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ABSTRACT 

To better understand large-effect pathogenic variation associated with autism, we generated 

long-read sequencing (LRS) data to construct phased and near-complete genome assemblies 

(average contig N50=43 Mbp, QV=56) for 189 individuals from 51 families with unsolved cases. 

We applied read- and assembly-based strategies to facilitate comprehensive characterization of 

de novo mutations, structural variants, and DNA methylation. Using LRS pangenome controls, 

we efficiently filtered >97% of common SVs exclusive to 87 offspring. We find no evidence of 

increased autosomal SV burden for probands when compared to unaffected siblings yet 

observe a suggestive trend toward an increased SV burden on the X chromosome among 

affected females. We establish a workflow to prioritize potential pathogenic variants by 

integrating autism risk genes and putative noncoding regulatory elements defined from ATAC-

seq and CUT&Tag data from the developing cortex. In total, we identified three pathogenic 

variants in TBL1XR1, MECP2, and SYNGAP1, as well as nine candidate de novo and biallelic 

inherited homozygous SVs, most of which were missed by short-read sequencing. Our work 

highlights the potential of phased genomes to discover complex more pathogenic mutations and 

the power of the pangenome to restrict the focus on an increasingly smaller number of SVs for 

clinical evaluation.  

 

INTRODUCTION 

Autism is a class of neurodevelopmental disorders (NDDs) characterized by challenges in social 

interaction, communication, and repetitive behaviors, with symptoms and severity varying widely 

among individuals. Currently, the median prevalence of autism globally is approximately 1%, 

with a male-to-female ratio of about 4 to 11. Genetic investigations into rare variants have 

typically focused on gene-disruptive de novo mutations (DNMs), rare inherited variants, and 

copy number variants (CNVs) discovered through meta-analyses of short-read sequencing 
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(SRS) and earlier array CGH. These variants account for an estimated 20% of autism cases 

and have led to the discovery of ~1000 risk genes and numerous CNVs associated with NDDs2–

9. The underlying mutations for the remaining cases, including structural variants (SVs) mapping 

to repetitive regions, remain poorly understood.  

 

SVs, including deletions (DEL), insertions (INS), inversions (INV), translocations, large-scale 

CNVs and other complex rearrangements, are defined as affecting ≥50 base pairs of DNA. They 

have been shown to have larger effects10,11 because they can disrupt coding or noncoding 

regulatory regions, alongside protein-coding genes, thereby playing a critical role in gene 

regulation and human disease12–14. However, many SVs occur in technically and 

methodologically challenging regions, particularly repetitive sequences, making them difficult to 

detect and completely characterize using conventional SRS approaches associated with whole-

genome sequencing (WGS) or whole-exome sequencing (WES). Similarly, a subset of smaller 

single-nucleotide variants (SNVs) and indels can be missed by SRS because of their 

association with low-complexity and repetitive DNA2,5–7. 

 

Long-read sequencing (LRS) data (15-30 kb) significantly enhances the sensitivity of variant 

detection, especially in repetitive DNA regions15. Recent studies have revealed that LRS data 

provide access to ~91% of the human genome, substantially increasing DNM discovery by 

~30% and SV discovery by over 47% when compared to SRS datasets14,16–21. Consequently, 

LRS has been increasingly applied to a variety of unsolved patients and disorders to enhance 

pathogenic variant discovery, although most studies to date have involved relatively modest 

cohorts focused almost entirely on read-based discovery22–27. For example, Hiatt et al. 

reanalyzed 10 NDD families and 86 probands using Pacific Biosciences (PacBio) high-fidelity 

(HiFi) LRS and found an additional yield of 7.3% beyond SRS mainly in the coding regions22,23. 

Sanchis-Juan et al. applied Oxford Nanopore Technologies (ONT) LRS to complement SRS in 
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four probands24. Moreover, the ability to accurately call methylated CpGs, especially from ONT 

LRS, has the added benefit of simultaneously discovering potential imprinting defects28. 

 

Beyond read-based variant discovery, the combination of LRS technologies (ONT and PacBio) 

has facilitated the construction of near-complete telomere-to-telomere (T2T) genome 

assemblies as part of the Human Genome Structural Variation Consortium (HGSVC) and the 

Human Pangenome Reference Consortium (HPRC)18,29,30. These consortia recently made 

hundreds of diverse human genomes publicly available. This resource is potentially valuable to 

the clinical genetics community because variant discovery is more complete providing a control 

to assess the frequency of variants in regions typically unassayable by SRS and therefore 

absent or unreliable in associated databases such as gnomAD31,32. Moreover, assembly-based 

comparisons between offspring and parental genomes have been shown to further increase the 

power to discover DNM by essentially eliminating reference biases33. Notwithstanding, the 

number of samples still remains modest and much larger sample sizes will be required to 

understand the full spectrum especially for those with lower minor allele frequency (MAF). 

 

Using LRS assembly approaches, we sought to construct reference-free genome assemblies 

comparable to the HGSVC and HPRC controls for all members of autism families. In this study, 

we present our initial LRS and assembly resource of 189 individuals from 51 unsolved autism 

families where no pathogenic variant was previously identified in the proband via conventional 

Illumina whole-genome, whole-exome, or gene panel testing with SRS (Methods). To build 

reference resources, we constructed near-complete genomes for each individual and assigned 

a workflow to systematically identify variants from high-quality assemblies; we then compared 

with HPRC and HGSVC population controls to discover and validate de novo and rare variants 

(<0.5%) as further candidates for autism. Importantly, constructing genomes comparable to 
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pangenome references, allowed us to dramatically reduce the variant search space for SVs 

highlighting the increasing utility of the pangenome for disease variant discovery.  

 

RESULTS 

Sequence and assembly of genomes from unsolved autism families. We focused on the 

sequence and assembly of genomes from 51 unsolved simplex autism families. The set 

included 46 families (174 individuals) with idiopathic autism from the Simons Simplex Collection 

(SSC) and Study of Autism Genetics Exploration (SAGE) and five families with a diagnosis of 

Rett syndrome (15 individuals) (Fig. 1a, Supplementary Data 1). The Rett families had been 

previously screened using either gene panels and/or WES with no MECP2 pathogenic mutation 

reported by clinical testing labs after multiple attempts (Supplementary Data 1, Methods). 

Similarly, the 46 families were part of large-scale CNV and WGS initiatives over the last decade 

where no pathogenic variant had been reported by multiple groups, including our own2,4,34,35. For 

36 families, there was also an unaffected sibling serving as a genetic control (17 of these quads 

were sex-matched). 

 

We developed an LRS workflow to enhance variant discovery using reference-level quality 

genomes with a particular emphasis on characterizing previously undetected SVs and DNMs. 

First, we sequenced all 189 genomes using PacBio HiFi sequencing technology from peripheral 

blood (n=139), cell lines (n=16), or a mixture of both (n=34) when DNA from peripheral 

lymphocytes was limited. Per sample, we generated an average of 36-fold sequence coverage 

with an overall N50 read length of 19 kbp after extensive quality control (Fig. 1b, Supplementary 

Data 1, Methods, Supplementary Fig. 1). Using parental Illumina reads and hifiasm36, we 

generated haplotype-resolved genome assemblies (i.e., phased by parent-of-origin) for each of 

the 87 offspring. The resulting assemblies are highly contiguous (average contig N50 of 43 Mbp 

(Fig. 1c and Supplementary Fig. 2)) and highly accurate (QV=56). The assembly quality is 
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comparable to that of control pangenomes (with mean QV of 56) from the HPRC30 and 

HGSVC18,29 (Supplementary Fig. 2).  

 

Variant discovery. For each family, SNVs and small indel callsets were generated by the 

GATK37 and DeepVariant38 callers using T2T-CHM13v2.0-aligned HiFi reads mainly from blood 

samples (n=172). Putative DNMs were further validated by confirming their presence in ONT 

(Supplementary Fig. 3) and Illumina data, as previously described33,39. We discovered on 

average 96 DNMs per child (n=78), with approximately 83% predicted to be germline and the 

remainder arising postzygotically. SVs in each individual were identified from the phased 

assemblies using PAV18 with GRCh38 as the reference genome. GRCh38 was selected due to 

the broad availability of annotation resources mapped to this assembly, many of which were 

integrated into our analyses to facilitate comprehensive functional characterization of putative 

disruptive variants. Each SV was considered validated if supported by at least one of the 

alignment-based SV callers, either PacBio structural variant caller (PBSV), Sniffles40, or both 

(Methods). We aggregated the validated SVs from all 189 study samples and compared them 

with SVs observed in the 108 population controls from the HPRC and HGSVC18,29,30 via 

Truvari41, focusing on rare SVs exclusive to autism families. As a result of subsequent LRS of 

additional 1000 Genomes Project (1KGP) samples recently released as part of the HPRC and 

other efforts42, we expanded our SV callset from controls in a staged manner, allowing us to 

access variants of reduced MAF (see below Supplementary Fig. 12). 

 

Based on PAV analysis of each child’s assembly, we identified an average of 27,576 SVs per 

diploid genome of which 20,716 SVs (95% Confidence Intervals = 9) were also supported by 

alignment-based methods (Fig. 2a). We note that two Rett-like samples where DNA was limited 

(HYZ204_p1 and HYZ207_p1) have lower contig N50 and lower assembly QV, resulting in 

fewer validated SVs (Fig. 2a, Supplementary Fig. 4). The average Mendelian concordance rate 
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for SVs across 87 trios is 90.4% with many of the discrepant alleles associated with multiallelic 

variants, such as variable number tandem repeats (VNTRs) where both sequence and 

alignment artefacts confound variant calling43. This high-confidence SV callset, thus, affects 

11,074,300 bp (95% Confidence Intervals = 4,273) per sample (0.4% of the genome). We 

applied the same SV discovery approach to 108 pangenome controls resulting in on average 

24,341 ± 36 validated SVs per diploid genome (Supplementary Fig. 4). This approach improved 

the sensitivity of control SV detection and facilitated more effective filtering of SVs in the sample 

set. Both pangenome controls and study samples are from diverse superpopulations. And, as 

expected, genomically diverse African samples had higher numbers of SVs than non-Africans 

(Supplementary Fig. 4). We integrated the two callsets for a total of 271,375 nonredundant SVs 

(Supplementary Data 2) and observed an expected SV size distribution with modes at 300 bp 

and 6 kbp, corresponding to Alu and LINE retrotransposition events, respectively 

(Supplementary Fig. 5).  

 

After filtering with the pangenome we identified a total of 33,548 nonredundant SVs (57,716 

genotyped SVs, Supplementary Data 3) that were exclusively observed in the 87 children (51 

probands and 36 unaffected siblings). At the individual sample level, we effectively filtered 

~97% of SVs per child, resulting in approximately 663 rare SVs per child for further 

consideration (affected vs. unaffected, Z = -0.23, p = 0.82, two-sided Mann-Whitney U Test, Fig. 

2a). After testing for Mendelian inheritance, the autism set was further reduced to 25,272 

nonredundant SVs. We then classified rare SVs into six categories (Fig. 2b) including autosomal 

heterozygous (n=33,701), autosomal homozygous (n=6,639), X chromosome heterozygous 

(n=1,129), X chromosome homozygous (n=277), and hemizygous events from males on the X 

(n=565) and Y (n=141) chromosomes. We evaluated the remaining low-confidence SV calls 

through a suite of tools that test for transmission and de novo variants (Methods). We validated 
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a total of 36 de novo SVs in 51 probands (n=21) and 36 siblings (n=15) that were absent from 

108 controls (affected vs. unaffected, p = 1, χ² test). 

 

SV burden analyses. Because the majority of rare SVs (96%) map to noncoding DNA, we 

annotated all SVs for regulatory potential as well as association with known NDD genes. To 

define putative regulatory elements (REG), we integrated published datasets from ENCODE 

with regulatory sequences predicted from single-cell and bulk ATAC-seq and CUT&Tag 

experiments performed on developmentally staged material (16-24 weeks) from the cerebral 

cortex44 (Methods). The additional annotation allowed us to identify another 6,171 SVs 

associated with brain-derived regulatory regions (brainREG) beyond those defined by ENCODE 

intersection and consequently a 45% (6,171/13,773) increase in potential SVs affecting 

noncoding regulatory DNA (Fig. 2c-d). For NDD candidate genes, we primarily focused on those 

previously reported5–7,45. We considered three classes of SVs, namely: de novo, homozygous, 

and private inherited SVs defined as those observed only once in the parental population2. On 

autosomes, we identified 9,474 private SVs in 51 probands and 7,034 private SVs in 36 

unaffected siblings. The rates of autosomal SVs (Fig. 2c, Supplementary Fig. 6) do not differ 

significantly between probands and unaffected siblings across various categories (nominal p > 

0.05, OR < 1, χ² test).  

 

For X chromosome SVs, we analyzed males and females separately. Female probands 

exhibited a slight excess of X chromosome private SVs compared to the unaffected female 

siblings (nominal p = 0.29, OR = 1.16, adjusted p = 1, χ² test), particularly for deletions (Fig. 2d, 

nominal p = 0.09, OR = 1.49, adjusted p = 1, χ² test). We also considered 1,417 private 

homozygous SVs that were inherited from two heterozygous parents on autosomes in only one 

family but were never observed as homozygous in any controls. Once again, we observed a 
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slight enrichment in the number of these private homozygous SVs in probands relative to 

unaffected siblings (Supplementary Fig. 7, p > 0.05, χ² test). 

 

Sex chromosome assembly analyses. In addition to SVs, we constructed nearly complete X 

and Y chromosomes by leveraging LRS and parental sequence data. Excluding the 

pseudoautosomal region (PAR), centromere and highly repetitive Yq12 heterochromatic 

regions, we estimate that on average 95% of the X chromosome and 70% of the Y chromosome 

(Fig. 3a-b, Supplementary Fig. 8) can be aligned (Methods). The assemblies served two 

purposes: they validated DNMs on the sex chromosomes and allowed parental transmission to 

be fully assessed (i.e., paternal Y and maternal vs. paternal X chromosomes) without use of a 

reference genome (Fig. 3c-d). 

 

The analysis highlighted three hemizygous tandem repeat (TR) expansion outliers in male 

probands (Supplementary Fig. 9, Methods), each inherited from the mother in the intron of 

IL1RAPL1 (Interleukin 1 Receptor Accessory Protein Like 1, SFARI score 2 gene), the intron of 

F9 (Coagulation Factor IX), or the intergenic region between MXRA5 (Matrix Remodeling 

Associated 5) and SNORA48B (Small Nucleolar RNA, H/ACA Box 48B). These longer TR 

noncoding variants have only been observed in heterozygous states in females and variants of 

such lengths have yet to be observed in controls. Notably, the corresponding probands 

exhibited features commonly associated with neurodevelopmental delay (Supplementary Fig. 

9): IQ scores of 18, 13, and 20, and calibrated severity scores (CSS) of 9, 6, with the CSS data 

for the third not available. 

 

Because LRS data allow CpG methylation to be robustly called16, we used the 889 CpG islands 

across the X chromosomes to assess X chromosome inactivation (XCI) skewing in the blood of 

female probands and their unaffected sisters. The analysis revealed extreme examples of XCI 
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skewing, including preferential inactivation of the maternally inherited X chromosome (see 

11071, Fig 3e) potentially consistent with the mother carrying a damaged X chromosome.  

 

Pathogenic and autism candidate variant discovery. Using the LRS and assembly data, we 

comprehensively searched for both pathogenic as well as potential candidate variants missed 

by SRS analyses (Methods). In total, we identified three DNMs classified as pathogenic 

(Supplementary Data 4). Among the 46 idiopathic autism samples, we discovered a de novo 

stop-gain variant (G1124*) in SYNGAP1 (Fig. 4a), a well-known autism-associated gene 

encoding a Ras GTPase-activating protein essential for synaptic function and cognitive 

development46. This pathogenic DNM in 12237_p1 is clearly supported by both HiFi and ONT 

reads from the proband but was not reported in three prior SRS analyses of this family2,6,7. An 

analysis of the Illumina sequence data, however, confirms the presence (Fig. 4a) of the variant 

in a GC-rich region of the genome where a cluster of rare and additional false calls were 

present, likely resulting in this region being subsequently filtered during QC.  

 

Two additional pathogenic variants were discovered by LRS among the five autism-diagnosed 

females with features reminiscent of Rett syndrome. This included an 874 bp de novo DEL in 

MECP2 in HYZ207_p1, which effectively disrupts the last exon of the gene and introduces a 

premature stop codon, truncating the protein by approximately 140 amino acids (Fig. 4b). 

Similar deletions involving exon 4 have been reported in Rett patients47,48. This pathogenic 

variant was previously missed in three rounds of clinical testing, including two gene panel 

sequencing tests through ARUP Laboratories and Quest Diagnostics, and one test of WES 

through Ambry Genetics. It was confidently identified in our LRS analysis and subsequently 

validated using all three sequencing platforms. We also identified de novo missense mutation 

within TBL1XR1 classified by ClinVar as pathogenic (rs1057517933). TBL1XR1 encodes a 

transducin (beta)-like 1 X-linked receptor 1–that directly interacts with MECP2. This de novo 
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TBL1XR1 (D370N) missense variant was previously reported in the same patient49 and two 

other cases in DECIPHER and have been recently classified as a pathogenic variant50. We also 

observed a corresponding decrease in methylation at this CpG site within the exon of TBL1XR1 

(Supplementary Fig. 10). As part of this analysis, we also note two DNMs (Table 1) called by 

both SRS and LRS mapping to promoters of genes strongly implicated in neuronal development 

(POGZ and DDX3X; Fig. 4c-d). POGZ encodes a zinc finger protein involved in chromatin 

remodeling and transcriptional regulation51, while DDX3X, an ATP-dependent RNA helicase, 

plays a crucial role in RNA metabolism, translation regulation, and neuronal development52. 

Both genes have been implicated in NDDs, including autism. These two DNMs have never been 

observed in gnomAD and given their critical location are candidates for functional testing using 

massively parallel reporter assay (MPRA) to determine if they significantly reduce expression 

levels. 

 

Among de novo SVs, we identified several candidates of potential regulatory consequence 

(Table 1). For example, we identified a 71 bp de novo TR INS within the intron of CNTN3, a 

SFARI gene encoding Contactin 3, which mediates cell surface interactions during nervous 

system development and the outgrowth and guidance of axons and dendrites (Fig. 4e). This INS 

is predicted to disrupt HNRNPK transcription factor (TF) binding sites in 11201_p1; notably, 

HNRNPK also functions as an RNA-binding protein. We attempted to recall this SV using SRS-

based callers, including Manta53, Smoove (v0.2.5, https://github.com/brentp/smoove), 

CNVnator54, and Canvas55, and re-genotyped it using Paragraph56 based on Illumina 

alignments. All SRS tools failed to detect this variant, likely due to its mapping within a CT-rich 

TR. We also identified a 73 bp de novo TR INS predicted to interrupt regulatory regions of 

CPT1C and TF binding clusters in 14455_p1. CPT1C encodes carnitine palmitoyltransferase 

1C, a neuron-specific protein located in the endoplasmic reticulum, and has been associated 
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with spastic paraplegia57 with an emerging role neuropsychiatric conditions58. This de novo INS 

was missed by all SRS-based callers likely due to high-GC content (63% within 100 bp).  

 

Finally, we evaluated rare biallelic inherited homozygous SVs for potential pathogenicity 

because of the unique capability of LRS to phase almost all variants33. We identified six 

candidates SVs inherited biparentally and associated with SFARI risk genes or cortex-specific 

regulatory regions (Table 1, Supplementary Data 4). None of these have been reported as 

homozygous in SRS genomic controls from gnomAD31 or were identified in pangenome 

controls. This set includes: a homozygous DEL overlapping an enhancer located in the 3' 

untranslated region (UTR) of gene CLN8 (a SFARI score 2 gene) in proband 11611_p1 (Fig. 4f); 

a homozygous DEL disrupting the enhancer of gene ARHGEF10 (a SFARI score 2 gene), 

encoding a Rho guanine nucleotide exchange factor (GEF), in 13414_p1; a homozygous cortex-

specific cis-regulatory element DEL in individual 12651_p1 mapping to the 3' UTR of LRPAP1, 

which encodes LDL receptor-related protein associated protein 1 and has been linked to 

dementia and late-onset Alzheimer’s disease59; a homozygous DEL within an intronic enhancer 

of PREX1 (a SFARI score 2 gene), in proband 12861_p1; a 332 bp homozygous INS disrupt TF 

binding in TBC1D5 (a SFARI score 2 gene) in 11918_p1, and a 500 bp homozygous DEL 

mapping to the promoter region of both LMF2 and NCAPH2 (a SFARI score 3 gene) in 

individual 14350_p1 (Table 1). This promoter region is predicted to harbor regulatory activity 

based on multiple datasets, including chromatin accessibility and enhancer marks in the 

developing brain, suggesting potential cis-regulatory effects on the expression of one or both 

genes. 

 

To assess the potential impact of candidate variants, we performed differential expression 

analysis using long-read RNA sequencing of lymphoblastoid cell lines generated with the 

PacBio Kinnex platform. Gene-level counts were obtained with IsoQuant60 and analyzed with 
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DESeq261 for probands carrying genes with two promoter mutations and five homozygous 

deletions that were expressed in blood. Across all seven candidate loci, no significant reduction 

in gene expression was detected in blood-derived RNA samples from the target proband 

compared to the remaining samples (Supplementary Fig. 11). The absence of detectable 

expression changes may reflect tissue-specific regulatory effects, as these variants are more 

likely to exert functional consequences in brain tissues, which are directly relevant to the 

disorder etiology. 

 

Pangenome increased sensitivity for pathogenic SV discovery. To enhance the power of 

pangenome filtering to effectively exclude common SVs and focus on a high-confidence pool of 

rare variants, we expanded the control cohort size from 108 to 285 and then to 569 individuals. 

The 285-control set contains 177 newly LRS and assembled samples from the HPRC 

(HPRCY2), while the 569-control set includes an additional 284 publicly available 1KGP 

samples sequenced using ONT (Supplementary Data 1, Supplementary Figs. 2 and 4). 

Increasing the number of controls, especially samples of African origin, nearly doubles the 

number of SVs from 271,375 (108 controls) to 445,142 (569 controls) nonredundant SVs 

(Supplementary Data 5-8). We generated a population-level SV reference and compared the 

MAF distribution between the 108 controls and the largest dataset comprising 569 controls and 

102 unrelated parents (n=1,342). Based on this comparison, we estimated the fraction of 

variants captured at different MAF thresholds (Supplementary Fig. 12). Notably, only 16.2% of 

SVs with MAF < 0.1% in the larger dataset were detected in the 108-control set, illustrating the 

limited sensitivity of the smaller reference for identifying ultra-rare variants. In an ancestry- and 

sex-matched analysis restricted to individuals of European ancestry (38 autism families and 73 

controls), each child carried an average of 754 rare SVs. Focusing on rare variants absent from 

the largest 569-control set, the number of rare SVs concomitantly drops to 202 events per 

sample (Fig. 5b), corresponding to ~74% of rare variants being filtered out by the more diverse 
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population controls. This demonstrates the substantial gain in sensitivity for removing common 

and low-frequency variants when using a larger, heterogeneous reference panel. As a result, 

99% of common SVs are excluded per individual forming a more tractable and potentially 

biomedically relevant set of rare variants for downstream interpretation and enrichment 

analyses. Although still not statistically significant (p = 0.23, two-sided Mann-Whitney U test), 

we note that applying 569 controls results in a larger difference with respect to SV burden 

between probands and unaffected siblings (Z = 1.20). Of note, only one of our previously 13 

proposed candidates (73 bp de novo TR INS in CPT1C) was excluded and none of our 

pathogenic variants were excluded (Table 1, Supplementary Fig. 13).  

 

We also compared our LRS SV datasets with a comprehensive SRS SV callset (INS and DEL) 

generated by GATK-SV31 from 63,046 unrelated genomes, as represented in gnomADv4.131. To 

ensure a fair comparison between SRS and LRS datasets that differ in resolution and 

breakpoint precision, we used relaxed matching criteria in Truvari bench: a minimum of 50% 

reciprocal overlap, 50% size similarity, maximum breakpoint distance of 500 bp, and no 

sequence similarity requirement. We added the gnomAD SV IDs to the supplementary datasets 

(Supplementary Data 2, 5 and 7, Supplementary Fig. 14). Within the 108-control set, 162,916 of 

271,375 total nonredundant SVs were observed in the autism families. Of these, 77.6% 

(126,377 SVs) were present in the 108 LRS controls, yielding 663 rare SVs per child. In 

contrast, only 24.1% (39,234 SVs) overlapped with the SRS-based gnomAD SVs from 63,046 

unrelated controls (Supplementary Fig. 14), corresponding to 14,110 rare SVs per child when 

considering only short-read controls. Thus, despite its much larger sample size, the short-read 

dataset can be considered an auxiliary resource for further filtering rare SVs beyond those 

already excluded by the LRS controls, underscoring the substantially greater power of LRS data 

for rare variant filtering. Specifically, incorporating the SRS dataset would have further excluded 

0.71% (147/20,716 per child) and 0.27% (55/20,716 per child) of SVs from the 108- and 569-
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control sets, respectively. Given the inherent differences in breakpoint resolution and variant 

representation between LRS and SRS platforms, these overlaps reflect potentially inflated 

estimates. A reassuring sign of the stringency and completeness of our filtering strategy is that 

all 12 candidates identified were rare variants absent from both the LRS and SRS control 

datasets. 

 

DISCUSSION 

SRS and microarray studies of autism families have estimated that as much as 30% of autism 

cases harbor a rare variant of large effect. While only approximately half of this burden has 

been discovered by SRS, it has been hypothesized that missing variants as well as a portion of 

the missing heritability may be attributed to impactful rare variants mapping in complex regions 

of the genome that are simply inaccessible or difficult to interpret using SRS approaches42,62. 

Targeted LRS studies for missing variants associated with Mendelian disease as well as select 

families with typically severe NDDs have suggested increases in diagnostic yield ranging from 

7.3% to 33%22–27,63. Our analysis of 51 families mostly with daughters affected with autism (often 

more severely) where we attempted to sequence and assemble the entire euchromatic portion 

of each genome suggests a more modest rate of pathogenic variant discovery (5.9%). We 

consider this yield of recent pathogenic variant discovery low given that LRS application 

increased genome-wide sensitivity of DNM detection by 20-40%39 and we purposefully 

sequence affected females where the probability of discovery of a large effect mutation is 

expected to be higher64. It should be noted that LRS alignment to a reference was sufficient to 

detect these variants previously missed by SRS. Genome assemblies, while helpful for parent-

of-origin determination and phasing variants, were not critical to the discovery of most variants. 
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In the end, we identified three pathogenic variants, including only one daughter previously 

classified as idiopathic (SYNGAP1), while the other two pathogenic mutations (a de novo 

disruptive missense mutation in TBL1XR1 and de novo SV affecting the last exon of MECP2) 

arose in daughters suspected of Rett syndrome. A retrospective analysis of whole-genome SRS 

data confirmed the presence of the variants although in two of the three cases the variants 

would have been challenging to call without LRS. In addition, we identified nine additional 

candidate mutations (17.6% of patients) for further functional testing. The majority of these (7/9) 

were SVs that would have been missed by most standard SRS-based SV callers (Table 1). In 

contrast to DNM, these SV mutations did not map to coding regions but instead were inherited 

and corresponded to homozygous deletions or insertions within regulatory DNA often for genes 

associated with autism or neurodevelopment. The LRS data provided unambiguous phasing 

allowing rare biallelic inherited homozygous events to be discovered and characterized. These 

findings may suggest that some fraction of autism arises as a result of recessive or a 

contribution of oligogenic mutations2,65. Advanced sequencing techniques such as LRS will be 

required to reveal the full spectrum of mutations contributing to autism. 

 

Compared to earlier work with large CNVs9, we do not yet observe a significant increase in SV 

burden when comparing affected and unaffected siblings (Fig. 2). This lack of statistical 

significance is likely due to the limited sample size of this study. Notwithstanding, there are 

some interesting trends. For example, we note a slight excess of deletions on the X 

chromosome among affected daughters when compared to their unaffected sisters. Indeed, our 

ability to sequence and assemble ~96% of the X chromosome, as well as most of the 

euchromatic portion of the Y chromosome (Fig. 3), will be critical for evaluating the contribution 

of sex chromosomes to autism sex bias. Sex chromosomes are routinely excluded from SRS-

WGS studies because of ploidy issues and challenges with repetitive regions6,7,66. LRS and 

assembly largely overcome these limitations. Moreover, the ability to concurrently assay 
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methylation status of CpG islands genome-wide and readily distinguish X chromosome skewing 

patterns (Fig. 3) will also advance the discovery of epigenetic mutations as well as potentially 

damaged X chromosomes as more and more autism genomes are sequenced.  

 

Perhaps, most importantly has been the ability to leverage pangenomes30 to restrict the focus of 

SV discovery to variants that are private to autism families. Unlike SNVs mapping to coding 

sequencing, databases such as gnomAD31,32,67 are largely incomplete for variants, especially 

SVs, mapping to more complex regions of the genome. A typical human genome harbors over 

25,000 variants while whole-genome SRS has been shown to reliably report only 11,000 such 

variants15. In this study, we used more completely sequenced and assembled genomes from 

public initiatives such as HGSVC, HPRC and 1KGP ONT18,29,30,42 as controls to filter out more 

common SVs. Using 569 LRS control genomes identifies 445,142 nonredundant SVs in total. 

Under a model of ultra-rare SVs contributing to disease, we, as a result, essentially exclude 

99% of the more common variants allowing us to focus on 202 private or de novo SV variants 

per child. We note that differential with respect to SV burden increases between proband and 

unaffected sibling although does not yet reach statistical significance. If we further restrict this 

analysis to SVs corresponding to regions of the genome under functional constraint (with 

Gnocchi ≥ 432 and overlap with predicted promoters), this set would further reduce to one or two 

SVs per genome. As the human pangenome continues to grow and more complete genetic 

information emerges, the potential to discover variants of pathogenic significance will increase. 

 

METHODS 

Sample selection and previous sequence characterization. Illumina WGS was previously 

applied to the blood DNA of the 174 individuals corresponding to 46 families with idiopathic 

autism from the SSC and SAGE. Potential pathogenic variants were screened from SRS based 

on the studies by Wilfert et al.2 and Fu et al.6, including (1) SNVs: de novo likely gene-disruptive 
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(LGD), de novo missense and rare inherited LGD variants in NDD-related genes or genes with 

pLI scores ≥ 0.9; (2) CNVs in the morbidity map4 or span of a gene with pLI score ≥ 0.9. No 

known genetic cause was identified in the 46 probands from SRS data2,4,6,35. In addition, the 46 

probands selected in this study do not exhibit exceptional polygenic risk scores among the 

13,989 individuals examined2 and have known IQs ranging from 13 to 91. Similarly, five girls 

diagnosed with Rett-like syndrome from Baylor College of Medicine had no causal variants 

identified in MECP2 by prior gene panel testing or WES (Supplementary Data 1). The selected 

families were predominantly those with female probands due to the interest in discovering X 

chromosome variants and the large-effect variants are more likely to be discovered. As shown 

in Fig. 1a, 17 quads with sex-matched offspring (12 female-female and 5 male-male quads), 19 

quads with sex-mismatched offspring (16 female-male and 3 male-female quads) and 17 trios 

(15 female and 2 male trios) were included in this study. Briefly, the 51 probands (41 females 

and 10 males) were selected to represent cases that pose difficulties in pinpointing the cause of 

autism using Illumina SRS data. 

 

LRS data generation and QC. We generated PacBio HiFi and ONT sequencing data at the 

University of Washington (UW) for 189 individuals. Illumina WGS for Rett-like trios was 

generated from blood DNA using the TruSeq library kit and sequenced on a NovaSeq with 

paired-end 150 bp reads at the Northwest Genomics Center. For the five Rett-like trios, DNA 

was extracted from blood using the Monarch HMW DNA Extraction Kit for Cells & Blood from 

NEB (T3050L) (n=6) or the Qiagen Puregene Blood Core Kit (158023) (n=9), following 

manufacturer’s specifications. The whole-blood DNA from the SSC was extracted previously as 

part of that biobank. The cell line DNA was extracted from lymphoblastoid cell lines with either a 

modified Gentra Puregene (Qiagen) protocol when used for ONT sequencing or with the 

Monarch HMW kit (NEB T3050L) when used for PacBio sequencing. ONT libraries were 

constructed using the Ligation Sequencing Kit (ONT, LSK110 and LSK114) with modifications to 
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the manufacturer’s protocol. The library was loaded onto a primed R9.4.1 or R10.4.1 flow cell 

(FLO-PRO002 or FLO-PRO114M) for sequencing on the PromethION, with two nuclease 

washes and reloads after 24 and 48 hours of sequencing. 

 

PacBio HiFi data from family 14455 (n=4) were published in Noyes et al. 202217. Data from 

three families (n=11) were graciously generated by PacBio. Remaining individuals’ HiFi data 

were generated from blood or cell line HMW DNA according to the manufacturer’s 

recommendations. At all steps, quantification was performed with Qubit dsDNA HS (Thermo 

Fisher Scientific, Q32854) measured on DS-11 FX (Denovix) with the size distribution checked 

using FEMTO Pulse (Agilent, M5330AA and FP-1002-0275.) The samples’ incoming size 

distribution determined shearing conditions, either no shear (n=12), or sheared with the 

Megaruptor 3 (Hologic Diagenode, B06010003 & E07010003) system using one (n=36) or two 

(n=130) sequential runs to target a peak size of ~20 kbp. After shearing, the DNA were used to 

generate PacBio HiFi libraries using the Express Template Prep Kit v2 (n=12, PacBio, 100-938-

900) or SMRTbell prep kit 3.0 (n=166, PacBio, 102-182-700). Size selection was performed with 

Pippin HT using a high-pass cut-off between 9-17 kbp based on shear size (Sage Science, 

HTP0001 and HPE7510). Libraries were sequenced either on the Sequel II platform on SMRT 

Cells 8M (PacBio, 101-389-001) using Sequel II sequencing chemistry 2.0 (n=16, PacBio, 101-

842-900), 2.2 (n=4, PacBio, 102-089-000), or 3.2 (n=32, PacBio,102-333-300) with 2 h pre-

extension and 30 h movies on SMRT Link v9-11.1, or on the Revio platform on Revio SMRT 

Cells (PacBio, 102-202-200) and Revio polymerase kit v1 (n=126, PacBio, 102-817-600) with 

2 h pre-extension and 24 or 30 h movies on SMRT Link v12.0-13.1. 

 

To ensure the use of high-quality reads for constructing robust assemblies, we first filtered out 

nonhuman contamination reads from both HiFi and ONT data. We employed highly accurate 

Illumina reads and utilized yak (commit f389bad, https://github.com/lh3/yak.git) to calculate the 
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quality value (QV) for each read, and a two-sided z-test was conducted on the resulting QV 

values. Reads with a z-score less than -2, indicating a potential risk of contamination, were 

compared against the Kraken223 (v2.1.3) database, and those identified as nonhuman in origin 

were excluded. We masked the Y chromosome from GRCh38 to generate the GRCh38noY 

reference genome. HiFi reads were aligned to GRCh38 for males and to GRCh38noY for 

females using pbmm2 (v1.13.1, https://github.com/PacificBiosciences/pbmm2). To ensure the 

family pedigree, the relatedness between sample pairs and ancestry prediction were conducted 

using Somalier68 (v0.2.19) based on the alignment (Supplementary Data 1). ONT reads were 

aligned to the reference genome using minimap2 (v2.28.0), and the family pedigree was 

confirmed with VerifyBamID (v2.0.1). In addition, ntsm (v1.2.1) was applied to each HiFi and 

ONT fastq for sample swap detection. 

 

Phased genome assembly construction. The HiFi assembly was constructed by hifiasm36 

(v0.16.1). Parental short reads were processed with yak (v0.1, https://github.com/lh3/yak.git) 

and then hifiasm trio-binning mode was used for phasing child samples, while the parental 

assemblies were partially phased by default. The sex chromosome contigs from father samples 

were aligned to the T2T-CHM13v2.0 reference to reassign the Y chromosome contigs to hap1 

(or paternal haplotype) and X chromosome contigs to hap2 (or maternal haplotype). Assembly 

QVs were evaluated by merqury (v1.3) with k-mers from Illumina data (meryl v1.4); next, the 

completeness of phased assemblies relative to the reference and contig N50 values were 

calculated (Supplementary Data 1). 

 

Variant discovery. SNVs and small indels in 73 children, with available ONT data, were 

recalled with DeepVariant38 (v1.4.0) and GATK37 (v4.3.0.0) based on the HiFi alignments to the 

T2T-CHM13v2.0 reference. DNMs including both de novo and postzygotic mutations were 

further validated by ONT and/or Illumina reads using the method described in Noyes et al.39. We 
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annotated DNMs using the Ensembl Variant Effect Predictor (VEP, v110.1) and referred to the 

predicted impact and scores from dbNSFP (v4.8a), CADD score (v1.3), and gnomAD genome 

allele frequency32 (v4.1.0) by lifting coordinates over to both GRCh38 and GRCh37 using UCSC 

LiftOver (Supplementary Data 4). SVs were called using the phased assembly variant caller 

(PAV18, v2.3.4) by aligning the assembled genomes to a reference (GRCh38 or GRCh38noY). 

The alignment-based SVs were called by PacBio SV calling and analysis tool (PBSV, v2.9.0, 

https://github.com/PacificBiosciences/pbsv) and Sniffles40 (v2.2). SVs from the control 

population were additionally called by Delly (v1.2.6), Sawfish (v0.12.4), and cuteSV (v2.1.0). 

The ratio of insertions to deletions, the ratio of heterozygous to homozygous variants, and the 

size distribution of SVs were evaluated for each VCF file. 

 

SV merging and filtering strategy. The strategy involved three major steps. Briefly,  

1. Callerset validation. SVs detected in each sample from different SV callers were first 

normalized, sorted, and merged with BCFtools (v1.20) on the basis of PAV callset, and then 

collapsed by Truvari (v4.3.1). SVs located within known genomic gaps, telomeric regions, 

centromeres, and PARs on GRCh38 from UCSC Genome Browser tracks were excluded. We 

used the following command line: 

bcftools merge --thread {threads} --merge none --force-samples -O z -o {output.vcf.gz} 

{input.vcf1.gz} {input.vcf2.gz} {input.vcf3.gz} 

truvari collapse -i {input.vcf.gz} -c {output.removed.vcf.gz} --sizemin 0 --sizemax 1000000 -k 

maxqual --gt het --intra --pctseq 0.90 --pctsize 0.90 --refdist 500 | bcftools sort --max-mem 8G -

O z -o {output.collapsed.vcf.gz} 

2. Inter-sample merge. We extracted SVs supported by PAV and at least one of the alignment-

based callers for each individual and then merged SVs from both controls and autism families 

using a list of VCFs with Truvari. In this study, we have applied three control sets consisting of 

108, 285, and 569 individuals. 
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bcftools merge --threads {threads} --merge none --force-samples --file-list {input.vcflist} -O z | 

bcftools norm --threads 15 --do-not-normalize --multiallelics -any --output-type z -o 

{output.mergevcf.gz} 

truvari collapse --input {input.mergevcf.gz} --collapsed-output {output.removed_vcf.gz} --sizemin 

0 --sizemax 1000000 --pctseq 0.90 --pctsize 0.90 --keep common --gt all | bcftools sort --max-

mem {resources}G --output-type z > {output.collapsed_vcf.gz} 

3. Rare SV pool discovery. We developed a custom script to extract six categories of rare SVs 

as described in the main text (v1.0.0, https://github.com/EichlerLab/asap). For autosomal SVs, 

we retained heterozygous and homozygous SVs present only in the children but not in the 

controls. For SVs on the sex chromosomes, we performed sex-matched comparisons and 

filtered SVs seen in controls with the same sex. 

 

Separately, we compared our LRS SV datasets with the SRS control set from 63,046 unrelated 

genomes in gnomAD v4.1 to evaluate the overlap between platforms. SV comparison was 

conducted using Truvari bench with relaxed matching parameters to account for differences in 

breakpoint precision between LRS and SRS datasets: 

truvari bench -c {gnomad.v4.1.INSDEL50.non_neuro_controls.sites.vcf.gz} -b 

{108/285/569ctr_189asd_collapsed.vcf.gz} --pctsize 0.5 --pctseq 0.0 --pctovl 0.5 --sizefilt 50 --

sizemax 100000 -o {output} 

 

We incorporated gnomAD SV IDs, overlap metrics (PctSizeSimilarity:PctRecOverlap:SizeDiff), 

and allele counts (heterozygous, homozygous, and sex-specific; overall and within the non-

neuro subset into the collapsed SV tables (Supplementary Data 2, 5 and 7). Similar to step 3 

above, we applied sex- and zygosity-aware filtering to identify rare SVs absent from all SRS 

genomes. 
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Transmission curation of rare SVs. Parental genotypes corresponding to each rare SV in the 

children are provided in Supplementary Data 2, 3, and 5-8. Variants that followed Mendelian 

inheritance patterns were designated as high-confidence SVs. The remaining SVs were 

subjected to transmission curation using the following toolchain: 

1. Initial caller support using Truvari. To minimize the loss of inheritance information in parents 

lacking SV caller support, we collapsed SVs from parents with the child’s SVs using truvari 

bench, 

truvari bench -c {fa,mo}.vcf.gz -b child.vcf --pctsize 0.9 --pctseq 0.9 -o {fa_child,mo_child} 

2. Callable region evaluation using BoostSV (v1.0). To ensure the SVs fall within confidently 

callable regions across samples in a single family, we developed a tool, BoostSV (v1.0, 

https://github.com/jiadong324/BoostSV), leveraging a machine-learning approach trained on 

control samples33. This tool evaluates read support, mapping quality, and data quality metrics 

from alignments surrounding the target SVs in each parent. A quality threshold of 0.5 was 

applied to obtain the transmission.  

3. Genotyping support using kanpig. We applied the k-mer-based genotyper kanpig (v0.3.1) to 

parental HiFi alignments for each SV to assess allele presence and genotype consistency.  

4. Rare TR expansions/contractions and multiple sequence alignment (MSA). SVs overlapped 

with TR catalogs derived from the four-generation control family in Porubsky et al.33 were 

genotyped by TRGT69 (v1.4.1) using HiFi alignments,  

trgt genotype --genome {input.ref} --repeats {input.bed} --reads {input.bam} -t {threads} --output-

prefix {wildcards.sample}/trgt --karyotype {XX/XY} 

Genotype (GT) and allele length (AL) information were extracted from the TRGT output across 

all individuals of the autism family to detect transmission or TR outliers. For complex TR motif 

structures, we validated the SVs in the target sequence from assemblies using the MSA 

approach, 

# Align assemblies to the reference using minimap2 (v2.28.0): 
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minimap2 -c -t {threads} -K {resources.mem}G --cs -x asm20 -m 10000 -z 10000,50 -r 50000 --

end-bonus=100 -O 5,56 -E 4,1 -B 5 --secondary=no --eqx -Y {input.ref} {input.asm} > 

{output.paf} 

# Liftover target sequence coordinates onto query sequence using rustybam (v0.1.33, 

https://github.com/mrvollger/rustybam) and extract the target sequence using SAMtools 

(v1.16.1): 

rustybam liftover --bed {input.bed} {input.paf} > {output.liftover.paf} 

samtools faidx {input.asm} {liftover.paf.query_region} > {output.fa} 

#. MSA were performed using MAFFT (v7.525) and visualized in Jalview (v2.11.4.1): 

mafft --adjustdirection --thread {threads} --auto --reorder {input.combined.fa} > {output.msa.fa} 

5. Read-based support validation using subseq. To further assess SV transmission, subseq18 

(v1.0, https://github.com/EichlerLab/subseq-smk) was used to quantify read support for each SV 

in parental genomes. A dynamic window size was determined based on the SV size, and the 

number of reads traversing the window were counted. The {size50_1_1} parameter was used, 

requiring a minimum of one read supporting the SV while allowing a 50% size deviation penalty. 

6. Manual inspection using IGV. For SVs lacking sufficient support in Steps 1-5, we conducted 

visual inspection of supporting reads in the Integrated Genomics Viewer (IGV, v2.16.0). 

Evidence from HiFi alignments, HiFi assemblies, Illumina alignments, and, when available, ONT 

alignments (186 samples) was reviewed to further assess inheritance status and assign low-

confidence transmissions. 

 

SV annotation. A customized script was implemented to annotate previously published NDD 

candidate genes and regulatory elements, as well as integrate annotations from AnnotSV (v3.4). 

In terms of REG, we integrated published datasets from UCSC Genome Browser tracks, 

including candidate cis-regulatory elements (ENCODE Regulation, ENCODE cCREs, 

ORegAnno, GeneHancer) and ENCODE histone marks (H3K27Ac, H3K4Me1, H3K4Me3). 
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Additionally, we incorporated epigenomic profiles from the cerebral cortex (brainREG), 

particularly a cis-regulatory element map generated from 27 male and 21 female prenatal 

human cortex samples by ATAC-seq and consensus maps for CTCF, H3K27ac, H3K27me3, 

and H3K4me3 generated from six male and five female prenatal human cortex samples by 

CUT&Tag44. For NDD candidate genes, we primarily focused on those previously reported5–7,45. 

Additional ENCODE TF Clusters, UCSC noncoding RNA (tRNA, snRNA, lincRNA, sno_miRNA), 

repetitive regions (UCSC SegDup, UCSC RepeatMasker, UCSC Simple Repeats, TRs33), 

noncoding constraint Gnocchi score32 and CADD-SV score (v1.1.2) were annotated.  

Potential pathogenic variants were confirmed with gnomAD allele frequency and the 569-control 

dataset. SVs and CNVs from Illumina WGS data for the selected samples were recalled by 

Manta53 (v.1.5.0), Smoove (v0.2.5, https://github.com/brentp/smoove), CNVnator54 (v0.3.3), 

Canvas55 (v1.40.0.1613+master) and genotyped using Paragragh56 (v2.4) to evaluate SRS 

detection. 

 

Sex chromosome assemblies and transmission. We partitioned the sex chromosomes (T2T-

CHM13v2.0, excluding the PAR, centromere, and highly repetitive Yq12 heterochromatin 

regions) into 1 Mbp windows and identified those covered by contigs that aligned to ≥95% of the 

window sequence with no more than three overlapping contigs. The coverage percentage was 

calculated as the number of qualified windows divided by the total number of windows, 

representing coverage relative to the reference sex chromosomes (Fig. 3a-b, Supplementary 

Fig. 8). We designed a pipeline to assemble contiguous X and Y chromosomes and validate 

transmission patterns within families (https://github.com/projectoriented/contiguous-X). The 

pipeline consists of two main steps: (1) scaffolding contigs with at least 50% of their sequence 

aligning to chromosome X (minimap2) via RagTag (v2.1.0), and (2) visualizing alignments 

across haplotypes within the family using the SVbyEye R package. 
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Methylation analysis. We developed a pipeline to extract phased methylation signals from 

ONT alignments (https://github.com/projectoriented/continuous-methylation). Briefly, when 

parental Illumina reads were available, ONT reads from the offspring were phased using the 

Canu (v2.1.1) trio-binning method. The phased ONT reads were then aligned to the GRCh38 

reference genome using minimap2 (v2.24.0) and haplotagged accordingly. For individuals (e.g., 

parents) without available parental Illumina data, SVs were identified using Sniffles40 (v2.2) and 

small variants were called with Clair3 (v1.0.2), followed by haplotagging with LongPhase 

(v1.7.2). Methylation tags from unmapped BAM files were linked to the phased alignments using 

methylink (v0.6.0, https://github.com/projectoriented/methylink). Finally, Modkit (v0.3.1, 

https://github.com/nanoporetech/modkit) was used to generate methylation calls in BED format 

via pileup function. We analyzed mean methylation differences between the two X chromosome 

haplotypes across 889 CpG islands, including ±5 kb flanking regions. We then used deepTools 

(v3.5.5, https://github.com/deeptools/deepTools) to compute the methylation matrix and 

generate the plots. 

computeMatrix scale-regions -R {hg38XcpgI.bed} -S {hap1.bigWig} {hap2.bigWig} -b 5000 --

regionBodyLength 2000 -a 5000 --skipZeros --numberOfProcessors 12 --outFileName {matrix}; 

plotProfile -m {matrix} --averageType mean --samplesLabel pat mat --startLabel CpGI --

endLabel CpGI --yAxisLabel "Mean of methylation%" --yMin 0 --yMax 100 --colors blue red --

legendLocation lower-right --perGroup --plotType=lines --plotTitle {sample} --dpi 600 --

outFileName {plot} 

 

Long-read Kinnex generation and analysis. Total RNA was extracted from 5 million 

lymphoblast cells using the RNeasy mini kit from Qiagen. After initial QC using DS-11 FX 

(Denovix) for UV-Vis quantification and Bioanalyzer RNA 6000 Nano (Agilent, P/N G2939A and 

5067-1511) for quality score calculation, 150-250 ng per sample were processed into cDNA and 

sequencing library concatamers using the Iso-Seq Express 2.0 and Kinnex full-length RNA kits 
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(PacBio, P/N 103-071-500 and 103-072-000) according to manufacturer’s protocols with the 

following modifications: amplified cDNAs were analyzed for average size using Femto Pulse 

(Agilent P/N M5330AA and FP-1003-0275) and quantified using fluorescence (Qubit HS DNA 

Fisher Scientific P/N Q32854) before equimolar pooling and an additional 1.1X SMRTbell 

Cleanup Bead wash to remove residual primer-dimer before proceeding to Kinnex PCR. Kinnex 

concatamers were checked for length using Femto Pulse (P/N FP-1002-0275) before loading on 

1 SMRT Cell 25M on the PacBio Revio sequencing platform using SPRQ chemistry with 

Adaptive Loading and a 30-hour acquisition time. After sequencing, raw data were processed 

with the Read Segmentation and Iso-Seq workflow in SMRT Link v25.3 using default 

parameters to generate sample-demultiplexed full-length reads (flnc.bam) files. 

 

BAM files were converted to FASTA format using SAMtools (v1.21) and aligned to the GRCh38 

reference genome with minimap2 (v2.28) using the parameters -ax splice:hq -uf --secondary=no 

--eqx -K 200M. Gene and transcript quantifications were performed with IsoQuant60 (v3.10.0) 

using GENCODE v49 annotations. Raw gene counts from the target proband and remaining 

samples were used as case and control groups, respectively, for differential expression analysis 

with DESeq261 (v1.50.0), incorporating sex and diagnosis as variables. 

 

Ethics. Ethical approval for this study was granted by the University of Washington IRB 

Committee B, under STUDY ID: STUDY00000383. 
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and is accessible via https://doi.org/10.5281/zenodo.1814964470. A full list of all software used, 
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TABLES 

Table1. Summary of autism pathogenic and candidate variants. 

No. Family ID Sex Gene(s) affected Region Variant type Variant class 

SRS status  

(prior study, caller or 

read support) 

1 12237 F SYNGAP1** CDS De novo stopgain Pathogenic Missing, yes, yes 

2 HZRNM001 F TBL1XR1** CDS De novo missense Pathogenic Yes, yes, yes 

3 HYZ207 F MECP2** CDS De novo 874 bp DEL Pathogenic Missing, yes, yes 

4 14133 F DDX3X** Promoter De novo substitution Likely pathogenic Yes, yes, yes 

5 12456 F POGZ** Promoter De novo substitution Likely pathogenic Yes, yes, yes 

6 11201 M CNTN3* TF binding De novo 71 bp INS Likely pathogenic Missing, no, yes 

7 12651 M LRPAP1 3'UTR Biallelic 110 bp DEL Likely pathogenic Missing, no, no 

8 11611 F CLN8* 3'UTR Biallelic 135 bp DEL Likely pathogenic Missing, no, no 

9 11918 F TBC1D5* TF binding Biallelic 332 bp INS Likely pathogenic Missing, no, no 

10 12826 F PREX1* Enhancer Biallelic 56 bp DEL Likely pathogenic Missing, no, no 
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11 13414 M ARHGEF10* Promoter/Enhancer Biallelic 193 bp DEL Likely pathogenic Missing, no, yes 

12 14350 F LMF2, NCAPH2* Promoter  Biallelic 90 bp DEL Likely pathogenic Missing, no, no 

13 14455 F CPT1C Enhancer  De novo 73 bp INS Uncertain Missing, no, no 

*NDD candidate genes. ** High-confidence NDD or SFARI score 1 genes. 

 

FIGURE LEGENDS 

Figure 1. Long-read analysis sequencing and assembly. a Schematic workflow of LRS data 

generation and SV discovery with pedigree structures of the 51 unsolved autism families (F=female; 

M=male). LRS data (PacBio HiFi and ONT) and phased genomes were constructed using hifiasm36; SVs 

were discovered by PAV and validated via Truvari41 with read-based callers, PBSV and Sniffles (analyses 

tools indicated in oval boxes). Validated SVs were filtered using a pangenome of 108 control genomes 

from the HPRC and HGSVC to define a rare SV callset private to the autism families (Supplementary 

Data 1). b HiFi reads N50 and genomic coverage per sample (members of the same family are color 

coded). c Sequence accuracy (QV) and contig N50 length for each HiFi-phased genome assembly. Solid 

lines represent mean values, while dashed lines indicate median values. Source data are provided in 

Supplementary Data 1. 

 

Figure 2. SV discovery, filtering and burden in autism families. a SV discovery in probands (dark 

color) and unaffected sibling (light color with blue border) before (top) and after (bottom) pangenome 

filtering for 51 families with idiopathic autism. Proband sex versus unaffected sibling shown in parenthesis 

after family IDs. b High- (HC) and low-confidence (LC) SVs by genotype class for autosomes and sex 

chromosomes. Het: heterozygous SVs. Hom: homozygous SVs. HC: high-confidence SVs confirmed by 

Mendelian inheritance of parental SV calls. LC: low-confidence SVs that initially deviated from Mendelian 

inheritance patterns in the collapsed table but were subsequently curated through further evaluation. The 

box plots compare the autosomal private SV burden (c) and X chromosome burden (d, females only) 

between probands (pink) and unaffected siblings (gray) for 51 probands (41 females and 10 males) and 

36 unaffected siblings (15 females and 21 males). Different functional categories of SV classes are 

considered: protein-coding and UTR (Exon), intergenic (Inter), intronic (Intron), deletions (DEL), insertions 
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(INS), paternally inherited (Pat), maternally inherited (Mat), those overlapping neurodevelopmental 

disorder (NDD) genes, brain-derived regulatory regions (brainREG)44, and a combined set of all 

regulatory regions (REG). The center lines of the box plots represent the median; box limits indicate 

upper and lower quartiles; whiskers show 1.5x the interquartile range; individual points represent private 

SV counts per sample. The black line indicates the mean private count per sample. No significant 

differences (χ² test p-values exceeding 0.05) in the number of SVs between probands and siblings were 

observed across these categories, with a still insignificant trend observed on the X chromosome for 

enrichment of SVs on affected females compared to unaffected sisters. Source data are provided as a 

Source Data file. 

 

Figure 3. Sex chromosome assembly, transmission and X chromosome inactivation skewing. 

a Stacked barplot showing X chromosome assembly continuity and mappability relative to the T2T-

CHM13v2.0 reference across haplotypes. Each horizontal line represents one haplotype. The assembled 

contigs in each haplotype traverse the 1 Mbp window of the reference (no more than 3) and have at least 

≥95% sequence overlap. Colored segments indicate SDs (yellow), centromeres (red), and gaps (black) 

on the reference cytogenetic band. b Continuity and mappability of Y chromosome assemblies relative to 

the T2T-CHM13v2.0 reference (Yq12 heterochromatic region was masked). c Transmitted X assemblies 

from father to two daughters in 12832 family with sequence identity visualized using gradient colors. 

d Transmitted Y assemblies from father to sons in 14317 family. Pseudoautosomal regions (PARs), 

centromeres (Cen) and satellites (Sat), and X-transposed region (XTR) annotations were derived from 

Rhie et al.71. e Haplotype-resolved methylation at CpG islands (CpGIs) on the X chromosome in nine 

female-female quads. Mean methylation levels were calculated for each haplotype across 889 CpGIs and 

their ±5 kbp flanking regions on the X chromosome for 18 female individuals. Red denotes the maternal 

haplotype, while blue represents the paternal haplotype. A subset of individuals shows evidence of 

skewing of X inactivation. Source data are provided as a Source Data file. 

 

Figure 4. Pathogenic and candidate variants missed by short-read WGS. Long-read sequencing 

solved cases a (12237_p1) involving a stop-gain de novo mutation in SYNGAP1 and b (HYZ207_p1) 
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involving a de novo deletion in the last exon of MECP2. c A de novo candidate mutation in the promoter 

of DDX3X in 14133_p1. d A de novo candidate mutation in the promoter of POGZ in 12456_p1. e A 71 bp 

de novo tandem insertion in 11201_p1, predicted to interrupt the HNRNPK TF binding cluster in the intron 

of CNTN3. f A 135 bp homozygous tandem repeat (TR) contraction in the 3' UTR of CLN8 in 11616_p1, 

predicted to disrupt the transcription of CLN8. The variants are highlighted with red boxes. ENCODE 

cCREs, ORegAnno, GeneHancer, ENCODE TF Clusters, and tandem repeats are published datasets 

from UCSC Genome Browser tracks. Source data are provided in Supplementary Data 4. 

 

Figure 5. Reduction of the rare SV pool with increasing control samples. a Cumulative discovery 

curves of SVs identified in different control cohorts of 108, 285 and 569 individuals, compared to 87 

children (both affected and unaffected) from autism families (corresponding to Supplementary Data 2, 5 

and 7, respectively). Control samples and discovery curves were computed for both African (AFR) and 

non-African (non-AFR) controls. b The inclusion of additional population controls refined the rare SV 

candidate pool, reducing the number of rare SVs (black) from 663 to 202, thus reducing the number of 

SVs under consideration from 97% to 99% (red). Source data are provided as a Source Data file. 
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Editor’s Summary 

Large-effect variants in autism remain elusive. Here, the authors use long-read sequencing to 

assemble phased genomes for 189 individuals, identifying pathogenic variants in TBL1XR1, 

MECP2, and SYNGAP1, plus nine candidate structural variants missed by short-read methods. 
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