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ABSTRACT

To better understand large-effect pathogenic variation associated with autism, we generated
long-read sequencing (LRS) data to construct phased and near-complete genome assemblies
(average contig N50=43 Mbp, QV=56) for 189 individuals from 51 families with unsolved cases.
We applied read- and assembly-based strategies to facilitate comprehensive characterization of
de novo mutations, structural variants, and DNA methylation. Using LRS pangenome controls,
we efficiently filtered >97% of common SVs exclusive to 87 offspring. We find no evidence of
increased autosomal SV burden for probands when compared to unaffected siblings yet
observe a suggestive trend toward an increased SV burden on the X chromosome among
affected females. We establish a workflow to prioritize potential pathogenic variants by
integrating autism risk genes and putative honcoding regulatory elements defined from ATAC-
seg and CUT&Tag data from the developing cortex. In total, we identified three pathogenic
variants in TBL1XR1, MECP2, and SYNGAP1, as well as nine candidate de novo and biallelic
inherited homozygous SVs, most of which were missed by short-read sequencing. Our work
highlights the potential of phased genomes to discover complex more pathogenic mutations and
the power of the pangenome to restrict the focus on an increasingly smaller number of SVs for

clinical evaluation.

INTRODUCTION

Autism is a class of neurodevelopmental disorders (NDDs) characterized by challenges in social
interaction, communication, and repetitive behaviors, with symptoms and severity varying widely
among individuals. Currently, the median prevalence of autism globally is approximately 1%,
with a male-to-female ratio of about 4 to 1%. Genetic investigations into rare variants have
typically focused on gene-disruptive de novo mutations (DNMs), rare inherited variants, and

copy number variants (CNVs) discovered through meta-analyses of short-read sequencing



(SRS) and earlier array CGH. These variants account for an estimated 20% of autism cases
and have led to the discovery of ~1000 risk genes and numerous CNVs associated with NDDs?~
9. The underlying mutations for the remaining cases, including structural variants (SVs) mapping

to repetitive regions, remain poorly understood.

SVs, including deletions (DEL), insertions (INS), inversions (INV), translocations, large-scale
CNVs and other complex rearrangements, are defined as affecting 250 base pairs of DNA. They
have been shown to have larger effects'®!! because they can disrupt coding or noncoding
regulatory regions, alongside protein-coding genes, thereby playing a critical role in gene
regulation and human disease'?-*4. However, many SVs occur in technically and
methodologically challenging regions, particularly repetitive sequences, making them difficult to
detect and completely characterize using conventional SRS approaches associated with whole-
genome sequencing (WGS) or whole-exome sequencing (WES). Similarly, a subset of smaller
single-nucleotide variants (SNVs) and indels can be missed by SRS because of their

association with low-complexity and repetitive DNA%57,

Long-read sequencing (LRS) data (15-30 kb) significantly enhances the sensitivity of variant
detection, especially in repetitive DNA regions'®. Recent studies have revealed that LRS data
provide access to ~91% of the human genome, substantially increasing DNM discovery by
~30% and SV discovery by over 47% when compared to SRS datasets416-?1. Consequently,
LRS has been increasingly applied to a variety of unsolved patients and disorders to enhance
pathogenic variant discovery, although most studies to date have involved relatively modest
cohorts focused almost entirely on read-based discovery??=?7. For example, Hiatt et al.
reanalyzed 10 NDD families and 86 probands using Pacific Biosciences (PacBio) high-fidelity
(HiFi) LRS and found an additional yield of 7.3% beyond SRS mainly in the coding regions??23,

Sanchis-Juan et al. applied Oxford Nanopore Technologies (ONT) LRS to complement SRS in



four probands?*. Moreover, the ability to accurately call methylated CpGs, especially from ONT

LRS, has the added benefit of simultaneously discovering potential imprinting defects?.

Beyond read-based variant discovery, the combination of LRS technologies (ONT and PacBio)
has facilitated the construction of near-complete telomere-to-telomere (T2T) genome
assemblies as part of the Human Genome Structural Variation Consortium (HGSVC) and the
Human Pangenome Reference Consortium (HPRC)'822:30, These consortia recently made
hundreds of diverse human genomes publicly available. This resource is potentially valuable to
the clinical genetics community because variant discovery is more complete providing a control
to assess the frequency of variants in regions typically unassayable by SRS and therefore
absent or unreliable in associated databases such as gnomAD3'32, Moreover, assembly-based
comparisons between offspring and parental genomes have been shown to further increase the
power to discover DNM by essentially eliminating reference biases®. Notwithstanding, the
number of samples still remains modest and much larger sample sizes will be required to

understand the full spectrum especially for those with lower minor allele frequency (MAF).

Using LRS assembly approaches, we sought to construct reference-free genome assemblies
comparable to the HGSVC and HPRC controls for all members of autism families. In this study,
we present our initial LRS and assembly resource of 189 individuals from 51 unsolved autism
families where no pathogenic variant was previously identified in the proband via conventional
lllumina whole-genome, whole-exome, or gene panel testing with SRS (Methods). To build
reference resources, we constructed near-complete genomes for each individual and assigned
a workflow to systematically identify variants from high-quality assemblies; we then compared
with HPRC and HGSVC population controls to discover and validate de novo and rare variants

(<0.5%) as further candidates for autism. Importantly, constructing genomes comparable to



pangenome references, allowed us to dramatically reduce the variant search space for SVs

highlighting the increasing utility of the pangenome for disease variant discovery.

RESULTS

Sequence and assembly of genomes from unsolved autism families. We focused on the
sequence and assembly of genomes from 51 unsolved simplex autism families. The set
included 46 families (174 individuals) with idiopathic autism from the Simons Simplex Collection
(SSC) and Study of Autism Genetics Exploration (SAGE) and five families with a diagnosis of
Rett syndrome (15 individuals) (Fig. 1a, Supplementary Data 1). The Rett families had been
previously screened using either gene panels and/or WES with no MECP2 pathogenic mutation
reported by clinical testing labs after multiple attempts (Supplementary Data 1, Methods).
Similarly, the 46 families were part of large-scale CNV and WGS initiatives over the last decade
where no pathogenic variant had been reported by multiple groups, including our own?4:3435, For
36 families, there was also an unaffected sibling serving as a genetic control (17 of these quads

were sex-matched).

We developed an LRS workflow to enhance variant discovery using reference-level quality
genomes with a particular emphasis on characterizing previously undetected SVs and DNMs.
First, we sequenced all 189 genomes using PacBio HiFi sequencing technology from peripheral
blood (n=139), cell lines (n=16), or a mixture of both (n=34) when DNA from peripheral
lymphocytes was limited. Per sample, we generated an average of 36-fold sequence coverage
with an overall N50 read length of 19 kbp after extensive quality control (Fig. 1b, Supplementary
Data 1, Methods, Supplementary Fig. 1). Using parental lllumina reads and hifiasm3¢, we
generated haplotype-resolved genome assemblies (i.e., phased by parent-of-origin) for each of
the 87 offspring. The resulting assemblies are highly contiguous (average contig N50 of 43 Mbp

(Fig. 1c and Supplementary Fig. 2)) and highly accurate (QV=56). The assembly quality is



comparable to that of control pangenomes (with mean QV of 56) from the HPRC®° and

HGSVC'82° (Supplementary Fig. 2).

Variant discovery. For each family, SNVs and small indel callsets were generated by the
GATK?®" and DeepVariant®® callers using T2T-CHM13v2.0-aligned HiFi reads mainly from blood
samples (n=172). Putative DNMs were further validated by confirming their presence in ONT
(Supplementary Fig. 3) and Illlumina data, as previously described?33°. We discovered on
average 96 DNMs per child (n=78), with approximately 83% predicted to be germline and the
remainder arising postzygotically. SVs in each individual were identified from the phased
assemblies using PAV!® with GRCh38 as the reference genome. GRCh38 was selected due to
the broad availability of annotation resources mapped to this assembly, many of which were
integrated into our analyses to facilitate comprehensive functional characterization of putative
disruptive variants. Each SV was considered validated if supported by at least one of the
alignment-based SV callers, either PacBio structural variant caller (PBSV), Sniffles*°, or both
(Methods). We aggregated the validated SVs from all 189 study samples and compared them
with SVs observed in the 108 population controls from the HPRC and HGSVC82930 yig
Truvarit, focusing on rare SVs exclusive to autism families. As a result of subsequent LRS of
additional 1000 Genomes Project (1KGP) samples recently released as part of the HPRC and
other efforts*?, we expanded our SV callset from controls in a staged manner, allowing us to

access variants of reduced MAF (see below Supplementary Fig. 12).

Based on PAV analysis of each child’s assembly, we identified an average of 27,576 SVs per
diploid genome of which 20,716 SVs (95% Confidence Intervals = 9) were also supported by
alignment-based methods (Fig. 2a). We note that two Rett-like samples where DNA was limited
(HYZ204_p1 and HYZ207_p1) have lower contig N50 and lower assembly QV, resulting in

fewer validated SVs (Fig. 2a, Supplementary Fig. 4). The average Mendelian concordance rate



for SVs across 87 trios is 90.4% with many of the discrepant alleles associated with multiallelic
variants, such as variable number tandem repeats (VNTRs) where both sequence and
alignment artefacts confound variant calling*3. This high-confidence SV callset, thus, affects
11,074,300 bp (95% Confidence Intervals = 4,273) per sample (0.4% of the genome). We
applied the same SV discovery approach to 108 pangenome controls resulting in on average
24,341 + 36 validated SVs per diploid genome (Supplementary Fig. 4). This approach improved
the sensitivity of control SV detection and facilitated more effective filtering of SVs in the sample
set. Both pangenome controls and study samples are from diverse superpopulations. And, as
expected, genomically diverse African samples had higher numbers of SVs than non-Africans
(Supplementary Fig. 4). We integrated the two callsets for a total of 271,375 nonredundant SVs
(Supplementary Data 2) and observed an expected SV size distribution with modes at 300 bp
and 6 kbp, corresponding to Alu and LINE retrotransposition events, respectively

(Supplementary Fig. 5).

After filtering with the pangenome we identified a total of 33,548 nonredundant SVs (57,716
genotyped SVs, Supplementary Data 3) that were exclusively observed in the 87 children (51
probands and 36 unaffected siblings). At the individual sample level, we effectively filtered
~97% of SVs per child, resulting in approximately 663 rare SVs per child for further
consideration (affected vs. unaffected, Z = -0.23, p = 0.82, two-sided Mann-Whitney U Test, Fig.
2a). After testing for Mendelian inheritance, the autism set was further reduced to 25,272
nonredundant SVs. We then classified rare SVs into six categories (Fig. 2b) including autosomal
heterozygous (n=33,701), autosomal homozygous (n=6,639), X chromosome heterozygous
(n=1,129), X chromosome homozygous (n=277), and hemizygous events from males on the X
(n=565) and Y (n=141) chromosomes. We evaluated the remaining low-confidence SV calls

through a suite of tools that test for transmission and de novo variants (Methods). We validated



a total of 36 de novo SVs in 51 probands (n=21) and 36 siblings (n=15) that were absent from

108 controls (affected vs. unaffected, p = 1, x* test).

SV burden analyses. Because the majority of rare SVs (96%) map to noncoding DNA, we
annotated all SVs for regulatory potential as well as association with known NDD genes. To
define putative regulatory elements (REG), we integrated published datasets from ENCODE
with regulatory sequences predicted from single-cell and bulk ATAC-seq and CUT&Tag
experiments performed on developmentally staged material (16-24 weeks) from the cerebral
cortex** (Methods). The additional annotation allowed us to identify another 6,171 SVs
associated with brain-derived regulatory regions (brainREG) beyond those defined by ENCODE
intersection and consequently a 45% (6,171/13,773) increase in potential SVs affecting
noncoding regulatory DNA (Fig. 2c-d). For NDD candidate genes, we primarily focused on those
previously reported>"45. We considered three classes of SVs, namely: de novo, homozygous,
and private inherited SVs defined as those observed only once in the parental population?. On
autosomes, we identified 9,474 private SVs in 51 probands and 7,034 private SVs in 36
unaffected siblings. The rates of autosomal SVs (Fig. 2c, Supplementary Fig. 6) do not differ
significantly between probands and unaffected siblings across various categories (nominal p >

0.05, OR < 1, 2 test).

For X chromosome SVs, we analyzed males and females separately. Female probands
exhibited a slight excess of X chromosome private SVs compared to the unaffected female
siblings (nominal p = 0.29, OR = 1.16, adjusted p = 1, x? test), particularly for deletions (Fig. 2d,
nominal p = 0.09, OR = 1.49, adjusted p = 1, x? test). We also considered 1,417 private
homozygous SVs that were inherited from two heterozygous parents on autosomes in only one

family but were never observed as homozygous in any controls. Once again, we observed a



slight enrichment in the number of these private homozygous SVs in probands relative to

unaffected siblings (Supplementary Fig. 7, p > 0.05, x? test).

Sex chromosome assembly analyses. In addition to SVs, we constructed nearly complete X
and Y chromosomes by leveraging LRS and parental sequence data. Excluding the
pseudoautosomal region (PAR), centromere and highly repetitive Yq12 heterochromatic
regions, we estimate that on average 95% of the X chromosome and 70% of the Y chromosome
(Fig. 3a-b, Supplementary Fig. 8) can be aligned (Methods). The assemblies served two
purposes: they validated DNMs on the sex chromosomes and allowed parental transmission to
be fully assessed (i.e., paternal Y and maternal vs. paternal X chromosomes) without use of a

reference genome (Fig. 3c-d).

The analysis highlighted three hemizygous tandem repeat (TR) expansion outliers in male
probands (Supplementary Fig. 9, Methods), each inherited from the mother in the intron of
ILARAPL1 (Interleukin 1 Receptor Accessory Protein Like 1, SFARI score 2 gene), the intron of
F9 (Coagulation Factor IX), or the intergenic region between MXRAS5 (Matrix Remodeling
Associated 5) and SNORA48B (Small Nucleolar RNA, H/ACA Box 48B). These longer TR
noncoding variants have only been observed in heterozygous states in females and variants of
such lengths have yet to be observed in controls. Notably, the corresponding probands
exhibited features commonly associated with neurodevelopmental delay (Supplementary Fig.
9): 1Q scores of 18, 13, and 20, and calibrated severity scores (CSS) of 9, 6, with the CSS data

for the third not available.

Because LRS data allow CpG methylation to be robustly called'é, we used the 889 CpG islands
across the X chromosomes to assess X chromosome inactivation (XCI) skewing in the blood of

female probands and their unaffected sisters. The analysis revealed extreme examples of XCI



skewing, including preferential inactivation of the maternally inherited X chromosome (see

11071, Fig 3e) potentially consistent with the mother carrying a damaged X chromosome.

Pathogenic and autism candidate variant discovery. Using the LRS and assembly data, we
comprehensively searched for both pathogenic as well as potential candidate variants missed
by SRS analyses (Methods). In total, we identified three DNMs classified as pathogenic
(Supplementary Data 4). Among the 46 idiopathic autism samples, we discovered a de novo
stop-gain variant (G1124*) in SYNGAP1 (Fig. 4a), a well-known autism-associated gene
encoding a Ras GTPase-activating protein essential for synaptic function and cognitive
development®t. This pathogenic DNM in 12237 pl is clearly supported by both HiFi and ONT
reads from the proband but was not reported in three prior SRS analyses of this family267. An
analysis of the lllumina sequence data, however, confirms the presence (Fig. 4a) of the variant
in a GC-rich region of the genome where a cluster of rare and additional false calls were

present, likely resulting in this region being subsequently filtered during QC.

Two additional pathogenic variants were discovered by LRS among the five autism-diagnosed
females with features reminiscent of Rett syndrome. This included an 874 bp de novo DEL in
MECP2 in HYZ207_p1, which effectively disrupts the last exon of the gene and introduces a
premature stop codon, truncating the protein by approximately 140 amino acids (Fig. 4b).
Similar deletions involving exon 4 have been reported in Rett patients#”48, This pathogenic
variant was previously missed in three rounds of clinical testing, including two gene panel
sequencing tests through ARUP Laboratories and Quest Diagnostics, and one test of WES
through Ambry Genetics. It was confidently identified in our LRS analysis and subsequently
validated using all three sequencing platforms. We also identified de novo missense mutation
within TBL1XR1 classified by ClinvVar as pathogenic (rs1057517933). TBL1XR1 encodes a

transducin (beta)-like 1 X-linked receptor 1-that directly interacts with MECP2. This de novo



TBL1XR1 (D370N) missense variant was previously reported in the same patient*® and two
other cases in DECIPHER and have been recently classified as a pathogenic variant>°. We also
observed a corresponding decrease in methylation at this CpG site within the exon of TBL1XR1
(Supplementary Fig. 10). As part of this analysis, we also note two DNMs (Table 1) called by
both SRS and LRS mapping to promoters of genes strongly implicated in neuronal development
(POGZ and DDX3X; Fig. 4c-d). POGZ encodes a zinc finger protein involved in chromatin
remodeling and transcriptional regulation®?, while DDX3X, an ATP-dependent RNA helicase,
plays a crucial role in RNA metabolism, translation regulation, and neuronal development®2,
Both genes have been implicated in NDDs, including autism. These two DNMs have never been
observed in gnomAD and given their critical location are candidates for functional testing using
massively parallel reporter assay (MPRA) to determine if they significantly reduce expression

levels.

Among de novo SVs, we identified several candidates of potential regulatory consequence
(Table 1). For example, we identified a 71 bp de novo TR INS within the intron of CNTN3, a
SFARI gene encoding Contactin 3, which mediates cell surface interactions during nervous
system development and the outgrowth and guidance of axons and dendrites (Fig. 4e). This INS
is predicted to disrupt HNRNPK transcription factor (TF) binding sites in 11201 _p1; notably,
HNRNPK also functions as an RNA-binding protein. We attempted to recall this SV using SRS-
based callers, including Manta®3, Smoove (v0.2.5, https://github.com/brentp/smoove),
CNVnator®*, and Canvas®®, and re-genotyped it using Paragraph®® based on lllumina
alignments. All SRS tools failed to detect this variant, likely due to its mapping within a CT-rich
TR. We also identified a 73 bp de novo TR INS predicted to interrupt regulatory regions of
CPT1C and TF binding clusters in 14455 p1. CPT1C encodes carnitine palmitoyltransferase

1C, a neuron-specific protein located in the endoplasmic reticulum, and has been associated



with spastic paraplegia®’ with an emerging role neuropsychiatric conditions®®. This de novo INS

was missed by all SRS-based callers likely due to high-GC content (63% within 100 bp).

Finally, we evaluated rare biallelic inherited homozygous SVs for potential pathogenicity
because of the unique capability of LRS to phase almost all variants®3. We identified six
candidates SVs inherited biparentally and associated with SFARI risk genes or cortex-specific
regulatory regions (Table 1, Supplementary Data 4). None of these have been reported as
homozygous in SRS genomic controls from gnomAD?3! or were identified in pangenome
controls. This set includes: a homozygous DEL overlapping an enhancer located in the 3'
untranslated region (UTR) of gene CLN8 (a SFARI score 2 gene) in proband 11611 p1 (Fig. 4f);
a homozygous DEL disrupting the enhancer of gene ARHGEF10 (a SFARI score 2 gene),
encoding a Rho guanine nucleotide exchange factor (GEF), in 13414 pl1; a homozygous cortex-
specific cis-regulatory element DEL in individual 12651 p1 mapping to the 3' UTR of LRPAP1,
which encodes LDL receptor-related protein associated protein 1 and has been linked to
dementia and late-onset Alzheimer’s disease®®; a homozygous DEL within an intronic enhancer
of PREX1 (a SFARI score 2 gene), in proband 12861 p1l; a 332 bp homozygous INS disrupt TF
binding in TBC1D5 (a SFARI score 2 gene) in 11918 p1, and a 500 bp homozygous DEL
mapping to the promoter region of both LMF2 and NCAPH2 (a SFARI score 3 gene) in
individual 14350_p1 (Table 1). This promoter region is predicted to harbor regulatory activity
based on multiple datasets, including chromatin accessibility and enhancer marks in the
developing brain, suggesting potential cis-regulatory effects on the expression of one or both

genes.

To assess the potential impact of candidate variants, we performed differential expression
analysis using long-read RNA sequencing of lymphoblastoid cell lines generated with the

PacBio Kinnex platform. Gene-level counts were obtained with IsoQuant®® and analyzed with



DESeq2°%! for probands carrying genes with two promoter mutations and five homozygous
deletions that were expressed in blood. Across all seven candidate loci, no significant reduction
in gene expression was detected in blood-derived RNA samples from the target proband
compared to the remaining samples (Supplementary Fig. 11). The absence of detectable
expression changes may reflect tissue-specific regulatory effects, as these variants are more
likely to exert functional consequences in brain tissues, which are directly relevant to the

disorder etiology.

Pangenome increased sensitivity for pathogenic SV discovery. To enhance the power of
pangenome filtering to effectively exclude common SVs and focus on a high-confidence pool of
rare variants, we expanded the control cohort size from 108 to 285 and then to 569 individuals.
The 285-control set contains 177 newly LRS and assembled samples from the HPRC
(HPRCY2), while the 569-control set includes an additional 284 publicly available 1KGP
samples sequenced using ONT (Supplementary Data 1, Supplementary Figs. 2 and 4).
Increasing the number of controls, especially samples of African origin, nearly doubles the
number of SVs from 271,375 (108 controls) to 445,142 (569 controls) nonredundant SVs
(Supplementary Data 5-8). We generated a population-level SV reference and compared the
MAF distribution between the 108 controls and the largest dataset comprising 569 controls and
102 unrelated parents (n=1,342). Based on this comparison, we estimated the fraction of
variants captured at different MAF thresholds (Supplementary Fig. 12). Notably, only 16.2% of
SVs with MAF < 0.1% in the larger dataset were detected in the 108-control set, illustrating the
limited sensitivity of the smaller reference for identifying ultra-rare variants. In an ancestry- and
sex-matched analysis restricted to individuals of European ancestry (38 autism families and 73
controls), each child carried an average of 754 rare SVs. Focusing on rare variants absent from
the largest 569-control set, the number of rare SVs concomitantly drops to 202 events per

sample (Fig. 5b), corresponding to ~74% of rare variants being filtered out by the more diverse



population controls. This demonstrates the substantial gain in sensitivity for removing common
and low-frequency variants when using a larger, heterogeneous reference panel. As a result,
99% of common SVs are excluded per individual forming a more tractable and potentially
biomedically relevant set of rare variants for downstream interpretation and enrichment
analyses. Although still not statistically significant (p = 0.23, two-sided Mann-Whitney U test),
we note that applying 569 controls results in a larger difference with respect to SV burden
between probands and unaffected siblings (Z = 1.20). Of note, only one of our previously 13
proposed candidates (73 bp de novo TR INS in CPT1C) was excluded and none of our

pathogenic variants were excluded (Table 1, Supplementary Fig. 13).

We also compared our LRS SV datasets with a comprehensive SRS SV callset (INS and DEL)
generated by GATK-SV3! from 63,046 unrelated genomes, as represented in gnomADv4.13%, To
ensure a fair comparison between SRS and LRS datasets that differ in resolution and
breakpoint precision, we used relaxed matching criteria in Truvari bench: a minimum of 50%
reciprocal overlap, 50% size similarity, maximum breakpoint distance of 500 bp, and no
sequence similarity requirement. We added the gnomAD SV IDs to the supplementary datasets
(Supplementary Data 2, 5 and 7, Supplementary Fig. 14). Within the 108-control set, 162,916 of
271,375 total nonredundant SVs were observed in the autism families. Of these, 77.6%
(126,377 SVs) were present in the 108 LRS controls, yielding 663 rare SVs per child. In
contrast, only 24.1% (39,234 SVs) overlapped with the SRS-based gnomAD SVs from 63,046
unrelated controls (Supplementary Fig. 14), corresponding to 14,110 rare SVs per child when
considering only short-read controls. Thus, despite its much larger sample size, the short-read
dataset can be considered an auxiliary resource for further filtering rare SVs beyond those
already excluded by the LRS controls, underscoring the substantially greater power of LRS data
for rare variant filtering. Specifically, incorporating the SRS dataset would have further excluded

0.71% (147/20,716 per child) and 0.27% (55/20,716 per child) of SVs from the 108- and 569-



control sets, respectively. Given the inherent differences in breakpoint resolution and variant
representation between LRS and SRS platforms, these overlaps reflect potentially inflated
estimates. A reassuring sign of the stringency and completeness of our filtering strategy is that
all 12 candidates identified were rare variants absent from both the LRS and SRS control

datasets.

DISCUSSION

SRS and microarray studies of autism families have estimated that as much as 30% of autism
cases harbor a rare variant of large effect. While only approximately half of this burden has
been discovered by SRS, it has been hypothesized that missing variants as well as a portion of
the missing heritability may be attributed to impactful rare variants mapping in complex regions
of the genome that are simply inaccessible or difficult to interpret using SRS approaches?*?62,
Targeted LRS studies for missing variants associated with Mendelian disease as well as select
families with typically severe NDDs have suggested increases in diagnostic yield ranging from
7.3% to 33%22-27:63, Qur analysis of 51 families mostly with daughters affected with autism (often
more severely) where we attempted to sequence and assemble the entire euchromatic portion
of each genome suggests a more modest rate of pathogenic variant discovery (5.9%). We
consider this yield of recent pathogenic variant discovery low given that LRS application
increased genome-wide sensitivity of DNM detection by 20-40%?%° and we purposefully
sequence affected females where the probability of discovery of a large effect mutation is
expected to be higher®. It should be noted that LRS alignment to a reference was sufficient to
detect these variants previously missed by SRS. Genome assemblies, while helpful for parent-

of-origin determination and phasing variants, were not critical to the discovery of most variants.



In the end, we identified three pathogenic variants, including only one daughter previously
classified as idiopathic (SYNGAPL1), while the other two pathogenic mutations (a de novo
disruptive missense mutation in TBL1XR1 and de novo SV affecting the last exon of MECP2)
arose in daughters suspected of Rett syndrome. A retrospective analysis of whole-genome SRS
data confirmed the presence of the variants although in two of the three cases the variants
would have been challenging to call without LRS. In addition, we identified nine additional
candidate mutations (17.6% of patients) for further functional testing. The majority of these (7/9)
were SVs that would have been missed by most standard SRS-based SV callers (Table 1). In
contrast to DNM, these SV mutations did not map to coding regions but instead were inherited
and corresponded to homozygous deletions or insertions within regulatory DNA often for genes
associated with autism or neurodevelopment. The LRS data provided unambiguous phasing
allowing rare biallelic inherited homozygous events to be discovered and characterized. These
findings may suggest that some fraction of autism arises as a result of recessive or a
contribution of oligogenic mutations?%%, Advanced sequencing techniques such as LRS will be

required to reveal the full spectrum of mutations contributing to autism.

Compared to earlier work with large CNVs®, we do not yet observe a significant increase in SV
burden when comparing affected and unaffected siblings (Fig. 2). This lack of statistical
significance is likely due to the limited sample size of this study. Notwithstanding, there are
some interesting trends. For example, we note a slight excess of deletions on the X
chromosome among affected daughters when compared to their unaffected sisters. Indeed, our
ability to sequence and assemble ~96% of the X chromosome, as well as most of the
euchromatic portion of the Y chromosome (Fig. 3), will be critical for evaluating the contribution
of sex chromosomes to autism sex bias. Sex chromosomes are routinely excluded from SRS-
WGS studies because of ploidy issues and challenges with repetitive regions®7. LRS and

assembly largely overcome these limitations. Moreover, the ability to concurrently assay



methylation status of CpG islands genome-wide and readily distinguish X chromosome skewing
patterns (Fig. 3) will also advance the discovery of epigenetic mutations as well as potentially

damaged X chromosomes as more and more autism genomes are sequenced.

Perhaps, most importantly has been the ability to leverage pangenomes?° to restrict the focus of
SV discovery to variants that are private to autism families. Unlike SNVs mapping to coding
sequencing, databases such as gnomAD3'3267 gre largely incomplete for variants, especially
SVs, mapping to more complex regions of the genome. A typical human genome harbors over
25,000 variants while whole-genome SRS has been shown to reliably report only 11,000 such
variants'®. In this study, we used more completely sequenced and assembled genomes from
public initiatives such as HGSVC, HPRC and 1KGP ONT829.3042 35 controls to filter out more
common SVs. Using 569 LRS control genomes identifies 445,142 nonredundant SVs in total.
Under a model of ultra-rare SVs contributing to disease, we, as a result, essentially exclude
99% of the more common variants allowing us to focus on 202 private or de novo SV variants
per child. We note that differential with respect to SV burden increases between proband and
unaffected sibling although does not yet reach statistical significance. If we further restrict this
analysis to SVs corresponding to regions of the genome under functional constraint (with
Gnocchi 2 432 and overlap with predicted promoters), this set would further reduce to one or two
SVs per genome. As the human pangenome continues to grow and more complete genetic

information emerges, the potential to discover variants of pathogenic significance will increase.

METHODS

Sample selection and previous sequence characterization. lllumina WGS was previously
applied to the blood DNA of the 174 individuals corresponding to 46 families with idiopathic
autism from the SSC and SAGE. Potential pathogenic variants were screened from SRS based

on the studies by Wilfert et al.? and Fu et al., including (1) SNVs: de novo likely gene-disruptive



(LGD), de novo missense and rare inherited LGD variants in NDD-related genes or genes with
pLI scores = 0.9; (2) CNVs in the morbidity map# or span of a gene with pLI score = 0.9. No
known genetic cause was identified in the 46 probands from SRS data?#%35, In addition, the 46
probands selected in this study do not exhibit exceptional polygenic risk scores among the
13,989 individuals examined? and have known 1Qs ranging from 13 to 91. Similarly, five girls
diagnosed with Rett-like syndrome from Baylor College of Medicine had no causal variants
identified in MECP2 by prior gene panel testing or WES (Supplementary Data 1). The selected
families were predominantly those with female probands due to the interest in discovering X
chromosome variants and the large-effect variants are more likely to be discovered. As shown
in Fig. 1a, 17 quads with sex-matched offspring (12 female-female and 5 male-male quads), 19
quads with sex-mismatched offspring (16 female-male and 3 male-female quads) and 17 trios
(15 female and 2 male trios) were included in this study. Briefly, the 51 probands (41 females
and 10 males) were selected to represent cases that pose difficulties in pinpointing the cause of

autism using Illlumina SRS data.

LRS data generation and QC. We generated PacBio HiFi and ONT sequencing data at the
University of Washington (UW) for 189 individuals. lllumina WGS for Rett-like trios was
generated from blood DNA using the TruSeq library kit and sequenced on a NovaSeq with
paired-end 150 bp reads at the Northwest Genomics Center. For the five Rett-like trios, DNA
was extracted from blood using the Monarch HMW DNA Extraction Kit for Cells & Blood from
NEB (T3050L) (n=6) or the Qiagen Puregene Blood Core Kit (158023) (n=9), following
manufacturer’s specifications. The whole-blood DNA from the SSC was extracted previously as
part of that biobank. The cell line DNA was extracted from lymphoblastoid cell lines with either a
modified Gentra Puregene (Qiagen) protocol when used for ONT sequencing or with the
Monarch HMW kit (NEB T3050L) when used for PacBio sequencing. ONT libraries were

constructed using the Ligation Sequencing Kit (ONT, LSK110 and LSK114) with modifications to



the manufacturer’s protocol. The library was loaded onto a primed R9.4.1 or R10.4.1 flow cell
(FLO-PROO002 or FLO-PRO114M) for sequencing on the PromethION, with two nuclease

washes and reloads after 24 and 48 hours of sequencing.

PacBio HiFi data from family 14455 (n=4) were published in Noyes et al. 2022*7. Data from
three families (n=11) were graciously generated by PacBio. Remaining individuals’ HiFi data
were generated from blood or cell line HMW DNA according to the manufacturer’'s
recommendations. At all steps, quantification was performed with Qubit dSDNA HS (Thermo
Fisher Scientific, Q32854) measured on DS-11 FX (Denovix) with the size distribution checked
using FEMTO Pulse (Agilent, M5330AA and FP-1002-0275.) The samples’ incoming size
distribution determined shearing conditions, either no shear (n=12), or sheared with the
Megaruptor 3 (Hologic Diagenode, B06010003 & E07010003) system using one (n=36) or two
(n=130) sequential runs to target a peak size of ~20 kbp. After shearing, the DNA were used to
generate PacBio HiFi libraries using the Express Template Prep Kit v2 (n=12, PacBio, 100-938-
900) or SMRTbell prep kit 3.0 (n=166, PacBio, 102-182-700). Size selection was performed with
Pippin HT using a high-pass cut-off between 9-17 kbp based on shear size (Sage Science,
HTPOOO01 and HPE7510). Libraries were sequenced either on the Sequel Il platform on SMRT
Cells 8M (PacBio, 101-389-001) using Sequel Il sequencing chemistry 2.0 (n=16, PacBio, 101-
842-900), 2.2 (n=4, PacBio, 102-089-000), or 3.2 (n=32, PacBi0,102-333-300) with 2 h pre-
extension and 30 h movies on SMRT Link v9-11.1, or on the Revio platform on Revio SMRT
Cells (PacBio, 102-202-200) and Revio polymerase kit v1 (n=126, PacBio, 102-817-600) with

2 h pre-extension and 24 or 30 h movies on SMRT Link v12.0-13.1.

To ensure the use of high-quality reads for constructing robust assemblies, we first filtered out
nonhuman contamination reads from both HiFi and ONT data. We employed highly accurate

lllumina reads and utilized yak (commit f389bad, https://github.com/lh3/yak.git) to calculate the



quality value (QV) for each read, and a two-sided z-test was conducted on the resulting QV
values. Reads with a z-score less than -2, indicating a potential risk of contamination, were
compared against the Kraken2?® (v2.1.3) database, and those identified as nonhuman in origin
were excluded. We masked the Y chromosome from GRCh38 to generate the GRCh38noY
reference genome. HiFi reads were aligned to GRCh38 for males and to GRCh38noY for
females using pbmm2 (v1.13.1, https://github.com/PacificBiosciences/pbmm?2). To ensure the
family pedigree, the relatedness between sample pairs and ancestry prediction were conducted
using Somalier®® (v0.2.19) based on the alignment (Supplementary Data 1). ONT reads were
aligned to the reference genome using minimap2 (v2.28.0), and the family pedigree was
confirmed with VerifyBamID (v2.0.1). In addition, ntsm (v1.2.1) was applied to each HiFi and

ONT fastqg for sample swap detection.

Phased genome assembly construction. The HiFi assembly was constructed by hifiasm36
(v0.16.1). Parental short reads were processed with yak (v0.1, https://github.com/lh3/yak.git)
and then hifiasm trio-binning mode was used for phasing child samples, while the parental
assemblies were partially phased by default. The sex chromosome contigs from father samples
were aligned to the T2T-CHM13v2.0 reference to reassign the Y chromosome contigs to hapl
(or paternal haplotype) and X chromosome contigs to hap2 (or maternal haplotype). Assembly
QVs were evaluated by merqury (v1.3) with k-mers from Illlumina data (meryl v1.4); next, the
completeness of phased assemblies relative to the reference and contig N50 values were

calculated (Supplementary Data 1).

Variant discovery. SNVs and small indels in 73 children, with available ONT data, were
recalled with DeepVariant® (v1.4.0) and GATK?’ (v4.3.0.0) based on the HiFi alignments to the
T2T-CHM13v2.0 reference. DNMs including both de novo and postzygotic mutations were

further validated by ONT and/or lllumina reads using the method described in Noyes et al.®°. We



annotated DNMs using the Ensembl Variant Effect Predictor (VEP, v110.1) and referred to the
predicted impact and scores from dbNSFP (v4.8a), CADD score (v1.3), and gnomAD genome
allele frequency®? (v4.1.0) by lifting coordinates over to both GRCh38 and GRCh37 using UCSC
LiftOver (Supplementary Data 4). SVs were called using the phased assembly variant caller
(PAV?8, v2.3.4) by aligning the assembled genomes to a reference (GRCh38 or GRCh38noY).
The alignment-based SVs were called by PacBio SV calling and analysis tool (PBSV, v2.9.0,
https://github.com/PacificBiosciences/pbsv) and Sniffles*® (v2.2). SVs from the control
population were additionally called by Delly (v1.2.6), Sawfish (v0.12.4), and cuteSV (v2.1.0).
The ratio of insertions to deletions, the ratio of heterozygous to homozygous variants, and the

size distribution of SVs were evaluated for each VCF file.

SV merging and filtering strategy. The strategy involved three major steps. Briefly,

1. Callerset validation. SVs detected in each sample from different SV callers were first
normalized, sorted, and merged with BCFtools (v1.20) on the basis of PAV callset, and then
collapsed by Truvari (v4.3.1). SVs located within known genomic gaps, telomeric regions,
centromeres, and PARs on GRCh38 from UCSC Genome Browser tracks were excluded. We
used the following command line:

bcftools merge --thread {threads} --merge none --force-samples -O z -o {output.vcf.gz}
{input.vcfl.gz} {input.vcf2.gz} {input.vcf3.gz}

truvari collapse -i {input.vcf.gz} -¢ {output.removed.vcf.gz} --sizemin 0 --sizemax 1000000 -k
maxqual --gt het --intra --pctseq 0.90 --pctsize 0.90 --refdist 500 | bcftools sort --max-mem 8G -
O z -o {output.collapsed.vcf.gz}

2. Inter-sample merge. We extracted SVs supported by PAV and at least one of the alignment-
based callers for each individual and then merged SVs from both controls and autism families
using a list of VCFs with Truvari. In this study, we have applied three control sets consisting of

108, 285, and 569 individuals.



bcftools merge --threads {threads} --merge none --force-samples --file-list {input.vcflist} -O z |
bcftools norm --threads 15 --do-not-normalize --multiallelics -any --output-type z -0
{output.mergevcf.gz}

truvari collapse --input {input.mergevcf.gz} --collapsed-output {output.removed_vcf.gz} --sizemin
0 --sizemax 1000000 --pctseq 0.90 --pctsize 0.90 --keep common --gt all | bcftools sort --max-
mem {resources}G --output-type z > {output.collapsed_vcf.gz}

3. Rare SV pool discovery. We developed a custom script to extract six categories of rare SVs
as described in the main text (v1.0.0, https://github.com/EichlerLab/asap). For autosomal SVs,
we retained heterozygous and homozygous SVs present only in the children but not in the
controls. For SVs on the sex chromosomes, we performed sex-matched comparisons and

filtered SVs seen in controls with the same sex.

Separately, we compared our LRS SV datasets with the SRS control set from 63,046 unrelated
genomes in gnomAD v4.1 to evaluate the overlap between platforms. SV comparison was
conducted using Truvari bench with relaxed matching parameters to account for differences in
breakpoint precision between LRS and SRS datasets:

truvari bench -c {gnomad.v4.1.INSDEL50.non_neuro_controls.sites.vcf.gz} -b
{108/285/569ctr_189asd_collapsed.vcf.gz} --pctsize 0.5 --pctseq 0.0 --pctovl 0.5 --sizefilt 50 --

sizemax 100000 -o {output}

We incorporated gnomAD SV IDs, overlap metrics (PctSizeSimilarity:PctRecOverlap:SizeDiff),
and allele counts (heterozygous, homozygous, and sex-specific; overall and within the non-
neuro subset into the collapsed SV tables (Supplementary Data 2, 5 and 7). Similar to step 3
above, we applied sex- and zygosity-aware filtering to identify rare SVs absent from all SRS

genomes.



Transmission curation of rare SVs. Parental genotypes corresponding to each rare SV in the
children are provided in Supplementary Data 2, 3, and 5-8. Variants that followed Mendelian
inheritance patterns were designated as high-confidence SVs. The remaining SVs were
subjected to transmission curation using the following toolchain:

1. Initial caller support using Truvari. To minimize the loss of inheritance information in parents
lacking SV caller support, we collapsed SVs from parents with the child’s SVs using truvari
bench,

truvari bench -c {fa,mo}.vcf.gz -b child.vcf --pctsize 0.9 --pctseq 0.9 -o {fa_child,mo_child}

2. Callable region evaluation using BoostSV (v1.0). To ensure the SVs fall within confidently
callable regions across samples in a single family, we developed a tool, BoostSV (v1.0,
https://github.com/jiadong324/BoostSV), leveraging a machine-learning approach trained on
control samples®3. This tool evaluates read support, mapping quality, and data quality metrics
from alignments surrounding the target SVs in each parent. A quality threshold of 0.5 was
applied to obtain the transmission.

3. Genotyping support using kanpig. We applied the k-mer-based genotyper kanpig (v0.3.1) to
parental HiFi alignments for each SV to assess allele presence and genotype consistency.

4. Rare TR expansions/contractions and multiple sequence alignment (MSA). SVs overlapped
with TR catalogs derived from the four-generation control family in Porubsky et al.33 were
genotyped by TRGT® (v1.4.1) using HiFi alignments,

trgt genotype --genome {input.ref} --repeats {input.bed} --reads {input.bam} -t {threads} --output-
prefix {wildcards.sample}/trgt --karyotype {XX/XY}

Genotype (GT) and allele length (AL) information were extracted from the TRGT output across
all individuals of the autism family to detect transmission or TR outliers. For complex TR motif
structures, we validated the SVs in the target sequence from assemblies using the MSA
approach,

# Align assemblies to the reference using minimap2 (v2.28.0):



minimap?2 -c -t {threads} -K {resources.mem}G --cs -x asm20 -m 10000 -z 10000,50 -r 50000 --
end-bonus=100 -O 5,56 -E 4,1 -B 5 --secondary=no --egx -Y {input.ref} {input.asm} >
{output.paf}

# Liftover target sequence coordinates onto query sequence using rustybam (v0.1.33,
https://github.com/mrvollger/rustybam) and extract the target sequence using SAMtools
(v1.16.1):

rustybam liftover --bed {input.bed} {input.paf} > {output.liftover.paf}

samtools faidx {input.asm} {liftover.paf.query_region} > {output.fa}

#. MSA were performed using MAFFT (v7.525) and visualized in Jalview (v2.11.4.1):

mafft --adjustdirection --thread {threads} --auto --reorder {input.combined.fa} > {output.msa.fa}
5. Read-based support validation using subseq. To further assess SV transmission, subseq!®
(v1.0, https://github.com/EichlerLab/subseq-smk) was used to quantify read support for each SV
in parental genomes. A dynamic window size was determined based on the SV size, and the
number of reads traversing the window were counted. The {size50_1_1} parameter was used,
requiring a minimum of one read supporting the SV while allowing a 50% size deviation penalty.
6. Manual inspection using IGV. For SVs lacking sufficient support in Steps 1-5, we conducted
visual inspection of supporting reads in the Integrated Genomics Viewer (IGV, v2.16.0).
Evidence from HiFi alignments, HiFi assemblies, lllumina alignments, and, when available, ONT
alignments (186 samples) was reviewed to further assess inheritance status and assign low-

confidence transmissions.

SV annotation. A customized script was implemented to annotate previously published NDD
candidate genes and regulatory elements, as well as integrate annotations from AnnotSV (v3.4).
In terms of REG, we integrated published datasets from UCSC Genome Browser tracks,
including candidate cis-regulatory elements (ENCODE Regulation, ENCODE cCREs,

ORegAnno, GeneHancer) and ENCODE histone marks (H3K27Ac, H3K4Me1l, H3K4Me3).



Additionally, we incorporated epigenomic profiles from the cerebral cortex (brainREG),
particularly a cis-regulatory element map generated from 27 male and 21 female prenatal
human cortex samples by ATAC-seq and consensus maps for CTCF, H3K27ac, H3K27me3,
and H3K4me3 generated from six male and five female prenatal human cortex samples by
CUT&Tag*. For NDD candidate genes, we primarily focused on those previously reported>7:45,
Additional ENCODE TF Clusters, UCSC noncoding RNA (tRNA, snRNA, lincRNA, sno_miRNA),
repetitive regions (UCSC SegDup, UCSC RepeatMasker, UCSC Simple Repeats, TRs®3),
noncoding constraint Gnocchi score3? and CADD-SV score (v1.1.2) were annotated.

Potential pathogenic variants were confirmed with gnomAD allele frequency and the 569-control
dataset. SVs and CNVs from Illlumina WGS data for the selected samples were recalled by
Manta®? (v.1.5.0), Smoove (v0.2.5, https://github.com/brentp/smoove), CNVnator®* (v0.3.3),
Canvas®® (v1.40.0.1613+master) and genotyped using Paragragh®® (v2.4) to evaluate SRS

detection.

Sex chromosome assemblies and transmission. We patrtitioned the sex chromosomes (T2T-
CHM13v2.0, excluding the PAR, centromere, and highly repetitive Yg12 heterochromatin
regions) into 1 Mbp windows and identified those covered by contigs that aligned to 295% of the
window sequence with no more than three overlapping contigs. The coverage percentage was
calculated as the number of qualified windows divided by the total number of windows,
representing coverage relative to the reference sex chromosomes (Fig. 3a-b, Supplementary
Fig. 8). We designed a pipeline to assemble contiguous X and Y chromosomes and validate
transmission patterns within families (https://github.com/projectoriented/contiguous-X). The
pipeline consists of two main steps: (1) scaffolding contigs with at least 50% of their sequence
aligning to chromosome X (minimap2) via RagTag (v2.1.0), and (2) visualizing alignments

across haplotypes within the family using the SVbyEye R package.



Methylation analysis. We developed a pipeline to extract phased methylation signals from
ONT alignments (https://github.com/projectoriented/continuous-methylation). Briefly, when
parental lllumina reads were available, ONT reads from the offspring were phased using the
Canu (v2.1.1) trio-binning method. The phased ONT reads were then aligned to the GRCh38
reference genome using minimap2 (v2.24.0) and haplotagged accordingly. For individuals (e.qg.,
parents) without available parental lllumina data, SVs were identified using Sniffles*® (v2.2) and
small variants were called with Clair3 (v1.0.2), followed by haplotagging with LongPhase
(v1.7.2). Methylation tags from unmapped BAM files were linked to the phased alignments using
methylink (v0.6.0, https://github.com/projectoriented/methylink). Finally, Modkit (v0.3.1,
https://github.com/nanoporetech/modkit) was used to generate methylation calls in BED format
via pileup function. We analyzed mean methylation differences between the two X chromosome
haplotypes across 889 CpG islands, including +5 kb flanking regions. We then used deepTools
(v3.5.5, https://github.com/deeptools/deepTools) to compute the methylation matrix and
generate the plots.

computeMatrix scale-regions -R {hg38Xcpgl.bed} -S {hapl.bigWig} {hap2.bigWig} -b 5000 --
regionBodyLength 2000 -a 5000 --skipZeros --numberOfProcessors 12 --outFileName {matrix};
plotProfile -m {matrix} --averageType mean --samplesLabel pat mat --startLabel CpGl --
endLabel CpGl --yAxisLabel "Mean of methylation%" --yMin 0 --yMax 100 --colors blue red --
legendLocation lower-right --perGroup --plotType=lines --plotTitle {sample} --dpi 600 --

outFileName {plot}

Long-read Kinnex generation and analysis. Total RNA was extracted from 5 million
lymphoblast cells using the RNeasy mini kit from Qiagen. After initial QC using DS-11 FX
(Denovix) for UV-Vis quantification and Bioanalyzer RNA 6000 Nano (Agilent, P/N G2939A and
5067-1511) for quality score calculation, 150-250 ng per sample were processed into cDNA and

sequencing library concatamers using the I1so-Seq Express 2.0 and Kinnex full-length RNA kits



(PacBio, P/N 103-071-500 and 103-072-000) according to manufacturer’s protocols with the
following modifications: amplified cDNAs were analyzed for average size using Femto Pulse
(Agilent P/N M5330AA and FP-1003-0275) and quantified using fluorescence (Qubit HS DNA
Fisher Scientific P/N Q32854) before equimolar pooling and an additional 1.1X SMRTbell
Cleanup Bead wash to remove residual primer-dimer before proceeding to Kinnex PCR. Kinnex
concatamers were checked for length using Femto Pulse (P/N FP-1002-0275) before loading on
1 SMRT Cell 25M on the PacBio Revio sequencing platform using SPRQ chemistry with
Adaptive Loading and a 30-hour acquisition time. After sequencing, raw data were processed
with the Read Segmentation and Iso-Seq workflow in SMRT Link v25.3 using default

parameters to generate sample-demultiplexed full-length reads (flnc.bam) files.

BAM files were converted to FASTA format using SAMtools (v1.21) and aligned to the GRCh38
reference genome with minimap2 (v2.28) using the parameters -ax splice:hq -uf --secondary=no
--eqx -K 200M. Gene and transcript quantifications were performed with IsoQuant® (v3.10.0)
using GENCODE v49 annotations. Raw gene counts from the target proband and remaining
samples were used as case and control groups, respectively, for differential expression analysis

with DESeq26! (v1.50.0), incorporating sex and diagnosis as variables.

Ethics. Ethical approval for this study was granted by the University of Washington IRB

Committee B, under STUDY ID: STUDY00000383.

DATA AVAILABILITY

The underlying sequencing data, as well as the processed assembly and alignment files used
for analysis in this study for the SSC samples (n = 168) and the complete sample set (n = 189),
are available to approved researchers through SFARI Base under Dataset ID DS0000104

(https://base.sfari.org/dataset/DS0000104) and through the National Institute of Mental Health




Data Archive (NDA) under Collection ID 3780 (https://nda.nih.gov/edit_collection.html|?id=3780).

Source Data are provided with this paper.

CODE AVAILABILITY

The code used to perform the analyses and generate results in this study is publicly available

and has been deposited in GitHub at https://github.com/ EichlerLab/asap, under the MIT

license. The specific version of the code associated with this publication is archived in Zenodo

and is accessible via https://doi.org/10.5281/zen0do.181496447°. A full list of all software used,

along with references, is provided in the Supplementary Notes and Supplementary References.
Any additional information required to reanalyze the data reported in this work is available from

the lead contact upon request.
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TABLES

Tablel. Summary of autism pathogenic and candidate variants.

SRS status
No. FamilylD Sex Gene(s) affected Region Variant type Variant class (prior study, caller or
read support)
1 12237 F SYNGAP1** CDSs De novo stopgain Pathogenic Missing, yes, yes
2 HZRNMO01 F TBL1XR1** CDSs De novo missense Pathogenic Yes, yes, yes
3 HYZ207 F MECP2** CDSs De novo 874 bp DEL Pathogenic Missing, yes, yes
4 14133 F DDX3X** Promoter De novo substitution Likely pathogenic Yes, yes, yes
5 12456 F POGZ** Promoter De novo substitution  Likely pathogenic Yes, yes, yes
6 11201 M CNTN3* TF binding De novo 71 bp INS  Likely pathogenic Missing, no, yes
7 12651 M LRPAP1 3'UTR Biallelic 110 bp DEL Likely pathogenic Missing, no, no
8 11611 F CLN8* 3'UTR Biallelic 135 bp DEL Likely pathogenic Missing, no, no
9 11918 F TBC1D5* TF binding Biallelic 332 bp INS  Likely pathogenic Missing, no, no
10 12826 F PREX1* Enhancer Biallelic 56 bp DEL  Likely pathogenic Missing, no, no



11 13414 M ARHGEF10*  Promoter/Enhancer Biallelic 193 bp DEL Likely pathogenic Missing, no, yes
12 14350 F  LMF2, NCAPH2* Promoter Biallelic 90 bp DEL  Likely pathogenic Missing, no, no

13 14455 F CPT1C Enhancer De novo 73 bp INS Uncertain Missing, no, no

*NDD candidate genes. ** High-confidence NDD or SFARI score 1 genes.

FIGURE LEGENDS

Figure 1. Long-read analysis sequencing and assembly. a Schematic workflow of LRS data
generation and SV discovery with pedigree structures of the 51 unsolved autism families (F=female;
M=male). LRS data (PacBio HiFi and ONT) and phased genomes were constructed using hifiasm3¢; SVs
were discovered by PAV and validated via Truvari** with read-based callers, PBSV and Sniffles (analyses
tools indicated in oval boxes). Validated SVs were filtered using a pangenome of 108 control genomes
from the HPRC and HGSVC to define a rare SV callset private to the autism families (Supplementary
Data 1). b HiFi reads N50 and genomic coverage per sample (members of the same family are color
coded). ¢ Sequence accuracy (QV) and contig N50 length for each HiFi-phased genome assembly. Solid
lines represent mean values, while dashed lines indicate median values. Source data are provided in

Supplementary Data 1.

Figure 2. SV discovery, filtering and burden in autism families. a SV discovery in probands (dark
color) and unaffected sibling (light color with blue border) before (top) and after (bottom) pangenome
filtering for 51 families with idiopathic autism. Proband sex versus unaffected sibling shown in parenthesis
after family IDs. b High- (HC) and low-confidence (LC) SVs by genotype class for autosomes and sex
chromosomes. Het: heterozygous SVs. Hom: homozygous SVs. HC: high-confidence SVs confirmed by
Mendelian inheritance of parental SV calls. LC: low-confidence SVs that initially deviated from Mendelian
inheritance patterns in the collapsed table but were subsequently curated through further evaluation. The
box plots compare the autosomal private SV burden (¢) and X chromosome burden (d, females only)
between probands (pink) and unaffected siblings (gray) for 51 probands (41 females and 10 males) and
36 unaffected siblings (15 females and 21 males). Different functional categories of SV classes are

considered: protein-coding and UTR (Exon), intergenic (Inter), intronic (Intron), deletions (DEL), insertions



(INS), paternally inherited (Pat), maternally inherited (Mat), those overlapping neurodevelopmental
disorder (NDD) genes, brain-derived regulatory regions (brainREG)**, and a combined set of all
regulatory regions (REG). The center lines of the box plots represent the median; box limits indicate
upper and lower quartiles; whiskers show 1.5x the interquartile range; individual points represent private
SV counts per sample. The black line indicates the mean private count per sample. No significant
differences (x* test p-values exceeding 0.05) in the number of SVs between probands and siblings were
observed across these categories, with a still insignificant trend observed on the X chromosome for
enrichment of SVs on affected females compared to unaffected sisters. Source data are provided as a

Source Data file.

Figure 3. Sex chromosome assembly, transmission and X chromosome inactivation skewing.

a Stacked barplot showing X chromosome assembly continuity and mappability relative to the T2T-
CHM13v2.0 reference across haplotypes. Each horizontal line represents one haplotype. The assembled
contigs in each haplotype traverse the 1 Mbp window of the reference (no more than 3) and have at least
295% sequence overlap. Colored segments indicate SDs (yellow), centromeres (red), and gaps (black)
on the reference cytogenetic band. b Continuity and mappability of Y chromosome assemblies relative to
the T2T-CHM13v2.0 reference (Ygl2 heterochromatic region was masked). ¢ Transmitted X assemblies
from father to two daughters in 12832 family with sequence identity visualized using gradient colors.

d Transmitted Y assemblies from father to sons in 14317 family. Pseudoautosomal regions (PARS),
centromeres (Cen) and satellites (Sat), and X-transposed region (XTR) annotations were derived from
Rhie et al.”*. e Haplotype-resolved methylation at CpG islands (CpGls) on the X chromosome in nine
female-female quads. Mean methylation levels were calculated for each haplotype across 889 CpGls and
their 5 kbp flanking regions on the X chromosome for 18 female individuals. Red denotes the maternal
haplotype, while blue represents the paternal haplotype. A subset of individuals shows evidence of

skewing of X inactivation. Source data are provided as a Source Data file.

Figure 4. Pathogenic and candidate variants missed by short-read WGS. Long-read sequencing

solved cases a (12237_p1) involving a stop-gain de novo mutation in SYNGAP1 and b (HYZ207_p1)



involving a de novo deletion in the last exon of MECP2. ¢ A de novo candidate mutation in the promoter
of DDX3X in 14133 pl. d A de novo candidate mutation in the promoter of POGZ in 12456 _pl.e A71 bp
de novo tandem insertion in 11201 _p1, predicted to interrupt the HNRNPK TF binding cluster in the intron
of CNTN3. f A 135 bp homozygous tandem repeat (TR) contraction in the 3' UTR of CLN8 in 11616 _p1,
predicted to disrupt the transcription of CLN8. The variants are highlighted with red boxes. ENCODE
cCREs, ORegAnno, GeneHancer, ENCODE TF Clusters, and tandem repeats are published datasets

from UCSC Genome Browser tracks. Source data are provided in Supplementary Data 4.

Figure 5. Reduction of the rare SV pool with increasing control samples. a Cumulative discovery
curves of SVs identified in different control cohorts of 108, 285 and 569 individuals, compared to 87
children (both affected and unaffected) from autism families (corresponding to Supplementary Data 2, 5
and 7, respectively). Control samples and discovery curves were computed for both African (AFR) and
non-African (non-AFR) controls. b The inclusion of additional population controls refined the rare SV
candidate pool, reducing the number of rare SVs (black) from 663 to 202, thus reducing the number of

SVs under consideration from 97% to 99% (red). Source data are provided as a Source Data file.
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Editor’'s Summary

Large-effect variants in autism remain elusive. Here, the authors use long-read sequencing to
assemble phased genomes for 189 individuals, identifying pathogenic variants in TBL1XR1,
MECP2, and SYNGAPL, plus nine candidate structural variants missed by short-read methods.
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