentially responsive to rewards and choices occurring at
specific time intervals in history as opposed to occurring at specific trials in history. We used time
windows of 0.2 s. (total duration of 8 s) to chunk the history into time intervals and performed the same
regression analysis described above. We observed that the maximum regression coefficients were specific
to time intervals in the past (SFig.3D). As in the previous analysis, most neurons showed the most robust

modulation to immediate past events (SFig.3E).



To test if history-specific representations arise as a function of recurrency within the cortical circuits we
used recurrent neural network (RNN) model (layrecnet function from Matlab) that was trained to output
the DV given the choice and reward input. More specifically the RNN with one hidden layer received the
same reward and choice data as animals on its two input neurons and was trained to produce the same Q
value and choice history effects for left and right ports on its output (Fig.3F). We observed the history-
specific tuning of neurons to rewards and choices (Fig.3G). The number of neurons showed monotonic
decay as function of the history (Fig.3H). We also note that choice history effects with its non-monotonic
shape can be recovered in both biological neurons and in RNN (SFig.3F). Overall, the reward and choice
history-specific neurons and their distribution resembled the representations from biological neurons

(SFig.3G-1)

To take advantage of the history-specific responses in neurons ¢ we built a support vector machine
(SVM) classifier to see how well population activity (all neurons recorded in a session) could linearly
separate current choices, past choices, and past rewards up to two trials back (total number of states 16).
We built multiple weak pairwise linear classifiers to discriminate among different states (Materials and
Methods) *°.The neural population could separate above chance level past immediate choices, current

choices, and past rewards up to two trials back (SFig. 4).

We independently validated trial and time history representations on a different cohort of mice (n = 6).
We used the Kilosort2 3’ spike sorting algorithm and post-processing steps to identify single units
(Materials and Methods). 99% of isolated units with <0.63% of spikes violated the refractory period. We
recorded 3805 neurons in the VI task in the mouse mPFC (SFig.5A), finding 1458 neurons (with the false
discovery rate p <0.00001) in 214 sessions with a total of 129,072 trials that showed significant
regression coefficients to any of the behavioral events (past rewards and past choices up to 10 trials back).
Our analysis confirmed the previous results (Fig.3B-D) that neurons showed preferential activity for trial-

and time-specific events (SFig.5B—E for trial history-specific regression analysis and SFig.5F-G for time



history-specific regression analysis). Choice history regression coefficients also showed non-monotonic

decay towards past trials (SFig.51).

We conclude that neurons in mPFC besides representing DV also show preference to encode history

specific past rewards and choices.

Neural responses in mPFC capture change in task demand

In prior studies, it was demonstrated that medial prefrontal cortex controls flexibility of animals to update
the task contingencies as opposed to executing already well learned rules®. Since our mice were run on
VI task for extended sessions one could speculate that the task became less mPFC and more basal ganglia
dependent®. To test if mPFC neurons could track and update the changing task demands we subjected

animals to VI and VR tasks. We first ran animals on VI tasks for few sessions (6.8 + 3.4351) and then

switched to run on VR task. The total number of sessions per animals was 26 + 3.

Because in VI task reward probabilities are conditioned on the past choices, animals often develop
alternation choice bias, reflecting baiting rates >~’. Unlike the VI task, in the VR task, reward probabilities
are determined only by set reward probabilities. In VR tasks, animals tend to choose the higher reward
probability option independent of the reward outcome, resulting in perseverance choice bias 2. If neurons
in the mPFC represent change in task demand, they should represent change of past choice effects on

current choices.

We collected 67 sessions from 5 mice (total number of trials = 126083), with 865 + 43.4 trials per session
in the VI task, and 62 sessions with a 794 + 39.8 trials per session for the VR task. First, we tested
whether mice could estimate the preference for options consistent with VI and VR task demands. We
verified that reward rates on alternation (left-right or right-left choices) minus reward rates on
perseverance (right-right or left-left choices) for the example animal (Fig.4A, dark green line), were
significantly different (Mann-Whitney U-test p <0.001) in VI task (0.058 + 0.001) and in the VR tasks

(0.081 £ 0.001). The same reward rates for all animals and all sessions combined in the VI task were



higher than for those in the VR task (Fig.4B, left panel). We observed a higher alternation rate in the VI
task compared to the VR task at the individual animal level (Fig.4A light green line, 0.61 + 0.004 in VI
task and 0.32 £ 0.004 in VR tasks were significantly different (Mann-Whitney U-test p <0.001). The

same was true for all animals and sessions combined (Fig. 4B, right panel).

The behavioral adjustment from the VI to the VR task was seen on learning rates (SFig.6A upper panel)
and on choice history effects. Immediate choice history effects had a sign reversal from negative in the VI
task to positive values in the VR task (Fig. 4C, rightmost panel). Past rewards, unlike immediate past
choices, had mixed effects on the current choices in VI or VR tasks. Left immediate rewards were
slightly, but significantly higher in the VI task than in the VR task and right rewards two or more trials
back in history had stronger effects on the current choices. We also noted that correlations between Q
values and choice history effects shifted towards more negative scores (Fig. 4D) from VR (correlation of
Q and ¢*F + 6*S for left option 0.415 + 0.033 and for right option 0.414 + 0.036) to VI task (for left
option 0.099 + 0.043 and right option 0.085 + 0.047, permutation test p <0.001) also seen on the
correlation of Q values with the individual choice history effects (SFig.6A lower panel). This result again
reaffirmed that Q values and choice history effects antagonise each other in the VI task but have the same

effects on choices in the VR task.

Next, we recorded from mPFC (SFig.6B) 1642 neurons in the VI and 1465 neurons in the VR tasks from
the same animals (n = 5 animals, n = 67 in VI and n = 62 sessions in VR tasks) using the Kilosort2-based
sorting algorithm as described previously (violation of refractory period in 99% of single units was
<0.38%). Neurons for VI and VR tasks were recorded from different sessions. Using the same analysis as
before (Fig.2B) the reward selectivity for chosen port and choice selectivity showed slightly negative and
positive correlations in VI and VR tasks respectively (Fig.4E), aligning well with their effects on current
choices. To test whether task context modulates the coupling between choice- and reward-history
selectivity, we fita LMM: AUC_choice ~ AUC_reward * Task_type + side + (1 | AnimallD). Here,

AUC_choice is the AUC for immediate-past choices, AUC_reward is the AUC for immediate-past



rewards, Task_type indicates VI vs. VR, and side codes left vs. right ports. The interaction (AUC_reward
* Task_type) tests whether the reward—choice relationship depends on task type. Significance (p < 0.05)
was assessed via 1,000 label permutations of Task_type within each animal to generate the null
distribution. We extended the analysis to the full history of rewards and choices using a DT model. For
each neuron, we correlated firing rate with DT-derived variables: Q-value and choice-history effects (the
weighted sum of fast and slow choice traces). These correlations were task dependent (Fig. 4F; SFig. 6C).
To test this formally, we fit an LMM: Coeff_choice ~ Coeff_value * Task_type + (1 | AnimallD), where
Coeff choice is the neuron’s correlation with choice-history effects and Coeff_value is its correlation
with Q-value. Significance (p < 0.001) was assessed by shuffling Task_type within each animal.
Together, these results indicate that the coupling between value and choice-history encoding varies with
task demands. Next, we asked if performance of the animal on VI and VR tasks were adaptive, in a sense
that the change of behavioral strategy led to increase in reward harvesting efficiency. To assess this, we
tested the performance of the DT model in a simulated environment. We used the same reward
probabilities and block lengths that the animal experienced in the task from which its parameters were
derived for intra-task testing. For cross-task testing, we applied these parameters to an alternative task.
For example, in intra-task testing DT model parameters that were derived from a given session of VI (or
VR) task were tested on simulated environment with the same reward statistics from VI (or VR) task of
the remaining sessions. In cross-task testing VI (or VR) model parameters derived from a given session
were tested on simulated sessions with the VR (or V1) task (Fig.4G). As a metric of performance, we used
reward rates (rewards per trial) collected by the model. Our analysis showed that intra-task testing was
achieving more reward rates then cross-task testing (Fig.4H). Next, we speculated that if neurons in the
mPFC track the DT model decision variable to maximize the reward harvesting efficiency, then
population decoding accuracy should correlate with the task performance. The task performance was
(computed as a difference between intra-task and cross-task reward rates) showed positive correlations
with the decoding accuracy (Fig.41 left panel). Elastic-net regression revealed that among other variables

such as intertrial interval (ITI), DT model fit and response time (RT), task performance was better at



explaining the decoding accuracy (Fig.4l, right panel). Furthermore, DT model fit and population
decoding accuracy showed positive, but not significant correlations suggesting that the observed
correlations between cross task performance and population decoding accuracy was not due to the

correlations between DT model fit and population decoding accuracy (SFig.6D).

This result aligns well with the published work* on the involvement of prefrontal areas in adapting to
task demands and shows that individual neurons integrate reward and choice histories in agreement with

task demands.
Behavioral impact of mPFC rises with longer inter trial intervals

If mPFC neurons deploy representations of behavioral variables (reward and choice history, Q values,
choice history effects, etc) the inactivation of the mPFC should hinder animals' performance. We tested
the role of mPFC in VI and VR tasks. We trained 38 mice on VR (6.3 £ 0.15, sessions per animal) and VI
tasks (9.4 + 0.14, sessions per animal), with a total of 545 sessions and 746 + 13 trials per session. Next,
we injected the AAV virus AAV- CaMKIla -hMsD-mCherry (hM4D receptor belongs to class of Gi-
DREADDs)* or AAV- CaMKlla -GFP (referred to GFP) expressing hM4D or GFP protein respectively
in the mPFC (Fig.5A) and performed acute inactivation by alternating injections of clozapine N-oxide

(CNO) and saline on consecutive days (Fig.5B).

To test the effect of the inactivation on the activity of neurons, we recorded neurons in a separate animal
unilaterally injected with the AAV- CaMKIla -hM4D-mCherry virus in mPFC. As a control for the
inactivation, we also recorded neurons in parietal cortex not injected with the virus. The inactivation

reduced the firing rate of neurons that was specific to the injection site (SFig.7A-C).

Significant differences were found in the reward harvesting efficiency in VR tasks between experimental
(hM4D expressing animals treated with saline and CNO), but not in the control (GFP animals) groups
(SFig.7D, left panel). No significant drop was found in the reward harvesting efficiency in the hM4D

expressing animals treated with saline and CNO in the VI task (SFig.7D, right panel).



Next, we examined the effect of the inactivation on the reward and choice history effects. In animals that
expressed hMyD treated with CNO, we observed change in both choice and reward history effects in the
VR task (Fig.5C, left panel). Only reward history effects were affected in the VI task (Fig.5C, right
panel). We could not see any change in the bias in VR (0.4009 + 0.0321 for Saline and 0.4382 + 0.0375
CNO groups in hM4D animals, p = 0.54 LMM with animal ID as random effects and drug manipulation
as fixed effects, residuals did not show deviation from normal distribution.) task and no change in VI task
(0.3021 £ 0.0201 Saline treatment group and 0.3354 + 0.0230 CNO treatment group of hMD4D animals.
p = 0.18 using LMM with animal 1D as random and drug manipulation as fixed effects, residuals did not
show deviation from normal distribution). We did not see any significant change in bias in either VI or
VR task in GFP animals. The exclusive effect of the inactivation in VI task on reward history effects is
difficult to explain if we assume that mPFC implements the DV according to DT model, since
inactivation should affect both reward and choice history effects. Here we provide an alternative
interpretation of these results. Animals spend more time in alternating between ports in VR task and more
time in perseverance in VI task. This is because, in the VI task, animals receive higher reward rates when
they alternate (as shown in Fig. 4B) compared to the VR task. Similarly, in the VR task, perseverance is
more beneficial since reward probabilities remain fixed. Therefore, even in cases where there's no
immediate past reward, it still makes sense for the animal to persist in choosing the same port with the
higher reward probability. We checked the time interval between consecutive choices for perseverance
and alternation in VI and VR tasks in CNO-treated and saline-treated animals. In the V1 task, mice spent
more time between consecutive choices (we defined this as inter-choice interval (ICI)) on perseverance
than on alternation, and the opposite was true for the VR task (Fig.5D, SFig.7E). A three-way ANOVA
(Supplementary Table 1) revealed a significant main effect of the behavioral task (F.«,= 14.77, p <0.001
for alternation and F...,= 5.62, p <0.05 for perseverance) on ICI, while no other grouping variables (drug,
virus) or interaction terms showed significant effects. We also tested the effect of the task type (VI or
VR) on ICI for alternation and perseverance separately using LMM. We used ICI as dependent variable,

task type as fixed effect and animallD as random effects. P values (p < 0.01 for alternation and p < 0.001



for perseverance) were derived from the shuffled distribution by permuting the task type within each
animal. Thus, we speculated that choice, and reward history effects could be explained by variance in the

time interval between the choices.

To directly test if mPFC is specifically deployed for time-separated events, we increased the time interval
between choices (Fig.5E) in both VR and VI tasks. The waiting interval time for the centre port was
between 2.0-2.5 s. We collected 143 sessions with 572 + 13 trials per session from 14 mice (11.1 + 0.1
session per animal) in VI task and 36 sessions, with 355.7 £16.7 trials per session from 6 mice (5.7 + 1.2
sessions per animal) in VR task. In VR task with long delay animals were run on 0.3 vs. 0.3 and 0.1 vs.
0.6 probability with the block length of 15-30 trials. The effect of mPFC inactivation was clear on both
reward and choice history effects in VI task and in VR task (Fig.5F). We did not see any change in the
bias in VR (0.4326 + 0.0482 for Saline and 0.4236 = 0.1034 CNO groups in hM.D animals, p = 0.48
using linear mixed model with animal ID as random effects and drug manipulation as fixed effects,
residuals showing no deviation from normal distribution) and V1 tasks with long delay (0.3303 + 0.0313
for Saline and 0.3316 £ 0.0430 CNO groups in hM4D animals, p = 0.1 using linear mixed model with
animal ID as random effects and drug manipulation as fixed effects, residuals showing no deviation from
normal distribution). Furthermore, effect size of the inactivation was significantly higher in long delay
versions of the VI task (Fig.5G) but not in VR task. We tested the significance of the effect size
separately for VR and V1 tasks using LMM. Here effect size for all regressors were tested if they had a
linear dependence with the delay condition as fixed effects and animallD as random effects (Effect_size ~
delay + (1|JAnimallD). P values were derived from permutation test by shuffling the drug condition (CNO
vs. Saline) within each animal 1000 times. We found significant effects p < 0.01 in VI task only for the
hM4D(Gi) expressing animals but not for the GFP animals in VI and VR tasks and hM4D(Gi) animals in
VR task. In an alternative way to test the effect of temporal gap between trials on the reward and choice
history effects we again split the ICI interval into perseverance and alternation trials, focusing on the

regressors for immediate past rewards and choices and combining VI sessions with short and long delay.



The same was done for the VR task. Using LMM, we evaluated how regression coefficients depended on
the fixed effects of the drug, ICI interval (ICI_X), and their interaction, with animallDs as random effects.
The model specification was: Regressor ~ drug + ICI_X*drug + (1JAnimallD), where ICI_X represents
the inter-choice interval for alternation (A) or perseverance (P). Significant interaction effects (p < 0.01)
were observed only for hM4D(Gi) animals for rewards and choices one trial back in V1 task and only for
choices in VR task (Supplementary Table 2 and 3). To directly compare the effect of inactivation
between VI and VR tasks as a function of delay we used the LMM that tested the interaction effect of
delay with the task type (V1 or VR). We used the following model Effect_size ~ delay*Task +
(1JAnimalID) and run it for GFP and hM4D(Gi) animals separately. P values were derived from the
shuffled distribution by permuting the drug labels (CNO vs. Saline) within the same animal. We show
that delay had stronger effects in VI task compared to VR task (p < 0.001) only in hM4D(Gi) expressing

animals but not in GFP animals.

We observed more pronounced reduction in reward rates in the long-delay version of the VI task

compared to the VR task for the experimental group administered with CNO (SFig.7F).

Overall, we observed stronger effects of mMPFC inactivation in V1 task compared to VR task and this

effect showed dependence on temporal separation of the task relevant events.
Delays reshape reward and choice history representations in mPFC

If above conclusion is true, then one should also see the change in neural representations when we
manipulate the delay between temporal intervals between task relevant events. This notion aligns with a
substantial body of literature supporting the prefrontal areas' involvement in tasks demanding the

retention of event memories in short-term working memory*2-4

We examined this question using a version of the VI task that imposed long temporal delays between
choices. We kept the set reward probabilities and block length the same, but we introduced two block
types with variable delays. Mice had to wait for 0.2-0.5 and 2-2.5 s in the short and long delay block

types, respectively (Fig. 6A). We collected 84 sessions from 4 mice with a total of 42,654 trials (504 + 47



trials per session). We recorded 2006 single units (99% of neurons showed a violation of refractory

period, with less than <0.5% of total spikes) in mPFC from these animals (SFig.8A).

On a behavioral level we observed that mice alternated their choices more in short delay blocks compared
to long delay blocks (first regression coefficient showed -2.4609 + 0.03 in short delay blocks and -0.6483
+ 0.02 in long delay blocks. Fig.6B). The reward history effects showed no statistical difference (first
regression coefficient for short and long delay blocks, p = 0.65 for right rewards and p = 0.54 for left
rewards, Fig.6B). Consistent with this, the DT model’s Q values and choice history effects showed more
negative correlations in short delay than in long delay blocks (Fig.6C and SFig.8B) confirmed by the
LMM that tested the delay condition on the correlation between Q values and choice history effects.
Namely we tested the following model Corr ~ delay + side + (1JanimallD). Here Corr stands for the
session-by-session correlation of Q values and choice history effects, delay is the condition (short or long)
and side separates left and right sides, both as fixed effects. animallD is used as a random effect from
each animal. p values (p < 0.01) were derived from the shuffled distribution by permuting the delay
condition within each animal. DT model parameters did not show significant difference between short
and long delay conditions (SFig.8C). To test in which environment was the animal more efficient in
reward harvesting efficiency, we measured regret in short vs. long delay blocks. Surprisingly, in the long

delay blocks regret was lower, suggesting that animals were using more optimal strategies (Fig.6D).

On the single neuron level choice history representations were more dominant in short than in long delay
blocks, mirroring the behavioral effects of past choices. Meanwhile, reward history representations were
more dominant in long delay blocks (Fig.6E). However, while the same neurons maintained choice
history representations a distinct set of neurons was responsible for reward history representations in short

vs. long delay blocks (Fig.6F).

To test if MPFC representations tracked the animals performance, we decoded the choices given by the
DT model and correlated the decoding accuracy of the recorded population with the accuracy of the DT

model’s prediction. We found that the correlation between population decoding accuracy and DT model’s



performance was stronger in long than in short delay blocks (SFig.8D). This is despite that DT model’s fit
was higher in short (0.7382 + 0.0265) vs. long (0.6440 £ 0.0239) delay task (Mann-Whitney U test p <
0.001) and population decoding accuracy was not different in short (0.1512 £ 0.0177) vs. long delay
blocks (0.1014 + 0.0206). Furthermore, regret was also negatively correlated with the population
decoding accuracy only in long delay blocks (SFig.8E). The absence of the correlation in the short delay
blocks in comparison to the V1 task without delay manipulation (SFig.2J and K) could be due to the small
number of trials in delay manipulation (237.77+22.00 in short blocks and 219.73+22.00 in long blocks)

compared to the one without delay manipulation (875 + 37).

Overall, our data show that reward and choice history representations are dynamically adjusted as

temporal separation of task relevant events increases.

Discussion

Reward foraging animals in nature are faced with non-stationary environment*’. Typically rewards in
unvisited food patches grow. Thus, animals need to keep track of not only how rich the current patch is
but also how long they have stayed in the current patch. The VI task approximates such scenarios >*® and
allowed us to explore how reward history and choice history were represented and used by prefrontal
circuits. While choice history effects have been well documented in various animals in V1 tasks®71130
their representations and especially its integration with reward history has not been explored. The DT
model, designed to integrate the effects of choice and reward history into the decision-making process,
demonstrated superior predictive accuracy for the animals' choices compared to existing RL models of the
same category . We showed that neurons incorporate choice and reward history effects consistent with
animals’ decisions. The representations in mPFC as expected were highly mixed and comprised of
different DT model variables like Q values, choice history effects and the combination of Q values.
Furthermore, neural representations preferentially encoded reward and choice events from specific trials
in history. As the temporal distance from the current trial increased, fewer neurons encoded events. This

phenomenon could enable downstream targets to compute DT model variables at the population level.



Such history-specific tuning of neural responses was seen also in recurrent neural network model. These
findings indicate that the recurrency in the network may have generated trial-history specific
representations. Manipulating the task structure that imposed opposing choice history effects in VI and
VR tasks was followed by concomitant changes in the behavior and representations, suggesting that
mPFC was playing an adaptive function to adjust animals’ behavior to the changing task demands.
However, the inactivation of the mPFC revealed the task and temporal context specific effects. Namely,
we observed that delay manipulation affected V1 task stronger than the VR task. Different from the work
of Bari et al.” inactivation of mPFC produced no significant change in bias. "This discrepancy may arise
from variations in task specifics, such as head-fixed versus freely behaving conditions, differing lengths

of inter-trial intervals (IT1), and the pretraining methods employed.

Finally, we note that it is difficult to understand the behavioral function of the mPFC based solely on the
neural activity and its representations. The neural representations with the delay manipulation in V1 task
and inactivation effects in short and long delay version of the VI task are consistent with each other.
Namely that as the population decoding accuracy and DT model’s fit show positive correlations in long
delay version of the VI task, inactivation effects also show stronger effects in long delay version of the VI
task. However, the mere presence of these correlations does not guarantee that decision variables given by
the DT model are used by the animals. In the short version of the VI task, we did observe also positive
correlations between DT model’s fit and population decoding accuracy (SFig.2J), however mPFC
inactivation had modest behavioral effects, changing only the reward history effects (Fig.5C). This was
not clear from mere neural representations, suggesting that it is difficult to infer from the pure

representations which decision variables are used by the animals.

mPFC has been implicated in a wide range of tasks with a diversity of functions. In early studies, mPFC
was considered to maintain a working memory in spatial navigation tasks*>*® and later this function was

expanded to non-spatial working memory tasks?*. In parallel to working memory studies, research using



decision making paradigms have shown that mPFC participates in conflict resolution*® , learning the
action sequences®, effort-based decisions®?, learning the action values®?, learning the structure of the
task?®, just to name a few. While these studies are shedding light on the diverse role mPFC plays in
behavior they all view mPFC as the learning system that updates the action values based on the
environmental state the animal is in. This is consistent with the wider theoretical framework that
suggested mPFC comprises the meta reinforcement learning system that contains all the sufficient
ingredients to implement the reinforcement learning model?2. Our work is consistent with that idea, with
one caveat. The implementation of the RL model is sensitive to the temporal separation of behaviorally
relevant events. Which brings the original proposed function of mPFC of working memory into the RL
framework. Indeed, the tasks that argue for mPFC involvement in value computations impose long inter-

trial intervals that naturally make the task mPFC dependent’-%,

What makes mPFC uniquely positioned to serve this function? The basal ganglia circuits are also well
positioned to learn the action values®®. With the help of dopaminergic system broadcasting reward
prediction errors® striatal neurons have been shown to implement the RL algorithm by learning the action
values®. We conjecture that the basal ganglia circuit can function when outcomes and actions are
happening in close temporal proximity. So that proper credit is assigned to the right actions. However,
when actions and outcomes are separated with long temporal delays the basal-ganglia circuit (or other
subcortical circuits) alone cannot assign the credit to the right actions. Instead, cortical circuits that
possess highly recurrent dynamics are in a good position to keep track of the past actions® and with the
help of the reward prediction error are able to update the value of past actions. The mPFC's history-
specific representations of past choices *® indicate that credit can be assigned to those previous choices
which contributed to obtaining rewards. This leads to the next question, what makes mPFC engage in task

with long temporal delays?

Ventral tegmental area (VTA) dopaminergic neuron responses are positively correlated with the temporal

gaps between unexpected reward outcomes®’. Based on this we hypothesize that cortico-striatal



connections are gated during long temporal delays because during long intervals dopaminergic neurons
respond more vigorously to the unexpected reward. This idea is supported by anatomical connections
between mPFC and dorsomedial striatum medium spiny neurons that express dopamine receptors® and
receive strong dopaminergic input from VTA, If representations from mPFC propagate to the striatal
circuits, it is not surprising to find the representation of reward and choice history in striatal neurons that

receive direct connections from mPFC®.

We find little evidence that mPFC maintains event memories via persistent activity. Instead, we identify
neurons whose selectivity peaks for rewards and choices occurring two or more trials back, a pattern that
is difficult to reconcile with simple leaky integration models. Prior reports in dorsal anterior cingulate
cortex of rhesus monkeys *® and rodent cortex'*%3 documented reward-history signals one or two trials
back but did not address whether these reflect leaky integration or history-selective coding, leaving the
issue open. Our results address this gap by showing individual neurons with maximal tuning to two or

more trials back in history, rather than the monotonic, decay predicted by leaky integration®.

Temporal filtering of events suggests that the memory representations can depend on the current context.
Indeed, in mouse auditory cortex current sensory input determines the memory representation of the past
sensory input®® and such postdictive effects have been described in human electroencephalogram
recordings®l. While such effect has not been reported in mouse mPFC according to the DT model (which
is true also for many of the other Q-RL models) the unchosen option values decay while chosen option
values are updated. This suggests that the memory of rewards is conditioned on the current choice which
can be considered as the postdictive effects. The more direct evidence of the postdictive effects showed
up when we examined the choice history representations. Choice history representations in VI and VR
tasks showed clear adaptation to the changing task structure, although this was not performed on the same

neurons and inferences were made from different sessions.

The choice history effects, and its neural representations received little attention in previous studies. Part

of the reason is that it is not clear, at least in the V1 task, what generates non monotonic function of choice



history effects. We previously speculated that this functional form may arise from animals assuming
uniform distribution of set reward probabilities?’. However, we also showed that choice history effects
change as set reward probabilities change?’ so understanding what drives choice history effects is
fundamental to derive its generative mechanism. In either case choice history effects suggest the parallel
computations taking place in mPFC, one that computes values based on the reward outcome and the other
that forms a habit-like policy and ignores the trial-by-trial outcome. What was surprising that both of
these representations may be harboured in the same neurons as mixed selectivity in our dataset was
widespread. This suggests that individual neurons in mPFC implement two complementary strategies: one
that is flexible and adaptive on a trial-by-trial basis and other that is more rigid but still quite efficient.
Efficiency of a choice-based strategy was close to what animals achieved when using both reward history
and choice history effects. The balance between these two strategies must depend on the environmental
statistics. Although we show that choice-based strategy can be updated as animals change their behavior
from VI to VR task, parametrically manipulating the choice-based strategy is needed to understand the
interplay between these two systems.

One conceptual framework that can normatively explain the tradeoff between adaptive and more rigid
strategies is policy compression® which posits that capacity-limited agents trade off expected reward
against policy complexity, measured by the mutual information between states and actions, I(S;A).
Low-complexity (compressed) policies are relatively state-agnostic and manifest as choice bias (strong
choice-history influences), whereas higher-complexity policies are more state-dependent and emphasize
reward-history information. Formally, the optimal policy maximizes expected reward subject to a bound
on I(S;A); equivalently, behavior can be viewed as minimizing policy complexity for a desired reward
rate (aspiration level). Under this view, when attainable reward rates are depressed (e.g., VI with added
delays), maintaining a given aspiration level requires allocating more policy complexity—i.e., using more
state information. This predicts stronger reward-history representations and weaker choice-history

signals; when rewards are richer or states are less informative, policies compress and the opposite pattern



emerges. This reward—complexity trade-off provides a normative explanation of increase in reward
history representations and decrease in choice history representations in long delay VI task compared to

the short one.

Our work, while shedding light on the role of the mPFC in decision-making, also had several
shortcomings. 1. We could not answer which part of mPFC is responsible for the observed behavioral
effects. While there are divisions in mPFC with different functions®®, our analysis of recorded data could
not reveal region-specific representations. This may be due to the fact that we never recorded the different
regions of mPFC within the same sessions and will require future work to record concurrently different
parts of mPFC. 2. We did not explore how neural representations change as animals adapt their strategies
when transitioning from VI to VR tasks. This was primarily because it was challenging to train animals to
switch between the two tasks within a single session. The difficulty likely stems from the low reward
probabilities used in these tasks (commonly 0.1 vs. 0.4 and 0.25 vs. 0.25), which required animals to
perform a large number of trials to integrate outcome histories and discern whether they were ina VI or
VR task. Future studies using greater differences in reward probabilities may help address this limitation.
3. We inactivated the mPFC using CNO and saline injections on an alternating schedule, which could
have potentially biased animal behavior by causing them to anticipate drug versus vehicle injections.
However, we believe this is unlikely because control animals expressing GFP showed no behavioral

differences between CNO and saline injections.



Methods

Experiments on mice were conducted in compliance with institutional and national guidelines for the
ethical treatment of animals. Approval was obtained from the Danish Animal Experiments Inspectorate
under the Ministry of Justice (Permit 2017-15-0201-01357) and adhered to the U.S. National Institutes of
Health Guide for the Care and Use of Laboratory Animals. Additionally, all procedures were approved by
the Southern Illinois University Institutional Animal Care and Use Committee (IACUC protocol 23-005)
on 20th May 2024.

Animals and surgery

The animals were (until microdrive implantation) group-housed with a maximum of 4 animals per cage
under a regular 12 hours light/dark cycle.

We used a total of 65 male mice. These mice were 4-6 weeks old (C57BL\J6 background) at the time of
viral injections or microdrive implantation. 21 animals were implanted with microdrive, all on their right
hemisphere. The remaining 44 mice were used for hM4D(Gi) mediated inactivation experiments. Out of
21 animals used for recording single neurons, 11 mice were implanted for regular VI task, of which 5
mice were used to identify single units with spike sorting algorithm MClust and 6 mice were used to
identify single units with modified version of the Kilosort2 (see details below). The remaining 4 mice
were run with the delayed version of the VI task and 5 were used for running concurrently on VI and VR
tasks. One mouse was used for concurrent recording and inactivation experiments. All these 10 animals
were used to identify single neurons using modified version of Kilosort2 algorithm.

Before the microdrive implantation, animals were anesthetized by intraperitoneally injected Ketaminol
(10 mg/ml)/ Xylazine (1.6 mg/ml) mixture. We injected 0.1mg per gram of body weight Ketaminol and
0.01mg of body weight Xylazine. Animals received a supplemental dose of anesthetics in 30-90 min.
intervals to maintain the depth of anesthesia. After we confirmed the absence of pain reflexes, we shaved
the head of the animal, disinfected with 70% ethanol and subcutaneously injected a mixture of lidocaine
(10mg/ml) and norepinephrine(5ugr/ml) with a total volume ~10-20 pl. around the head area.
Subsequently, the animal was head-fixed into a stereotaxic frame (David Kopf Instruments, USA).
Following this, the head skin was either completely removed (for microdrive implantation) or cut in the
middle (for viral injections), and the skull was exposed and dried thoroughly with hemostatic sponges
(Ferrosan Medical Devices, Denmark). Taking Bregma as the reference point, the implantation site was
marked at 1.6mm. anterior and 0.3-0.5mm lateral to Bregma. The skull surrounding the implantation site
was covered with C\B-Metabond (Parkell, USA) to enhance the adhesion of the implant to the skull. The



brain surface was exposed by drilling the cranial window. The microdrive that housed 8 tetrodes
composed of nichrome wires (PX000004, Sandvik) was positioned above the brain surface according to
the coordinates and lowered slowly until the guiding tube surrounding the tetrodes touched the skull.
During the lowering process, the position of the slightly exposed tetrodes (300-500 micron extended from
the guide tube) was monitored to measure penetration of the brain surface. One 0.25-mm diameter
stainless steel wire (Alpha Wire Company, USA) was stripped at the end and inserted ~0.5mm below the
dura to serve as ground and reference. We secured this wire to the skull by a thin layer of ultraviolet light
curable dental cement (Vitrebond Plus, 3M Company, USA). The other end connected to the electrode
interface board (EIB-36-PTB, Neuralynx,Inc) of the microdrive that also housed the tetrodes. Finally, the
tetrodes and brain were protected by applying a drop of ocular lubricant (Dechra, USA) followed by the
thick layer of the dental cement Paladur (Kulzer, Germany). Tetrodes were further lowered by 320um
using the screw on the microdrive. Ketoprofen, (5 mg/kg) was administered postoperatively.

Behavioral training

The water deprivation of the mice was initiated 72 hours before the training began. The behavioral
sessions were performed in a custom-built behavior box equipped with three nose pokes (ports). Each port
contained a stainless-steel hypodermic tube (15GA) tube connected to solenoid valve (LHDA1233115H,
Lee Co. USA) to deliver water reward, an infrared light emitting diode (480-1969-ND, Digikey, USA)
and a phototransistor (480-1958-ND, Digikey, USA) which allowed precise detection of the exact entry
and exit times of the animals. The nose ports were also equipped with white light emitting diodes
(VAOL-3LWY4-ND, Digikey, USA) to signal active ports during training sessions (see below). The
LEDs, phototransistors and valves were connected via custom circuit to Bpod (Sanworks, USA). The
behavioral protocols were written in MATLAB (Mathworks,Inc. USA) and were controlled by Bpod
software.

Animals were trained to poke their noses to the center port, followed by poking into either of the side
ports according to the following schedule. At first, rewards were automatically delivered to both side
ports after center port entrance. As soon as the animals completed 20-30 such trials, we conditioned the
reward delivery on the side port entrance. After another 20-30 trials, the final training stage had begun.
Here, after correct trial initiation via the center port entry, a light in one of the side ports indicated the side
of the next reward. The animals performed the task daily for 45-60 minutes until they reached
approximately 70% correct responses. Each side port was calibrated to deliver 2ul of distilled water.

We used sound attenuated chambers (MAC3, IAC Acoustics, Denmark) for training and testing mice
behavior.

Behavioral tasks

Each trial was initiated by a poke into the center port, where the animal had to wait for a variable delay
period (0.2-0.5s. in VI and VR tasks). Following the delay, a small water reward (less than 0.5ul) was
delivered in the center port, and lights switched on in the side ports signaling the decision stage. Animals
reported their decision by poking into one of the two side ports. If the chosen port had been assigned a
reward, this reward was delivered after a variable delay of 0.2-0.5 seconds. Upon leaving the side port, a
new trial could be initiated immediately without any inter-trial interval. Early withdrawals from the center
port or before reward delivery, or if the animal did not make a decision within 5 seconds, were considered
missed trials. We did not impose any punishments.

The task was subdivided into blocks consisting of a variable number of trials, between 35 and 200 trials.
For each block, the pair of set reward probabilities were kept constant but changed randomly between
blocks. Overall, the following probability pairs were tested. The bold ones indicate probability pairs that



we used in all of the animals except in 5 mice that were run on VI task with spikes sorted using MClust
software (Fig.1 and Fig.2) and 6 mice that were run with VR task with long delay (Fig. 5F).

0.1:04
0.25:0.25
0.1:0.6
0.1:0.5
0.17:0.33
0.3:03

In the VI tasks once, an option had been loaded with a reward, it remained available until the animal
collected it (baiting schedule). Thus, the reward probabilities were updated in each trial according to the
following rule:

Pbt(Rch: i) =1-(1- Pset(Rli))Tc' 1

Pb.(R|T,, i), represents the probability of receiving reward R at trial t for action i; this probability
depends on the number of trials Tc since the last time action i was chosen and on the set reward
probability P,.;(R|i) of scheduling a reward for the option i determined by the experimenter. A more
general equation that describes the reward probabilities looks like

Pb(RIT, 1) = 1= (1= Re(RID) (1 = (1= 8,0)Pbe-s RID) ). 2
Here §; . =1 if animal chooses the option i at trial t and &; ;=0 is otherwise.

Microdrive design

Extracellular recordings were performed via chronically implanted microdrives that housed 8 tetrodes.
The microdrive was equipped with a screw-driven shuttle system, which provided a precise means of
controlling the electrode depths via manual configuration. The microdrive consisted of 3D printed
skeleton (Shapeways, Inc Netherlands) housing a single screw (320 um thread pitch, SSCF-M1.4-12-A2,
Accugroup, Inc, UK) that moved tetrodes. The 8 tetrodes were loaded into the polyamide tube
(TSP320450-AVXAO03A, Polymicro technologies,Inc, USA) with an internal diameter of 320 um. This
polyamide tube was glued to 21GA stainless steel hypodermic tube (Microgroup, Inc. USA) that was
epoxied to the 3D printed shuttle after loading the tetrodes. The shuttle was connecting the screw with the
tetrodes. The 21GA tube was sliding inside the 18GA stainless steel hypodermic tube or the guide tube
(Microgroup, Inc. USA) that was glued (Loctite superglue, Silvan,Inc. Denmark) to the microdrive
skeleton.

Electrophysiology

Before implantation, the tetrodes were gold-plated using nanoZ device (Neuralynx,Inc, USA). The final
impedance of the tetrodes before implantation was within the 300-600 Ka range. The tetrodes were
lowered by 40 pum after each successfully completed behavioral session. For signal acquisition, we used
OpenEphys system (https://open-ephys.org). The signal was acquired at 30KHz frequency and filtered



https://open-ephys.org/

between 600-6000Hz for MClust sorted spikes and between 300-5000Hz for kilosort2 sorted spikes (see
below).

Viral injection and chemogenetic inactivation

For VR and VI task with short delay and V1 task with the long delay we used 38 mice at 4 weeks of age
bilaterally injected with 1.5 ul of adeno-associated viruses (AAV) 2/5 serotype produced at the University
of Zurich vector core facility. We injected AAV-CaMKIla-hMDi-mCherry (titer of the virus 7.3*10"12
genome copies per ml) in 22 mice, AAV-CAG-EGFP (5.4*10"12 genome copies per ml) in 16 mice per
each hemisphere. One additional mouse was injected unilaterally with the AAV-CaMKIla-hM.Di-
mCherry virus for concurrent inactivation and recording experiments. For VR task with long delay, we
bilaterally injected AAV-hSyn-hMsDi-mCherry (titer of the virus 1*10713 genome copies per ml, gift
from Bryan Roth lab Addgene plasmid #50477 ) in 3 mice and AAV-hSyn-EGFP (titer of the virus
7*10"12 genome copies per ml, gift from Bryan Roth lab, Addgene plasmid #50465) in 3 mice of 4
weeks old age. The injection was performed using glass micropipette using a picospritzer (General Valve,
USA). Pulses of ~10ms duration were delivered at ~2Hz intervals. The volume was equally distributed at
three depths in order to achieve uniform expression across the entire medial wall. The injection sites were
1.6 mm anterior and, £0.3 mm lateral to bregma. We injected the virus at -1.8, -1.4, and -1.0 mm depths
from the brain surface. At each depth, we paused injections for 2-3 min-and 5 min at the final injection
site. At the end of the virus injection, we glued (Vetbond, 3M Company, USA) skin halves together.

One week after the recovery from surgery, we trained animals on VR and V1 tasks with two different
delays (as described in the main text). Four weeks after the virus injection, we performed mPFC
inactivation. For this, mice were intraperitoneally injected with either Clozapine N-oxide (C0832, Sigma
Aldrich, Switzerland) (1 mg/kg) dissolved in 0.9% saline or 0.9% saline (300pul) on alternating days. The
behavioral testing began 30 minutes post-injection.

Histology

After the behavior tests were concluded, the animals were anesthetized by either 500 ul of 10% urethane
(U2500, Sigma Aldrich, USA) diluted in distilled water or Ketaminol/ Xylazine mixture that was used for
surgery. The mice that had microdrive implants were connected to an impedance testing device (nanoZ)
and a lesion was induced on 1-3 channels by delivering a 10pA of negative current for 10 seconds
through the electrode wires. Afterward, the animals were perfused with 4% paraformaldehyde, and the
brains were dissected and post-fixed for 1.5 hours. The dissected brains were stored in phosphate buffer at
4°C until further use.

The brains were sliced by a vibratome (Leica VT1200, Leica Biosystems, Germany) into 70 um thick
coronal sections. The regions where the recording took place were identified either by the lesion site or by
anatomical landmarks of tetrode tracks. The slices were mounted on microscope slides by Vectashield
mounting medium containing DAPI (Vector Laboratories, Burlingame, USA) and imaged by a
fluorescence microscope (Zeiss Axiocam 712, Zeiss, Germany, or Leica DM 4500, Leica, Germany).

Data analysis

All data analysis was performed using MATLAB software (MathWorks). All data in the main text is
reported as mean + s.e.m.

Behavioral analysis

Trials, when the animals withdrew from the center port before the required waiting time or did not make a
choice within the set time limit were removed from the data. Furthermore, trials, where the animals



withdrew too early from the reward port were treated as non-rewarded trials. In the case of the
inactivation experiments, sessions with less than 150 trials were excluded.

Logistic regression analysis for behavior

A logistic linear regression model was used to examine the influence of the choice and reward histories
on the current choices. For this analysis, the behavioral data were analyzed session by session after the
removal of missed trials (as described in the above section). To calculate the regression coefficients, first,
we defined the rewards and choices as follows: RR, = 1 if a reward was delivered on the right side at trial
¢, and 0O if there was no reward delivery or the left side was chosen. The equivalent was true for the left
reward vector (LR;). The choice vector (C) was defined as C; = 1 if the right option was chosen in the
given trial, and C, = 0 otherwise. The probability of current choice C; at trial £can be expressed as a
logistic function that takes into account linear combination of the choice and reward histories multiplied
by their corresponding coefficients ,,, M trials back plus bias term S,:

hy = Z Bm * RRe_p + z Bmam * LR + Z Bm+2+m * Coem + Bo
m=1 m=1 m=0
P(C;) = 1/(1 + exp(—hy)) 3b

In order to account for the collinearity between rewards and choices and to improve the interpretability of
the results, elastic net regularization was used®. The cost function involves negative log likelihood and
penalty term of the elastic net, where f are the coefficients to estimate, interpolates between the L1 and L2
norms:

N

p
C = — ) [C¢(logP(C, 1- C)(1 - (logP(C A 0.25 B7
ost(B) ;[ ((0gP(C)) + (1= (1~ (0gP(CH] + 1) (0255,

+ 0.5]B;1)

Therefore, the coefficients that minimized the cross-validated deviance (i.e., penalized negative log-
likelihood) as a function of A in a five-fold cross-validation process were selected as f8. We used
MATLAB built-in function lassoglm with the linker function logit to perform regression.....

Bias estimation

To assess the choice bias for left or right ports, we calculated it as previously described’. Bias = 2 *|Ng
/(Nr + Np) — 0.5|. Here Nris the total number of choices for the right port and N is the total number of
choices for the left port in a session.

Linear Mixed Models (LMM)

LMM was implemented using MATLAB built in function fitime. When residuals met the normality
assumption - passing both the Lilliefors and Jarque-Bera tests - we reported the p-values derived from the
LMM’s t-statistics. Otherwise, we used shuffled distribution to derive the p values. We describe for each
case how shuffled distributions were generated.

Reinforcement learning models of behavior

Here we describe how each of the RL models computed the Q value and/or choice history effects.

Indirect actor model. The indirect actor model updates the values (or state-action value) Q only for the
chosen option,

Qir =Qip—1+8ir—1a(Re—1 — Qir—1), 6



preference;; = Q;;,

Here §; . = 1 if animal chooses the option i at trial tand §; , = 0 is otherwise. Q; , is the value of a given
actioniattimet. « isalearning rate and R,_; = 1 in rewarded and R,_; = 0 in unrewarded trials
t. This model is the most simple version of the RL models®®.

The same notations are used for all the models below unless new variables are introduced.

Direct actor model. The value (Q) of the direct actor model is updated based on the probability of the
chosen action and the reward outcome. This rule also affects the value of the unchosen actions.

Qit = Qi1+ (5i,t—1 - P(it—l)) (Re-1 —0), !
preference;; = Q.

Here c is a parameter that we fit to the behavioral data and can be seen as the average reward rate in R-
learning models ©®.

F-Q down model. The F-Q model is a slight modification of the indirect actor model, where the value of
the unchosen actions is forgotten with the same learning rate a and vanishes to zero.

Qit = Qip—1 + a(8e-1Re—1 — Qir-1) 8
preference;; = Q.

The F-Q model is equivalent to linear-nonlinear Poisson model ¢’.

F-Q with the choice effects model. According to the F-Q W/C model, the probability of taking the next
action depends not only on the reward expectation, but also on choice history F updated according to the
following equation:

Qit = Qi1 + a(8it—1Re—1 — Qip-1), 9

Fit = Fipq + 1p(810-1 — Fie-1), 10
preference;; = Q;; + @F;.

In this case, 7 is the weighting of the choice history F; ., while ¢ characterizes the decay rate of it .

F-Q up model. While the F-Q down model decreases the value (Q) of the unchosen actions, the proposed
model increases the value up to a constant C with its own learning rate a,,,,, which acts as a positive
counter for unchosen actions that increments the value.

Qit = Q-1+ 5i,t—1a’(Rt—1 - Qi,t—l) + (1 - 5i,t—1)aup(c - Qi,t—l)' 11
preference;; = Q.

The initial value of Q; . is set from a uniform random distribution constrained between [0, 1]. This model
is just inverted version of the F-Q down model.

Delta-F-Q model. The proposed model (adapted from Hattori et al. 2009) implements the different
learning rates a and ayp for rewarded and non-rewarded trials, respectively. For chosen options Q; ; is
updated according to the following equation.

Qi; = {Qi,t—l +8;10p* (Ri—1—Qip—1) + (1 —8;4-1)(X—¥) *Qi_1,if Ry =1 12
v Qir-1+ 6 10ng* (Re1 — Qip—1) + (1 —8i4—1)(X —¥) * Qir—1,if R_1 = 0,



when an option is not chosen

Qunch,t = (1 - Y) * Qunch,t—lw 13
preference;; = Q.

Here, y is the forgetting rate of the unchosen option and is bounded between [0 1].
DT model

The value Q; . for option i at a trial t is updated in the following way:
Qit =Qir-1+ a(di,t—lRt—l - Qi,t—l)- 14

The fast F and slow choice history effects S are updated with the learning rate 7 and 15 respectively in
the following way:

Fip=Fiq+ TF(6i,t—1 - i,t—l)/ 15
Sit =Sit—1+ TS(5i,t—1 - Si,t—l)- 16
preference;; = Qi1+ ¢ *xFip + 0x5;; 17

The choice history effects F and S are weighted by ¢ and 6 parameters, respectively. As in previous
equations §; ; = 1 if the animal chooses option i at a trial tand §; ; = 0 is otherwise. This model is better
described in?’.

Action selection rule

Preference (which is identical to the value in simple RL models) computed by all RL models is converted
to choice probability P(a, = i) for each option i, by softmax selection rule.

eB(preferencei’t) 18

P(at = l) = 2:}‘(\_1 eﬁ(preferencek,t)'

In the denominator, k will take up the number of available options.

Model optimization and comparisons

The modeling of behavior was conducted by maximizing the log-likelihood between the RL choice
prediction and actual choice. We used the reward and choice history, R(1,2 ...t — 1) and 6; (1,2, ...t —
1) respectively, to find the best parameters of each RL model described above. We searched the
parameters of each model to maximize the log-likelihood of choice prediction. For this, we sampled a
combination of parameters from initial random distribution to generate choice probability by a softmax
action selection rule.

The probability P(a; = i) and the action taken by the animal §; ; at trial ¢ with the set of n parameters
Or;. (n) per model determines the log-likelihood I, on each trial t:

1) (Or (M) |x) = 8;¢ In (P(a; = |6, () +1n (1= P(a, = i|0z,(m))). 19

To find the optimal parameters, first 1000 combinations of parameters were selected for each RL from a
uniform distribution. The boundaries of the parameters were a € [0,1], 8 € [0,50], ¢ € [—25,25],9 €



[—25,25],t € [—25,25], 77 € [0,1] and 75 € [0,1]. Next, 1% of the combinations with the maximum
mean log-likelihood was taken and a new set of 1000 combinations was drawn as follows:

BrL,2(M)~N (GRL,l,l%' G(GRL,l,l%)) 20
This process was repeated five times to narrow the original parameter space and search for higher log-
likelihood values. The optimal parameters for the prediction of each model 8z, were then the
combination of parameters with the highest mean log-likelihood of the last iteration in the optimization
process.

The optimized parameters for each model and the estimated coefficients were trained and tested via five-
fold cross-validation on the behavioral data in order to obtain the average of the minimum negative log-
likelihood. In addition we computed the average area under the receiver operating characteristic (AUC)
scores (Green DM Signal detection theory and psychophysics). To compute the AUC, the probability
P(a; = i|Qg.) Was set as the score and the original action &; . as the label. We used MATLAB function
perfcurve to compute the AUC scores. These metrics were used for model selection and the goodness of
prediction for each model, respectively.

Behavior of artificial agents

The random agent draws probabilities for left and right ports from uniform p € [0 1] probability
distribution and selects ports with the higher probability. If the probabilities are the same, they are drawn
again from the same uniform distribution and the process of port selection repeats.

The alternation agent constantly alternates between left and right choices.

Rew_prob agent selects ports with higher set reward probability. If the set reward probabilities are the
same then agent randomly selects the port and sticks to the same port until change of probabilities favors
alternative port.

Optimal_Baiting agent uses the baiting update equation (eq.2) to select higher reward probability port. If
probabilities are the same the agent randomly (using p € [0 1] uniform distribution) selects either left or
right port.

Regret

The regret of the animal or model is computed by subtracting the reward harvesting efficiency (reward
rates per trial) of the animal or model from the Optimal_Baiting agent.

Selectivity of single neurons

The selectivity of individual cells for various behavioral events was computed using AUC. In brief, trial
average firing rates in the decision epoch from the time animal entered the center port till the exit
(minimum 0.2-0.5s) were divided into two distributions. These distributions corresponded to behavioral
events such as immediate past rewards vs. no rewards, immediate past choices for the left vs. right and
etc. as indicated for each selectivity analysis in the main text. Thus computed AUC scores were
normalized from -1 to 1 that reflected the separability of firing rate distributions indicating the selectivity
of the cells to the behavioral events. The scores close to -1 (suppression) and 1 (activation) indicated
good separability and scores close to 0 indicated poor separability. For example, neurons that had a high
firing rate (on average) for immediate past right rewarded vs. non -rewarded trials would have a positive
AUC score. The same was true for neurons that had high firing rate (on average) for immediate past left
rewarded trials vs. non- rewarded trials. Right reward selectivity and left reward selectivity were
combined by inverting the sign of the left selectivity score to align it to the selectivity scores for
immediate past choices. This was done because immediate past choice selectivity were computed for right
vs. left choices, meaning that neurons that had high firing rate (on average) for immediate past right vs.



left choices showed positive AUC scores. Significance of AUC scores were computed by a permutation
test, in which each dataset was pseudo-randomly shuffled 1,000 times to yield a p value.

Linear regression analysis for neurons

Here we used events (past rewards, past choices and current choices) to regress against firing rates of
neurons in the decision epoch. This analysis was done using the elastic net regularization as described
above (Linear regression analysis for behavior) except that we used firing rates of neurons as a dependent
variable. For trial-based analysis we used regressors (f coefficients) events up to M = 10 trials back in
history and for time based analysis we used events taking within 0.2 s. windows for up to M = 40 time
bins back in history with respect to current trials.

Ze= ) Fn*RReom+ ) B *LRem+ Y Bszuns * RO,
m=1 m=1 m=0

RR defines the right rewards, LR - left rewards and RC right choices for m trials back with respect to the
current trial t. Z is z-scored trial average firing rate of neurons in the decision epoch for each n neuron.

The linear regressors were then regularized with an elastic net.

p 2 22
P(B) = AZ' (02557 + 051
]:
The coefficients that had the minimum mean squared error as a function of A in a five-fold cross-
validation process were selected as . This process was repeated 100 times with different train/validation
sets in order to compute the mean of the B as

1 100 23
B= m Z Biter »
iter=01

and the probability that £ = 0. This probability, corresponding to a p-value, computed from the
cumulative empirical distribution from 3 ’s. More specifically for each f, we resampled 100 times the
data and refit the elastic net model to obtain a distribution of 3 coefficients. We then estimated the
probability that a coefficient was effectively zero by evaluating its empirical cumulative distribution
function (ECDF) near zero. This probability was taken as the empirical p-value: high values indicate that
the regressor’s coefficient was frequently zero across resamples (weak evidence for an effect), whereas
low values indicate that the coefficient was consistently non-zero (stronger evidence for an effect). We
correct for the false positive discoveries using Benjamini-Hochberg procedure and only the regressors
that have a probability below of 0.00001 (1 in 100,000) of being falsely discovered were selected.
Without this correction almost all (97%) of neurons would show the significant regressors. Elastic net
regularization also strikes a balance between being too relaxed and too restrictive.

Neural population decoding of behavioral variables

For population decoding of DT model and other behavioral variables (like current and past choices,
immediate past left and right rewards) we used generalized linear model (MATLAB function lassoglm
with binomial distribution). We used z-scored trial-averaged firing rate of neurons in the decision epoch
to regress against either choices predicted by the DT model, current, immediate past choices or immediate
past left and right rewards.

M 24
BVe= D fin % N
m=1



Here N stands for z-scored firing rate of a neurons from a total population of M neurons. BV, stands for
the behavioral variable (choice probability, current choice and etc) on a current trial. The regressors were
regularized as described above using elastic net regularization. We used 10 fold cross validation for
regressors. The same regression analysis was performed on shuffled data. For shuffling we randomly
permuted the BV across the trials. The final decoding accuracy was computed as an average of the
difference between unshuffled and shuffled decoding accuracy scores.

Support vector machine classification of behavioral states

The trial averaged firing rate of neurons were analyzed in the decision epoch to solve the multiclass
classification problem by training many binary classifiers to discriminate pair of unique states. Binary
classifiers were pooled by a majority of votes to separate one unique state from the rest of the

states. Each state comprised a unique set of combinations of rewards and choices for each trial back in
history plus choices for current trials. Thus, for each trial back there are 4 different states (rewards, no
rewards left and right choices). There are 4" possible states for states that contained n trials in history,
multiplied on 2 additional states for current trials (left and right choices).

We trained support vector machine classifier (fitcsvm function in MATLAB) on 1/2 of the trials from
each session and tested performance on the remaining 1/2 of the test data. We performed classification on
a different number of states starting with 2 states (left and right current choices) and ending with 16 states
(SFig.4). The performance of classifier was compared to shuffled data by shuffling the labels for only one
pair of events (for rewards or for choices for specific trials in history) while holding the remaining labels
the same.

Recurrent neural network model

The recurrent neural network (RNN) was implemented using MATLAB function layerecnet. The two
inputs of the RNN at time t are the reward R; and choice C; experienced by the animal. The network
consists of a fully connected hidden layer with 30 units, a sigmoid function for non-linearity and a layer
with the tap delay of 1. The net has two targets as outputs, each of them correspond to the value of the DT
model for the left (Qiert,e + ¢ * Fiere + 6 * Siepre) and right (Qrignet + @ * Frigner + 6 * Srignee)
ports. The training of the net weights was done by a Levenberg-Marquardt optimization. We split data
into half for training and testing. The test sets give in average a correlation higher than 0.98 for the
outputs of the trained network with respect to the desired targets. The z-scored firing rate of each hidden
layer neuron was analyzed in the same way as real neurons.

Spike sorting using Kilosort2 based algorithm

We used Kilosort2 *’ to initially isolate and build spatial-temporal templates for each unit. Template for
each unit and each channel is defined as

N 25
K= WU,
=1

Here K is the template defined by the sum of its j temporal W and spatial U components. E is the singular
value matrix. We used up to N = 3 components.

These Kilosort2 identified units underwent further “cleaning” steps to remove the noise. Namely we
performed the following steps:

1. For each unit we identified the set of channels that passed a specific criterion. Namely, we identified
for each unit, “top channel” that had the highest first singular component U (spatial component)



across all channels. Along with the “top channel” we retained all the remaining channels whose first
singular component was above 30% of the “top channel”. This resulted in the selection of channels
for each unit not restricted to the tetrode configuration. Note that MClust sorting algorithm restricts
single unit isolation to four channels.

2. We used Hartigan’s dip test to see if spikes projected on the “top channel’s” template (defined by the
first singular component) violate unimodal distribution.

3. If Hartigan’s test was violated we applied Gaussian mixture model to partition spikes into two
clusters. For this we again used projections of spikes into the template waveforms reconstructed by
first two singular components.

4. Units were inspected manually and further steps were determined by the user.

5. On autocorrelograms (100 ms. window) if unit had no violation of refractory period (1ms window
centered around zero) of less than of 0.05% of total counts we retained that unit.

6. We discarded all the units that passed the step 5, but had fewer than 1000 spikes or waveforms did
not resemble typical spike waveforms.

We deposit the Matlab code that implements all the steps described above in github repository
(https://github.com/1804MB/Kvistiani-lab_Dsort).

Data availability: All behavioral and spike sorted data are available from public repository Code Ocean
https://codeocean.com/capsule/6312901/tree, DOI : 10.24433/CO. 6312901.v1. Source data are provided
with this paper.

Code availability: All code is available from public repository Code Ocean
https://codeocean.com/capsule/6312901/tree , DOI : 10.24433/CO. 6312901.v1
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Figure Legends

Figure 1. Choice- and reward-history exert opposing effects on animals decisions. A) Discrete
version of the VI task illustrating trial structure and behavioral epochs. The upper panel shows
task-relevant events. The lower panel shows the event timeline; dashed lines mark variable
intervals and solid lines fixed intervals. B) Top: performance of animal D004 in one session. Black
vertical lines indicate block transitions and the change in set reward probabilities. Choices were
convolved with a Gaussian filter (length = 10 trials, s.d. = 5). Right choices were coded as 1 and
left choices as —1. Rewards were convolved identically. Bottom: left panel shows experienced
reward rates across block transitions; right panel shows filtered choices across the same
transitions. C) Relationship between reward ratio and choice ratio across sessions. A significant
positive association was observed (two-sided linear regression: slope = 0.65, 95% CI = 0.578—
0.724, t(df = 127) = 17.69, r = 0.89, P = 2.25x107%°). No adjustment for multiple comparison tests
(NAMCT) were applied. D) Mean + s.e.m. reward-harvesting efficiency for artificial agents and
animals. Agents include Random, Alternation, Rew_Prob, and Optimal_Baiting. Performance
from animal D004 (left) and all animals combined (right; n = 4 animals, 76 sessions) is shown.
Animals were compared to agents using two-sided Mann—-Whitney U tests; *** indicates P <
0.001. Artificial agents were evaluated on the same reward schedules as animals. E) Logistic
regression for past right rewards, past left rewards, and past choices predicting current choice
(mean + s.e.m.; n = 82 sessions). F) Alternation rate (mean * s.e.m.) as a function of the difference
in set reward probabilities (low = 0; medium = 0.3; high = 0.5-0.6). Differences across the three
conditions were assessed using a linear mixed-effects model (LMM) with alternation rate as the
dependent variable, reward-probability difference as a fixed effect, and animal identity as a
random intercept. Two-sided P-values from the LMM were FDR-corrected using the Benjamini—
Hochberg procedure; ** indicates P < 0.01 (P = 0.003 and 0.009). Data were collected fromn =2
animals across 45 sessions. Source data are provided as a Source Data file.

Figure 2. mPFC representations are consistent with the behavioral effects of reward and
choice history. A) Example neuron showing spike raster and PETH aligned to past rewarded and



non-rewarded trials (top) and to past right and left choices (bottom). PETH is computed across all
trials and smoothed with a Gaussian kernel (2 ms window, s.d. = 50 ms). Lines and shaded bands
indicate mean * s.e.m. B) Selectivity (AUC) scores for immediate past rewards vs no reward and
for past choices. Associations between reward-related and choice-related AUCs were tested using
a two-sided linear mixed-effects model with AUC_choice as the dependent variable, AUC_reward
as a fixed effect, and animal identity as a random intercept. A significant negative effect was
observed (slope =—0.30, 95% CI = —0.554 to —0.054, P = 0.037, two-sided permutation test,
NAMCT). C) DT model description. Q-values incorporate reward input R(t). Fast (F) and Slow
(S) choice traces integrate past choices with parameters ¢ and 6. Q, F, and S jointly determine
choice probability P(c|t) via a softmax function. D) Relationship between regret (difference
between Optimal_Baiting and DT model performance) and DT model fit (AUC) across sessions.
A significant negative association was found using two-sided Pearson correlation (r =—0.351,
95% CI [-0.545, —0.121], t(65) = —3.02, P = 0.0036, NAMCT). E) Pearson correlations between
reward-history/value signals (Q) and choice-history signals (¢F + 6S) for left and right options
(one point per session). Confidence intervals and significance, using two-sided permutation tests
(1,000 shuffles of session labels); P < 0.001 indicates that fewer than 0.1% of shuffled correlations
exceeded the observed absolute correlation. F) Trial-by-trial correlations between firing rate and
DT-model variables for left-port and right-port trials. Numbers of neurons per quadrant,
confidence intervals, and significance derived using two-sided Pearson correlations and two-sided
permutation tests (1,000 shuffles; P < 1x107'%). G) Regression coefficients relating DT-model
variables to trial-averaged firing rates during the decision epoch. Coefficients were estimated
using two-sided elastic-net regression, with empirical P-values derived from resampling of
coefficient estimates and corrected using the Benjamini—Hochberg FDR procedure (P < 1x1073
threshold). Source data are provided as a Source Data file.

Figure 3. mPFC neurons encode history-specific rewards and choices. A) Prediction accuracy
of the neural population for DT-model choice probability (x-axis) vs. prediction accuracy for
immediate past choice (top left), the animal’s current choice (top right), immediate past right
reward (bottom left), and immediate past left reward (bottom right). Each point is one session. B)
Example neuron’s spike raster and PETH aligned to center-port entry. Trials are grouped by left
(upper row) or right (lower row) choices and by rewarded or unrewarded outcomes n trials back
(shown in columns). PETHs were smoothed with a Gaussian kernel (2 ms window, s.d. = 50 ms).
Lines indicate mean; shading shows s.e.m.C) Heatmap of regression coefficients obtained by
regressing each neuron’s trial-averaged firing rate during the decision epoch against rewards and
choices up to 10 trials back. Only coefficients that remained significant after cross-validation
(held-out 1/5 of trials) and false-discovery-rate correction are shown. Neurons are sorted by the lag
with the largest absolute coefficient and grouped by sensitivity to past right rewards, past left
rewards, current choice, or past choices (separated by dashed blue lines). D) Stability of preferred



lag across the session. For neurons whose dominant coefficient retained the same sign in both
halves of the session, preferred lag was computed separately for the first and second halves
(defined as the predictor with the largest absolute coefficient and non-zero in >85% of 100
bootstrap resamples). Each point shows paired lag indices for one neuron; marker size and gray
shade indicate how many neurons share that value (scale bar, right). Diagonal points reflect stable
lag preference; off-diagonal points denote shifts across the session. E) Percentage of neurons with
significant regression coefficients to any past event. F) Architecture of the recurrent neural
network (RNN) trained to reproduce DT-derived Q-values and choice-history effects. Inputs
encode reward and choice outcomes; the recurrent layer contains 30 units; the output layer
computes Q and history signals for each option. G) Regression coefficients for recurrent-layer
units computed as in (C). H) Percentage of recurrent-layer units with significant history-based
coefficients as in (E). Source data are provided as a Source Data file.

Figure 4. Behavioral and mPFC representations adjust to VI and VR task structure. A)
Alternation rate and reward rate difference from one animal performing VI and VR tasks. Signals
were smoothed with Gaussian filter (window = 75 trials, s.d. = 25 trials). B) Left: reward rates in
VI and VR across all animals (n = 5) and sessions (n = 129). Right: alternation rates. Two-sided
LMMs, task type (VI vs VR) fixed effect and animal identity - random intercept revealed for
reward rate (= 0.178, 95% C1 0.143-0.214, t(127) = 9.89, P = 1.9x1077) and alternation rate (3
= 0.247, 95% CI1 0.205-0.289, t(127) = 11.73, P = 5.5x10722). NAMCT was applied. C)
Regressors (mean * s.e.m.) were estimated using elastic-net regression. Lag-wise VI-VR
differences were tested with two-sided LMMs and within-animal permutation tests (1,000
shuffles), followed by Benjamini-Hochberg FDR correction. Asterisks mark FDR-corrected P <
0.05. D) Correlations between values (Q) and choice-history effects (¢F + 6S) for VI and VR
sessions. Task differences were evaluated with two-sided LMM (task fixed; animal ID random)
and a two-sided within-animal permutation test (1,000 shuffles; P = 0.0009), NAMCT was applied
. E) Selectivity (AUC) for immediate past rewards and immediate past choices. Selectivity in VI
was negative but not significant (top; P = 0.578), whereas VR showed a significant positive effect
(bottom; P = 1.2x107°). F) Trial-by-trial correlations between neuronal firing rate and DT-model
variables (Q, ¢F + 6S) for VR and VI sessions. G) Schematic of intra-task and cross-task
evaluation of the DT model. Intra-task testing uses parameters derived within the same task
(VI->VI or VR—VR). Cross-task testing applies VI-derived parameters to VR sessions and vice
versa. H) DT-model performance (mean + s.e.m.) under intra-task and cross-task testing (n =5
animals, 65 sessions, P = 0.005, two-sided Mann-Whitney U test). 1) Left: cross-task performance
vs neural decoding accuracy (two-sided Pearson correlation, P = 0.0009). Right: decoding
accuracy regressed on mean IT1, DT-model fit, mean RT, and cross-task performance using two-
sided t-tests; NAMCT was applied. Source data are provided as a Source Data file.



Figure 5. mPFC inactivation results in behavioral effects that exhibit both task and temporal
dependency. A) Coronal brain section showing representative hM4D(Gi)-mCherry expression
(red) with DAPI counterstaining (blue) in the mPFC (replicated in 19 animals). B) Schematic of
the behavioral timeline, indicating epochs of task performance and drug (CNO) or saline
injections. C) Influence of past rewards (top) and past choices (bottom) up to 5 trials back on
current choice, shown as logistic regression coefficients in VR (left) and VI (right) tasks (mean £
s.e.m.; n =16 GFP and n = 22 hM,D(Gi) animals). For each lag, coefficients were compared using
two-sided LMM (fixed effects: genotype, drug, genotype x drug; random intercept: animal ID).
Significance was determined using within-animal permutation tests (1,000 shuffles) and
Benjamini—Hochberg FDR correction across lags. Green asterisks denote FDR-corrected P < 0.05,
0.01, or 0.001 for GFP animals; red asterisks denote the same thresholds for hM4D(Gi) animals.
D) Inter-choice intervals (ICI) in VR and V1 tasks for alternation (top) and perseverance (bottom)
across GFP (n = 16) and hM4D(Gi) (n = 22) animals, drug conditions combined. Differences
between VI and VR were tested with a two-sided LMM (task fixed; animal ID random). **
indicates FDR-corrected P < 0.01 (P = 0.007 for alternation; P = 0.002 for perseverance). Box-
plots: center line = median; box = 25th—75th percentiles (IQR); whiskers = full data range. E)
Schematic of the delayed-decision version of the task indicating when the delay period was
introduced. F) Same analysis as in (C), applied to the delay version of the VR (left; n=3 GFP, n =
3 hM4D(Gi)) and VI (right; n =5 GFP, n = 9 hM4D(Gi)) tasks. Two-sided LMMs (genotype x
drug fixed effects; animal 1D random) and 1,000-shuffle within-animal permutation tests were
used at each lag, followed by Benjamini—Hochberg FDR correction. Asterisks indicate FDR-
corrected P < 0.05, 0.01, or 0.001. G) Effect sizes of past-reward and past-choice regressors in
short- and long-delay versions of the VR (top) and VI (bottom) tasks, computed from logistic
regression coefficients. Source data are provided as a Source Data file.

Figure 6. mPFC representations adjust to temporal delays in VI task. A) Schematic of the VI
task incorporating short (0.2-0.5 s) and long (2-2.5 s) waiting periods (colored segment) in the
center port. B) Past rewards and past choices up to 10 trials back regressed onto current choice
(pooled across n =4 mice). Logistic regression coefficients for past right/left rewards and choices
are shown (mean % s.e.m.) for short- and long-delay blocks. For each lag, coefficients were
compared using two-sided linear mixed-effects models with delay (short vs long) as a fixed effect
and animal identity as a random intercept. Significance was assessed using within-animal
permutation tests (1,000 shuffles of delay labels), followed by Benjamini—-Hochberg FDR
correction across lags. Asterisks denote FDR-corrected P < 0.05 (exact P = 0.03). C) Correlations
between value signals (Q) and choice-history effects (¢F + 6S) for left and right options in short-
and long-delay VI sessions. Each point represents one session. D) Regret (computed as in Fig. 2D)
for short- and long-delay blocks across sessions (n = 94). Error bars show mean + s.e.m. Short vs
long delay was compared using a two-sided Wilcoxon rank-sum test (U = 10729,z =4.95, P =
7.53x1077). No multiple-comparison correction was applied. E) Absolute regression coefficients of
all neurons in short- and long-delay periods (mean + s.e.m.). For each regressor, delay effects were
tested with two-sided LMMs (delay fixed; animal 1D random). Significance was assessed using
within-animal permutation tests (1,000 shuffles), and P-values were corrected across regressors
using the Benjamini—Hochberg FDR procedure. Asterisks indicate FDR-corrected P < 0.05 or <
0.01. F) Contingency table of neuron counts in short-delay (rows) versus long-delay (columns)
blocks, grouped by their strongest regression coefficient (past rewards, past choices, current
choice, or untuned). For each category, short—long differences were tested using a two-sided



permutation test (1,000 within-neuron label shuffles). P-values were taken directly from the
permutation null (uncorrected). Stars denote permutation-derived significance (P < 0.05, 0.01, or

0.001). NAMCT was applied. Source data are provided as a Source Data file.

Editor’s summary:
Neural basis of decision-making is not fully understood. Here authors show that mouse prefrontal neurons encode
history-specific rewards and choices. However, their influence is gated by task structure and timing, affecting
decisions primarily in variable interval tasks and when temporal delays separate events.

Peer review information: Nature Communications thanks Michael Halassa and the other anonymous reviewer(s)
for their contribution to the peer review of this work. A peer review file is.available.
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