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Abstract

Individual tissues perform highly specialized metabolic functions to maintain whole-body metabolic
homeostasis. Although Drosophila serves as a powerful model for studying human metabolic diseases,
modeling tissue-specific metabolism has been limited in this organism. To address this gap, we
reconstruct 32 tissue-specific genome-scale metabolic models (GEMs) by integrating a curated
Drosophila metabolic network with pseudo-bulk single-nuclei transcriptomics data, revealing distinct
metabolic network structures and subsystem coverage across tissues. We validate enriched pathways
identified through tissue-specific GEMs, particularly in muscle and fat body, using metabolomics and
pathway analysis. Moreover, to demonstrate the utility in disease modeling, we apply muscle-GEM to
investigate high sugar diet (HSD)-induced metabolic dysregulation. Constraint-based semi-quantitative
flux and sensitivity analyses identify altered NAD(H)-dependent reactions and distributed control of
glycolytic flux, including GAPDH. This prediction is further validated through in vivo *C-glucose
isotope tracing study. Notably, decreased glycolytic flux, including GAPDH, is linked to increased redox
modifications. Finally, our pathway-level flux analyses identify dysregulation in fructose metabolism.
Together, this work establishes a quantitative framework for tissue-specific metabolic modeling in
Drosophila, demonstrating its utility for identifying dysregulated reactions and pathways in muscle in

response to HSD.



Introduction

Multicellular organisms consist of tissues that perform highly specialized metabolic functions'. As such,
analyzing tissue-level metabolism is critical to delineate the complex metabolic interplay among tissues
and understand organismal physiology”. However, direct measurements of tissue-specific enzyme levels
or fluxes are often unavailable. Instead, mRNA levels have served as a proxy to reconstruct context-
relevant or tissue-specific genome-scale metabolic models (GEMs)*~, enabling quantitative metabolic
network analyses. In fact, numerous computational algorithms such as mCADRE?, tINIT”®, CORDAS,
and MERGE", have been developed and applied for reconstruction of tissue-specific GEMs across
complex organisms from C. elegans” to Homo sapiens®. Yet, tissue-specific metabolic models in
Drosophila melanogaster are unavailable, limiting quantitative assessments of metabolic processes at

tissue level in this organism®'°,

The high conservation of metabolic genes and functionally analogous organs between humans
and fruit flies, together with the short generation time, lifespan, and availability of numerous genetic and
analytical tools for Drosophila, has made flies an excellent organism in which to model human metabolic
diseases'"'?. Various mechanisms underlying dysregulated metabolism associated with type 2
diabetes'*'*, aging'®, and cancer'® have been elucidated in flies. Moreover, several generic GEMs, such as
FlySilico", iDrosophila'®, and Fruitflyl", have recently been developed, enabling systems-level
evaluations of metabolic networks in this organism. However, they lack the resolution needed for tissue-

specific metabolic analysis.

While GEMs are powerful computational tools for analyzing metabolic network structures and
simulating fluxes, experimental techniques such as metabolomics, *C isotope tracing, and redox
proteomics also serve as valuable complementary and validation approaches for quantitative metabolic

2021 "while "*C isotope

analyses. Metabolomics provides a comprehensive snapshot of metabolite profiles
tracing techniques can estimate specific metabolic pathway activity?>**. Furthermore, redox proteomics
reveals the extent of redox modifications on sensitive amino acid residues (e.g., cysteine and methionine),
providing insight into the post-translational regulation of enzyme activity**?’. However, such
experimental analyses are often underrepresented in GEM-focused metabolic studies, limiting both
quantitative metabolic investigation and empirical validation when studying complex metabolic diseases.

As such, leveraging both computational modeling and experimental approaches is essential for advancing

quantitative understanding of complex metabolic disorders like type 2 diabetes (T2D).

T2D is characterized by insulin resistance and hyperglycemia, posing a significant global health

challenge®°. Drosophila effectively models key metabolic features of human T2D through high-sugar



diet (HSD) feeding, which impairs glucose homeostasis, and induces mitochondrial dysfunction and
tissue-specific metabolic dysregulation'>!**!32, Among affected tissues, muscle plays a central role in
glucose metabolism and insulin sensitivity. While perturbations in glycolytic and TCA cycle activities

have been observed in diabetic muscle?*333*

, many questions remain unanswered. Specifically, the extent
to which NAD(H)-dependent reactions are altered, the identity of potential rate-controlling steps within
glycolysis, and the additionally dysregulated metabolic pathways beyond central carbon metabolism

remain to be elucidated.

In this study, we first reconstructed 32 tissue-specific GEMs for adult Drosophila by integrating a
curated Drosophila metabolic network model with pseudo-bulk single-nuclei transcriptomics data. These
GEMs enabled us to systematically evaluate similarities and differences in metabolic network structures
across individual tissues. After validating GEM-based predictions on enriched pathways using targeted
metabolomics and pathway enrichment analyses, we demonstrated the utility of tissue-specific GEMs in
modeling human metabolic disease. Specifically, we applied the muscle-GEM to simulate metabolic
changes induced by a high-sugar diet (HSD), a well-established Drosophila model of T2D. Constraint-
based flux analyses revealed altered fluxes in NAD(H)-dependent fluxes, including a decreased maximal
NADH production capacity, and sensitivity analysis indicated distributed control of glycolytic fluxes
across several enzymes, including GAPDH. [U-'*C]-glucose tracing and redox proteomics further
confirmed decreased glycolytic flux and revealed that these changes were associated with increased redox
modifications of glycolytic enzymes. Pathway-level flux comparisons further highlighted dysregulated
fructose metabolism. Together, this work establishes a quantitative framework for tissue-specific
metabolic modeling in Drosophila and demonstrates its utility for identifying high sugar diet-induced

metabolic perturbations at reaction and pathway levels.



Results

Reconstruction of 32 tissue-specific genome-scale metabolic models
(GEMs) in Drosophila melanogaster

To evaluate tissue-specific metabolism in Drosophila, we designed a strategy to reconstruct 32
tissue-specific genome-scale metabolic models (GEMs) and analyze their metabolic network structures
and functions (Fig. 1a, Error! Reference source not found.a-e). The reconstructed tissue-specific GEMs
revealed variations in their metabolic network structures, reflected in the differing numbers of reactions,
metabolites, and genes across tissues (Error! Reference source not found.a). Among 32 tissue-specific
GEMs, fat body and oenocytes, analogous to human adipose tissue and liver, contained the highest
number of reactions (n = 5,447 and 5,015), while most neuronal tissues had the fewest number of
reactions (n = 2,533 to 3,077). A similar trend was observed for the metabolite numbers across tissue-
specific GEMs. Additionally, we observed a positive correlation between the number of reactions and
metabolites (R? = 0.92), consistent with the expected increase of metabolite numbers as reactions number
increases. The number of genes also varied across models, ranging from 565 to 858, with the germline
and fat body containing the higher numbers. Similarly, we observed a positive correlation between the

number of reactions and genes (R? = 0.54) (Error! Reference source not found.b).

Based on these differences, we hypothesized that the tissues performing similar metabolic
functions would show similar metabolic network structures. To test this hypothesis, we compared the
metabolic network structures of 32 tissue-specific GEMs by specifically comparing their reaction contents
(Fig. 1b). Hierarchical clustering analysis revealed 13 distinct clusters of similar metabolic network
structures (Error! Reference source not found.c and Error! Reference source not found.f). As expected,
tissues of similar functions were grouped together - muscle and indirect muscle; fat body and oenocytes;
hindgut and enteroendocrine cells; seven neuron GEMs, and six glia cells distributed across three
different clusters. Additionally, to assess how these GEM-based clusters compared to transcriptomics-
based clustering, we performed hierarchical clustering of gene expression data and calculated Jaccard
indices to quantify overlap (Error! Reference source not found.d-e). While we observed high overlap
between the two approaches for muscle and neuron clusters (Jaccard index = 1) and fat body/oenocytes
(0.75), clustering of glia and gut tissues showed lower overlap between the two approaches (Fig 1¢ and
Error! Reference source not found.g). These results indicate that clustering based on metabolic network
structures, which incorporate stoichiometric constraints of biochemical reactions, reveals metabolic

distinctions not apparent from transcriptomics alone.



Next, to further evaluate differences in metabolic network structures across tissue-specific GEMs,
we analyzed their metabolic subsystem coverage. We found that transport reaction subsystem accounted
for the largest proportion of all subsystems, comprising approximately 35 + 4 % of all reactions (Fig 1d).
Within this subsystem, extracellular transporter reactions accounted for approximately 80 + 6 %.
Interestingly, while muscle group did not have the most transport reactions compared to other tissue
groups, it had the highest fraction of the extracellular transport reactions (f=0.86 + 0.02) (Fig 1e and
Error! Reference source not found.h). Additionally, we calculated the percent difference in subsystem
coverage and identified 33 subsystems with more than 50% deviation from mean coverage across tissues
(Fig 1f, Error! Reference source not found.i-j). Notably, fat body and oenocyte GEMs had the highest
reaction counts, particularly in beta-oxidation subsystems (Neactions = 36.6 £ 15, p < 0.0001) (Error!

Reference source not found.f), supporting their known function in beta-oxidation of fatty acids'"*.

Moreover, we performed a metabolic task analysis to determine the extent to which tissue-
specific GEMs could perform 219 pre-defined metabolic tasks (Etror! Reference source not found.k)”*.
Tissue-specific GEMs could pass an average of 40 + 10 tasks, with germline cells completing the most
metabolic tasks (np.ss = 66) and polar follicle cells the least (npass = 17) (Error! Reference source not
found.g-h). Additionally, consistent with the known role of fat body in performing gluconeogenesis and
trehalose synthesis®’, we confirmed that fat body-GEM could synthesize trehalose from various
substrates, including alanine, pyruvate, glutamine, and glycerol (Error! Reference source not found.l).
Furthermore, after categorizing metabolic tasks into seven metabolic systems, we performed Fisher's
exact test and found significant tissue-specific associations with the specific metabolic systems: fat body
with carbohydrate/amino acid metabolism, and CNS glia/gustatory neurons with lipid metabolism (Error!
Reference source not found.l and Error! Reference source not found.m-n). Taken together, our
reconstructed tissue-specific GEMs provide a systems-level framework to evaluate metabolic differences
and similarities across tissues in Drosophila, enabling quantitative comparisons of tissue-specific

metabolic network structures and metabolic capabilities.

Validation of tissue-specific GEMs through regional metabolomics and
pathway analysis

Validating the predictions from tissue-specific GEMs is essential to establish confidence in GEM-

3839 in vivo growth

based analyses. Although gene essentiality analysis is commonly used for validation
rate data were unavailable for the tissues we investigated. Thus, we performed targeted metabolomics and

pathway enrichment analysis, while comparing these results to GEM-based pathway analysis. We



hypothesized that enriched pathways identified through metabolomics would also be represented in the
corresponding tissue-specific GEMs. To test the hypothesis, we first profiled 303 polar metabolites in
four dissected Drosophila regions - head (containing neuronal and glial cells), thorax (containing muscle
cells), gut (containing hindgut/enteroendocrine cells), and abdomen (containing fat body, oenocytes, and

other tissues) (Fig. 2a and Error! Reference source not found.a).

Principal component analysis and hierarchical clustering revealed distinct metabolite profiles
among these regions (Fig. 2b-c). Specifically, we identified 10 significantly enriched metabolites in
thorax, 13 in head, 20 in gut, and 1 in abdomen (Log,FC > 2 and p-value < 0.05) (Fig. 2d, Error!
Reference source not found.b). Qualitatively, these enriched metabolites aligned with known tissue
functions. For instance, in thorax, energy-related metabolites such as adenosine, adenylosuccinate,
adenine, and AMP were enriched, consistent with muscle’s high demand on energy metabolism compared
to other tissues'' (Error! Reference source not found.a). In heads, 4-aminobutyrate (GABA), N-acetyl-L-
aspartate, GMP, and ascorbates, were enriched. GABA is a major inhibitory neurotransmitter, and N-
acetyl-L-aspartate is often used as a marker for neuronal health***!. In gut, including Malpighian tubules
(MT), dietary-related metabolites, such as pyridoxine, betaine, and uric acids, were enriched, consistent
with their dietary origin and uric acids generated from MT’s purine excretion****. In abdominal carcass,
containing fat body and oenocytes, nucleotide and one-carbon metabolites were enriched, such as

xanthosine and hypoxanthine, methionine s-adenosyl-l-methioninamine and 5-methyl-THF.

Next, we performed KEGG pathway enrichment analysis using the hypergeometric test based on
the enriched metabolite sets*® (Fig. 2e and Error! Reference source not found.c). The most significantly
enriched pathway was purine metabolism (KEGG ID: dme00230) for thorax, pyrimidine metabolism
(dme00240) for gut, and one carbon pool by folate (dme00670) for head and abdomen (Error! Reference
source not found.b). We also identified six pathways commonly enriched across all regions, such as TCA
cycle, glyoxylate, purine, and pyrimidine metabolism (Error! Reference source not found.c). Moreover,
several region-specific enriched pathways were identified, such as starch/sucrose metabolism, histidine

metabolism, and fatty acid degradation in thorax.

Next, we compared these metabolomics-derived enriched pathways to those predicted from
subsystem coverage analysis of tissue-specific GEMs, using weighted Jaccard index*** (Fig. 2f and
Error! Reference source not found.). In brief, the index quantifies the degree of pathway overlap between
the two datasets. We expected higher index values for tissues associated with specific regions (e.g.,
muscle with thorax* and fat body/oenocytes with abdomen®). Indeed, muscle-GEM showed the highest
index value with thorax (index: 0.8 + 0.1), compared to those for other regions (head: 0.48 £ 0.2,

abdomen: 0.44 + 0.1, gut: 0) (Fig. 2g and Error! Reference source not found.d-f). The overlapped



pathways included butanoate, glycolysis, lipoic, and starch metabolism. Additionally, fat body-GEM also
showed high index value with abdomen, with overlapped pathways including cysteine, nicotinamide, and
pantothenate metabolism (Fig. 2h). However, pathway overlaps were less distinct for neuron/glia cells
and gut groups, as no uniquely enriched pathways were identified for these regions in our datasets (Error!
Reference source not found.d). Furthermore, when we repeated this analysis using gene expression data,
we observed significantly lower Jaccard index values across all tissues, with no distinct trends (Error!
Reference source not found.e and Error! Reference source not found.g-h). This indicated that GEM-
predicted enriched pathways more accurately reflect metabolomics-derived pathways, compared to gene
expression-derived enriched pathways. Taken together, these results validate GEM-predicted pathway

analysis, particularly for muscle and fat body.

Constraint-based flux analyses predict perturbations in NAD(H)-
dependent reactions in muscle under high sugar diet

Among the reconstructed tissue-specific GEMs, we further applied the muscle-GEM to evaluate
how muscle metabolism could be rewired in response to high sugar diet (HSD), which induces type 2
diabetes-like phenotypes in Drosophila'**">'. We first defined a HSD-muscle-GEM by constraining
reaction rates to simulate metabolic phenotypes observed in type 2 diabetic muscle based on the literature

evidenceZ8,29733,34,52—54

(Fig. 3a and Error! Reference source not found.a-b). These constraints included
glucose uptake rates, GAPDH, and several reactions in TCA cycle**. Consistent with our applied
constraints, flux variability analysis with sampling (FVA-sampling) showed a reduction in glucose uptake
rate, along with decreased fluxes through GAPDH, OGDH, and SDH (Error! Reference source not
found.a-b, Error! Reference source not found., and Error! Reference source not found.c-d). The decrease
in model-generated glucose uptake rate was confirmed experimentally by measuring glucose uptake rates

in w!/’® male flies fed with HSD (Error! Reference source not found.c).

Next, to identify perturbed reactions beyond those we directly constrained, we systematically
compared differential fluxes obtained from flux balance analysis (FBA), FVA-sampling, and
parsimonious FBA (pFBA) (Error! Reference source not found.). In brief, we performed pFBA to
complement FVA-sampling analysis, which could generate non-physiologically high fluxes in reactions
such as NAD(H)-dependent cycling reactions and generate fluxes near boundaries due to under-
constrained nature of network (Error! Reference source not found.d-g, Error! Reference source not
found.e-f). By comparing these analyses, we identified 77 reactions showing consistently decreased

fluxes and 18 with increased fluxes in the HSD-muscle-GEM relative to the unconstrained model (Error!



Reference source not found.h and Error! Reference source not found.g). Among the reactions with
decreased fluxes, many were associated with transport, aminoacyl-tRNA biosynthesis, and glycolysis,
with associated genes including Dicl, Cd98hc, Gapdhl/2, Aldo, Eno, Pfk, and aminoacyl-tRNA
synthetases such as AsnRS and AspRS (Fig. 3b). In contrast, reactions with increased fluxes were mainly
linked to transport, aromatic amino acid biosynthesis, and TCA/glyoxylate metabolism, with associated

genes including Hrm, Cg6231, Got1/2, Kdn, Scsal, and Mdh?2.

As perturbed NADH metabolism has also been implicated in type 2 diabetes ', we further
investigated individual NAD(H) dependent reactions to identify specific reactions showing altered fluxes.
By comparing differential fluxes of 135 active NAD(H) dependent reactions across three different flux
simulations, we identified 23 reactions showing consistently decreased fluxes and 3 reactions with
increased flux (Error! Reference source not found.i-j and Error! Reference source not found.h-j).
Associated genes with decreased fluxes included Dhfi, Ldh, Gs, and Gapdhi/2, while those with
increased fluxes included Mdh2 and CG5955. Profiling differential fluxes of NAD(H)-dependent
reactions further highlighted a variety of significantly perturbed reactions and their magnitudes (Fig. 3¢).
Next, to further investigate whether the network’s maximum capacity of NADH production was
perturbed, we introduced an artificial NADH demand reaction and maximized its flux (Fig. 3d). This
analysis revealed approximately a 27% reduction in NADH maximum production capacity in the HSD-
muscle GEM, accompanied by altered contributions of individual NADH-producing reactions (Fig. 3e
and Error! Reference source not found.k). Although this change does not directly predict the cellular
NAD*/NADH ratio, it suggests impaired NADH turnover, consistent with our experimental observation
of a decreased NAD*/NADH ratio in thoracic muscle of w'/’* flies fed with HSD (Fig. 3f). Together, our
constraint-based semi-quantitative flux analyses predicted perturbations in specific subsystems, reactions,
and genes in muscle under HSD, highlighting disrupted NAD(H)-dependent reactions characterized by
altered flux distributions and decreased NADH production capacity.

Sensitivity analysis reveals distributed control of glycolytic flux

Given that NAD(H)-dependent reaction fluxes were perturbed in the HSD-muscle GEM and
GAPDH functions as one of the key NAD*-dependent glycolytic enzymes, we examined whether
GAPDH could serve as a rate controlling step in glycolysis under HSD condition. To test this, we
performed a sensitivity analysis (See Methods). In brief, we systematically decreased the baseline flux of
each glycolytic reaction, defined as the median flux from FVA-sampling, and quantified the total

pyruvate consumption flux as a proxy for glycolytic output flux (Fig. 3g and Error! Reference source not



found.l). At relatively larger perturbation (e.g., 20 to 50 %), most of the lower glycolytic enzymes showed
positive sensitivity coefficients, suggesting that decreases in these fluxes led to reductions in total
pyruvate consumption (Fig. 3h and Error! Reference source not found.k). In contrast, at smaller
perturbations (e.g., 5 and 10 %), several enzymes, including Hex-a/b, Pgk and Gapdh1/2, showed strong
negative sensitivity coefficients, suggesting that decreases in these fluxes may trigger compensatory
increases in total pyruvate consumption through alternative reactions. Indeed, evaluation of individual
pyruvate consuming reactions revealed diverse responses to perturbations. Specifically, while alanine
transaminase (CG1640) consistently showed decreased flux in response to high perturbation (e.g., 50 %),
monocarboxylate transporter (MCT1), or other reactions showed increased fluxes in response to varying
perturbations, reflecting the nonlinear and compensatory nature of metabolic network (Error! Reference
source not found.m). When comparing absolute magnitudes of sensitivity coefficients across all
perturbations, we found Aldo exhibited the highest average sensitivity coefficient (0.13), with Pgk (0.12),
Gapdh1/2 (0.12), and Hex-a/b (0.11) showing comparable sensitivity (Fig. 3h). Altogether, these results
suggest that glycolytic flux is not solely controlled by GAPDH as initially hypothesized, but is distributed

among several other enzymes and varies with perturbation magnitude under this condition.

Model-predicted decreases in glycolytic flux, including GAPDH,

validated through '*C-glucose tracing

To validate the predicted fluxes in glycolysis, particularly involving GAPDH, we performed in

vivo *C-glucose isotopic tracing experiments. After feeding w'’’®

male flies with a HSD containing
uniformly labeled "*C-glucose tracer for five days, we dissected the thoracic muscle and evaluated both
the metabolite intensities and labeling patterns of downstream metabolites using mass spectrometry (Fig.
4a). As the [U-"*C]glucose is metabolized in cells, glycolytic intermediates will have M+6 or M+3 mass
isotopomers, and TCA cycle metabolites will show M+2 mass isotopomers after the first cycle (Fig. 4b).
Based on our sensitivity analysis, where we observed strong control around Aldo, Pgk, and Gapdh, we
hypothesized that a bottleneck step would result in decreased fractional labeling of downstream

isotopomers, accompanied by accumulation of upstream substrates and decreased levels of downstream

products.

Indeed, we observed that upper glycolytic intermediates increased by approximately 23 %,
including F6P, F16BP, and glyceraldehyde 3-phosphate, a substrate of GAPDH (Error! Reference source

not found.a-b and Error! Reference source not found.a-b). Conversely, lower glycolytic intermediates,



such as 3PG and lactate, decreased by 27% and 14%, respectively. Moreover, the fractional labeling of
lower glycolytic intermediates was significantly decreased compared to that of upper glycolytic
intermediates (Fig. 4¢). Specifically, the M+3 fractional labeling of 1,3-BPG, the product GAPDH, was
nearly 90 % lower in response to HSD, indicating a significantly reduced GAPDH activity. In TCA cycle,
the abundances of citrate, succinate, fumarate, malate, and glutamate, increased by 40%, 34%, 14%, 97%,
and 24%, respectively (Error! Reference source not found.c-d and Error! Reference source not found.c ).
Moreover, their M+2 fractional labeling decreased relative to M+6 glucose, suggesting a decreased

contribution of glucose-derived carbon to the TCA cycle (Fig. 4d).

Furthermore, to investigate the extent to which our model-predicted fluxes align with
experimental measurements, we performed a correlation analysis by mapping the flux of each reaction in
the HSD-muscle-GEM to the fractional labeling of its corresponding metabolite product. Notably, we
observed a strong correlation between the fractional labeling data and model-predicted relative fluxes
within glycolysis (p = 0.81, p = 0.03), supporting the accuracy of model predictions for this pathway (Fig.
4e). In contrast, correlation in the TCA cycle was weaker (p = 0.12), potentially due to the contributions
from other carbon sources (e.g., fatty acids®®) accounting the predicted fluxes in the TCA cycle (Error!
Reference source not found.e). Taken together, these results confirm the model-predicted flux changes,
specifically for glycolysis, and reveal GAPDH as one of the key regulatory steps in muscle in response to

HSD.

Model-predicted decreases in glycolytic flux correlate with increased

redox modification of glycolytic enzymes

Since redox modification, including oxidation of cysteine residue, can directly alter enzyme
activity such as GAPDH?*?%*%° we were wondering whether the decreased glycolytic fluxes, particularly
GAPDH, were linked to redox modifications (Fig. 5a). Given the increased oxidative stress observed in

336162 \ve hypothesized that redox modification at cysteine or methionine residues would

diabetic muscle
also be elevated in HSD-fed fly muscle. Indeed, PCA of redox proteomics revealed greater variability in
peptide oxidation profiles in HSD samples compared to NSD controls (Fig. 5b). Among 1049 detected
peptides, 189 peptides exhibited significantly increased redox modifications (Logz|FC| > 0.5 and adjusted
p-value < 0.05) (Fig. 5¢, Error! Reference source not found.a and Error! Reference source not found.a).
Next, based on these significantly oxidized peptides, we performed KEGG over-representation analysis®

to identify pathways enriched for redox-modified enzymes (Error! Reference source not found.b).



Consistent to prior studies, the most affected pathways were oxidative phosphorylation (dme00190), a
well-known site of mitochondrial dysfunction observed in diabetic muscle®®*. Within this pathway, we
observed increased redox modifications in peptides, including succinate dehydrogenase, NADH
dehydrogenase, V-ATPase, citrate synthase, and isocitrate dehydrogenase (Error! Reference source not
found.b). Interestingly, glycolysis was also significantly affected, with increased redox modifications

observed in peptides, including Ald1, Gapdhl/2, Pyk, Pgi, Pfk, Pgml, Eno, Fdh, and Pgk (Fig. Se).

To further evaluate the relationship between the extent of redox modification and predicted fluxes
in glycolysis, we performed a correlation analysis and found a significant negative correlation (r = -0.78,
p = 0.025) (Fig. 5f). Specifically, Pyk exhibited the highest level of redox modification and corresponded
to the largest flux decrease, whereas Pgm1 showed minimal redox modification and the smallest flux
change (Error! Reference source not found.c-d). Notably, protein levels of most glycolytic enzymes
remained unchanged, except for Pyk, suggesting that redox modifications, rather than enzyme abundance,

more strongly associate with changes in glycolytic flux (Error! Reference source not found.e-f).

Moreover, since our flux analyses and isotope tracing results revealed GAPDH as one of the key
perturbed steps in glycolysis, we further evaluated this enzyme. In Drosophila, two isoforms of GAPDH
are present, both closely related to human GAPDH and known to perform partially redundant functions in
glycolysis (Error! Reference source not found.g)*®. While the enzyme levels of both GAPDHI1 and
GAPDH2 remained unchanged (Error! Reference source not found.h), we observed significant redox
modifications at Met-40 residue in GAPDHI1 and at Cys-130, Met-127, 141 and 172 in GAPDH2
(referenced to Uniprot:P07486 for GAPDH1 and M9PIN8 for GAPDH?2) (Fig. Sg and Error! Reference
source not found.i-j). Structural modeling using AlphaFold further predicted that Met-40 is in near to the
NAD" binding site (~9 A), suggesting that redox modification at this residue could indirectly affect NAD"
binding and impair activity (Error! Reference source not found.k). Additionally, to further investigate the
functional role of GAPDH in muscle, we used a muscle-specific Mhc-Gal4 driver combined with a
temperature-sensitive Gal80ts system to knock down GAPDHI1 in fly muscle. Indeed, muscle-specific
downregulation of GADPHI1 led to a significant decline in climbing ability in male flies fed with HSD
starting at day 10, suggesting a physiologically important role for GAPDHI1 in maintaining muscle
function (Fig. Sh and Error! Reference source not found.l). In summary, these results indicate a strong
association between increased redox modifications and decreased glycolytic fluxes, identifying the redox

modification of GAPDH and its knockdown causing climbing defects.



Pathway-level flux analysis reveals dysregulated fructose metabolism

Next, to identify pathway-level perturbations beyond glycolysis under HSD conditions, we
evaluated differential pathway fluxes obtained from FVA sampling and pFBA analyses (Fig. 6a and
Methods). In brief, we defined pathway flux as the average of non-zero flux magnitudes within each
pathway. Using this approach, we identified 77 significantly perturbed pathways, with 33 pathways
overlapping between flux sampling and pFBA analyses (Fig. 6b and Error! Reference source not
found.a). Consistent with our prior findings, we observed significant decrease in pathway fluxes through
glycolysis, oxidative phosphorylation, and the TCA cycle, with fructose showing the most pronounced
decrease in the HSD muscle compared to control. Among the top perturbed pathways with increased
pathway fluxes, we found fatty acid metabolism (e.g., B-oxidation, desaturation, elongation, and omega-
3/6 metabolism), lipid droplet turnover (pool reactions), butanoate metabolism, glycerophospholipid, and

several amino acid metabolism pathways (e.g., tryptophan, phenylalanine-tyrosine).

To validate the predicted pathway-level perturbations, we performed targeted metabolomics in
thoracic muscles in response to HSD (Fig. 6¢). PCA revealed distinct metabolite profiles between HSD
and NSD conditions (Fig. 6d). Among the six most significantly altered metabolites, three were involved
in either fructose/sucrose metabolism (e.g., sorbitol and trehalose/sucrose) or butanoate metabolism (e.g.,
acetoacetyl-CoA) (Logy|FC| > 2 and p-value < 0.01), consistent with the pathways identified as highly
perturbed (Fig. 6e and Error! Reference source not found.b). To further investigate how these metabolite
changes relate to fluxes and enzyme redox modifications, we created an integrated metabolic map
focusing on fructose/sucrose metabolism (Fig. 6f). Beyond the perturbations in upper glycolysis, we
found that Trehalase, an enzyme that converts trehalose to glucose, showed a decreased predicted flux
(LogoFC = -5.4) and significant oxidation at a methionine residue (Log,FC = 1.75, p =0.006).
Collectively, these results demonstrate that our pathway-level flux analysis, supported by metabolomics
and redox proteomics, effectively identifies candidate dysregulated metabolic pathways, such as fructose

metabolism in muscle under HSD condition.

Discussion

Modeling tissue-specific metabolism is essential to dissect the complex interplay of metabolic
activities in multicellular organisms. In this study, we reconstructed 32 tissue-specific GEMs by
integrating pseudo-bulk single-nuclei transcriptomics datasets with the manually curated generic

Drosophila metabolic model. These tissue-specific GEMs enable quantitative comparisons of their



metabolic network structures, representing a significant advance over existing Drosophila generic GEMs,

such as Fruitfly1'?, FlySilico'’, and iDrosophila'®, which lack tissue-level metabolic analyses.

Furthermore, our tissue-specific GEMs offer distinct advantages by enabling network-level flux
analyses that are difficult to achieve with pathway-specific or resource-intensive isotope tracing
experiments. Specifically, using the muscle-GEM, we predicted active NAD(H)-dependent flux changes,
identified reactions that may control glycolytic fluxes, and uncovered pathway-level flux perturbations
under high sugar diet. These analyses were further integrated with other omics data, such as
metabolomics and redox proteomics, confirming pathway perturbations and their link to redox-dependent
enzyme modifications. Collectively, our in silico predictions generate testable hypotheses and
prioritize key reactions and pathways for targeted experimental investigation, complementing the

precise and tissue-specific genetic tools available in Drosophila.

Additionally, our tissue-specific GEMs, validated through metabolomics and pathway-level
analysis, not only recapitulated known metabolic functions of individual tissue groups, but also revealed
distinct tissue metabolism. For instance, fat body and oenocytes exhibited the highest overall reaction
numbers, indicating a broad metabolic capacity of these tissues, particularly in carbohydrate and fatty acid
metabolism. Conversely, muscle tissue, despite having fewer overall reaction numbers, showed the
highest fraction of extracellular transport reactions and enriched reactions in protein degradation and
lipoic acid metabolism. This suggests that muscle may serve as a major hub for systemic metabolite
exchange and distribution. Indeed, muscle is known to be a major reservoir of amino acids, releasing
them into circulation to support other tissue metabolism when needed®’. As inter-organ communication is
essential to maintain whole-body homeostasis and compensate for the limitations of individual tissue
functions?, future studies in evaluating transport reactions and their associated metabolic pathways using
these tissue-specific GEMS may reveal additional layers of systemic metabolic coordination among

tissues.

Moreover, we demonstrated the utility of our tissue-specific GEMs to evaluate muscle
metabolism in response to high sugar diet. Our analyses revealed altered NAD(H)-dependent reactions
and suggested that regulation of glycolytic flux is distributed among several enzymes, including Aldo and
GAPDH. Previous studies recognized GAPDH as a rate-limiting step in glycolysis, particularly in the
context of aerobic glycolysis in cancer, where it regulates flux and is influenced by fructose 1,6-
bisphosphate levels®®. Our findings expand this role, demonstrating that GAPDH also acts as a regulatory
node in muscle in response to HSD and through redox modifications of the enzyme. While GAPDH is
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typically known to undergo redox regulation at cysteine residues in response to oxidative stress="”, our

data also revealed increased methionine oxidation. In fact, methionine oxidation has previously been



shown to affect GAPDH function. For example, Samson et al., demonstrated that oxidation at Met-46
promoted GAPDH aggregation, a process linked to disease’. In our study, methionine oxidation occurred
near the NAD" binding site, which may interfere with cofactor binding and enzymatic activity. Moreover,
GAPDH enzyme levels, as well as most other glycolytic enzyme levels, were not significantly altered,

indicating a potentially greater role of redox regulation on modulating glycolytic activity in this condition.

Finally, our muscle-GEM enabled predictions of additional dysregulated metabolic pathways,
with fructose metabolism among the most substantially perturbed under HSD. While liver, intestine, and
kidney are typically considered as primary sites of fructose metabolism due to high ketohexokinase
expression, recent evidence showed that muscle can also metabolize fructose and affect muscle glucose
handling”'. Our pathway-level flux analysis predicted muscle could catabolize fructose and showed a
significant decrease in the activity of Hex-A, a Drosophila hexokinase capable of phosphorylating
fructose to fructose-6-phosphate in response to HSD’2. The accumulation of metabolites such as sorbitol,
trehalose and/or sucrose, along with increased oxidation of Trehalase, supported the perturbation of
fructose and sucrose metabolism. Yet, these experimental data do not indicate whether fructose catabolic
activities were increased or decreased, as elevated concentrations of upstream metabolites can increase
flux through mass action. Future studies using fructose isotope tracing will be required to validate the

direction and magnitude of flux changes within this pathway.

We acknowledge several limitations in this study. First, the choice of GEM reconstruction
algorithm can influence model content and predictive performance’. When comparing our tissue-specific
GEMs reconstructed through the tINIT algorithm with those generated by CORDA, we found that the
final GEMs from CORDA contained fewer reactions and lower metabolic task pass rates compared to
those generated by tINIT, but maintained similar metabolic structures for major tissue groups (Error!
Reference source not found.a-c). This underscores the importance of careful selection and parameter
tuning of reconstruction algorithms to minimize potential biases. Second, we acknowledge the challenges
of validating all 32 tissue-specific GEMs. Additional context-specific validation will be required to
improve model accuracy. Third, using a single pseudo-biomass objective for flux balance analysis may
not fully predict tissue- or context-specific flux predictions. Incorporating tailored objectives functions
could refine flux predictions across tissues. Fourth, most reactions in the GEMs retained the default flux
bounds, representing computational conventions rather than experimentally derived limits. This
underscores that our flux predictions are semi-quantitative, given the limited availability of
comprehensive in vivo nutrients exchange data. Incorporating high-quality in vivo nutrients exchange

rates will improve flux prediction accuracy. Finally, certain reactions within fructose metabolism were



absent in the current muscle-GEM, highlighting a need for continued curation and targeted data

integration to enhance model completeness and flux predictions.

In summary, we reconstructed tissue-specific genome-scale metabolic models for Drosophila and
demonstrated the utility of the muscle-GEM to identify high sugar diet-induced metabolic dysregulation
at both reaction and pathway levels. These GEMs provide a quantitative, systems-level framework that
further complements the diverse experimental and genetic tools available for Drosophila, advancing

metabolic investigations in this model organism.



Methods

Genome-scale metabolic model for Drosophila

We selected Fruitflyl as a base GEM", as it offered the comprehensive coverage of reactions (Npn =
12,308), metabolites (nmet = 8,117), and genes (ngene = 1,810) compared to alternative GEMs such as
FlySilico (Nxn= 363, Nimet = 293) or iDrosophilal (D= 8230, Nimet = 6990, and ngene = 2388)'"'%.

Update of genes and gene-transcript-protein-reaction associations in Fruitflyl-GEM

Fruitfly1.0 is a generic genome-scale metabolic model describing metabolic networks of Drosophila
melanogaster”. To update the gene information within the model, we first used Gene List Annotation for
Drosophila (GLAD) database, containing a metabolic gene set of 2,629 genes

(https://www.flyrnai.org/tools/glad/web/, Metabolic_vs3). We compared these genes with those listed in

the GEM. We found that 1,465 genes from GLAD were not included. These missing genes included
transcription factors, kinases, phosphatases, and dehydrogenases. Before adding those genes directly into
Fruitflyl, we evaluated those genes had human orthologs by using DIOPT score’. Of 1,465 genes
analyzed, 564 genes (38.5 %) were predicted to have human orthologs assigned with a high rank score’™.
Among those, 36 genes were already linked to reactions and gene-rules in human-GEM. Thus, we added
these genes into Fruitflyl (see Supplementary Data). For reactions that already had gene-rules (grRules),
we integrated the new genes using the Boolean operator ‘or’. To address gene redundancy, we
investigated overlapping gene symbols within Fruitflyl and found that three gene symbols (Sur/sur,
Argk2/CG5144, and Argk/Argkl) were mapped to the same FlyBase gene IDs. To resolve these
redundancies, we retained Sur (FBgn0028675), Argk2 (FBgn0035957), Argkl (FBgn0000116). Following
these updates, we named the revised model Fruitfly2. In summary, we added 36 missing genes (Error!

Reference source not found.a).

Update the Enzyme Commission number

To update Enzyme commission (EC) numbers, a systematic classification of enzymes based on the
reactions, we used KEGG ID to map reactions with EC numbers within the Fruitflyl-GEM. We first
examined whether the reactions present in Fruitflyl-GEM were associated with EC numbers and found
that 7,411 out of 12,038 reactions (approximately 61.6%) lacked EC number annotations in Fruitfly2. We

then assessed whether these reactions had associated KEGG reaction IDs, which could be used to retrieve



EC numbers. Only 161 reactions were linked to KEGG reaction IDs, of which 78 were associated with
EC numbers. Based on this information, we assigned EC numbers to these 78 reactions. Additionally, by
using gene—KEGG reaction ID associations, we assigned EC numbers to a further 576 reactions. In total,
we assigned EC numbers to 654 reactions in Fruitfly2 (Error! Reference source not found.b),and

designated the updated GEM as Fruitfly3.

Reconstruction of tissue-specific genome-scale metabolic models in Drosophila

To generate tissue-specific genome-scale metabolic models (GEMs), we integrated Fruitfly3 with tissue-
specific pseudo-bulk single-nuclei transcriptomics data for 32 individual tissues from Fly Cell Atlas,
while using the Task-driven Integrative Network Inference for Tissues (tINIT) algorithm, implemented
via the getINITModel2 function from the Human-GEM repository (Error! Reference source not
found.c¢)”””. For generating tissue-specific pseudo-bulk gene expression data, we first retrieved the Seurat
objects from Fly Cell Atlas dataset and used AggregateExpression function in Seurat to pseudobulk the
counts per tissue’®’’. Gene expression values were converted to counts per million (CPM), rather than
TPM or FPKM, by normalizing to library size and scaling by a factor of 1e6’®. The resulting normalized
gene expression values are expressed in unit of CPM. To incorporate these gene expression data as input
for tINIT, we applied a global and relaxed expression threshold of 1, selected based on the distribution of
average gene expression levels across tissues (mean — 1 x SD = 1.02). This ensured the inclusion of

moderately expressed genes while maintaining consistency across all tissues.

In addition to transcriptomic data, tINIT requires a set of essential metabolic tasks as inputs.
Accordingly, we used a 57 predefined essential metabolic tasks, adapted from prior study (Error!
Reference source not found.d)” . These tasks span key metabolic functions, including rephosphorylation
of nucleoside triphosphates, de novo synthesis of nucleotides, uptake of essential amino acids, protein
turnover, electron transport chain and TCA, beta oxidation of fatty acids, de novo synthesis of
phospholipids, growth based on media components, and synthesis of vitamins and cofactors. Although
these tasks were originally designed for human GEM reconstruction, we reviewed available Drosophila
literature, including KEGG pathway annotations and FlyBase resources, and found no direct evidence that
these core tasks would not be performed in Drosophila. While we did identify Drosophila-specific
pathways in the KEGG database, such as dorso-ventral axis formation, insect hormone biosynthesis, and
Toll and Imd signaling pathway, we did not include these as essential tasks for reconstruction, as their

essentiality has not been validated across all 32 tissues.



To compare the GEM reconstruction outcomes, we also applied the Cost Optimization Reaction
Dependency Assessment (CORDA) algorithm?® to reconstruct tissue-specific GEMs using the same
dataset used for tINIT. CORDA categorizes reactions into essential (ES), present (PR), and not present
(NP) based on gene expression levels. Specifically, reactions associated with genes expressed above the
mean were designated as ES; those with expression between one and the mean as PR; and those less than

or equal to 1 as NP.

Metabolic network structure, subsystem coverage, and metabolic task analysis

Metabolic network analysis

The analysis of metabolic network structure, subsystem coverage, and metabolic tasks was performed
following a previously established protocol”. In brief, to compare model structures, we used
compareMultipleModels function from the RAVEN package. This function constructs a binary reaction
matrix, where rows represent reactions and columns represent individual GEMs. A value of 1 indicates
the presence of a reaction in a given GEM, while a value of 0 indicates its absence. For visualization, we
applied t-distributed stochastic neighbor embedding (t-SNE) to the binary reaction matrix, using the
Hamming distance as the similarity metric. The resulting two-dimensional projection revealed the relative
proximity of models based on their metabolic reaction content. Additionally, we performed hierarchical
clustering to classify the tissue-specific GEMs. A Euclidean distance matrix was computed from the same
binary reaction matrix, followed by average linkage clustering to generate a dendrogram. Cluster
assignments were defined by partitioning the dendrogram into a fixed number of groups, capturing major
tissue classes such as muscle, fat body/oenocyte, gut, glia, and neurons. These clusters were annotated

and visualized in the t-SNE plot.

Quantification of cluster overlap using Jaccard index

To assess the agreement between GEM-derived and gene expression-based tissue clusters, we calculated
the Jaccard index. This metric quantifies the similarity between two sets as the size of their intersection
divided by the size of their union, ranging from 0 (no overlap) to 1 (complete overlap)*’, as follows:

_]AnB|
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, where A and B represent the sets of tissues assigned to a given cluster based on GEM-derived and gene

expression-derived clusters, respectively.



We first performed hierarchical clustering on both datasets. For tissue-specific GEMs, clustering was
based on the binary reaction presence matrix, as described in the metabolic network analysis method. For
gene expression-based clustering, we applied hierarchical clustering to pseudobulk expression data.
Jaccard indices were then calculated by comparing each pair of clusters. For glial tissues, which
were distributed across three distinct GEM-based clusters, the corresponding Jaccard indices
were averaged to represent them as a unified group.

Metabolic subsystem coverage analysis

Variation in model structures was further investigated by analyzing the coverage of metabolic subsystems
in each tissue-specific GEMs. Subsystem coverage (SC) refers to the total number of reactions present in
a specific metabolic subsystem. For each subsystem, the SC was calculated for individual tissue-specific
GEMs and compared to the average subsystem coverage across all tissue-specific GEMs (SCrean). The

relative deviation from the mean coverage was calculated using the following formula:

, . _ SC = SChean
% dif ferences in subsystem coverage = e %X 100 %
mean

To facilitate the visualization, we applied a threshold of 100 %, showing only those subsystems in which

at least one tissue-GEM exhibited more than 50 % differences from the mean subsystem coverage.

Metabolic task analysis

To evaluate and compare each GEM’s metabolic functionality, we assessed the ability of each GEM to
perform a set of curated 219 metabolic tasks. This list was primarily based on the updated metabolic task
collection from Richelle et al. (2021)*, which includes 195 tasks. This list also includes system and
subsystem categories. Given the well-characterized role of trehalose metabolism in Drosophila, we added
eight trehalose biosynthesis tasks with different substrate conditions. Additionally, we compared this
updated list with the earlier Human-GEM task set’”. From this comparison, we added an additional 16
tasks related to energy metabolism (eight oxidative phosphorylation, one Krebs cycle, four glycolysis)
and carbohydrate metabolism (two glycogen metabolism), resulting in the final list of 219 metabolic tasks
(Error! Reference source not found.k). For clarity, this list is distinct from the set of 57 essential

metabolic tasks used for tissue-specific GEM reconstruction (Error! Reference source not found.d).

Task performance was evaluated using checkTasks function in the RAVEN toolbox. A task was

considered "passed" (assigned a value of 1) if the model could carry flux through the required reactions to



convert the defined input metabolite(s) into the specified output product(s), indicating that the metabolic
function is feasible within the network’. Conversely, a task was considered "failed" (assigned a value of
0) if no such flux could be achieved, suggesting that the function was not supported by the model.
Additionally, we used Fisher’s Exact test to evaluate the association between individual tissue-specific

GEMs and metabolic systems, defined as groups of functionally related metabolic tasks*®.

Fly stocks and maintenance

All flies were reared at 25°C and 60% humidity with a 12-hour on/off light cycle on standard laboratory
food. Standard laboratory food is made as follows: 12.7 g/liter deactivated yeast, 7.3 g/liter soy flour, 53.5
g/liter cornmeal, 0.4% agar, 4.2 g/liter malt, 5.6% corn syrup, 0.3% propionic acid, and 1%
Tegosept/ethanol. The semi-defined synthetic media for high sugar and normal diet were made according
to the previously reported recipe®, with a slight modification of sugar concentration. The normal diet
(NSD) consisted of 10 g/L of agar, 80 g/L of yeast, 20 g/L of yeast extract, 20 g/L of peptone, 262 mM of
sucrose, 0.3% propionic acid, and 1% Tegosept/ethanol. The high sugar diet (HSD) consisted of the same
amount of all the components except 1 M of sucrose. For diet intervention experiments, we collected 3

178 male flies and transferred approximately 30 flies to vials containing either NSD or HSD.

days old w
The food was replaced every two days. Bloomington Drosophila stock center (BDSC): attp40 (36304)

and UAS-GAPDH1 RNAi (62212). Laboratory stocks: w'’®, w; tub-gal80[TS]; MHC-gal4/ TM6b.

Intracellular metabolites extraction and LC/MS analysis

Metabolites quantification in Drosophila were adapted from a published protocol®'®2. 20 thoraces, head,
gut, and abdomen were dissected in ice-cold 0.9% normal saline buffer after placing the flies under light
CO2 anesthesia. Dissected thoraces were immediately placed in 1.5 mL tubes in dry ice. 450 pL of cold
80% (v/v) aqueous methanol were added to the tubes, and intracellular metabolites were extracted by
homogenizing tissues with pellet pestle for 1 minute by repeating a cycle of 20 seconds of grinding and
10 seconds of break. Samples were centrifuged at maximum speed for 10 minutes in the cold room.
Supernatants were transferred to a new 1.5 mL tube, pelleted by vacuum centrifugation using speedvac

and stored in -80 °C until mass-spectrometry analysis.

Samples were re-suspended using 22 pLL HPLC grade water for mass spectrometry. 5-7 uL. were
injected and analyzed using a hybrid 6500 QTRAP triple quadrupole mass spectrometer (AB/SCIEX)
coupled to a Prominence UFLC HPLC system (Shimadzu) via selected reaction monitoring (SRM) of a



total of 300 endogenous water soluble metabolites for steady-state analyses of samples. Some metabolites
were targeted in both positive and negative ion mode for a total of 311 SRM transitions using
positive/negative ion polarity switching. ESI voltage was +4950V in positive ion mode and 4500V in
negative ion mode. The dwell time was 3 ms per SRM transition and the total cycle time was 1.55
seconds. Approximately 9-12 data points were acquired per detected metabolite. For targeted 13C flux
analyses, isotopomers from ~140 polar molecules were targeted with a total of 460 SRM transitions.
Samples were delivered to the mass spectrometer via hydrophilic interaction chromatography (HILIC)
using a 4.6 mm i.d x 10 cm Amide XBridge column (Waters) at 400 pL/min. Gradients were run starting
from 85% buffer B (HPLC grade acetonitrile) to 42% B from 0-5 minutes; 42% B to 0% B from 5-
16minutes; 0% B was held from 16-24 minutes; 0% B to 85% B from 24-25 minutes; 85% B was held for
7 minutes to re-equilibrate the column. Buffer A was comprised of 20 mM ammonium hydroxide/20 mM
ammonium acetate (pH=9.0) in 95:5 water:acetonitrile. Peak areas from the total ion current for each

metabolite SRM transition were integrated using MultiQuant v3.2 software (AB/SCIEX).

Metabolites profiling data analysis

Statistical analysis was performed using MetaboAnalystR*. The hierarchical clustering analysis and
heatmap was generated using PlotHeatMap function, in which Aclust function used to normalize the data
across the samples and the Euclidean distance and ward.d were used as parameters for clustering
algorithm. Principal component analysis was performed using PCA.anal function. In comparison of the
means of the normalized metabolite peaks, the Anova test was used using ggpubr package in R. For
evaluation of the normalized metabolites peak areas, the peak areas were normalized to the protein mass

of individual tissues.

KEGG over-representation analysis for metabolomics

To identify pathway-level metabolic changes, we performed over-representation analysis (ORA) using
KEGG pathway annotations®. First, we constructed a reference pathway and metabolite database by
utilizing the keggrest R package, retrieving all D. melanogaster pathways (e.g., dme00010, dme00020,
etc) via kegglist, and extracting associated metabolites for each pathway using keggGet, removing
duplicate metabolites to create a unique reference compound list. A total of 105 Drosophila pathways and
their associated compounds were compiled to serve as the reference database for subsequent over-

representation analysis. Region-specific metabolomics data, containing KEGG IDs from MetaboAnalyst,



were then analyzed through ANOVA testing for significant metabolite alterations across regions. Log:
fold changes (log2FC) were calculated relative to the mean intensity of other tissues, and metabolites with
p <0.05 and log2FC > 0.5 were considered significantly enriched. For the abdomen, due to lower
metabolite coverage, a relaxed threshold log-FC > 0 was used, maintaining comparable input metabolite
sizes compared to other regions. ORA was conducted using a hypergeometric test to calculate statistical
overrepresentation, comparing altered metabolites against the background of all detected metabolites,
with Benjamini-Hochberg adjustment for multiple testing, considering pathways with adjusted p < 0.05 as
significantly enriched pathways. Enrichment results were visualized as bubble plots, with bubble size
representing the enrichment ratio (the proportion of observed significant metabolites within a pathway
relative to the expected proportion based on the reference dataset) and color indicating log-transformed

adjusted p-values.

Quantification of pathway overlap using weighted Jaccard index

To evaluate the degree of overlap between metabolomics-derived enriched pathways and those predicted
by tissue-specific genome-scale metabolic models (GEMs), we calculated a weighted Jaccard index. A
traditional Jaccard index measures the similarity between two sets as the size of their intersection divided
by their union*’. We extended this to incorporate significance derived from metabolomics data, allowing
pathways with stronger statistical support to contribute more to the similarity score*. For each
experimentally enriched pathway, we assigned a weight based on the negative logio of its adjusted p-value
(—logi0(q)), normalized across all pathways within each region. For GEM-based enriched pathways, we
determined pathways with reaction content above the median across tissues as the enriched pathways. For

each region—tissue pair, the weighted Jaccard index was calculated as:

Yieang min(w, (i), wg (i)
Yieaup max(wy (i), wg (i)

]weighted (A: B) =

, where:

A and B are the sets of enriched pathways in the experimental region and predicted tissue-specific GEMS,

respectively;

w, (i) refers to the normalized significance weights assigned to pathway i from experimentally

—log10(qi)

Yjea—logio(q;)’ where g; is the adjusted

determined enriched pathways for region A, calculated as w, (i) =

p-value for pathway i. For any pathway i that is not part of set A (e.g.,i € AUB and i & A), w,(i) =0.

The sum of all w, (i) equals 1;



wg (i) refers to the normalized weights assigned to GEM-based enriched pathways. Since the enriched
pathways identified from GEM do not have statistical significance values, each pathway i in set B is
assigned an equal weight, calculated as wg (i)=1/ng, where ng is the number of enriched pathways in that
tissue-specific GEM (set B). For any pathway i that is not part of set B (e.g., i € AU B and i € B), wg(i)

= (. The sum of all wg(7) equals 1.

To assess the statistical robustness of the weighted Jaccard index, we performed 10,000 bootstrap
resampling of the experimental enriched pathway dataset. For each bootstrap iteration, enriched pathways
were randomly sampled, and the weighted Jaccard index was recalculated against model-predicted tissue-
specific enriched pathways. This generated a distribution of indices for each region-tissue pair. We then
used one-way ANOVA followed by Bonferroni-corrected post-hoc tests to determine whether a specific
region (e.g., thorax) exhibited significantly higher similarity to a given tissue GEM (e.g., Muscle-GEM)
compared to other regions. Significance levels were visualized on box plots to highlight region-specific

alignment between experimental data and model predictions.

Definition of HSD-muscle-GEM

We defined a high sugar diet (HSD)-muscle-GEM by constraining reaction rates to recapitulate
key known features of type 2 diabetic muscle based on the literature evidence?®*****4254 These
constraints included reduced upper bounds of reactions rates in glucose uptake, glyceraldehyde-3-
phosphate dehydrogenase, citrate synthase, oxoglutarate dehydrogenase, succinate dehydrogenase, and
fumarate hydratase (Error! Reference source not found.a). Since Drosophila also utilizes trehalose as a
fuel source, and its circulating levels increase in response to HSD'**, we also constrained the upper
bounds of trehalose uptake rates. Because glycolysis and TCA cycle activities are closely linked to
NAD(P)H redox metabolism™, we updated reaction directionality of redox-related reactions based on
supporting evidence from the literature”***° (Error! Reference source not found.a). Furthermore, to focus
the model on metabolic pathways relevant to our measured metabolites, we constrained the upper bounds
of exchange rates for the undetected metabolites to one tenth of the default upper bound (Error! Reference
source not found.b). Lastly, given the muscle tissue serving as a major tissue for energy and redox
metabolism, we included artificial demand reactions for ATP production under HSD, NAD" regeneration,
and NADPH regeneration. These reactions reflect fundamental physiological needs of muscle in
Drosophila: ATP production was required for flight”’, NAD" regeneration to sustain glycolysis’', and
NADPH regeneration to mitigate oxidative stress”>”*. While we originally intended to use these reactions

84,94

as objective functions, similar to prior approaches modeling energy and redox metabolism®*™", they were



not used as objectives in our FBA simulations of HSD-muscle-GEM, but were still retained as auxiliary
buffer reactions for energy and cofactor metabolism. Simulations were performed using a biomass
objective function (reaction ID: MAR00021), which captures broad metabolic maintenance and
biosynthesis requirements of muscle tissue. Details of this objective function are provided in the Flux

Balance Analysis section.

Flux balance analysis

Flux balance analysis (FBA) was performed to determine the optimal metabolic flux distributions that
maximizes a defined objective function, while satisfying stoichiometric constraints under steady state
assumption”. A metabolic network is represented by a stoichiometric matrix S of size m X n, in where m
and n represents the number of metabolites and reactions, respectively. The elements in S;; corresponds to
the stoichiometric coefficient of metabolites i in reaction j. The relationship between metabolites and

reaction rates is given by the following equation:

_dm
S dt

, where v is the n X 1 vector of reaction rate vector and m is an m X 1 vector of metabolite

Sv

concentrations. Under the steady-state assumption, the concentration of metabolites does not change over
time, making the right side equal to 0. FBA solves a linear optimization problem to determine flux

distributions that satisfy this constraint, formulated as:
maximize cTv,
subjectto Sv = 0,
and Vigin <V < Viax
, Where
S : Stoichiometry matrix (m X n)
v : flux vector representing reaction rates at steady state (v € R™)
¢ : vetor defining the linear objective function

Vinin, Vmax: Lower and upper bounds for each flux



For FBA simulations, we used a biomass objective function (reaction ID:MAR00021), which
aggregates the demand for key metabolic precursors — including amino acids (e.g., alanine, glutamine,
valine), lipids (e.g., cholesterol, lipid droplets), glycogen, nucleotides (DNA, RNA), and metabolic pools

(e.g., phospholipids, cofactors, vitamins) — into a single pseudo-biomass reaction, as follows:

CLpooilc] + DNA[n] + DNA-methylcytosine[n] + PI pool[c] + RNA[c] + SM pool[c] + alanine[c]
+ arginine[c] + asparagine[c] + aspartate|c] + cholesterol[c] + cholesterol
— ester pool[r] + cofactors and vitaminc [c] + cysteine[c] + glutamate|c]
+ glutamine(c] + glycine[c] + glycogen|c] + histidine[c] + isoleucine[c]
+ leucine(c] + lipid droplet[c] + lysine[c] + methionine[c] + phenylalanine|c]
+ phosphatidate-LD-TAG pool|c] + proline|c] + serine[c] + threonine|c]

+ tryptophan|c] + tyrosine[c] + valine[c] —» biomass][c]

This formulation was used here as a general proxy for basal cell maintenance, including protein
turnover, membrane lipid remodeling, and nucleotide recycling. These processes remain active and
physiologically relevant to tissues like muscle®”***7. Thus, rather than using energy and redox demands as
sole objective functions, which could bias the solution space or do not recapitulate other core metabolic
activities, we adopted this biomass objective function to capture broader metabolic requirements. The
resulting flux through this reaction was approximately 1.1 (arbitrary unit). While this value represents the
demand for cell biosynthesis and maintenance, the energetic and precursor requirements for synthesizing

biomass are distributed among the various reaction fluxes throughout the metabolic network.

Flux variability analysis

Flux Variability Analysis (FVA) was used to evaluate the range of feasible fluxes for each reaction under
sub-optimal conditions, characterizing the flexibility of individual reactions’®. FVA involves solving two

optimization problems—one to maximize and one to minimize each flux v; of interest,
maximize / minimize v;,
subjectto Sv = 0,
c'v>ax Zcommon,opt»

and Vipin <V < Vigay



, where o is the optimality parameter (0 < a < 1), where a = 1 corresponds to the fully optimal solution
obtained from FBA. In this study, we set o = 0.9 to allow a small deviation from the optimal solution,
enabling exploration of alternative flux distributions that are biologically plausible while still near-
optimal. We used flux variability analysis to probe the range of fluxes (differences between Vmax and

Vmin) as a measure of feasible flux range, not as a proxy for statistical uncertainty.

Flux sampling analysis

We performed flux sampling analysis after unconstrained reaction bounds with the minimum and
maximum flux values obtained from flux variability analysis (FVA). To explore the feasible solution
space, we applied the GpSampler algorithm, which implements the Artificial Centering Hit-and-Run
(ACHR)”. A total of 10,000 randomly sampled flux distributions were generated using uniformly

distributed initial points.

Parsimonious flux balance analysis (pFBA)

Parsimonious enzyme usage flux balance analysis (pFBA) is a commonly used extension of standard flux
balance analysis that identifies flux distributions with minimal total flux while achieving the optimal
value of a specified objective (e.g., biomass production)'®. The rationale is that cells are expected to
minimize enzyme usage and avoid unnecessary internal cycling, leading to more realistic and
interpretable flux predictions. It uses a bilevel optimization in which the objective function is first
optimized using FBA, followed by the minimization of total flux through all gene-associated reactions.

The second part of the optimization is expressed as follows:

m
min Z Virrev,j
j=1

S.t.Vopjective,ib = Vobjective,FBAs

Sirrev * Virrev = 0

,where m is the number of irreversible reactions in the network, V,p jective rpa 1 the optimal flux value
obtained from FBA and v,pjective,ip 18 the lower bound for the objective function for the second

optimization problem.



Differential flux analyses

To identify reactions with altered fluxes between HSD and NSD conditions, we calculated the difference
in flux values for each reaction across FBA, pFBA, and FVA_sampling analyses. Flux values from FBA
and pFBA represent single optimal solutions, whereas for FVA_sampling, median flux values across the
sampling points were used as a representative flux value. Reactions were classified as increased or
decreased based on a flux difference threshold of +1, which can be adjusted for stringency. This analysis
produced three independent sets of perturbed reactions for each method. Then, we identified the
commonly perturbed reactions shared across all three methods and visualized their overlaps using UpSet
and ggvenn functions in R. For these shared reaction sets, we assigned each reaction to its corresponding
subsystem and associated gene(s). Within each direction (increased or decreased), the top three
subsystems with the largest numbers of perturbed reactions were selected. Gene—subsystem relationships
were visualized as bipartite network graphs, where node size corresponds to the number of associated
reactions and edge width represents the number of shared genes between subsystems and reactions.

Networks were generated using the igraph (v1.3.5) and ggraph (v2.1.0) in R.

For FVA-sampling analysis of NAD(H)-dependent reactions, we additionally performed two-sample Z-
tests to evaluate the statistical significance of flux changes between NSD and HSD conditions'®'. Z-score

was calculated as follows:

XHSD (i) — XNSD )

\/ O-I-ZISD (vi) n GI\ZISD (vy)

Zi=

Npsp Nysp

, where i represents each reaction, X,,,q(v;) is the average of the sampled fluxes of each reaction for
condition (NSD or HSD), 62, ;(v;) is the sample variance, and ncond is the number of flux samples per
condition. Two-tailed p-values were computed using the standard normal cumulative distribution

function, and Bonferroni correction was applied to adjust for multiple testing.



Evaluation of maximum NADH production capacity
To assess the network’s maximum NADH production capacity, we introduced an artificial total NADH
demand reaction (NADH — NAD* + H*) accounting for relevant compartments (cytosol, mitochondria,

and peroxisome) into the muscle-GEM. Specifically, the reaction is represented as:

NADH[c] + NADH[m] + NADH[p]
- NAD*[c] + H*[c] + NAD*[m] + H*[m] + NAD*[p] + H*[p]

, where [c], [m], and [p] refer to the cytosol, mitochondria, and peroxisome, respectively. As solely
maximizing the NADH demand reaction may yield biologically nonviable solutions, we first performed
FBA by maximizing the original pseudo-biomass objective function®*. Then, we set the lower bounds of
this reaction at 50% of the optimized solution and performed pFBA to maximize the NADH demand

reaction.

Sensitivity analysis

To assess the control of individual glycolytic reactions on overall pathway flux, we performed a
sensitivity analysis. This analysis is conceptually analogous to metabolic control analysis, where flux
control strength is quantified as the relative change in pathway output flux in response to variations in
individual enzyme activities'*>'®®, Tt also aligns with general sensitivity analyses of reaction rates used in
reaction networks®>'™. For each glycolytic reaction, the baseline flux was defined as the median flux of
5,000 sampling data obtained from FVA. Then, each reaction was perturbed by constraining its flux to
95%., 90%, 70%, and 50% of the baseline, and FVA-sampling was repeated to obtain the perturbed flux
distributions. The total pyruvate consumption flux was used as a proxy for glycolytic output flux, because
unlike mammalian systems where lactate production rate by lactate dehydrogenase (LDH) is commonly

used as the glycolytic output, LDH activity is relatively low in insect muscle'®

, and pyruvate is
substantially converted for the production of other metabolites such as alanine and acetate'*'"’. The

normalized sensitivity coefficient (S;) was calculated as follows:

AUtotal_pyr_con X Vi base

Normalized sensitivity coef ficient (S;) = A
Vi 1]total_pyr_con,base

,Where Viota1 pyr_conpase r€presents the sum of fluxes through all pyruvate-consuming reactions at

baseline, AViotar pyr con represents the difference in the summed flux of all pyruvate-consuming



reactions between the baseline and perturbed states, v; represents the baseline flux of with glycolytic
reaction, and Av; represents the difference in flux of the ith reaction between the baseline and perturbed

states.

Pathway-level flux analysis

To evaluate the pathway-level flux changes and statistical significance between NSD and HSD
conditions, we defined pathway flux (V;) as the average of non-zero flux magnitudes within each
pathway. For FVA sampling analysis, we used 10,000 flux sampling points per condition and performed

a two-sample Z-test, adapting the approach from a previous study'*":

Xusp (Vi) = Xnsp (Vi)

\] ) + a5sp (V)

Zi=

Nysp Nnsp

, where i represents each pathway, X onq(V;) is the average of the pathway flux across all sampling points
for condition (NSD or HSD), o'g’ond(vi) is the sample variance of pathway flux across all sampling points
for each condition, and ncenq is the number of flux sampling points per condition. Two-tailed p-values
were computed using the standard normal cumulative distribution function. For pFBA, which yields a
single optimal flux solution per condition, no statistical test was performed and pathway flux changes

were quantified using the log2 fold change between HSD and NSD.

B3C-isotopic labeling experiments and mass isotopomer analysis

We prepared the normal and high sugar diet with 13 mM and 50 mM of [U-"*Cs]glucose (Cambridge
Isotope Laboratories, Inc. CLM-1396), respectively, maintaining the molar ratio of the labeled glucose to

118 male flies and

sucrose consistent. For *C-isotopic labeling experiments, we collected 3 days old w
placed approximately 30 flies in vials containing either NSD or HSD with isotope tracers at room
temperature. The food was replaced every two days. On day five, twenty thoraces were dissected per
biological replicate and intracellular metabolites were extracted using 80% (v/v) aqueous methanol.
Q1/Q3 SRM transitions for incorporation of 13C-labeled metabolites were established for polar
metabolite isotopomers, and data were acquired by LC-MS/MS. Peak areas were generated using
MultiQuant version 2.1 software. The natural isotope abundance was corrected using AccuCor (Github:
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Switch-tagging redox proteomics

Muscle tissues were solubilized in 4% SDS in 100mM triethylammonium bicarbonate (TEAB) pH 7.0
lysis buffer and digested using S-Trap micro columns (Protifi, Huntington, NY) following the
manufacturer’s procedure. Each sample was loaded onto individual Evotips for desalting and washing.
The Evosep One system (Evosep, Odense, Denmark) was used to separate peptides on a Pepsep colum
(150 um inter diameter, 15 cm) packed with ReproSil C18 1.9 um, 120A resin using pre-set 15 samples
per day gradient. The system was coupled to the timsTOF Pro mass spectrometer (Bruker Daltonics,
Bremen, Germany) via the nano-electrospray ion source (Captive Spray, Bruker Daltonics). Raw data
files conversion to peak lists in the MGF format, downstream identification, validation, filtering and
quantification were managed using FragPipe version 13.0. MSFragger version 3.0 was used for database

searches against a Drosophila database with decoys and common contaminants added.

Prediction of Drosophila GAPDH protein complexes using AlphaFold-Multimer

For the prediction of protein complexes using AlphaFold-Multimer (AFM), we employed
LocalColabFold version 1.5.2'%. It integrates AFM version 2.3.1''% and utilizes MMseqs2 for generating
multiple sequence alignments. Computations were performed on the Harvard O2 high-computing cluster.
Our prediction involved five models for each complex, each undergoing five recycling iterations. The
model displaying the highest prediction quality was selected for each protein complex. The protein
complexes examined in this study include Drosophila GAPDH1 homodimer, GAPDH1:GAPDH?2
heterodimer, and GAPDH2 homodimer. The prediction results have been made publicly available on the
Fly Predictome website (https://www.flyrnai.org/tools/fly predictome/web/)'"". For visualization of the

predicted structures we utilized ChimeraX''?.

KEGG over-representation analysis (ORA) for redox proteomics

Similar to the metabolomics-based ORA analysis, we conducted KEGG over-representation analysis

using proteins with significantly altered oxidation states. Significantly altered peptides of proteins were
identified by calculating the log: fold change between high sugar diet and normal sugar diet conditions.
Statistical significance was determined using an unpaired two-sample t-test, with p-values corrected for

multiple testing using the Benjamini-Hochberg (FDR) method. Proteins were considered significantly



altered if they met the thresholds of logz|FC| > 0.5 and adjusted p-value < 0.05. After obtaining a list of
significantly altered protein sets, we performed KEGG overrepresentation analysis using the
clusterProfiler R package. First, protein names were converted to gene symbols. Next, these gene
symbols were mapped to entrez IDs using the bitr function in the org.Dm.eg.db database. Only unique
Entrez Gene IDs were retained for downstream analysis. Finally, overrepresentation analysis was
performed using the enrichKEGG function. The enrichment results were visualized using dot plots using

dotplot function.

Climbing assay

Flies were tested for vertical climbing ability at day 5 and 10%'"*, In this assay, male flies separated by
genotypes were transferred to empty vials. Flies were tapped three times and observed for 10 seconds.
The percentage of flies that climbed above 5 cm was recorded. Consecutive trials were separated by 30

seconds of rest.

RNA extraction and qRT-PCR

RNA was extracted and analyzed by qRT-PCR™®. Five thoraces were collected per sample. Samples were
homogenized in TRIzol reagent (Ambion). The RNAs were isolated and purified using Direct-zol RNA
MicroPrep columns (Zymo Research) according to the manufacturer instructions. Reverse transcription
was done by using iScript cDNA Synthesis Kit (Bio-Rad). qRT-PCR was done in a CFX96 Real-Time
System (Bio-Rad) using iQ SYBRGreen Supermix (Bio-Rad). Relative mRNA levels were calculated

using the AACt method. For thoraces, values were normalized to the housekeeping gene a-tubuling4.

Quantification of cellular NADH/NAD"

Measurements of NADH/NAD" was adapted from a published protocol®, using the NADH/NAD" Glo
Assay (Promega: G9071, G9072) with a modification in manufacturer instruction. In brief, five thoraces
were dissected, weighted, and stored in 1.5 mL tubes in dry ice. 300 pL of PBS with 1 % DTAB solution
was added the tubes and the thoraces were homogenized with the pellet and homogenizer. 110 pL of the
cell lysates were split into two separate ice-cold 1.5 mL tubes: one for NADH and the other for NAD".
For NADP" tube, 55 pL of 0.4 M HCI with 1 mM ascorbate were added. We added ascorbic acid to

prevent the oxidation of NADH into NAD" under low pH, avoiding the overestimation of intracellular



NAD" levels''*. The other NADH tube remained untreated. Both tubes were placed into the heat block
with 60 °C temperature for 20 minutes to destroy NAD". Tubes were equilibrated at room temperature for
10 minutes. 55 uL 0.5 M Trizma/base was added to the NAD" tubes to neutralize the acid, while 110 uL
of HCl/ascorbate/base buffer was added to the untreated NADH tube. Afterwards, NADH, NAD", and the
ratio were measured following the manufacturer’s instruction with the generation of standard curves with

known concentration.

Data analysis, statistics, and reproducibility

Statistical analyses were performed in GraphPad Prism (v9.5.1), MATLAB (2020b), or R (4.2.1). For
analysis of two groups, including metabolomics, isotope tracing, and redox-proteomics between HSD and
NSD conditions, Welch’s unequal variances two-sided t-test was used to calculate a p-value. For
metabolomics data involving multiple group comparisons, one-way ANOVA was conducted followed by
Benjamini-Hochberg (BH) correction for controlling the false discovery rate (FDR). The significance was
represented as follows: * P < 0.05, #* P < 0.01, #** P < 0.001,***x P < 0.0001. In pathway
enrichment analyses, hypergeometric tests were applied to identify over-represented pathways. To
account for multiple comparisons, p-values were adjusted for false discovery rate (FDR) using the
Benjamini-Hochberg (BH) method. For weighted Jaccard index analyses, pathway enrichment data were
bootstrap-resampled (n = 10,000) and analyzed using one-way ANOVA, followed by Bonferroni-
corrected pairwise comparisons relative to a predefined reference region. For correlation analyses
between model-generated flux changes and metabolite or proteomic measurements, Pearson’s correlation
coefficient (7) and associated p-values were calculated. For model-generated flux sampling analysis, the
Mann—Whitney U test (ranksum test) was used to compare flux distributions between NSD and HSD
conditions, as the distributions are not assumed to be normal. Significance levels were indicated in the
boxplots. No samples or data points were excluded from statistical analysis. All analyses from
experimental data were based on biologically independent replicates. The statistical methods used for

each analysis are described in the corresponding figure legends or methods sections.

Data Availability

All data generated in this study, including '*C-glucose isotope tracing, high-sugar-diet (HSD)

metabolomics, regional metabolomics, and redox proteomics, are provided in the Source Data. Processed



and analyzed data are provided in Supplementary Data. The protein mass spectrometry raw data have

been deposited to the ProteomeXchange via the MassIVE with the dataset identifier MSV000100288.

Code Availability

MATLAB and R scripts used for reconstruction of genome-scale metabolic models and flux analyses are
available on GitHub (https://github.com/sunjjmoon/FlyTissueGEMs). An achieved version of the code
used in this study is available on Zenodo: doi.org/10.5281/zenodo.17684286'">.
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Figure legends

Fig. 1: Reconstruction of 32 tissue-specific genome-scale metabolic models (GEMs) in Drosophila

melanogaster

a Pipeline for reconstruction of tissue-specific GEMs in Drosophila. Elements created in BioRender.

Moon, S. (2025) https://BioRender.com/1nasxv2. b t-SNE plot comparing the metabolic network

structures of 32 tissue-specific GEMs using Hamming similarity. Each point represents one tissue-
specific GEM, with marker shapes and colors indicating major tissue groups (muscle: red circles; fat
body/oenocyte: purple squares; gut: orange diamonds; glia: green downward triangles; neurons: dark red
upward triangles; others: gray stars). Abbreviations: PNS is peripheral nervous system; VNS is ventral
nervous system; LMM neuron is leg muscle motor neuron; RN glial cell is reticular neuropil associated
glial cell; CNSS glial cell is central nervous system surface associated glial cell. ¢ Jaccard index analysis
comparing overlap between clusters defined by tissue-GEM and those based on gene expression. d
Number of reactions per subsystem across GEMs, highlighting the top 10 subsystems by reaction count.
e Fraction of extracellular transport reactions relative to all transport reactions, with major tissue groups
highlighted. Dashed lines indicate mean values. Correlation was assessed using a two-sided Pearson
correlation test (r = 0.93, p = 5e-15). f Heatmap of differential subsystem coverage across tissues, with
bright yellow indicating higher coverage and dark blue lower coverage. Subsystems with >15 reactions

and >50% deviation from mean coverage are shown. Source data are provided as a Source Data file.



Fig. 2. Validation of tissue-specific GEMs through regional metabolomics and pathway analysis

a Schematics showing the metabolomics analysis performed on four Drosophila regions, followed by
KEGG over-representation analysis. Elements created in BioRender. Moon, S. (2025)

https://BioRender.com/Inasxv2. b Principal component analysis (PCA) of metabolite profiles across

regions (n = 4). ¢ Heatmap showing the metabolite profiles across thorax, head, abdomen, and gut. d
Bubble plot showing enriched metabolites in each region compared to others. One-way ANOVA followed
by Benjamini-Hochberg (BH) correction was used for multiple comparisons. e Over-representation
analysis of enriched metabolite sets across regions, using a one-sided hypergeometric test, followed by
BH correction for multiple comparisons. f Heatmap of weighted Jaccard index values showing pathway
overlaps between metabolomics-derived and GEM-predicted pathways. g-h Boxplots showing weighted
Jaccard index distributions between metabolomics-derived pathways and either (g) Muscle-GEM or (h)
Fat body-GEM. Center line is median; box limits are first and third quartiles; whiskers are 1.5 x
interquartile range; red points are mean; gray points present individual bootstrap samples (n = 10,000),
shown in full including those outside the whiskers. Statistical significance is based on comparisons
against the reference region (g: thorax; h: abdomen) using one-way ANOVA followed by Bonferroni-
corrected pairwise tests; *** p < 0.001. Overlapping pathways between GEM-predicted and region-

specific enriched pathways are shown to the right. Source data are provided as a Source Data file.



Fig. 3. Constraint-based flux analyses predict perturbations in NAD(H)-dependent reactions in

muscle under high sugar diet

a Schematics of constraint-based semi-quantitative flux analyses for muscle under HSD. Constraints were
applied to reflect metabolic alterations observed in muscle under HSD, recapitulating features of type 2
diabetes in Drosophila. FBA, pFBA, and FVA_sampling analyses were performed to estimate differential

reaction fluxes, identifying commonly perturbed reactions across the methods. Elements created in

BioRender. Moon, S. (2025) https://BioRender.com/Inasxv2. b Networks showing the top three most
commonly perturbed subsystems, reactions, and genes from the decreased (blue) and increased (red)
reaction sets identified across flux analyses. Node size indicates the number of reactions associated with
each subsystem, and edge width represents the number of linked genes. ¢ Differential fluxes of NAD(H)-
dependent reactions between HSD and NSD from FVA_sampling analysis. Dot size reflects absolute
differential flux and color scale indicates adjusted p-values from a two-sample Z-test. X-axis shows log,
fold change, with threshold of + 0.5. Reactions consistently decreased or increased across different flux
analyses are labeled in blue or red, respectively. d Schematic of the pFBA evaluating maximum NADH
production capacity under HSD and NSD conditions. An artificial NADH oxidation reaction (NADH —
NAD") was introduced as a total NADH demand across cytosolic, mitochondrial, and peroxisomal
compartments. e Maximal NADH demand flux estimated by pFBA between NSD and HSD conditions. f
NAD'/NADH ratio in w'/’® male flies fed NSD or HSD for five days. Data are shown as mean + SD from
biological replicates (n = 5). Statistical significance was assessed using a two-tailed unpaired t-test; ** p <
0.01. g Schematic of the sensitivity analysis workflow for glycolysis. Individual glycolytic fluxes were
perturbed, followed by FVA-sampling to quantify changes in total pyruvate consumption flux, which
served as a proxy for glycolytic output. Normalized sensitivity coefficients were calculated to assess each
reaction’s influence on the pathway output flux. h Bar plot showing normalized sensitivity coefficients
(S;) of glycolytic reactions under different perturbation magnitudes (5 — 50%). The bar plot on the right
shows the average absolute sensitivity (|S;|), highlighting reactions with the greatest overall influence

under these simulations. Source data are provided as a Source Data file.



Fig. 4. Model-predicted decreases in glycolytic flux, including GAPDH, validated through *C-

glucose tracing

a Experimental design for *C-glucose isotope tracing experiments in Drosophila thoracic muscle under
high sugar diet (HSD) conditions. Elements created in BioRender. Moon, S. (2025)
https://BioRender.com/Inasxv2. b Isotopic labeling patterns generated by [U-"*Cs]glucose in glycolysis

and TCA cycle. Red circles represent '*C-labeled carbons. ¢-d Fractional labeling of mass isotopomers of
(¢) glycolytic or (d) TCA cycle intermediates, shown as both fractional labeling (left) and values
normalized to M+6 glucose and scaled relative to normal sugar diet (NSD) (right). Bars represent mean +
SEM, and individual points indicate biological replicates (n = 6). M+x denotes a mass isotopomer
containing x *C atoms. Statistical significance was assessed using two-tailed unpaired t-tests comparing
NSD and HSD for each metabolite; * p < 0.05, ** p <0.01, *** p <0.001. e Correlation between model-
predicted relative flux changes (HSD-muscle-GEM/Unconstrained) and fractional labeling of glycolytic
intermediates (HSD/NSD). Relative flux of each reaction was mapped to the normalized fractional
labeling of its corresponding product metabolite. Fractional labeling values (y-axis) are shown as mean +
SEM from biologically independent replicates (n = 6), and model-predicted flux values (x-axis) are
shown as mean + SEM from flux sampling simulations (n = 10,000). The dashed red line represents a
linear regression fit, with the shaded region indicating the 95% confidence interval. Correlation was
assessed using a two-sided Pearson correlation test (r = 0.813, p = 0.0263). Source data are provided as a

Source Data file.



Fig. 5. Model-predicted decreases in glycolytic flux correlate with increased redox modification of

glycolytic enzymes

a Experimental design for switch-tag redox proteomics in Drosophila thoracic muscle under HSD

conditions. Elements created in BioRender. Moon, S. (2025) https://BioRender.com/Inasxv2. b PCA plot

showing variance in oxidized peptides between HSD and NSD conditions. ¢ Volcano plot displaying
differentially oxidized peptides in thoracic muscle between HSD and NSD conditions. The intensities
were normalized within each protein across samples. d Dot plot showing KEGG pathway enrichment
(Drosophila) based on significantly oxidized peptides. e Heatmap showing the significantly oxidized
peptides in glycolysis between NSD and HSD conditions. f Correlation between model-predicted relative
flux changes (HSD-muscle-GEM/Unconstrained) and relative oxidation state changes of glycolytic
enzyme peptides (HSD/NSD). Relative oxidation state was calculated as the average oxidation level of
peptides from each enzyme in HSD, normalized to NSD. Relative oxidation state values (y-axis) are
shown as mean + SEM from biologically independent replicates (n = 6), and model-predicted flux values
(x-axis) are shown as mean + SEM from flux sampling simulations (n = 10,000). The dashed red line
represents a linear regression fit, with the shaded region indicating the 95% confidence interval.
Correlation was evaluated using a two-sided Pearson correlation test (r =-0.771, p = 0.0251). g Boxplot
showing normalized intensity of significantly oxidized GAPDH peptide. Center line is median; box limits
are first and third quartiles; whiskers are 1.5 % interquartile range; points represent biologically
independent replicates (n = 6). Statistical significance was assessed using a two-tailed unpaired t-test and
the p-value is shown above the plot. h Climbing ability of male Mhc">attp40 (control), or GAPDH]I-
RNAI flies, measured at day 5 and 10 after fed with HSD. Bar represent mean + SD, and individual points
indicate biological replicates (n = 3). Statistical significance was assessed using two-tailed unpaired t-
tests comparing control vs. GAPDH1-RNA1 within each time point; ns = not significant, * p <0.05.

Source data are provided as a Source Data file.



Fig. 6. Pathway-level flux analysis reveals dysregulated fructose metabolism

a Schematic of the pathway-level flux analysis pipeline. FVA-sampling and pFBA were used to estimate
pathway fluxes under HSD and NSD conditions, followed by calculation of Z-scores and log: fold
changes to identify perturbed pathways. Elements created in BioRender. Moon, S. (2025)
https://BioRender.com/Inasxv2. b Pathway-level flux differences between HSD and NSD conditions.

Each dot represents a pathway, with its size indicating absolute pathway flux difference and color
representing adjusted p-value. The x-axis shows the log, fold change in pathway flux. Pathways
highlighted in blue or red show commonly decreased or increased fluxes across both FVA-sampling and

1118 male

pFBA. ¢ Schematic representing the targeted metabolite profiling of thoracic muscles from w
flies fed either HSD or NSD. Elements created in BioRender. Moon, S. (2025)

https://BioRender.com/Inasxv2. d PCA of thoracic metabolite profiles under HSD and NSD (n =4). e

Volcano plot showing significantly altered metabolites in thoracic muscles in response to HSD. f
Integrated schematic of fructose and sucrose metabolism (KEGG: dme00051 and dme00050),
highlighting key metabolites, enzymes, and reactions. Box plots (black outline) display normalized
metabolite levels under NSD and HSD. Center line is median; box limits are first and third quartiles;
whiskers are 1.5 x interquartile range; points represent biologically independent replicates (n = 4).
Statistical significance was assessed using a two-tailed unpaired t-test and the p-value is shown above the
plot. Heatmaps (green outline) indicate significantly altered redox modifications for select enzymes (p <
0.05). Histograms (purple outline) show model-predicted flux distributions from flux sampling analysis (n
=10,000). Black arrows indicate reactions not detected (ND) in the muscle-GEM. Colored metabolite
names and arrows represent log, fold changes (HSD/NSD) for both fluxes and metabolite levels, as

shown in the color scale. Source data are provided as a Source Data file.



Editorial Summary:

This study develops tissue-specific genome-scale metabolic models for Drosophila and shows how
constraint-based flux analyses from the muscle model can identify high sugar diet-induced metabolic
dysregulation at reaction and pathway levels.
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