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Abstract  

Individual tissues perform highly specialized metabolic functions to maintain whole-body metabolic 

homeostasis. Although Drosophila serves as a powerful model for studying human metabolic diseases, 

modeling tissue-specific metabolism has been limited in this organism. To address this gap, we 

reconstruct 32 tissue-specific genome-scale metabolic models (GEMs) by integrating a curated 

Drosophila metabolic network with pseudo-bulk single-nuclei transcriptomics data, revealing distinct 

metabolic network structures and subsystem coverage across tissues. We validate enriched pathways 

identified through tissue-specific GEMs, particularly in muscle and fat body, using metabolomics and 

pathway analysis. Moreover, to demonstrate the utility in disease modeling, we apply muscle-GEM to 

investigate high sugar diet (HSD)-induced metabolic dysregulation. Constraint-based semi-quantitative 

flux and sensitivity analyses identify altered NAD(H)-dependent reactions and distributed control of 

glycolytic flux, including GAPDH. This prediction is further validated through in vivo 13C-glucose 

isotope tracing study. Notably, decreased glycolytic flux, including GAPDH, is linked to increased redox 

modifications. Finally, our pathway-level flux analyses identify dysregulation in fructose metabolism. 

Together, this work establishes a quantitative framework for tissue-specific metabolic modeling in 

Drosophila, demonstrating its utility for identifying dysregulated reactions and pathways in muscle in 

response to HSD.  
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Introduction 
Multicellular organisms consist of tissues that perform highly specialized metabolic functions1. As such, 

analyzing tissue-level metabolism is critical to delineate the complex metabolic interplay among tissues 

and understand organismal physiology2. However, direct measurements of tissue-specific enzyme levels 

or fluxes are often unavailable. Instead, mRNA levels have served as a proxy to reconstruct context-

relevant or tissue-specific genome-scale metabolic models (GEMs)3–5, enabling quantitative metabolic 

network analyses. In fact, numerous computational algorithms such as mCADRE6, tINIT7,8, CORDA5, 

and MERGE4, have been developed and applied for reconstruction of tissue-specific GEMs across 

complex organisms from C. elegans4 to Homo sapiens6. Yet, tissue-specific metabolic models in 

Drosophila melanogaster are unavailable, limiting quantitative assessments of metabolic processes at 

tissue level in this organism9,10. 

The high conservation of metabolic genes and functionally analogous organs between humans 

and fruit flies, together with the short generation time, lifespan, and availability of numerous genetic and 

analytical tools for Drosophila, has made flies an excellent organism in which to model human metabolic 

diseases11,12. Various mechanisms underlying dysregulated metabolism associated with type 2 

diabetes13,14, aging15, and cancer16 have been elucidated in flies. Moreover, several generic GEMs, such as  

FlySilico17, iDrosophila18, and Fruitfly119, have recently been developed, enabling systems-level 

evaluations of metabolic networks in this organism. However, they lack the resolution needed for tissue-

specific metabolic analysis. 

While GEMs are powerful computational tools for analyzing metabolic network structures and 

simulating fluxes, experimental techniques such as metabolomics, 13C isotope tracing, and redox 

proteomics also serve as valuable complementary and validation approaches for quantitative metabolic 

analyses. Metabolomics provides a comprehensive snapshot of metabolite profiles20,21, while 13C isotope 

tracing techniques can estimate specific metabolic pathway activity22,23. Furthermore, redox proteomics 

reveals the extent of redox modifications on sensitive amino acid residues (e.g., cysteine and methionine), 

providing insight into the post-translational regulation of enzyme activity24–27. However, such 

experimental analyses are often underrepresented in GEM-focused metabolic studies, limiting both 

quantitative metabolic investigation and empirical validation when studying complex metabolic diseases. 

As such, leveraging both computational modeling and experimental approaches is essential for advancing 

quantitative understanding of complex metabolic disorders like type 2 diabetes (T2D). 

T2D is characterized by insulin resistance and hyperglycemia, posing a significant global health 

challenge28–30. Drosophila effectively models key metabolic features of human T2D through high-sugar 
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diet (HSD) feeding, which impairs glucose homeostasis, and induces mitochondrial dysfunction and 

tissue-specific metabolic dysregulation13,14,31,32. Among affected tissues, muscle plays a central role in 

glucose metabolism and insulin sensitivity. While perturbations in glycolytic and TCA cycle activities 

have been observed in diabetic muscle29,33,34, many questions remain unanswered. Specifically, the extent 

to which NAD(H)-dependent reactions are altered, the identity of potential rate-controlling steps within 

glycolysis, and the additionally dysregulated metabolic pathways beyond central carbon metabolism 

remain to be elucidated. 

In this study, we first reconstructed 32 tissue-specific GEMs for adult Drosophila by integrating a 

curated Drosophila metabolic network model with pseudo-bulk single-nuclei transcriptomics data. These 

GEMs enabled us to systematically evaluate similarities and differences in metabolic network structures 

across individual tissues. After validating GEM-based predictions on enriched pathways using targeted 

metabolomics and pathway enrichment analyses, we demonstrated the utility of tissue-specific GEMs in 

modeling human metabolic disease. Specifically, we applied the muscle-GEM to simulate metabolic 

changes induced by a high-sugar diet (HSD), a well-established Drosophila model of T2D. Constraint-

based flux analyses revealed altered fluxes in NAD(H)-dependent fluxes, including a decreased maximal 

NADH production capacity, and sensitivity analysis indicated distributed control of glycolytic fluxes 

across several enzymes, including GAPDH. [U-¹³C]-glucose tracing and redox proteomics further 

confirmed decreased glycolytic flux and revealed that these changes were associated with increased redox 

modifications of glycolytic enzymes. Pathway-level flux comparisons further highlighted dysregulated 

fructose metabolism. Together, this work establishes a quantitative framework for tissue-specific 

metabolic modeling in Drosophila and demonstrates its utility for identifying high sugar diet-induced 

metabolic perturbations at reaction and pathway levels.  
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Results 

Reconstruction of 32 tissue-specific genome-scale metabolic models 

(GEMs) in Drosophila melanogaster  

To evaluate tissue-specific metabolism in Drosophila, we designed a strategy to reconstruct 32 

tissue-specific genome-scale metabolic models (GEMs) and analyze their metabolic network structures 

and functions (Fig. 1a, Error! Reference source not found.a-e). The reconstructed tissue-specific GEMs 

revealed variations in their metabolic network structures, reflected in the differing numbers of reactions, 

metabolites, and genes across tissues (Error! Reference source not found.a). Among 32 tissue-specific 

GEMs, fat body and oenocytes, analogous to human adipose tissue and liver, contained the highest 

number of reactions (n = 5,447 and 5,015), while most neuronal tissues had the fewest number of 

reactions (n = 2,533 to 3,077). A similar trend was observed for the metabolite numbers across tissue-

specific GEMs. Additionally, we observed a positive correlation between the number of reactions and 

metabolites (R2 = 0.92), consistent with the expected increase of metabolite numbers as reactions number 

increases. The number of genes also varied across models, ranging from 565 to 858, with the germline 

and fat body containing the higher numbers. Similarly, we observed a positive correlation between the 

number of reactions and genes (R2 = 0.54) (Error! Reference source not found.b). 

Based on these differences, we hypothesized that the tissues performing similar metabolic 

functions would show similar metabolic network structures. To test this hypothesis, we compared the 

metabolic network structures of 32 tissue-specific GEMs by specifically comparing their reaction contents 

(Fig. 1b). Hierarchical clustering analysis revealed 13 distinct clusters of similar metabolic network 

structures (Error! Reference source not found.c and Error! Reference source not found.f). As expected, 

tissues of similar functions were grouped together - muscle and indirect muscle; fat body and oenocytes; 

hindgut and enteroendocrine cells; seven neuron GEMs, and six glia cells distributed across three 

different clusters. Additionally, to assess how these GEM-based clusters compared to transcriptomics-

based clustering, we performed hierarchical clustering of gene expression data and calculated Jaccard 

indices to quantify overlap (Error! Reference source not found.d-e). While we observed high overlap 

between the two approaches for muscle and neuron clusters (Jaccard index = 1) and fat body/oenocytes 

(0.75), clustering of glia and gut tissues showed lower overlap between the two approaches (Fig 1c and 

Error! Reference source not found.g). These results indicate that clustering based on metabolic network 

structures, which incorporate stoichiometric constraints of biochemical reactions, reveals metabolic 

distinctions not apparent from transcriptomics alone. 
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Next, to further evaluate differences in metabolic network structures across tissue-specific GEMs, 

we analyzed their metabolic subsystem coverage. We found that transport reaction subsystem accounted 

for the largest proportion of all subsystems, comprising approximately 35 ± 4 % of all reactions (Fig 1d). 

Within this subsystem, extracellular transporter reactions accounted for approximately 80 ± 6 %. 

Interestingly, while muscle group did not have the most transport reactions compared to other tissue 

groups, it had the highest fraction of the extracellular transport reactions (f = 0.86 ± 0.02) (Fig 1e and 

Error! Reference source not found.h). Additionally, we calculated the percent difference in subsystem 

coverage and identified 33 subsystems with more than 50% deviation from mean coverage across tissues 

(Fig 1f, Error! Reference source not found.i-j). Notably, fat body and oenocyte GEMs had the highest 

reaction counts, particularly in beta-oxidation subsystems (nreactions = 36.6 ± 15, p < 0.0001) (Error! 

Reference source not found.f), supporting their known function in beta-oxidation of fatty acids11,35. 

Moreover, we performed a metabolic task analysis to determine the extent to which tissue-

specific GEMs could perform 219 pre-defined metabolic tasks (Error! Reference source not found.k)7,36. 

Tissue-specific GEMs could pass an average of 40 ± 10 tasks, with germline cells completing the most 

metabolic tasks (npass = 66) and polar follicle cells the least (npass = 17) (Error! Reference source not 

found.g-h). Additionally, consistent with the known role of fat body in performing gluconeogenesis and 

trehalose synthesis37, we confirmed that fat body-GEM could synthesize trehalose from various 

substrates, including alanine, pyruvate, glutamine, and glycerol (Error! Reference source not found.l). 

Furthermore, after categorizing  metabolic tasks into seven metabolic systems, we performed Fisher's 

exact test and found significant tissue-specific associations with the specific metabolic systems: fat body 

with carbohydrate/amino acid metabolism, and CNS glia/gustatory neurons with lipid metabolism (Error! 

Reference source not found.l and Error! Reference source not found.m-n). Taken together, our 

reconstructed tissue-specific GEMs provide a systems-level framework to evaluate metabolic differences 

and similarities across tissues in Drosophila, enabling quantitative comparisons of tissue-specific 

metabolic network structures and metabolic capabilities. 

 

Validation of tissue-specific GEMs through regional metabolomics and 

pathway analysis 

Validating the predictions from tissue-specific GEMs is essential to establish confidence in GEM-

based analyses. Although gene essentiality analysis is commonly used for validation38,39, in vivo growth 

rate data were unavailable for the tissues we investigated. Thus, we performed targeted metabolomics and 

pathway enrichment analysis, while comparing these results to GEM-based pathway analysis. We 
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hypothesized that enriched pathways identified through metabolomics would also be represented in the 

corresponding tissue-specific GEMs. To test the hypothesis, we first profiled 303 polar metabolites in 

four dissected Drosophila regions - head (containing neuronal and glial cells), thorax (containing muscle 

cells), gut (containing hindgut/enteroendocrine cells), and abdomen (containing fat body, oenocytes, and 

other tissues) (Fig. 2a and Error! Reference source not found.a).  

Principal component analysis and hierarchical clustering revealed distinct metabolite profiles 

among these regions (Fig. 2b-c). Specifically, we identified 10 significantly enriched metabolites in 

thorax, 13 in head, 20 in gut, and 1 in abdomen (Log2FC > 2 and p-value < 0.05) (Fig. 2d, Error! 

Reference source not found.b). Qualitatively, these enriched metabolites aligned with known tissue 

functions. For instance, in thorax, energy-related metabolites such as adenosine, adenylosuccinate, 

adenine, and AMP were enriched, consistent with muscle’s high demand on energy metabolism compared 

to other tissues11 (Error! Reference source not found.a). In heads, 4-aminobutyrate (GABA), N-acetyl-L-

aspartate, GMP, and ascorbates, were enriched. GABA is a major inhibitory neurotransmitter, and N-

acetyl-L-aspartate is often used as a marker for neuronal health40,41. In gut, including Malpighian tubules 

(MT), dietary-related metabolites, such as pyridoxine, betaine, and uric acids, were enriched, consistent 

with their dietary origin and uric acids generated from MT’s purine excretion42–45. In abdominal carcass, 

containing fat body and oenocytes, nucleotide and one-carbon metabolites were enriched, such as 

xanthosine and hypoxanthine, methionine s-adenosyl-l-methioninamine and 5-methyl-THF. 

Next, we performed KEGG pathway enrichment analysis using the hypergeometric test based on 

the enriched metabolite sets46 (Fig. 2e and Error! Reference source not found.c). The most significantly 

enriched pathway was purine metabolism (KEGG ID: dme00230) for thorax, pyrimidine metabolism 

(dme00240) for gut, and one carbon pool by folate (dme00670) for head and abdomen (Error! Reference 

source not found.b). We also identified six pathways commonly enriched across all regions, such as TCA 

cycle, glyoxylate, purine, and pyrimidine metabolism (Error! Reference source not found.c). Moreover, 

several region-specific enriched pathways were identified, such as starch/sucrose metabolism, histidine 

metabolism, and fatty acid degradation in thorax. 

Next, we compared these metabolomics-derived enriched pathways to those predicted from 

subsystem coverage analysis of tissue-specific GEMs, using weighted Jaccard index47,48 (Fig. 2f and 

Error! Reference source not found.). In brief, the index quantifies the degree of pathway overlap between 

the two datasets. We expected higher index values for tissues associated with specific regions (e.g., 

muscle with thorax49 and fat body/oenocytes with abdomen50). Indeed, muscle-GEM showed the highest 

index value with thorax (index: 0.8 ± 0.1), compared to those for other regions (head: 0.48 ± 0.2, 

abdomen: 0.44 ± 0.1, gut: 0) (Fig. 2g and Error! Reference source not found.d-f). The overlapped 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 
 

pathways included butanoate, glycolysis, lipoic, and starch metabolism. Additionally, fat body-GEM also 

showed high index value with abdomen, with overlapped pathways including cysteine, nicotinamide, and 

pantothenate metabolism (Fig. 2h). However, pathway overlaps were less distinct for neuron/glia cells 

and gut groups, as no uniquely enriched pathways were identified for these regions in our datasets (Error! 

Reference source not found.d). Furthermore, when we repeated this analysis using gene expression data, 

we observed significantly lower Jaccard index values across all tissues, with no distinct trends (Error! 

Reference source not found.e and Error! Reference source not found.g-h). This indicated that GEM-

predicted enriched pathways more accurately reflect metabolomics-derived pathways, compared to gene 

expression-derived enriched pathways. Taken together, these results validate GEM-predicted pathway 

analysis, particularly for muscle and fat body. 

 

Constraint-based flux analyses predict perturbations in NAD(H)-

dependent reactions in muscle under high sugar diet  

Among the reconstructed tissue-specific GEMs, we further applied the muscle-GEM to evaluate 

how muscle metabolism could be rewired in response to high sugar diet (HSD), which induces type 2 

diabetes-like phenotypes in Drosophila14,31,51. We first defined a HSD-muscle-GEM by constraining 

reaction rates to simulate metabolic phenotypes observed in type 2 diabetic muscle based on the literature 

evidence28,29,33,34,52–54 (Fig. 3a and Error! Reference source not found.a-b). These constraints included 

glucose uptake rates, GAPDH, and several reactions in TCA cycle53,55. Consistent with our applied 

constraints, flux variability analysis with sampling (FVA-sampling) showed a reduction in glucose uptake 

rate, along with decreased fluxes through GAPDH, OGDH, and SDH (Error! Reference source not 

found.a-b, Error! Reference source not found., and Error! Reference source not found.c-d). The decrease 

in model-generated glucose uptake rate was confirmed experimentally by measuring glucose uptake rates 

in w1118 male flies fed with HSD (Error! Reference source not found.c). 

Next, to identify perturbed reactions beyond those we directly constrained, we systematically 

compared differential fluxes obtained from flux balance analysis (FBA), FVA-sampling, and 

parsimonious FBA (pFBA) (Error! Reference source not found.). In brief, we performed pFBA to 

complement FVA-sampling analysis, which could generate non-physiologically high fluxes in reactions 

such as NAD(H)-dependent cycling reactions and generate fluxes near boundaries due to under-

constrained nature of network (Error! Reference source not found.d-g, Error! Reference source not 

found.e-f). By comparing these analyses, we identified 77 reactions showing consistently decreased 

fluxes and 18 with increased fluxes in the HSD-muscle-GEM relative to the unconstrained model (Error! 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 
 

Reference source not found.h and Error! Reference source not found.g). Among the reactions with 

decreased fluxes, many were associated with transport, aminoacyl-tRNA biosynthesis, and glycolysis, 

with associated genes including Dic1, Cd98hc, Gapdh1/2, Aldo, Eno, Pfk, and aminoacyl-tRNA 

synthetases such as AsnRS and AspRS (Fig. 3b). In contrast, reactions with increased fluxes were mainly 

linked to transport, aromatic amino acid biosynthesis, and TCA/glyoxylate metabolism, with associated 

genes including Hrm, Cg6231, Got1/2, Kdn, Scsa1, and Mdh2.  

As perturbed NADH metabolism has also been implicated in type 2 diabetes56,57, we further 

investigated individual NAD(H) dependent reactions to identify specific reactions showing altered fluxes. 

By comparing differential fluxes of 135 active NAD(H) dependent reactions across three different flux 

simulations, we identified 23 reactions showing consistently decreased fluxes and 3 reactions with 

increased flux (Error! Reference source not found.i-j and Error! Reference source not found.h-j). 

Associated genes with decreased fluxes included Dhfr, Ldh, Gs, and Gapdh1/2, while those with 

increased fluxes included Mdh2 and CG5955. Profiling differential fluxes of NAD(H)-dependent 

reactions further highlighted a variety of significantly perturbed reactions and their magnitudes (Fig. 3c). 

Next, to further investigate whether the network’s maximum capacity of NADH production was 

perturbed, we introduced an artificial NADH demand reaction and maximized its flux (Fig. 3d). This 

analysis revealed approximately a 27% reduction in NADH maximum production capacity in the HSD-

muscle GEM, accompanied by altered contributions of individual NADH-producing reactions (Fig. 3e 

and Error! Reference source not found.k). Although this change does not directly predict the cellular 

NAD⁺/NADH ratio, it suggests impaired NADH turnover, consistent with our experimental observation 

of a decreased NAD⁺/NADH ratio in thoracic muscle of w1118 flies fed with HSD (Fig. 3f). Together, our 

constraint-based semi-quantitative flux analyses predicted perturbations in specific subsystems, reactions, 

and genes in muscle under HSD, highlighting disrupted NAD(H)-dependent reactions characterized by 

altered flux distributions and decreased NADH production capacity. 

 

Sensitivity analysis reveals distributed control of glycolytic flux 

Given that NAD(H)-dependent reaction fluxes were perturbed in the HSD-muscle GEM and 

GAPDH functions as one of the key NAD⁺-dependent glycolytic enzymes, we examined whether 

GAPDH could serve as a rate controlling step in glycolysis under HSD condition. To test this, we 

performed a sensitivity analysis (See Methods). In brief, we systematically decreased the baseline flux of 

each glycolytic reaction, defined as the median flux from FVA-sampling, and quantified the total 

pyruvate consumption flux as a proxy for glycolytic output flux (Fig. 3g and Error! Reference source not 
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found.l). At relatively larger perturbation (e.g., 20 to 50 %), most of the lower glycolytic enzymes showed 

positive sensitivity coefficients, suggesting that decreases in these fluxes led to reductions in total 

pyruvate consumption (Fig. 3h and Error! Reference source not found.k). In contrast, at smaller 

perturbations (e.g., 5 and 10 %), several enzymes, including Hex-a/b, Pgk and Gapdh1/2, showed strong 

negative sensitivity coefficients, suggesting that decreases in these fluxes may trigger compensatory 

increases in total pyruvate consumption through alternative reactions. Indeed, evaluation of individual 

pyruvate consuming reactions revealed diverse responses to perturbations. Specifically, while alanine 

transaminase (CG1640) consistently showed decreased flux in response to high perturbation (e.g., 50 %), 

monocarboxylate transporter (MCT1), or other reactions showed increased fluxes in response to varying 

perturbations, reflecting the nonlinear and compensatory nature of metabolic network (Error! Reference 

source not found.m). When comparing absolute magnitudes of sensitivity coefficients across all 

perturbations, we found Aldo exhibited the highest average sensitivity coefficient (0.13), with Pgk (0.12), 

Gapdh1/2 (0.12), and Hex-a/b (0.11) showing comparable sensitivity (Fig. 3h). Altogether, these results 

suggest that glycolytic flux is not solely controlled by GAPDH as initially hypothesized, but is distributed 

among several other enzymes and varies with perturbation magnitude under this condition. 

 

Model-predicted decreases in glycolytic flux, including GAPDH, 

validated through 13C-glucose tracing 

To validate the predicted fluxes in glycolysis, particularly involving GAPDH, we performed in 

vivo 13C-glucose isotopic tracing experiments. After feeding w1118 male flies with a HSD containing 

uniformly labeled 13C-glucose tracer for five days, we dissected the thoracic muscle and evaluated both 

the metabolite intensities and labeling patterns of downstream metabolites using mass spectrometry (Fig. 

4a). As the [U-13C]glucose is metabolized in cells, glycolytic intermediates will have M+6 or M+3 mass 

isotopomers, and TCA cycle metabolites will show M+2 mass isotopomers after the first cycle (Fig. 4b). 

Based on our sensitivity analysis, where we observed strong control around Aldo, Pgk, and Gapdh, we 

hypothesized that a bottleneck step would result in decreased fractional labeling of downstream 

isotopomers, accompanied by accumulation of upstream substrates and decreased levels of downstream 

products. 

Indeed, we observed that upper glycolytic intermediates increased by approximately 23 %, 

including F6P, F16BP, and glyceraldehyde 3-phosphate, a substrate of GAPDH (Error! Reference source 

not found.a-b and Error! Reference source not found.a-b). Conversely, lower glycolytic intermediates, 
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such as 3PG and lactate, decreased by 27% and 14%, respectively. Moreover, the fractional labeling of 

lower glycolytic intermediates was significantly decreased compared to that of upper glycolytic 

intermediates (Fig. 4c). Specifically, the M+3 fractional labeling of 1,3-BPG, the product GAPDH, was 

nearly 90 % lower in response to HSD, indicating a significantly reduced GAPDH activity. In TCA cycle, 

the abundances of citrate, succinate, fumarate, malate, and glutamate, increased by 40%, 34%, 14%, 97%, 

and 24%, respectively (Error! Reference source not found.c-d and Error! Reference source not found.c ). 

Moreover, their M+2 fractional labeling decreased relative to M+6 glucose, suggesting a decreased 

contribution of glucose-derived carbon to the TCA cycle (Fig. 4d).  

Furthermore, to investigate the extent to which our model-predicted fluxes align with 

experimental measurements, we performed a correlation analysis by mapping the flux of each reaction in 

the HSD-muscle-GEM to the fractional labeling of its corresponding metabolite product. Notably, we 

observed a strong correlation between the fractional labeling data and model-predicted relative fluxes 

within glycolysis (ρ = 0.81, p = 0.03), supporting the accuracy of model predictions for this pathway (Fig. 

4e). In contrast, correlation in the TCA cycle was weaker (ρ = 0.12), potentially due to the contributions 

from other carbon sources (e.g., fatty acids58) accounting the predicted fluxes in the TCA cycle (Error! 

Reference source not found.e). Taken together, these results confirm the model-predicted flux changes, 

specifically for glycolysis, and reveal GAPDH as one of the key regulatory steps in muscle in response to 

HSD.  

 

Model-predicted decreases in glycolytic flux correlate with increased 

redox modification of glycolytic enzymes 

Since redox modification, including oxidation of cysteine residue, can directly alter enzyme 

activity such as GAPDH24,26,59,60, we were wondering whether the decreased glycolytic fluxes, particularly 

GAPDH, were linked to redox modifications (Fig. 5a). Given the increased oxidative stress observed in 

diabetic muscle53,61,62, we hypothesized that redox modification at cysteine or methionine residues would 

also be elevated in HSD-fed fly muscle. Indeed, PCA of redox proteomics revealed greater variability in 

peptide oxidation profiles in HSD samples compared to NSD controls (Fig. 5b). Among 1049 detected 

peptides, 189 peptides exhibited significantly increased redox modifications (Log2|FC| > 0.5 and adjusted 

p-value < 0.05) (Fig. 5c, Error! Reference source not found.a and Error! Reference source not found.a). 

Next, based on these significantly oxidized peptides, we performed KEGG over-representation analysis63 

to identify pathways enriched for redox-modified enzymes (Error! Reference source not found.b). 
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Consistent to prior studies, the most affected pathways were oxidative phosphorylation (dme00190), a 

well-known site of mitochondrial dysfunction observed in diabetic muscle64,65. Within this pathway, we 

observed increased redox modifications in peptides, including succinate dehydrogenase, NADH 

dehydrogenase, V-ATPase, citrate synthase, and isocitrate dehydrogenase (Error! Reference source not 

found.b). Interestingly, glycolysis was also significantly affected, with increased redox modifications 

observed in peptides, including Ald1, Gapdh1/2, Pyk, Pgi, Pfk, Pgm1, Eno, Fdh, and Pgk (Fig. 5e). 

To further evaluate the relationship between the extent of redox modification and predicted fluxes 

in glycolysis, we performed a correlation analysis and found a significant negative correlation (r = -0.78, 

p = 0.025) (Fig. 5f). Specifically, Pyk exhibited the highest level of redox modification and corresponded 

to the largest flux decrease, whereas Pgm1 showed minimal redox modification and the smallest flux 

change (Error! Reference source not found.c-d). Notably, protein levels of most glycolytic enzymes 

remained unchanged, except for Pyk, suggesting that redox modifications, rather than enzyme abundance, 

more strongly associate with changes in glycolytic flux (Error! Reference source not found.e-f).  

Moreover, since our flux analyses and isotope tracing results revealed GAPDH as one of the key 

perturbed steps in glycolysis, we further evaluated this enzyme. In Drosophila, two isoforms of GAPDH 

are present, both closely related to human GAPDH and known to perform partially redundant functions in 

glycolysis (Error! Reference source not found.g)66. While the enzyme levels of both GAPDH1 and 

GAPDH2 remained unchanged (Error! Reference source not found.h), we observed significant redox 

modifications at Met-40 residue in GAPDH1 and at Cys-130, Met-127, 141 and 172 in GAPDH2 

(referenced to Uniprot:P07486 for GAPDH1 and M9PJN8 for GAPDH2) (Fig. 5g and Error! Reference 

source not found.i-j). Structural modeling using AlphaFold further predicted that Met-40 is in near to the 

NAD+ binding site (~9 Å), suggesting that redox modification at this residue could indirectly affect NAD+ 

binding and impair activity (Error! Reference source not found.k). Additionally, to further investigate the 

functional role of GAPDH in muscle, we used a muscle-specific Mhc-Gal4 driver combined with a 

temperature-sensitive Gal80ts system to knock down GAPDH1 in fly muscle. Indeed, muscle-specific 

downregulation of GADPH1 led to a significant decline in climbing ability in male flies fed with HSD 

starting at day 10, suggesting a physiologically important role for GAPDH1 in maintaining muscle 

function (Fig. 5h and Error! Reference source not found.l). In summary, these results indicate a strong 

association between increased redox modifications and decreased glycolytic fluxes, identifying the redox 

modification of GAPDH and its knockdown causing climbing defects. 
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Pathway-level flux analysis reveals dysregulated fructose metabolism  

Next, to identify pathway-level perturbations beyond glycolysis under HSD conditions, we 

evaluated differential pathway fluxes obtained from FVA sampling and pFBA analyses (Fig. 6a and 

Methods). In brief, we defined pathway flux as the average of non-zero flux magnitudes within each 

pathway. Using this approach, we identified 77 significantly perturbed pathways, with 33 pathways 

overlapping between flux sampling and pFBA analyses (Fig. 6b and Error! Reference source not 

found.a). Consistent with our prior findings, we observed significant decrease in pathway fluxes through 

glycolysis, oxidative phosphorylation, and the TCA cycle, with fructose showing the most pronounced 

decrease in the HSD muscle compared to control. Among the top perturbed pathways with increased 

pathway fluxes, we found fatty acid metabolism (e.g., β-oxidation, desaturation, elongation, and omega-

3/6 metabolism), lipid droplet turnover (pool reactions), butanoate metabolism, glycerophospholipid, and 

several amino acid metabolism pathways (e.g., tryptophan, phenylalanine-tyrosine). 

To validate the predicted pathway-level perturbations, we performed targeted metabolomics in 

thoracic muscles in response to HSD (Fig. 6c). PCA revealed distinct metabolite profiles between HSD 

and NSD conditions (Fig. 6d). Among the six most significantly altered metabolites, three were involved 

in either fructose/sucrose metabolism (e.g., sorbitol and trehalose/sucrose) or butanoate metabolism (e.g., 

acetoacetyl-CoA) (Log2|FC| > 2 and p-value < 0.01), consistent with the pathways identified as highly 

perturbed (Fig. 6e and  Error! Reference source not found.b). To further investigate how these metabolite 

changes relate to fluxes and enzyme redox modifications, we created an integrated metabolic map 

focusing on fructose/sucrose metabolism (Fig. 6f). Beyond the perturbations in upper glycolysis, we 

found that Trehalase, an enzyme that converts trehalose to glucose, showed a decreased predicted flux 

(Log2FC = -5.4) and significant oxidation at a methionine residue (Log2FC = 1.75, p =0.006). 

Collectively, these results demonstrate that our pathway-level flux analysis, supported by metabolomics 

and redox proteomics, effectively identifies candidate dysregulated metabolic pathways, such as fructose 

metabolism in muscle under HSD condition.  

 

Discussion 

Modeling tissue-specific metabolism is essential to dissect the complex interplay of metabolic 

activities in multicellular organisms. In this study, we reconstructed 32 tissue-specific GEMs by 

integrating pseudo-bulk single-nuclei transcriptomics datasets with the manually curated generic 

Drosophila metabolic model. These tissue-specific GEMs enable quantitative comparisons of their 
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metabolic network structures, representing a significant advance over existing Drosophila generic GEMs, 

such as Fruitfly119, FlySilico17, and iDrosophila18, which lack tissue-level metabolic analyses.  

Furthermore, our tissue-specific GEMs offer distinct advantages by enabling network-level flux 

analyses that are difficult to achieve with pathway-specific or resource-intensive isotope tracing 

experiments. Specifically, using the muscle-GEM, we predicted active NAD(H)-dependent flux changes, 

identified reactions that may control glycolytic fluxes, and uncovered pathway-level flux perturbations 

under high sugar diet. These analyses were further integrated with other omics data, such as 

metabolomics and redox proteomics, confirming pathway perturbations and their link to redox-dependent 

enzyme modifications. Collectively, our in silico predictions generate testable hypotheses and 

prioritize key reactions and pathways for targeted experimental investigation, complementing the 

precise and tissue-specific genetic tools available in Drosophila. 

Additionally, our tissue-specific GEMs, validated through metabolomics and pathway-level 

analysis, not only recapitulated known metabolic functions of individual tissue groups, but also revealed 

distinct tissue metabolism. For instance, fat body and oenocytes exhibited the highest overall reaction 

numbers, indicating a broad metabolic capacity of these tissues, particularly in carbohydrate and fatty acid 

metabolism. Conversely, muscle tissue, despite having fewer overall reaction numbers, showed the 

highest fraction of extracellular transport reactions and enriched reactions in protein degradation and 

lipoic acid metabolism. This suggests that muscle may serve as a major hub for systemic metabolite 

exchange and distribution. Indeed, muscle is known to be a major reservoir of amino acids, releasing 

them into circulation to support other tissue metabolism when needed67. As inter-organ communication is 

essential to maintain whole-body homeostasis and compensate for the limitations of individual tissue 

functions2, future studies in evaluating transport reactions and their associated metabolic pathways using 

these tissue-specific GEMS may reveal additional layers of systemic metabolic coordination among 

tissues.  

Moreover, we demonstrated the utility of our tissue-specific GEMs to evaluate muscle 

metabolism in response to high sugar diet. Our analyses revealed altered NAD(H)-dependent reactions 

and suggested that regulation of glycolytic flux is distributed among several enzymes, including Aldo and 

GAPDH. Previous studies recognized GAPDH as a rate-limiting step in glycolysis, particularly in the 

context of aerobic glycolysis in cancer, where it regulates flux and is influenced by fructose 1,6-

bisphosphate levels68. Our findings expand this role, demonstrating that GAPDH also acts as a regulatory 

node in muscle in response to HSD and through redox modifications of the enzyme. While GAPDH is 

typically known to undergo redox regulation at cysteine residues in response to oxidative stress26,69, our 

data also revealed increased methionine oxidation. In fact, methionine oxidation has previously been 
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shown to affect GAPDH function. For example, Samson et al., demonstrated that oxidation at Met-46 

promoted GAPDH aggregation, a process linked to disease70. In our study, methionine oxidation occurred 

near the NAD⁺ binding site, which may interfere with cofactor binding and enzymatic activity. Moreover, 

GAPDH enzyme levels, as well as most other glycolytic enzyme levels, were not significantly altered, 

indicating a potentially greater role of redox regulation on modulating glycolytic activity in this condition. 

Finally, our muscle-GEM enabled predictions of additional dysregulated metabolic pathways, 

with fructose metabolism among the most substantially perturbed under HSD. While liver, intestine, and 

kidney are typically considered as primary sites of fructose metabolism due to high ketohexokinase 

expression, recent evidence showed that muscle can also metabolize fructose and affect muscle glucose 

handling71. Our pathway-level flux analysis predicted muscle could catabolize fructose and showed a 

significant decrease in the activity of Hex-A, a Drosophila hexokinase capable of phosphorylating 

fructose to fructose-6-phosphate in response to HSD72. The accumulation of metabolites such as sorbitol, 

trehalose and/or sucrose, along with increased oxidation of Trehalase, supported the perturbation of 

fructose and sucrose metabolism. Yet, these experimental data do not indicate whether fructose catabolic 

activities were increased or decreased, as elevated concentrations of upstream metabolites can increase 

flux through mass action. Future studies using fructose isotope tracing will be required to validate the 

direction and magnitude of flux changes within this pathway. 

We acknowledge several limitations in this study. First, the choice of GEM reconstruction 

algorithm can influence model content and predictive performance73. When comparing our tissue-specific 

GEMs reconstructed through the tINIT algorithm with those generated by CORDA, we found that the 

final GEMs from CORDA contained fewer reactions and lower metabolic task pass rates compared to 

those generated by tINIT, but maintained similar metabolic structures for major tissue groups (Error! 

Reference source not found.a-c). This underscores the importance of careful selection and parameter 

tuning of reconstruction algorithms to minimize potential biases. Second, we acknowledge the challenges 

of validating all 32 tissue-specific GEMs. Additional context-specific validation will be required to 

improve model accuracy. Third, using a single pseudo-biomass objective for flux balance analysis may 

not fully predict tissue- or context-specific flux predictions. Incorporating tailored objectives functions 

could refine flux predictions across tissues. Fourth, most reactions in the GEMs retained the default flux 

bounds, representing computational conventions rather than experimentally derived limits. This 

underscores that our flux predictions are semi-quantitative, given the limited availability of 

comprehensive in vivo nutrients exchange data. Incorporating high-quality in vivo nutrients exchange 

rates will improve flux prediction accuracy. Finally, certain reactions within fructose metabolism were 
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absent in the current muscle-GEM, highlighting a need for continued curation and targeted data 

integration to enhance model completeness and flux predictions. 

In summary, we reconstructed tissue-specific genome-scale metabolic models for Drosophila and 

demonstrated the utility of the muscle-GEM to identify high sugar diet-induced metabolic dysregulation 

at both reaction and pathway levels. These GEMs provide a quantitative, systems-level framework that 

further complements the diverse experimental and genetic tools available for Drosophila, advancing 

metabolic investigations in this model organism.
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Methods 

Genome-scale metabolic model for Drosophila 

We selected Fruitfly1 as a base GEM19, as it offered the comprehensive coverage of reactions (nrxn = 

12,308), metabolites (nmet = 8,117), and genes (ngene = 1,810) compared to alternative GEMs such as 

FlySilico (nrxn = 363, nmet = 293) or iDrosophila1 (nrxn = 8230, nmet = 6990, and ngene = 2388)17,18.   

 

Update of genes and gene-transcript-protein-reaction associations in Fruitfly1-GEM 

Fruitfly1.0 is a generic genome-scale metabolic model describing metabolic networks of Drosophila 

melanogaster19. To update the gene information within the model, we first used Gene List Annotation for 

Drosophila (GLAD) database, containing a metabolic gene set of 2,629 genes 

(https://www.flyrnai.org/tools/glad/web/, Metabolic_vs3). We compared these genes with those listed in 

the GEM. We found that 1,465 genes from GLAD were not included. These missing genes included 

transcription factors, kinases, phosphatases, and dehydrogenases. Before adding those genes directly into 

Fruitfly1, we evaluated those genes had human orthologs by using DIOPT score74. Of 1,465 genes 

analyzed, 564 genes (38.5 %) were predicted to have human orthologs assigned with a high rank score74. 

Among those, 36 genes were already linked to reactions and gene-rules in human-GEM. Thus, we added 

these genes into Fruitfly1 (see Supplementary Data). For reactions that already had gene-rules (grRules), 

we integrated the new genes using the Boolean operator ‘or’. To address gene redundancy, we 

investigated overlapping gene symbols within Fruitfly1 and found that three gene symbols (Sur/sur, 

Argk2/CG5144, and Argk/Argk1) were mapped to the same FlyBase gene IDs. To resolve these 

redundancies, we retained Sur (FBgn0028675), Argk2 (FBgn0035957), Argk1 (FBgn0000116). Following 

these updates, we named the revised model Fruitfly2. In summary, we added 36 missing genes (Error! 

Reference source not found.a). 

 

Update the Enzyme Commission number 

To update Enzyme commission (EC) numbers, a systematic classification of enzymes based on the 

reactions, we used KEGG ID to map reactions with EC numbers within the Fruitfly1-GEM. We first 

examined whether the reactions present in Fruitfly1-GEM were associated with EC numbers and found 

that 7,411 out of 12,038 reactions (approximately 61.6%) lacked EC number annotations in Fruitfly2. We 

then assessed whether these reactions had associated KEGG reaction IDs, which could be used to retrieve 
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EC numbers. Only 161 reactions were linked to KEGG reaction IDs, of which 78 were associated with 

EC numbers. Based on this information, we assigned EC numbers to these 78 reactions. Additionally, by 

using gene–KEGG reaction ID associations, we assigned EC numbers to a further 576 reactions. In total, 

we assigned EC numbers to 654 reactions in Fruitfly2 (Error! Reference source not found.b),and 

designated the updated GEM as Fruitfly3.  

 

Reconstruction of tissue-specific genome-scale metabolic models in Drosophila 

To generate tissue-specific genome-scale metabolic models (GEMs), we integrated Fruitfly3 with tissue-

specific pseudo-bulk single-nuclei transcriptomics data for 32 individual tissues from Fly Cell Atlas, 

while using the Task-driven Integrative Network Inference for Tissues (tINIT) algorithm, implemented 

via the getINITModel2 function from the Human-GEM repository (Error! Reference source not 

found.c)7,75. For generating tissue-specific pseudo-bulk gene expression data, we first retrieved the Seurat 

objects from Fly Cell Atlas dataset and used AggregateExpression function in Seurat to pseudobulk the 

counts per tissue76,77. Gene expression values were converted to counts per million (CPM), rather than 

TPM or FPKM, by normalizing to library size and scaling by a factor of 1e678. The resulting normalized 

gene expression values are expressed in unit of CPM. To incorporate these gene expression data as input 

for tINIT, we applied a global and relaxed expression threshold of 1, selected based on the distribution of 

average gene expression levels across tissues (mean – 1 × SD = 1.02). This ensured the inclusion of 

moderately expressed genes while maintaining consistency across all tissues.  

In addition to transcriptomic data, tINIT requires a set of essential metabolic tasks as inputs. 

Accordingly, we used a 57 predefined essential metabolic tasks, adapted from prior study (Error! 

Reference source not found.d)75. These tasks span key metabolic functions, including rephosphorylation 

of nucleoside triphosphates, de novo synthesis of nucleotides, uptake of essential amino acids, protein 

turnover, electron transport chain and TCA, beta oxidation of fatty acids, de novo synthesis of 

phospholipids, growth based on media components, and synthesis of vitamins and cofactors. Although 

these tasks were originally designed for human GEM reconstruction, we reviewed available Drosophila 

literature, including KEGG pathway annotations and FlyBase resources, and found no direct evidence that 

these core tasks would not be performed in Drosophila. While we did identify Drosophila-specific 

pathways in the KEGG database, such as dorso-ventral axis formation, insect hormone biosynthesis, and 

Toll and Imd signaling pathway, we did not include these as essential tasks for reconstruction, as their 

essentiality has not been validated across all 32 tissues. 
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To compare the GEM reconstruction outcomes, we also applied the Cost Optimization Reaction 

Dependency Assessment (CORDA) algorithm5 to reconstruct tissue-specific GEMs using the same 

dataset used for tINIT. CORDA categorizes reactions into essential (ES), present (PR), and not present 

(NP) based on gene expression levels. Specifically, reactions associated with genes expressed above the 

mean were designated as ES; those with expression between one and the mean as PR; and those less than 

or equal to 1 as NP. 

 

Metabolic network structure, subsystem coverage, and metabolic task analysis  

Metabolic network analysis 

The analysis of metabolic network structure, subsystem coverage, and metabolic tasks was performed 

following a previously established protocol75. In brief, to compare model structures, we used 

compareMultipleModels function from the RAVEN package. This function constructs a binary reaction 

matrix, where rows represent reactions and columns represent individual GEMs. A value of 1 indicates 

the presence of a reaction in a given GEM, while a value of 0 indicates its absence. For visualization, we 

applied t-distributed stochastic neighbor embedding (t-SNE) to the binary reaction matrix, using the 

Hamming distance as the similarity metric. The resulting two-dimensional projection revealed the relative 

proximity of models based on their metabolic reaction content. Additionally, we performed hierarchical 

clustering to classify the tissue-specific GEMs. A Euclidean distance matrix was computed from the same 

binary reaction matrix, followed by average linkage clustering to generate a dendrogram. Cluster 

assignments were defined by partitioning the dendrogram into a fixed number of groups, capturing major 

tissue classes such as muscle, fat body/oenocyte, gut, glia, and neurons. These clusters were annotated 

and visualized in the t-SNE plot. 

 

Quantification of cluster overlap using Jaccard index  

To assess the agreement between GEM-derived and gene expression-based tissue clusters, we calculated 

the Jaccard index. This metric quantifies the similarity between two sets as the size of their intersection 

divided by the size of their union, ranging from 0 (no overlap) to 1 (complete overlap)47, as follows: 

𝐽(𝐴 ∩ 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

, where A and B represent the sets of tissues assigned to a given cluster based on GEM-derived and gene 

expression-derived clusters, respectively.  



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 
 

We first performed hierarchical clustering on both datasets. For tissue-specific GEMs, clustering was 

based on the binary reaction presence matrix, as described in the metabolic network analysis method. For 

gene expression-based clustering, we applied hierarchical clustering to pseudobulk expression data. 

Jaccard indices were then calculated by comparing each pair of clusters. For glial tissues, which 

were distributed across three distinct GEM-based clusters, the corresponding Jaccard indices 

were averaged to represent them as a unified group.  

 

Metabolic subsystem coverage analysis 

Variation in model structures was further investigated by analyzing the coverage of metabolic subsystems 

in each tissue-specific GEMs. Subsystem coverage (SC) refers to the total number of reactions present in 

a specific metabolic subsystem. For each subsystem, the SC was calculated for individual tissue-specific 

GEMs and compared to the average subsystem coverage across all tissue-specific GEMs (SCmean). The 

relative deviation from the mean coverage was calculated using the following formula: 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑆𝐶 − 𝑆𝐶𝑚𝑒𝑎𝑛

𝑆𝐶𝑚𝑒𝑎𝑛
× 100 % 

To facilitate the visualization, we applied a threshold of 100 %, showing only those subsystems in which 

at least one tissue-GEM exhibited more than 50 % differences from the mean subsystem coverage. 

 

Metabolic task analysis 

To evaluate and compare each GEM’s metabolic functionality, we assessed the ability of each GEM to 

perform a set of curated 219 metabolic tasks. This list was primarily based on the updated metabolic task 

collection from Richelle et al. (2021)36, which includes 195 tasks. This list also includes system and 

subsystem categories. Given the well-characterized role of trehalose metabolism in Drosophila, we added 

eight trehalose biosynthesis tasks with different substrate conditions. Additionally, we compared this 

updated list with the earlier Human-GEM task set75. From this comparison, we added an additional 16 

tasks related to energy metabolism (eight oxidative phosphorylation, one Krebs cycle, four glycolysis) 

and carbohydrate metabolism (two glycogen metabolism), resulting in the final list of 219 metabolic tasks 

(Error! Reference source not found.k). For clarity, this list is distinct from the set of 57 essential 

metabolic tasks used for tissue-specific GEM reconstruction (Error! Reference source not found.d). 

 Task performance was evaluated using checkTasks function in the RAVEN toolbox. A task was 

considered "passed" (assigned a value of 1) if the model could carry flux through the required reactions to 
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convert the defined input metabolite(s) into the specified output product(s), indicating that the metabolic 

function is feasible within the network79. Conversely, a task was considered "failed" (assigned a value of 

0) if no such flux could be achieved, suggesting that the function was not supported by the model. 

Additionally, we used Fisher’s Exact test to evaluate the association between individual tissue-specific 

GEMs and metabolic systems, defined as groups of functionally related metabolic tasks36.  

 

Fly stocks and maintenance 

All flies were reared at 25°C and 60% humidity with a 12-hour on/off light cycle on standard laboratory 

food. Standard laboratory food is made as follows: 12.7 g/liter deactivated yeast, 7.3 g/liter soy flour, 53.5 

g/liter cornmeal, 0.4% agar, 4.2 g/liter malt, 5.6% corn syrup, 0.3% propionic acid, and 1% 

Tegosept/ethanol. The semi-defined synthetic media for high sugar and normal diet were made according 

to the previously reported recipe80, with a slight modification of sugar concentration. The normal diet 

(NSD) consisted of 10 g/L of agar, 80 g/L of yeast, 20 g/L of yeast extract, 20 g/L of peptone, 262 mM of 

sucrose, 0.3% propionic acid, and 1% Tegosept/ethanol. The high sugar diet (HSD) consisted of the same 

amount of all the components except 1 M of sucrose. For diet intervention experiments, we collected 3 

days old w1118 male flies and transferred approximately 30 flies to vials containing either NSD or HSD. 

The food was replaced every two days. Bloomington Drosophila stock center (BDSC): attp40 (36304) 

and UAS-GAPDH1 RNAi (62212). Laboratory stocks: w1118. w; tub-gal80[TS]; MHC-gal4/ TM6b. 

 

Intracellular metabolites extraction and LC/MS analysis 

Metabolites quantification in Drosophila were adapted from a published protocol81,82. 20 thoraces, head, 

gut, and abdomen were dissected in ice-cold 0.9% normal saline buffer after placing the flies under light 

CO2 anesthesia. Dissected thoraces were immediately placed in 1.5 mL tubes in dry ice. 450 µL of cold 

80% (v/v) aqueous methanol were added to the tubes, and intracellular metabolites were extracted by 

homogenizing tissues with pellet pestle for 1 minute by repeating a cycle of 20 seconds of grinding and 

10 seconds of break. Samples were centrifuged at maximum speed for 10 minutes in the cold room. 

Supernatants were transferred to a new 1.5 mL tube, pelleted by vacuum centrifugation using speedvac 

and stored in -80 °C until mass-spectrometry analysis.  

Samples were re-suspended using 22 µL HPLC grade water for mass spectrometry. 5-7 μL were 

injected and analyzed using a hybrid 6500 QTRAP triple quadrupole mass spectrometer (AB/SCIEX) 

coupled to a Prominence UFLC HPLC system (Shimadzu) via selected reaction monitoring (SRM) of a 
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total of 300 endogenous water soluble metabolites for steady-state analyses of samples. Some metabolites 

were targeted in both positive and negative ion mode for a total of 311 SRM transitions using 

positive/negative ion polarity switching. ESI voltage was +4950V in positive ion mode and –4500V in 

negative ion mode. The dwell time was 3 ms per SRM transition and the total cycle time was 1.55 

seconds.  Approximately 9-12 data points were acquired per detected metabolite. For targeted 13C flux 

analyses, isotopomers from ~140 polar molecules were targeted with a total of 460 SRM transitions. 

Samples were delivered to the mass spectrometer via hydrophilic interaction chromatography (HILIC) 

using a 4.6 mm i.d x 10 cm Amide XBridge column (Waters) at 400 μL/min. Gradients were run starting 

from 85% buffer B (HPLC grade acetonitrile) to 42% B from 0-5 minutes; 42% B to 0% B from 5-

16minutes; 0% B was held from 16-24 minutes; 0% B to 85% B from 24-25 minutes; 85% B was held for 

7 minutes to re-equilibrate the column. Buffer A was comprised of 20 mM ammonium hydroxide/20 mM 

ammonium acetate (pH=9.0) in 95:5 water:acetonitrile. Peak areas from the total ion current for each 

metabolite SRM transition were integrated using MultiQuant v3.2 software (AB/SCIEX). 

 

Metabolites profiling data analysis 

Statistical analysis was performed using MetaboAnalystR46. The hierarchical clustering analysis and 

heatmap was generated using PlotHeatMap function, in which hclust function used to normalize the data 

across the samples and the Euclidean distance and ward.d were used as parameters for clustering 

algorithm. Principal component analysis was performed using PCA.anal function. In comparison of the 

means of the normalized metabolite peaks, the Anova test was used using ggpubr package in R. For 

evaluation of the normalized metabolites peak areas, the peak areas were normalized to the protein mass 

of individual tissues. 

 

KEGG over-representation analysis for metabolomics 

To identify pathway-level metabolic changes, we performed over-representation analysis (ORA) using 

KEGG pathway annotations63. First, we constructed a reference pathway and metabolite database by 

utilizing the keggrest R package, retrieving all D. melanogaster pathways (e.g., dme00010, dme00020, 

etc) via keggList, and extracting associated metabolites for each pathway using keggGet, removing 

duplicate metabolites to create a unique reference compound list. A total of 105 Drosophila pathways and 

their associated compounds were compiled to serve as the reference database for subsequent over-

representation analysis. Region-specific metabolomics data, containing KEGG IDs from MetaboAnalyst, 
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were then analyzed through ANOVA testing for significant metabolite alterations across regions. Log₂ 

fold changes (log₂FC) were calculated relative to the mean intensity of other tissues, and metabolites with 

p < 0.05 and log₂FC > 0.5 were considered significantly enriched. For the abdomen, due to lower 

metabolite coverage, a relaxed threshold log₂FC > 0 was used, maintaining comparable input metabolite 

sizes compared to other regions. ORA was conducted using a hypergeometric test to calculate statistical 

overrepresentation, comparing altered metabolites against the background of all detected metabolites, 

with Benjamini-Hochberg adjustment for multiple testing, considering pathways with adjusted p < 0.05 as 

significantly enriched pathways. Enrichment results were visualized as bubble plots, with bubble size 

representing the enrichment ratio (the proportion of observed significant metabolites within a pathway 

relative to the expected proportion based on the reference dataset) and color indicating log-transformed 

adjusted p-values. 

 

Quantification of pathway overlap using weighted Jaccard index 

To evaluate the degree of overlap between metabolomics-derived enriched pathways and those predicted 

by tissue-specific genome-scale metabolic models (GEMs), we calculated a weighted Jaccard index. A 

traditional Jaccard index measures the similarity between two sets as the size of their intersection divided 

by their union47. We extended this to incorporate significance derived from metabolomics data, allowing 

pathways with stronger statistical support to contribute more to the similarity score48. For each 

experimentally enriched pathway, we assigned a weight based on the negative log10 of its adjusted p-value 

(–log10(q)), normalized across all pathways within each region. For GEM-based enriched pathways, we 

determined pathways with reaction content above the median across tissues as the enriched pathways. For 

each region–tissue pair, the weighted Jaccard index was calculated as: 

𝐽𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝐴, 𝐵) =  
∑ 𝑚𝑖𝑛 (𝑤𝐴(𝑖), 𝑤𝐵(𝑖))𝑖∈𝐴∩𝐵

∑ 𝑚𝑎𝑥 (𝑤𝐴(𝑖), 𝑤𝐵(𝑖)) 𝑖∈𝐴∪𝐵
 

, where: 

A and B are the sets of enriched pathways in the experimental region and predicted tissue-specific GEMS, 

respectively; 

𝑤𝐴(𝑖) refers to the normalized significance weights assigned to pathway i from experimentally 

determined enriched pathways for region A, calculated as 𝑤𝐴(𝑖) = 
− log10(𝑞𝑖)

∑ − log10(𝑞𝑗)𝑗∈𝐴
, where 𝑞𝑖 is the adjusted 

p-value for pathway i. For any pathway i that is not part of set A (e.g., 𝑖 ∈ 𝐴 ∪ 𝐵 and 𝑖 ∉ 𝐴), 𝑤𝐴(𝑖) = 0. 

The sum of all 𝑤𝐴(𝑖) equals 1; 
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𝑤𝐵(𝑖) refers to the normalized weights assigned to GEM-based enriched pathways. Since the enriched 

pathways identified from GEM do not have statistical significance values, each pathway i in set B is 

assigned an equal weight, calculated as 𝑤𝐵(𝑖)=1/𝑛𝐵, where 𝑛𝐵 is the number of enriched pathways in that 

tissue-specific GEM (set B). For any pathway i that is not part of set B (e.g., 𝑖 ∈ 𝐴 ∪ 𝐵 and 𝑖 ∉ 𝐵), 𝑤𝐵(i) 

= 0. The sum of all 𝑤𝐵(i) equals 1. 

To assess the statistical robustness of the weighted Jaccard index, we performed 10,000 bootstrap 

resampling of the experimental enriched pathway dataset. For each bootstrap iteration, enriched pathways 

were randomly sampled, and the weighted Jaccard index was recalculated against model-predicted tissue-

specific enriched pathways. This generated a distribution of indices for each region-tissue pair. We then 

used one-way ANOVA followed by Bonferroni-corrected post-hoc tests to determine whether a specific 

region (e.g., thorax) exhibited significantly higher similarity to a given tissue GEM (e.g., Muscle-GEM) 

compared to other regions. Significance levels were visualized on box plots to highlight region-specific 

alignment between experimental data and model predictions. 

 

Definition of HSD-muscle-GEM 

We defined a high sugar diet (HSD)-muscle-GEM by constraining reaction rates to recapitulate 

key known features of type 2 diabetic muscle based on the literature evidence28,29,33,34,52–54. These 

constraints included reduced upper bounds of reactions rates in glucose uptake, glyceraldehyde-3-

phosphate dehydrogenase, citrate synthase, oxoglutarate dehydrogenase, succinate dehydrogenase, and 

fumarate hydratase (Error! Reference source not found.a). Since Drosophila also utilizes trehalose as a 

fuel source, and its circulating levels increase in response to HSD13,83, we also constrained the upper 

bounds of trehalose uptake rates. Because glycolysis and TCA cycle activities are closely linked to 

NAD(P)H redox metabolism56, we updated reaction directionality of redox-related reactions based on 

supporting evidence from the literature9,84–89 (Error! Reference source not found.a). Furthermore, to focus 

the model on metabolic pathways relevant to our measured metabolites, we constrained the upper bounds 

of exchange rates for the undetected metabolites to one tenth of the default upper bound (Error! Reference 

source not found.b). Lastly, given the muscle tissue serving as a major tissue for energy and redox 

metabolism, we included artificial demand reactions for ATP production under HSD, NAD+ regeneration, 

and NADPH regeneration. These reactions reflect fundamental physiological needs of muscle in 

Drosophila: ATP production was required for flight90, NAD+ regeneration to sustain glycolysis91, and 

NADPH regeneration to mitigate oxidative stress92,93. While we originally intended to use these reactions 

as objective functions, similar to prior approaches modeling energy and redox metabolism84,94, they were 
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not used as objectives in our FBA simulations of HSD-muscle-GEM, but were still retained as auxiliary 

buffer reactions for energy and cofactor metabolism. Simulations were performed using a biomass 

objective function (reaction ID: MAR00021), which captures broad metabolic maintenance and 

biosynthesis requirements of muscle tissue. Details of this objective function are provided in the Flux 

Balance Analysis section. 

 

Flux balance analysis  

Flux balance analysis (FBA) was performed to determine the optimal metabolic flux distributions that 

maximizes a defined objective function, while satisfying stoichiometric constraints under steady state 

assumption95. A metabolic network is represented by a stoichiometric matrix S of size m × n, in where m 

and n represents the number of metabolites and reactions, respectively. The elements in 𝑆𝑖𝑗 corresponds to 

the stoichiometric coefficient of metabolites i in reaction j. The relationship between metabolites and 

reaction rates is given by the following equation: 

𝑆𝐯 =
𝑑𝐦

𝑑𝑡
 

, where v is the n × 1 vector of reaction rate vector and m is an m × 1 vector of metabolite 

concentrations. Under the steady-state assumption, the concentration of metabolites does not change over 

time, making the right side equal to 0. FBA solves a linear optimization problem to determine flux 

distributions that satisfy this constraint, formulated as: 

maximize 𝐜𝑇𝐯, 

subject to  S𝐯 = 0, 

 and 𝐯𝐦𝐢𝐧 ≤ 𝐯 ≤ 𝐯𝒎𝒂𝒙 

, where  

S ∶ Stoichiometry matrix (m × 𝑛)  

v ∶ flux vector representing reaction rates at steady state (v ∈ R𝑛) 

c ∶ vetor defining the linear objective function 

v𝑚𝑖𝑛, v𝑚𝑎𝑥: Lower and upper bounds for each flux 
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For FBA simulations, we used a biomass objective function (reaction ID:MAR00021), which 

aggregates the demand for key metabolic precursors — including amino acids (e.g., alanine, glutamine, 

valine), lipids (e.g., cholesterol, lipid droplets), glycogen, nucleotides (DNA, RNA), and metabolic pools 

(e.g., phospholipids, cofactors, vitamins) — into a single pseudo-biomass reaction, as follows: 

𝐶𝐿𝑝𝑜𝑜𝑙[𝑐] + 𝐷𝑁𝐴[𝑛] + 𝐷𝑁𝐴-𝑚𝑒𝑡ℎ𝑦𝑙𝑐𝑦𝑡𝑜𝑠𝑖𝑛𝑒[𝑛] + 𝑃𝐼 𝑝𝑜𝑜𝑙[𝑐] + 𝑅𝑁𝐴[𝑐] + 𝑆𝑀 𝑝𝑜𝑜𝑙[𝑐] + 𝑎𝑙𝑎𝑛𝑖𝑛𝑒[𝑐]

+ 𝑎𝑟𝑔𝑖𝑛𝑖𝑛𝑒[𝑐] + 𝑎𝑠𝑝𝑎𝑟𝑎𝑔𝑖𝑛𝑒[𝑐] + 𝑎𝑠𝑝𝑎𝑟𝑡𝑎𝑡𝑒[𝑐] + 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙[𝑐] + 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙

− 𝑒𝑠𝑡𝑒𝑟 𝑝𝑜𝑜𝑙[𝑟] + 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑎𝑛𝑑 𝑣𝑖𝑡𝑎𝑚𝑖𝑛𝑐 [𝑐] + 𝑐𝑦𝑠𝑡𝑒𝑖𝑛𝑒[𝑐] + 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒[𝑐]

+ 𝑔𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒[𝑐] + 𝑔𝑙𝑦𝑐𝑖𝑛𝑒[𝑐] + 𝑔𝑙𝑦𝑐𝑜𝑔𝑒𝑛[𝑐] + ℎ𝑖𝑠𝑡𝑖𝑑𝑖𝑛𝑒[𝑐] + 𝑖𝑠𝑜𝑙𝑒𝑢𝑐𝑖𝑛𝑒[𝑐]

+ 𝑙𝑒𝑢𝑐𝑖𝑛𝑒[𝑐] + 𝑙𝑖𝑝𝑖𝑑 𝑑𝑟𝑜𝑝𝑙𝑒𝑡[𝑐] + 𝑙𝑦𝑠𝑖𝑛𝑒[𝑐] + 𝑚𝑒𝑡ℎ𝑖𝑜𝑛𝑖𝑛𝑒[𝑐] + 𝑝ℎ𝑒𝑛𝑦𝑙𝑎𝑙𝑎𝑛𝑖𝑛𝑒[𝑐]

+ 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑖𝑑𝑎𝑡𝑒-𝐿𝐷-𝑇𝐴𝐺 𝑝𝑜𝑜𝑙[𝑐] + 𝑝𝑟𝑜𝑙𝑖𝑛𝑒[𝑐] + 𝑠𝑒𝑟𝑖𝑛𝑒[𝑐] + 𝑡ℎ𝑟𝑒𝑜𝑛𝑖𝑛𝑒[𝑐]

+ 𝑡𝑟𝑦𝑝𝑡𝑜𝑝ℎ𝑎𝑛[𝑐] + 𝑡𝑦𝑟𝑜𝑠𝑖𝑛𝑒[𝑐] + 𝑣𝑎𝑙𝑖𝑛𝑒[𝑐] → 𝑏𝑖𝑜𝑚𝑎𝑠𝑠[𝑐] 

This formulation was used here as a general proxy for basal cell maintenance, including protein 

turnover, membrane lipid remodeling, and nucleotide recycling. These processes remain active and 

physiologically relevant to tissues like muscle67,96,97. Thus, rather than using energy and redox demands as 

sole objective functions, which could bias the solution space or do not recapitulate other core metabolic 

activities, we adopted this biomass objective function to capture broader metabolic requirements. The 

resulting flux through this reaction was approximately 1.1 (arbitrary unit). While this value represents the 

demand for cell biosynthesis and maintenance, the energetic and precursor requirements for synthesizing 

biomass are distributed among the various reaction fluxes throughout the metabolic network. 

 

Flux variability analysis 

Flux Variability Analysis (FVA) was used to evaluate the range of feasible fluxes for each reaction under 

sub-optimal conditions, characterizing the flexibility of individual reactions98. FVA involves solving two 

optimization problems—one to maximize and one to minimize each flux vi of interest, 

maximize / minimize v𝑖 , 

subject to  S𝐯 = 0, 

 𝐜𝑇𝐯 ≥ α × z𝑐𝑜𝑚𝑚𝑜𝑛,𝑜𝑝𝑡 , 

and 𝐯𝐦𝐢𝐧 ≤ 𝐯 ≤ 𝐯𝒎𝒂𝒙 
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, where α is the optimality parameter (0 ≤ α ≤ 1), where α = 1 corresponds to the fully optimal solution 

obtained from FBA. In this study, we set α = 0.9 to allow a small deviation from the optimal solution, 

enabling exploration of alternative flux distributions that are biologically plausible while still near-

optimal. We used flux variability analysis to probe the range of fluxes (differences between Vmax and 

Vmin) as a measure of feasible flux range, not as a proxy for statistical uncertainty. 

 

Flux sampling analysis  

We performed flux sampling analysis after unconstrained reaction bounds with the minimum and 

maximum flux values obtained from flux variability analysis (FVA). To explore the feasible solution 

space, we applied the GpSampler algorithm, which implements the Artificial Centering Hit-and-Run 

(ACHR)99. A total of 10,000 randomly sampled flux distributions were generated using uniformly 

distributed initial points. 

 

Parsimonious flux balance analysis (pFBA) 

Parsimonious enzyme usage flux balance analysis (pFBA) is a commonly used extension of standard flux 

balance analysis that identifies flux distributions with minimal total flux while achieving the optimal 

value of a specified objective (e.g., biomass production)100. The rationale is that cells are expected to 

minimize enzyme usage and avoid unnecessary internal cycling, leading to more realistic and 

interpretable flux predictions. It uses a bilevel optimization in which the objective function is first 

optimized using FBA, followed by the minimization of total flux through all gene-associated reactions. 

The second part of the optimization is expressed as follows: 

min ∑ 𝑣𝑖𝑟𝑟𝑒𝑣,𝑗

𝑚

𝑗=1

 

𝑠. 𝑡. 𝑣𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑙𝑏 =  𝑣𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝐹𝐵𝐴, 

𝑆𝑖𝑟𝑟𝑒𝑣 ∗ 𝐯𝐢𝐫𝐫𝐞𝐯 = 0 

0 ≤ 𝑣𝑖𝑟𝑟𝑒𝑣,𝑗 ≤ 𝑣𝑚𝑎𝑥 

,where m is the number of irreversible reactions in the network, 𝑣𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝐹𝐵𝐴 is the optimal flux value 

obtained from FBA and 𝑣𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑙𝑏 is the lower bound for the objective function for the second 

optimization problem.  
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Differential flux analyses 

To identify reactions with altered fluxes between HSD and NSD conditions, we calculated the difference 

in flux values for each reaction across FBA, pFBA, and FVA_sampling analyses. Flux values from FBA 

and pFBA represent single optimal solutions, whereas for FVA_sampling, median flux values across the 

sampling points were used as a representative flux value. Reactions were classified as increased or 

decreased based on a flux difference threshold of ±1, which can be adjusted for stringency. This analysis 

produced three independent sets of perturbed reactions for each method. Then, we identified the 

commonly perturbed reactions shared across all three methods and visualized their overlaps using UpSet 

and ggvenn functions in R. For these shared reaction sets, we assigned each reaction to its corresponding 

subsystem and associated gene(s). Within each direction (increased or decreased), the top three 

subsystems with the largest numbers of perturbed reactions were selected. Gene–subsystem relationships 

were visualized as bipartite network graphs, where node size corresponds to the number of associated 

reactions and edge width represents the number of shared genes between subsystems and reactions. 

Networks were generated using the igraph (v1.3.5) and ggraph (v2.1.0) in R. 

For FVA-sampling analysis of NAD(H)-dependent reactions, we additionally performed two-sample Z-

tests to evaluate the statistical significance of flux changes between NSD and HSD conditions101. Z-score 

was calculated as follows: 

𝑍𝑖 =
𝑋̅𝐻𝑆𝐷(𝑣𝑖) − 𝑋̅𝑁𝑆𝐷(𝑣𝑖)

√
𝜎𝐻𝑆𝐷

2 (𝑣𝑖)
𝑛𝐻𝑆𝐷

+
𝜎𝑁𝑆𝐷

2 (𝑣𝑖)
𝑛𝑁𝑆𝐷

 

 

, where i represents each reaction, 𝑋̅𝑐𝑜𝑛𝑑(𝑣𝑖) is the average of the sampled fluxes of each reaction for 

condition (NSD or HSD), 𝜎𝑐𝑜𝑛𝑑
2 (𝑣𝑖) is the sample variance, and ncond is the number of flux samples per 

condition. Two-tailed p-values were computed using the standard normal cumulative distribution 

function, and Bonferroni correction was applied to adjust for multiple testing. 
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Evaluation of maximum NADH production capacity 

To assess the network’s maximum NADH production capacity, we introduced an artificial total NADH 

demand reaction (NADH → NAD+ + H+) accounting for relevant compartments (cytosol, mitochondria, 

and peroxisome) into the muscle-GEM. Specifically, the reaction is represented as: 

NADH[c]  +  NADH[m] +  NADH[p]  

→  NAD+[c]  +  H+[c]  +  NAD+[m]  +  H+[m]  +  NAD+[p]  +  H+[p]  

, where [c], [m], and [p] refer to the cytosol, mitochondria, and peroxisome, respectively. As solely 

maximizing the NADH demand reaction may yield biologically nonviable solutions, we first performed 

FBA by maximizing the original pseudo-biomass objective function84. Then, we set the lower bounds of 

this reaction at 50% of the optimized solution and performed pFBA to maximize the NADH demand 

reaction. 

 

Sensitivity analysis 

To assess the control of individual glycolytic reactions on overall pathway flux, we performed a 

sensitivity analysis. This analysis is conceptually analogous to metabolic control analysis, where flux 

control strength is quantified as the relative change in pathway output flux in response to variations in 

individual enzyme activities102,103. It also aligns with general sensitivity analyses of reaction rates used in 

reaction networks85,104. For each glycolytic reaction, the baseline flux was defined as the median flux of 

5,000 sampling data obtained from FVA. Then, each reaction was perturbed by constraining its flux to 

95%, 90%, 70%, and 50% of the baseline, and FVA-sampling was repeated to obtain the perturbed flux 

distributions. The total pyruvate consumption flux was used as a proxy for glycolytic output flux, because 

unlike mammalian systems where lactate production rate by lactate dehydrogenase (LDH) is commonly 

used as the glycolytic output, LDH activity is relatively low in insect muscle105, and pyruvate is 

substantially converted for the production of other metabolites such as alanine and acetate106,107. The 

normalized sensitivity coefficient (Si) was calculated as follows: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑆𝑖) =  
∆𝑣𝑡𝑜𝑡𝑎𝑙_𝑝𝑦𝑟_𝑐𝑜𝑛

∆𝑣𝑖
×

𝑣𝑖,𝑏𝑎𝑠𝑒

𝑣𝑡𝑜𝑡𝑎𝑙_𝑝𝑦𝑟_𝑐𝑜𝑛,𝑏𝑎𝑠𝑒
 

 

,where 𝑣𝑡𝑜𝑡𝑎𝑙_𝑝𝑦𝑟_𝑐𝑜𝑛,𝑏𝑎𝑠𝑒 represents the sum of fluxes through all pyruvate-consuming reactions at 

baseline, ∆𝑣𝑡𝑜𝑡𝑎𝑙_𝑝𝑦𝑟_𝑐𝑜𝑛  represents the difference in the summed flux of all pyruvate-consuming 
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reactions between the baseline and perturbed states, 𝑣𝑖 represents the baseline flux of with glycolytic 

reaction, and  ∆𝑣𝑖 represents the difference in flux of the ith reaction between the baseline and perturbed 

states. 

 

Pathway-level flux analysis 

To evaluate the pathway-level flux changes and statistical significance between NSD and HSD 

conditions, we defined pathway flux (Vi) as the average of non-zero flux magnitudes within each 

pathway. For FVA_sampling analysis, we used 10,000 flux sampling points per condition and performed 

a two-sample Z-test, adapting the approach from a previous study101: 

𝑍𝑖 =
𝑋̅𝐻𝑆𝐷(𝑉𝑖) − 𝑋̅𝑁𝑆𝐷(𝑉𝑖)

√
𝜎𝐻𝑆𝐷

2 (𝑉𝑖)
𝑛𝐻𝑆𝐷

+
𝜎𝑁𝑆𝐷

2 (𝑉𝑖)
𝑛𝑁𝑆𝐷

 

 

, where i represents each pathway, X̅cond(Vi) is the average of the pathway flux across all sampling points 

for condition (NSD or HSD),  σcond
2 (Vi) is the sample variance of pathway flux across all sampling points 

for each condition, and ncond is the number of flux sampling points per condition. Two-tailed p-values 

were computed using the standard normal cumulative distribution function. For pFBA, which yields a 

single optimal flux solution per condition, no statistical test was performed and pathway flux changes 

were quantified using the log2 fold change between HSD and NSD. 

 

13C-isotopic labeling experiments and mass isotopomer analysis 

We prepared the normal and high sugar diet with 13 mM and 50 mM of [U-13C6]glucose (Cambridge 

Isotope Laboratories, Inc. CLM-1396), respectively, maintaining the molar ratio of the labeled glucose to 

sucrose consistent. For 13C-isotopic labeling experiments, we collected 3 days old w1118 male flies and 

placed approximately 30 flies in vials containing either NSD or HSD with isotope tracers at room 

temperature. The food was replaced every two days. On day five, twenty thoraces were dissected per 

biological replicate and intracellular metabolites were extracted using 80% (v/v) aqueous methanol. 

Q1/Q3 SRM transitions for incorporation of 13C-labeled metabolites were established for polar 

metabolite isotopomers, and data were acquired by LC-MS/MS. Peak areas were generated using 

MultiQuant version 2.1 software. The natural isotope abundance was corrected using AccuCor (Github: 

https://github.com/XiaoyangSu/AccuCor)108.  
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Switch-tagging redox proteomics 

Muscle tissues were solubilized in 4% SDS in 100mM triethylammonium bicarbonate (TEAB) pH 7.0 

lysis buffer and digested using S-Trap micro columns (Protifi, Huntington, NY) following the 

manufacturer’s procedure. Each sample was loaded onto individual Evotips for desalting and washing. 

The Evosep One system (Evosep, Odense, Denmark) was used to separate peptides on a Pepsep colum 

(150 um inter diameter, 15 cm) packed with ReproSil C18 1.9 um, 120A resin using pre-set 15 samples 

per day gradient. The system was coupled to the timsTOF Pro mass spectrometer (Bruker Daltonics, 

Bremen, Germany) via the nano-electrospray ion source (Captive Spray, Bruker Daltonics). Raw data 

files conversion to peak lists in the MGF format, downstream identification, validation, filtering and 

quantification were managed using FragPipe version 13.0. MSFragger version 3.0 was used for database 

searches against a Drosophila database with decoys and common contaminants added. 

 

Prediction of Drosophila GAPDH protein complexes using AlphaFold-Multimer 

For the prediction of protein complexes using AlphaFold-Multimer (AFM), we employed 

LocalColabFold version 1.5.2109. It integrates AFM version 2.3.1110 and utilizes MMseqs2 for generating 

multiple sequence alignments. Computations were performed on the Harvard O2 high-computing cluster. 

Our prediction involved five models for each complex, each undergoing five recycling iterations. The 

model displaying the highest prediction quality was selected for each protein complex. The protein 

complexes examined in this study include Drosophila GAPDH1 homodimer, GAPDH1:GAPDH2 

heterodimer, and GAPDH2 homodimer. The prediction results have been made publicly available on the 

Fly Predictome website (https://www.flyrnai.org/tools/fly_predictome/web/)111. For visualization of the 

predicted structures we utilized ChimeraX112. 

 

KEGG over-representation analysis (ORA) for redox proteomics 

Similar to the metabolomics-based ORA analysis, we conducted KEGG over-representation analysis 

using proteins with significantly altered oxidation states. Significantly altered peptides of proteins were 

identified by calculating the log₂ fold change between high sugar diet and normal sugar diet conditions. 

Statistical significance was determined using an unpaired two-sample t-test, with p-values corrected for 

multiple testing using the Benjamini-Hochberg (FDR) method. Proteins were considered significantly 
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altered if they met the thresholds of log₂|FC| > 0.5 and adjusted p-value < 0.05. After obtaining a list of 

significantly altered protein sets, we performed KEGG overrepresentation analysis using the 

clusterProfiler R package. First, protein names were converted to gene symbols. Next, these gene 

symbols were mapped to entrez IDs using the bitr function in the org.Dm.eg.db database. Only unique 

Entrez Gene IDs were retained for downstream analysis. Finally, overrepresentation analysis was 

performed using the enrichKEGG function. The enrichment results were visualized using dot plots using 

dotplot function. 

 

Climbing assay 

Flies were tested for vertical climbing ability at day 5 and 1082,113. In this assay, male flies separated by 

genotypes were transferred to empty vials. Flies were tapped three times and observed for 10 seconds. 

The percentage of flies that climbed above 5 cm was recorded. Consecutive trials were separated by 30 

seconds of rest. 

 

RNA extraction and qRT-PCR 

RNA was extracted and analyzed by qRT-PCR49. Five thoraces were collected per sample. Samples were 

homogenized in TRIzol reagent (Ambion). The RNAs were isolated and purified using Direct-zol RNA 

MicroPrep columns (Zymo Research) according to the manufacturer instructions. Reverse transcription 

was done by using iScript cDNA Synthesis Kit (Bio-Rad). qRT-PCR was done in a CFX96 Real-Time 

System (Bio-Rad) using iQ SYBRGreen Supermix (Bio-Rad). Relative mRNA levels were calculated 

using the ΔΔCt method. For thoraces, values were normalized to the housekeeping gene a-tubulin84.  

 

Quantification of cellular NADH/NAD+  

Measurements of NADH/NAD+ was adapted from a published protocol86, using the NADH/NAD+ Glo 

Assay (Promega: G9071, G9072) with a modification in manufacturer instruction. In brief, five thoraces 

were dissected, weighted, and stored in 1.5 mL tubes in dry ice. 300 µL of PBS with 1 % DTAB solution 

was added the tubes and the thoraces were homogenized with the pellet and homogenizer. 110 µL of the 

cell lysates were split into two separate ice-cold 1.5 mL tubes: one for NADH and the other for NAD+. 

For NADP+ tube, 55 µL of 0.4 M HCl with 1 mM ascorbate were added. We added ascorbic acid to 

prevent the oxidation of NADH into NAD+ under low pH, avoiding the overestimation of intracellular 
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NAD+ levels114. The other NADH tube remained untreated. Both tubes were placed into the heat block 

with 60 °C temperature for 20 minutes to destroy NAD+. Tubes were equilibrated at room temperature for 

10 minutes. 55 µL 0.5 M Trizma/base was added to the NAD+ tubes to neutralize the acid, while 110 µL 

of HCl/ascorbate/base buffer was added to the untreated NADH tube. Afterwards, NADH, NAD+, and the 

ratio were measured following the manufacturer’s instruction with the generation of standard curves with 

known concentration.  

 

Data analysis, statistics, and reproducibility 

Statistical analyses were performed in GraphPad Prism (v9.5.1), MATLAB (2020b), or R (4.2.1). For 

analysis of two groups, including metabolomics, isotope tracing, and redox-proteomics between HSD and 

NSD conditions, Welch’s unequal variances two-sided t-test was used to calculate a p-value. For 

metabolomics data involving multiple group comparisons, one-way ANOVA was conducted followed by 

Benjamini-Hochberg (BH) correction for controlling the false discovery rate (FDR). The significance was 

represented as follows: ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001,∗∗∗∗ P < 0.0001. In pathway 

enrichment analyses, hypergeometric tests were applied to identify over-represented pathways. To 

account for multiple comparisons, p-values were adjusted for false discovery rate (FDR) using the 

Benjamini-Hochberg (BH) method. For weighted Jaccard index analyses, pathway enrichment data were 

bootstrap-resampled (n = 10,000) and analyzed using one-way ANOVA, followed by Bonferroni-

corrected pairwise comparisons relative to a predefined reference region. For correlation analyses 

between model-generated flux changes and metabolite or proteomic measurements, Pearson’s correlation 

coefficient (r) and associated p-values were calculated. For model-generated flux sampling analysis, the 

Mann–Whitney U test (ranksum test) was used to compare flux distributions between NSD and HSD 

conditions, as the distributions are not assumed to be normal. Significance levels were indicated in the 

boxplots. No samples or data points were excluded from statistical analysis. All analyses from 

experimental data were based on biologically independent replicates. The statistical methods used for 

each analysis are described in the corresponding figure legends or methods sections. 

 

Data Availability  

All data generated in this study, including 13C-glucose isotope tracing, high-sugar-diet (HSD) 

metabolomics, regional metabolomics, and redox proteomics, are provided in the Source Data. Processed 
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and analyzed data are provided in Supplementary Data. The protein mass spectrometry raw data have 

been deposited to the ProteomeXchange via the MassIVE with the dataset identifier MSV000100288. 

 

Code Availability  

MATLAB and R scripts used for reconstruction of genome-scale metabolic models and flux analyses are 

available on GitHub (https://github.com/sunjjmoon/FlyTissueGEMs). An achieved version of the code 

used in this study is available on Zenodo: doi.org/10.5281/zenodo.17684286115.  
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Figure legends 

Fig. 1: Reconstruction of 32 tissue-specific genome-scale metabolic models (GEMs) in Drosophila 

melanogaster 

a Pipeline for reconstruction of tissue-specific GEMs in Drosophila. Elements created in BioRender. 

Moon, S. (2025) https://BioRender.com/1nasxv2. b t-SNE plot comparing the metabolic network 

structures of 32 tissue-specific GEMs using Hamming similarity. Each point represents one tissue-

specific GEM, with marker shapes and colors indicating major tissue groups (muscle: red circles; fat 

body/oenocyte: purple squares; gut: orange diamonds; glia: green downward triangles; neurons: dark red 

upward triangles; others: gray stars). Abbreviations: PNS is peripheral nervous system; VNS is ventral 

nervous system; LMM neuron is leg muscle motor neuron; RN glial cell is reticular neuropil associated 

glial cell; CNSS glial cell is central nervous system surface associated glial cell. c Jaccard index analysis 

comparing overlap between clusters defined by tissue-GEM and those based on  gene expression. d 

Number of reactions per subsystem across GEMs, highlighting the top 10 subsystems by reaction count.  

e Fraction of extracellular transport reactions relative to all transport reactions, with major tissue groups 

highlighted. Dashed lines indicate mean values. Correlation was assessed using a two-sided Pearson 

correlation test (r = 0.93, p = 5e-15). f Heatmap of differential subsystem coverage across tissues, with 

bright yellow indicating higher coverage and dark blue lower coverage. Subsystems with ≥15 reactions 

and >50% deviation from mean coverage are shown. Source data are provided as a Source Data file.   
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Fig. 2. Validation of tissue-specific GEMs through regional metabolomics and pathway analysis 

a Schematics showing the metabolomics analysis performed on four Drosophila regions, followed by 

KEGG over-representation analysis. Elements created in BioRender. Moon, S. (2025) 

https://BioRender.com/1nasxv2. b Principal component analysis (PCA) of metabolite profiles across 

regions (n = 4). c Heatmap showing the metabolite profiles across thorax, head, abdomen, and gut. d 

Bubble plot showing enriched metabolites in each region compared to others. One-way ANOVA followed 

by Benjamini-Hochberg (BH) correction was used for multiple comparisons. e Over-representation 

analysis of enriched metabolite sets across regions, using a one-sided hypergeometric test, followed by 

BH correction for multiple comparisons. f Heatmap of weighted Jaccard index values showing pathway 

overlaps between metabolomics-derived and GEM-predicted pathways. g-h Boxplots showing weighted 

Jaccard index distributions between metabolomics-derived pathways and either (g) Muscle-GEM or (h) 

Fat body-GEM. Center line is median; box limits are first and third quartiles; whiskers are 1.5 × 

interquartile range; red points are mean; gray points present individual bootstrap samples (n = 10,000), 

shown in full including those outside the whiskers. Statistical significance is based on comparisons 

against the reference region (g: thorax; h: abdomen) using one-way ANOVA followed by Bonferroni-

corrected pairwise tests; *** p < 0.001. Overlapping pathways between GEM-predicted and region-

specific enriched pathways are shown to the right. Source data are provided as a Source Data file.  



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 
 

Fig. 3. Constraint-based flux analyses predict perturbations in NAD(H)-dependent reactions in 

muscle under high sugar diet 

a Schematics of constraint-based semi-quantitative flux analyses for muscle under HSD. Constraints were 

applied to reflect metabolic alterations observed in muscle under HSD, recapitulating features of type 2 

diabetes in Drosophila. FBA, pFBA, and FVA_sampling analyses were performed to estimate differential 

reaction fluxes, identifying commonly perturbed reactions across the methods. Elements created in 

BioRender. Moon, S. (2025) https://BioRender.com/1nasxv2. b Networks showing the top three most 

commonly perturbed subsystems, reactions, and genes from the decreased (blue) and increased (red) 

reaction sets identified across flux analyses. Node size indicates the number of reactions associated with 

each subsystem, and edge width represents the number of linked genes. c Differential fluxes of NAD(H)-

dependent reactions between HSD and NSD from FVA_sampling analysis. Dot size reflects absolute 

differential flux and color scale indicates adjusted p-values from a two-sample Z-test. X-axis shows log2 

fold change, with threshold of ± 0.5. Reactions consistently decreased or increased across different flux 

analyses are labeled in blue or red, respectively. d Schematic of the pFBA evaluating maximum NADH 

production capacity under HSD and NSD conditions. An artificial NADH oxidation reaction (NADH → 

NAD⁺) was introduced as a total NADH demand across cytosolic, mitochondrial, and peroxisomal 

compartments. e Maximal NADH demand flux estimated by pFBA between NSD and HSD conditions. f 

NAD+/NADH ratio in w1118 male flies fed NSD or HSD for five days. Data are shown as mean ± SD from 

biological replicates (n = 5). Statistical significance was assessed using a two-tailed unpaired t-test; ** p < 

0.01. g Schematic of the sensitivity analysis workflow for glycolysis. Individual glycolytic fluxes were 

perturbed, followed by FVA-sampling to quantify changes in total pyruvate consumption flux, which 

served as a proxy for glycolytic output. Normalized sensitivity coefficients were calculated to assess each 

reaction’s influence on the pathway output flux. h Bar plot showing normalized sensitivity coefficients 

(Si) of glycolytic reactions under different perturbation magnitudes (5 – 50%). The bar plot on the right 

shows the average absolute sensitivity (|𝑆𝑖|), highlighting reactions with the greatest overall influence 

under these simulations. Source data are provided as a Source Data file. 
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Fig. 4. Model-predicted decreases in glycolytic flux, including GAPDH, validated through 13C-

glucose tracing 

a Experimental design for 13C-glucose isotope tracing experiments in Drosophila thoracic muscle under 

high sugar diet (HSD) conditions. Elements created in BioRender. Moon, S. (2025) 

https://BioRender.com/1nasxv2. b Isotopic labeling patterns generated by [U-13C6]glucose in glycolysis 

and TCA cycle. Red circles represent ¹³C-labeled carbons. c-d Fractional labeling of mass isotopomers of 

(c) glycolytic or (d) TCA cycle intermediates, shown as both fractional labeling (left) and values 

normalized to M+6 glucose and scaled relative to normal sugar diet (NSD) (right). Bars represent mean ± 

SEM, and individual points indicate biological replicates (n = 6). M+x denotes a mass isotopomer 

containing x ¹³C atoms. Statistical significance was assessed using two-tailed unpaired t-tests comparing 

NSD and HSD for each metabolite; * p < 0.05, ** p < 0.01, *** p < 0.001. e Correlation between model-

predicted relative flux changes (HSD-muscle-GEM/Unconstrained) and fractional labeling of glycolytic 

intermediates (HSD/NSD). Relative flux of each reaction was mapped to the normalized fractional 

labeling of its corresponding product metabolite. Fractional labeling values (y-axis) are shown as mean ± 

SEM from biologically independent replicates (n = 6), and model-predicted flux values (x-axis) are 

shown as mean ± SEM from flux sampling simulations (n = 10,000). The dashed red line represents a 

linear regression fit, with the shaded region indicating the 95% confidence interval. Correlation was 

assessed using a two-sided Pearson correlation test (r = 0.813, p = 0.0263). Source data are provided as a 

Source Data file.  
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Fig. 5. Model-predicted decreases in glycolytic flux correlate with increased redox modification of 

glycolytic enzymes 

a Experimental design for switch-tag redox proteomics in Drosophila thoracic muscle under HSD 

conditions. Elements created in BioRender. Moon, S. (2025) https://BioRender.com/1nasxv2. b PCA plot 

showing variance in oxidized peptides between HSD and NSD conditions. c Volcano plot displaying 

differentially oxidized peptides in thoracic muscle between HSD and NSD conditions. The intensities 

were normalized within each protein across samples. d Dot plot showing KEGG pathway enrichment 

(Drosophila) based on significantly oxidized peptides. e Heatmap showing the significantly oxidized 

peptides in glycolysis between NSD and HSD conditions. f Correlation between model-predicted relative 

flux changes (HSD-muscle-GEM/Unconstrained) and relative oxidation state changes of glycolytic 

enzyme peptides (HSD/NSD). Relative oxidation state was calculated as the average oxidation level of 

peptides from each enzyme in HSD, normalized to NSD. Relative oxidation state values (y-axis) are 

shown as mean ± SEM from biologically independent replicates (n = 6), and model-predicted flux values 

(x-axis) are shown as mean ± SEM from flux sampling simulations (n = 10,000). The dashed red line 

represents a linear regression fit, with the shaded region indicating the 95% confidence interval. 

Correlation was evaluated using a two-sided Pearson correlation test (r = -0.771, p = 0.0251). g Boxplot 

showing normalized intensity of significantly oxidized GAPDH peptide. Center line is median; box limits 

are first and third quartiles; whiskers are 1.5 × interquartile range; points represent biologically 

independent replicates (n = 6). Statistical significance was assessed using a two-tailed unpaired t-test and 

the p-value is shown above the plot. h Climbing ability of male Mhcts>attp40 (control), or GAPDH1-

RNAi flies, measured at day 5 and 10 after fed with HSD. Bar represent mean ± SD, and individual points 

indicate biological replicates (n = 3). Statistical significance was assessed using two-tailed unpaired t-

tests comparing control vs. GAPDH1-RNAi within each time point; ns = not significant, * p < 0.05. 

Source data are provided as a Source Data file.  
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Fig. 6. Pathway-level flux analysis reveals dysregulated fructose metabolism  

a Schematic of the pathway-level flux analysis pipeline. FVA-sampling and pFBA were used to estimate 

pathway fluxes under HSD and NSD conditions, followed by calculation of Z-scores and log₂ fold 

changes to identify perturbed pathways. Elements created in BioRender. Moon, S. (2025) 

https://BioRender.com/1nasxv2. b Pathway-level flux differences between HSD and NSD conditions. 

Each dot represents a pathway, with its size indicating absolute pathway flux difference and color 

representing adjusted p-value. The x-axis shows the log2 fold change in pathway flux. Pathways 

highlighted in blue or red show commonly decreased or increased fluxes across both FVA-sampling and 

pFBA. c Schematic representing the targeted metabolite profiling of thoracic muscles from w1118 male 

flies fed either HSD or NSD. Elements created in BioRender. Moon, S. (2025) 

https://BioRender.com/1nasxv2. d PCA of thoracic metabolite profiles under HSD and NSD (n = 4). e 

Volcano plot showing significantly altered metabolites in thoracic muscles in response to HSD. f 

Integrated schematic of fructose and sucrose metabolism (KEGG: dme00051 and dme00050), 

highlighting key metabolites, enzymes, and reactions. Box plots (black outline) display normalized 

metabolite levels under NSD and HSD. Center line is median; box limits are first and third quartiles; 

whiskers are 1.5 × interquartile range; points represent biologically independent replicates (n = 4). 

Statistical significance was assessed using a two-tailed unpaired t-test and the p-value is shown above the 

plot. Heatmaps (green outline) indicate significantly altered redox modifications for select enzymes (p < 

0.05). Histograms (purple outline) show model-predicted flux distributions from flux sampling analysis (n 

= 10,000). Black arrows indicate reactions not detected (ND) in the muscle-GEM. Colored metabolite 

names and arrows represent log2 fold changes (HSD/NSD) for both fluxes and metabolite levels, as 

shown in the color scale. Source data are provided as a Source Data file. 
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Editorial Summary: 

This study develops tissue-specific genome-scale metabolic models for Drosophila and shows how 

constraint-based flux analyses from the muscle model can identify high sugar diet-induced metabolic 

dysregulation at reaction and pathway levels. 

Peer Review Information: Nature Communications thanks David James and the other, anonymous, 

reviewer(s) for their contribution to the peer review of this work. [A peer review file is available.] 
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Echs1 ; Mcad (MAR05024) [m]

Mtpα ; scu (MAR03236) [m]
Cyt-b5-r (MAR00151) [c]

Mcad (MAR00755) [m]
CG7461 ; Echs1 (MAR03414) [m]

ACOX1 ; Mfe2 (MAR01001) [p]
ACOX1 ; Mfe2 (MAR00982) [p]

CG7461 ; Echs1 (MAR03424) [m]
CG7461 ; Echs1 (MAR03425) [m]

Mcad (MAR00970) [m]
Mdh2 (MAR04141) [m]

No gene (MAR08442) [c]
CG7461 ; Echs1 (MAR03416) [m]

Mcad (MAR00965) [m]
Fdh (MAR08507) [c]

Akr1B (MAR03854) [c]
Aldh ; Aldh-III (MAR04559) [c]
ACOX1 ; Mfe2 (MAR00975) [p]

Mfe2 (MAR03328) [p]
Fdh (MAR01131) [r]

Aldh ; Aldh-III (MAR01134) [r]
Mdh1 (MAR04139) [c]

Mcad (MAR00764) [m]
No gene (MAR03053) [p]

Ldh (MAR05351) [c]
Echs1 ; Fatp1 (MAR06453) [m]

CG8888 (MAR06644) [c]
Echs1 ; Fatp1 (MAR06486) [m]
Echs1 ; Fatp1 (MAR06473) [m]

No gene (MAR06488) [m]
Echs1 ; Fatp1 (MAR06484) [m]

No gene (MAR06482) [m]
Cyp49a1 (MAR02140) [m]
No gene (MAR08613) [c]

No gene (MAR08615) [m]
CG8888 (MAR06633) [r]

Cyp49a1 (MAR02139) [c]
No gene (MAR00022) [c; m]

Cyp49a1 (MAR02767) [m]
Echs1 ; Fatp1 (MAR06472) [m]
Echs1 ; Fatp1 (MAR06436) [m]

CG31075 (MAR06652) [r]
Coq6 (MAR02131) [c]

No gene (MAR06470) [m]
Echs1 ; Fatp1 (MAR06471) [m]

CG33156 ; CG8080 (MAR04269) [c]
Nadsyn (MAR04261) [c]

ras (MAR04040) [c]
CG3999 ; CG6415 (MAR06409) [m]

sgl (MAR04122) [c]
Aldh-III (MAR02192) [m]
Aldh-III (MAR04685) [m]

Ldh (MAR04388) [c]
GS (MAR20017) [c]

CG5214 ; CG7430 (MAR05297) [m]
Gapdh1 ; Gapdh2 (MAR04373) [c]

Aldh-III (MAR01568) [c]
Dhfr (MAR04332) [c]

CG6287 (MAR03839) [c]
Dhfr (MAR04654) [c]

Aldh-III (MAR06760) [c]
Aldh ; Aldh-III (MAR08357) [m]

No gene (MAR04497) [m]
CG17896 (MAR04282) [m]
CG17896 (MAR03795) [m]

Aldh-III (MAR08503) [c]
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Constraint-based flux analysis for muscle under HSD
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LC-MS/MS analysis
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(1 M sucrose + 
50 mM [U-13C6]glucose)

Normal sugar diet
(0.26 M sucrose + 
13 mM [U-13C6]glucose)
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Switch-tag
redox proteomics

Dissect 
thoracic 
muscles 

HSD

NSD

3 days old
w1118 male 
flies

PyK_CNKAGKP[15.9949]VICATQMLESMVK
Fdh_LTQGAGVM[15.9949]PEGTSR
PyK_M[15.9949]M[15.9949]ATGM[15.9949]NIAR
Aldo_GILAADESGPTM[15.9949]GKR
PyK_M[15.9949]NFSHGSHEYHAATVANVR
Pfk_LAVM[15.9949]HIGAPAC[125.0477]GM[15.9949]NAAVR
Gapdh2_KVIISAPSADAPMFVC[125.0477]GVNLDAYKPDM[15.9949]K
Gapdh2_KVIISAPSADAPM[15.9949]FVC[125.0477]GVNLDAYKPDM[15.9949]K
Pgi_FAAYFQQGDM[15.9949]ESNGK
Pfk_VPLM[15.9949]EC[125.0477]VER
Aldo_ALSDHHVYLEGTLLKPNM[15.9949]VTAGQSAK
Pfk_M[15.9949]NILGHMQQGGSPTPFDR
PyK_AGKPVIC[125.0477]ATQM[15.9949]LESM[15.9949]VK
PyK_IENQQGM[15.9949]HNLDEIIEAGDGIM[15.9949]VAR
Eno_LAM[15.9949]QEFM[15.9949]ILPTGATSFTEAM[15.9949]K
Pfk_M[15.9949]NILGHM[15.9949]QQGGSPTPFDR
Pgk_SVVLM[15.9949]SHLGRPDGNK
Pfk_DKGLAVFTSGGDSQGM[15.9949]NAAVR
Pgam1_HM[15.9949]EEIFD-
Pgi_DAM[15.9949]FSGQHINITENR
Pfk_TFIM[15.9949]EVMGR
PyK_DKSDLLFGVEQEVDM[15.9949]IFASFIR
Pfk_DLQQDVYHM[15.9949]ASK
Pfk_EGYQGM[15.9949]VDGGDC[125.0477]IQEANWASVSSIIHR
Pgam1_IDAM[15.9949]NGVTGSYVR
Pgi_QITDVVNIGIGGSDLGPLM[15.9949]VTEALKPYGK
Pgi_GTDPVLVDDKDVM[15.9949]PDVR
Pgk_FAENAAVSEATVEAGIPDGHM[15.9949]GLDVGPK
Eno_LAMQEFM[15.9949]ILPTGATSFTEAM[15.9949]K
Gapdh2_VINDNFEIVEGLM[15.9949]TTVHATTATQK
PyK_IENQQGM[15.9949]HNLDEIIEAGDGIMVAR
PyK_AEISDVANAVLDGADC[125.0477]VM[15.9949]LSGETAK
PyK_GEYPLEC[125.0477]VLTM[15.9949]AK
Gapdh1_GASVVAVNDPFIDVNYM[15.9949]VYLFK
Eno_LAMQEFMILPTGATSFTEAM[15.9949]K
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Tryptophan metabolism
Biotin metabolism

Acylglycerides metabolism
Pool reactions

Phenylalanine, tyrosine and tryptophan biosynthesis
Fatty acid biosynthesis (even-chain)

Fatty acid biosynthesis
Fatty acid desaturation (even-chain)

Beta oxidation of unsaturated fatty acids (n-7) (mitochondri...
Fatty acid elongation (even-chain)

Omega-3 fatty acid metabolism
Butanoate metabolism

Omega-6 fatty acid metabolism
Beta oxidation of unsaturated fatty acids (n-9) (mitochondri...

Beta oxidation of odd-chain fatty acids (mitochondrial)
Fatty acid desaturation (odd-chain)

Fatty acid biosynthesis (unsaturated)
Cysteine and methionine metabolism

Pyruvate metabolism
Carnitine shuttle (endoplasmic reticular)

Drug metabolism
Beta oxidation of even-chain fatty acids (mitochondrial)

Folate metabolism
Serotonin and melatonin biosynthesis

Fatty acid biosynthesis (odd-chain)
Beta oxidation of unsaturated fatty acids (n-9) (peroxisomal...

Glycerophospholipid metabolism
Fatty acid elongation (odd-chain)

Prostaglandin biosynthesis
Arginine and proline metabolism

Isolated
Pentose phosphate pathway

Transport reactions
N-glycan metabolism

Carnitine shuttle (cytosolic)
Retinol metabolism

Valine, leucine, and isoleucine metabolism
Sphingolipid metabolism
Propanoate metabolism

ROS detoxification
C5-branched dibasic acid metabolism

Histidine metabolism
Fatty acid oxidation

Cholesterol metabolism
Nucleotide metabolism
Pyrimidine metabolism

Bile acid recycling
Miscellaneous

Cholesterol biosynthesis 1 (Bloch pathway)
Phosphatidylinositol phosphate metabolism

Terpenoid backbone biosynthesis
Purine metabolism

Fatty acid activation (cytosolic)
Beta oxidation of even-chain fatty acids (peroxisomal)

Tricarboxylic acid cycle and glyoxylate/dicarboxylate metabo...
Galactose metabolism
Ubiquinone synthesis
Riboflavin metabolism

Oxidative phosphorylation
Leukotriene metabolism

Alanine, aspartate and glutamate metabolism
Tyrosine metabolism

Bile acid biosynthesis
Ether lipid metabolism

Lysine metabolism
Carnitine shuttle (mitochondrial)

Vitamin A metabolism
Vitamin D metabolism

Nicotinate and nicotinamide metabolism
Protein assembly

Aminoacyl-tRNA biosynthesis
Vitamin B12 metabolism

Heme synthesis
Lipoic acid metabolism
Vitamin E metabolism

Pantothenate and CoA biosynthesis
Glycerolipid metabolism

Glycine, serine and threonine metabolism
Biopterin metabolism

Inositol phosphate metabolism
Starch and sucrose metabolism

Glycolysis / Gluconeogenesis
Porphyrin metabolism

Protein degradation
Fructose and mannose metabolism
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Pfk_VPLM[15.9949]EC[125.0477]VER

Pfk oxidation

Treh_AGAESGM[15.9949]DFSSR
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muscle-GEM

FVA_sampling Z-score :  
√ SE2

HSD+SE2
NSD

pFBA Log2FC

Identify perturbed pathways

c
Pathway flux

Vpath = mean(|non-zero fluxespath|)

XHSD-XNSD

XHSD(Vi) -XNSD(Vi)


