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The ability to perform quantum error correction (QEC) and robust gate

operations on encoded qubits opens the door to demonstrations of quantum
algorithms. Contemporary QEC schemes typically require mid-circuit mea-
surements with feed-forward control, which are challenging for qubit control,
often slow, and susceptible to relatively high error rates. In this work, we
propose and experimentally demonstrate a universal toolbox of fault-tolerant
logical operations on error-detecting codes without mid-circuit measurements
on a trapped-ion quantum processor. We present modular logical state tele-
portation between two four-qubit error-detecting codes without measure-
ments during algorithm execution. Moreover, we realize a fault-tolerant
universal gate set on an eight-qubit error-detecting code hosting three logical
qubits, based on state injection, which can be executed by coherent gate
operations only. We apply this toolbox to experimentally realize Grover’s
quantum search algorithm fault-tolerantly on three logical qubits encoded in
eight physical qubits, with the implementation displaying clear identification
of the desired solution states. Our work demonstrates the practical feasibility
and provides first steps into the largely unexplored direction of measurement-

free quantum computation.

The practical implementation of quantum algorithms depends on
their resilience to errors, alongside the ability to perform arbitrary
quantum operations. Quantum error correction (QEC) enables the
detection and correction of errors arising during computation by
encoding information across multiple physical qubits'”. Computa-
tions on these encoded qubits can be realized through a discrete,
universal set of gates®. These operations have to be implemented in a
robust, fault-tolerant (FT) fashion, meaning that local faults in the
underlying gate operations do not proliferate uncontrollably across
the logical qubits*. However, no QEC code intrinsically supports a
full, inherently FT universal gate set’. Completing this FT universal
gate set is a key challenge for realizing a potential advantage beyond
the reach of algorithms that can be efficiently simulated classically.
Recent experiments have demonstrated QEC cycles on trapped-ion
quantum processors®°, superconducting architectures” ™, as well as

neutral-atom platforms™*°. FT universal gate sets have been realized
on these platforms by means of code switching”', where informa-
tion is transferred between two codes with complementary sets of
inherently FT gates, as well as magic state injection*'""?, which
requires high-fidelity magic states as a resource>*. These advance-
ments in the practical and scalable implementations of logical qubits
enabled the execution of the first, small quantum algorithms run on
encoded qubits, such as the Bernstein-Vazirani algorithm***, one-bit
addition®®”, Grover search on two logical qubits'®*® or the quantum
Fourier transform on three logical qubits®.

Many practical protocols rely on measurements during algorithm
execution and feed-forward operations conditioned on these mea-
surement outcomes, which is experimentally demanding on many
hardware platforms and limits their success probability: In both atomic
and superconducting quantum processors, measurements remain
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Fig. 1| Measurement-free logical state teleportation with the [[4, 1, 2]]-code.
a Stabilizers Sz, Sy and logical operators of the [[4, 1, 2]]-code. b Experimental
logical quantum state tomography for FT logical state initialization. The black
dashed boxes correspond to ideal values in a fault-free case. Any deviation from the
black dashed boxes, e.g., unboxed gray, blue or brown areas, indicates that noise
reduces the overall fidelity. ¢ High-level circuit for measurement-based modular
logical teleportation. The source (S) and target (T) code blocks are merged by
measuring the joint logical X? X[ -operator via an auxiliary register (Aux.) and
applying a Z-type feedback operation based on the measurement outcome (first
green box). The two blocks are then split again by measurinng and applying an X-
type operation to the target register conditioned on the measurement outcome
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(second green box). d Schematic illustration of modular state teleportation, where
the source and target registers are never directly coupled to one another, but only
interact via an auxiliary quantum register (Aux). e High-level circuits for
measurement-free logical teleportation and experimental logical quantum state
tomography. We replace the measurements and feed-forward operations with
coherent feedback operations to teleport a state without mid-circuit measure-
ments (blue). An additional Hy is applied to the target state using the circuit shown
in orange. The reset operation can either be carried out explicitly by physically
resetting the auxiliary qubits and reusing them afterwards, or implemented by
replacing them with fresh qubits.

orders of magnitude slower than typical gate times, which poses speed
limitations and results in decoherence of idling qubits during mea-
surements. Moreover, fluorescence read-out in atomic setups requires
additional cooling during and after measurements, as atoms are
heated during this process”%*°32,

Following early works*?*, recent theoretical works have proposed
practical measurement-free protocols for logical state preparation®,
rounds of QEC**** and the implementation of an FT universal gate
set® ., In these protocols, stabilizer information is transferred onto
auxiliary qubits, allowing decoding and coherent feedback to be car-
ried out within the quantum algorithm itself. This approach avoids the
need for mid-circuit measurements or feed-forward operations
entirely. At the end, auxiliary qubits are replaced or reset to be reused,
effectively removing the entropy introduced by the noise.

In this work, we develop and experimentally demonstrate a
complete toolbox of logical operations needed for FT universal
quantum computing on an ion-trap quantum processor, without mid-
circuit measurements or feed-forward operations. First, we construct
protocols for modular logical quantum state teleportation, such that
different encoded blocks are never directly coupled to one another,
which is a key desideratum for scaling up quantum computations to
large numbers of logical qubits. We analyze the performance of these
measurement-free protocols for different logical input states, accom-
panied by numerical simulations. We then complete an FT,
measurement-free universal gate set for an eight-qubit error-detecting
code by constructing and implementing circuits for a logical Hada-
mard gate on an encoded qubit. Finally, we use this implementation as
a building block for Grover’s algorithm to search for two elements out
of eight, for the first time demonstrating a small-scale FT and
measurement-free universal quantum algorithm.

Results

Experimental setup

The experimental data were obtained with a 16-qubit quantum
computing device based on trapped ions*’. The chain of 16 *°Ca"
ions is confined in a linear Paul trap. The physical qubits are
encoded in |0)=47S,,,m;= —1/2) and |1)=(3’Ds), m= —1/2)
Zeeman sub-levels. The state of each qubit can be manipulated
individually by optically addressing the ions with 729 nm laser
light. Two-qubit gates are realized as a Mglmer-Sgrensen (MS)
interaction*’, providing all-to-all two-qubit-gate connectivity.
Overall, the native gate set of the device includes arbitrary-angle
rotation gates R(0, )= exp(—ig[X cos g +Ysing]), ‘virtual’ Z-gates
R,(6)= exp(—i%Z), and maximally-entangling two-qubit gates

XX(1/2)= exp(—if X ® X). A description of the experimental setup
can be found in refs. 21,42,44.

Our trapped-ion platform is capable of performing mid-circuit
measurement operations, as was shown in ref. 7. However, such an
operation, together with an additional feed-forward, represents a sub-
stantial experimental overhead in both sequence duration and infidelity.
In our protocols, we do not need to perform these operations, but
require only resets of the quantum state of certain qubits. The reset is
faster than our current implementation of the mid-circuit measurement
(1.7 ms vs. =30 ms), and the preservation of the data qubit’s state is
higher, which is discussed further in the ‘Methods’ Subsection ‘Qubit
reset’. Instead of re-initializing physical qubits, one can also replace
them with fresh physical qubits. In our experiments, we make use of the
full 16-ion register and use fresh physical qubits whenever possible.

Logical state teleportation without mid-circuit measurements
In this section, we discuss how to teleport a logical state between two
four-qubit registers without mid-circuit measurements or feed-
forward operations, and demonstrate this concept experimentally.
We consider a[[4, 1, 2]]-code instance that encodes k =1 logical qubit in
n = 4 physical qubits and has distance d = 2, meaning that any single
error can be detected. The stabilizers and logical operators defining
the code are shown in Fig. 1a.

A standard approach for teleporting a state between registers is
based on lattice surgery**¢, which is illustrated in Fig. 1c. First, two
code blocks are merged by measuring the joint logical X-operator.
Based on this measurement outcome, one applies a logical Z-opera-
tion to the target register. In a second step, the two blocks are split
again by measuring the logical Z-operator of the source register and
applying a conditional logical X-operation to the target register. The
measurement-based approach has been realized experimentally on
various platforms'2%47-49,

Instead of performing measurements and conditional operations
based on the measurement outcomes, we now map the respective
operators to an auxiliary register and apply coherent feedback
operations, as illustrated in Fig. le in blue. In the first step, we couple
both logical qubit registers to the auxiliary register by applying pairs of
CNOT-gates to map the information about the joint logical operator
X} X[ of the source (S) and the target (T) register to the auxiliary qubits.
The conditional logical Z-operation can then be implemented coher-
ently with a combination of CZ-gates that act on the auxiliary and
target register, as shown in the green dashed box in Fig. le. In the
second step, we map the logical Z} to the auxiliary register and apply a
coherent feedback with a combination of CNOT-gates. The scheme is
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Fig. 2 | FT logical operations on an [[8, 3, 2]]-code. a Definition of stabilizers and
logical operators on the [[8, 3, 2]]-code?*”*. b The upper left circuit implements
measurement-based H-gate injection, where an auxiliary qubit is prepared in | +)
and entangled with the data qubit in state |). In this protocol, one would measure
the auxiliary qubit and apply a Pauli operation that depends on the measurement
outcome m. The measurement and conditional operation (green dashed box) can
be replaced with a combination of CNOT-gates (lower left), such that no mid-circuit
measurements or feed-forward operations are required. We shift this scheme to the
logical level by replacing the data qubit with one logical qubit of the [[8, 3, 2]]-code
and the auxiliary qubit with one logical qubit of a [[4, 2, 2]]-code, which supports a
natively transversal H, -gate, up to a simple relabeling.

made FT by repeating subroutines, i.e., by mapping multiple stabilizer-
equivalent logical operators onto auxiliary qubits, as discussed further
in the ‘Methods’ Section. The explicit circuits can be found in the
‘Methods’ Subsection ‘Circuits’.

We construct a similar protocol that enables the implementation
of alogical H\ -gate (shown in Fig. 1e in orange) with the same resources
as the bare teleportation protocol. We find this circuit by inserting a
physical H-gate to the target qubit and propagating it back through the
circuit, such that no H-gate has to be performed explicitly. This means
that no H,-gate has to be applied to a [[4, 1, 2]] instance when shifting
this circuit to the logical level.

We experimentally perform logical state tomography for three
protocols: state initialization, logical state teleportation and the
application of a logical H,-gate for logical input states |0); and |+),
which is shown in Fig. 1b, e. Further details on the measurement bases
and number of shots can be found in the ‘Methods’ Section. We
achieve fidelities of up to 93(2)% for state teleportation and 95(3)% for
an H, -gate, which is lower than the respective physical gate operation
with a fidelity of =0.996. The difference in fidelities for the two logical
input states can be traced back to two sources. First, dephasing on
idling qubits due to fluctuations in the magnetic fields introduces a
strong bias towards Z-type errors. Furthermore, we measure the qubits
in the Z-basis in the end and determine the logical value from this
measurement, if the target state is a |0), -state. Based on these out-
comes, we perform a classical round of error detection and postselect
on the two Z-stabilizers of the [[4, 1, 2]]-code. When the target state is
the |+) -state, and we determine the logical X-value, we can only
postselect on one X-stabilizer. By accepting fewer runs, we effectively
also discard a fraction of runs where higher-weight errors lead to a
failure, and fidelities increase the more we postselect.

Our FT logical state teleportation scheme can, in principle, be
scaled to higher-distance surface codes, which is discussed further in
the ‘Methods’ Section. Here, the key idea is to use d representations of
logical operators on a distance-d code to ensure that no weight-d fault
leads to a logical failure.

FT toolbox for universal operations on the [[8, 3, 2]]-code
In this section, we discuss circuit constructions for a FT universal gate
set on an eight-qubit error-detecting code, which we use to implement

Grover’s search algorithm on three logical qubits experimentally in the
following section. The [[8, 3, 2]]-code is the smallest instance of a three-
dimensional color code?*?”*°>? that encodes k = 3 logical qubitinn=8
physical qubits and has distance d = 2, meaning that any single error
can be detected. The X-stabilizer and a Z-stabilizer of this code have
support on all eight qubits, while three additional weight-4 Z-stabi-
lizers are defined on three faces of a cube, intersecting on edges, as
shown in Fig. 2a. The three logical Pauli X-operators of this code have
support on the weight-4 faces of the cube, while the logical Z-operators
are defined on edges of weight 2.

The [[8, 3, 2]]-code supports a transversal non-Clifford gate
the CCZgate can be implemented by applying single-qubit 7- and T'-
gates to individual qubits as illustrated in Fig. 3a, such that errors do not
propagate within one code block. A logical CNOT-gate between qubits
that are encoded within the same encoded block can be implemented by
swapping pairs of qubits. In the following, we implement these CNOT-
gates within one block by relabeling pairs of qubits, which does not
require any physical gate operations. The [[8, 3, 2]]-code has in the past
been used for multiple experimental demonstrations™**%. Recent the-
oretical works have proposed constructions for measurement-free, FT
universal quantum computing®*, but require a substantial overhead in
gate operations and qubit count. Here, we introduce an implementation
of a H,-gate for the [[8, 3, 2]]-code that does not rely on mid-circuit
measurements or feed-forward operations, and, together with the CCZ-
gate, completes a FT universal gate set. Our construction for the FT
single-qubit logical H,-gate is based on state injection®. State injection
makes use of a suitable resource state*, which is injected onto the data
qubit by, first, entangling the two qubits, then measuring the resource
qubit and, finally, applying a Clifford operation to the data qubit con-
ditioned on the measurement outcome in the second step. Figure 2bl
shows the circuit that may be used to apply an H; -gate to a state |¢), by
means of state injection. Here, an auxiliary qubit is prepared in | +) as a
resource state, then entangled with the data qubit with a combination of
a CNOT- and a CZ-gate. Finally, the auxiliary qubit is measured in the X-
basis, and either a Pauli X- or Zflip is applied to the data qubit,
depending on the measurement outcome m.

We now replace the measurement of the auxiliary qubit with a
coherent feedback operation comprising two CNOT-gates, as shown
in Fig. 2b2. A measurement can always be replaced with a quantum
circuit>**, but does not automatically obey fault-tolerant circuit
design principles. In our circuit construction, we have to apply H-
gates to the auxiliary qubit in order to achieve the desired H-gate
injection to the data qubit. If both qubits corresponded to logical
qubits of the same code, there would be no benefit in using this
approach, because it would require an H,-gate in order to inject one.
We therefore use different types of codes to inject the desired gate
operation. Specifically, we consider the three encoded qubits of the
[[8, 3, 2]]-code and inject an H, -gate onto one of the logical qubits by
means of an auxiliary [[4, 2, 2]]-code prepared in | + 0), as a resource
state. In this circuit, we require a CNOT-gate that acts on two logical
qubits that are encoded in two different code blocks. This gate can
be implemented with a non-transversal, yet FT, gate implementation,
implying that any single fault that may propagate through the full
circuit remains detectable afterwards. This logical inter-block CNOT-
gadget and the full circuit for the injection of an H, -gate are depicted
in Suppl. Fig. 4. Our implementation of the FT logical H,-gate
requires 4 auxiliary qubits and 26 two-qubit gates.

We perform experimental logical state tomography for each
logical qubit, considering FT logical state initialization, the single-
logical H,-gate and the transversal CCZ;-gate on the [[8, 3, 2]]-code.
We achieve fidelities of up to 81(3)% for H_ on logical qubit O,
accepting 10% of the runs after postselection. Moreover, we find
fidelties between 65(6)% and 99.89(14)% for the two idling logical
qubits, depending on the logical input state and its sensitivity to
dephasing. All results are shown and further analyzed in the

26,27,52.
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Fig. 3 | Two-solution Grover search on a database of size N = 2°. a We recompile
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obtained (dark) and numerically simulated (light) probabilities for each possible
solution. The two solutions 011 and 101 can be clearly distinguished, and the total
probability to find one of the two solutions (green) is psyccess = Pon1 + P1o1 = 0.40(4).

‘Methods’ Section. Notably, we identify dephasing of idling qubits as
a major error source, which we estimate to account for almost two-
thirds of the overall logical error rate, as discussed further in
‘Methods’ Subsection ‘Error budget’.

The presented FT universal gate set on the [[8, 3, 2]]-code unlocks
the capability to run minimal logical algorithms without relying on
explicit mid-circuit measurement or feed-forward operations. In the
next step, we use it to implement an FT Grover search on three logical
qubits encoded in the [[8, 3, 2]]-code.

Grover search on logical qubits

Grover’s search algorithm*~° enables quantum computers to search
through unsorted databases significantly more efficiently than classi-
cal methods. It achieves a quadratic speedup by reducing the number
of queries required to find a desired item, and can be used as a sub-
routine for other quantum algorithms®”*°. Grover’s algorithm consists
of three steps®°":

1. [Initialization: Prepare all qubits in an equal-weight superposition
of the computational basis states with the Hadamard transform,
i.e., apply single-qubit H-gates to all qubits.

2. Grover iteration: Perform (a) and (b) j times to amplify the
amplitude of the solution-states s:

(a) Apply an oracle operator O that marks the solutions by flipping
the sign of these states.

(b) Apply a diffusion operator D that reflects the state about the
initial state.

3. Measurement:  Measure
computational basis.

the qubit register in the

We implement Grover’s algorithm on three logical qubits, thus
searching a database of size N = 2" = 8 bits. As an example, we consider
the phase oracle that marks s = 2 solution-states |011) and |101). In this
setting, the probability of finding a solution after one Grover iteration
in a noise-free setting is 1, which is discussed further in ‘Methods’
Subsection ‘Grover’s search algorithm’. The optimal classical search
corresponds to performing a single query, followed by a random
guess, and the probability to find a solution in this case is s/N + (N - s)/
N - s/(N - 1) = 0.46 in our case. Grover’s search algorithm has been
implemented on physical qubits on trapped ions®***, superconducting
architectures®°¢, on spin qubits in silicon®’, and on molecules using
NMR techniques®. It has also been realized on two logical qubits
encoded in a [[4, 2, 2]]-code with better-than-physical logical Clifford
operations'®*, searching a database of N = 4. This algorithm with N=4

does not require a universal set of gates, but can be realized with
Clifford-gate operation only.

We implement the three-qubit Grover’s algorithm on logical
qubits encoded in the [[8, 3, 2]]-code by utilizing the universal FT gate
set {H;, CNOT,, CCZ}. We recompile the initial circuit>*>** into the
available FT gates introduced in the previous section, as shown in
Fig. 3a. We then implement this circuit on our experimental trapped-
ion quantum processor, accompanied by numerical simulations
according to a multi-parameter noise model specified in the ‘Methods’
Section. Figure 3b shows the determined probabilities for each of the
eight possible final states, two of which correspond to the correct
solution states as marked in green. The total probability to find a
solution using the experimental data is psyccess = Pour + P1o1 = 0.40(4).
This overall probability to find a solution in a single shot is slightly
lower than the optimal classical probability of 0.46, as determined
above. However, as discussed further in the ‘Methods’ Section, only
slight enhancements to the current setup are sufficient to outperform
the optimal classical algorithm. Numerical simulations show that
reducing, e.g., the two-qubit-gate error rate by 1% to p, = 0.015, which
has been demonstrated on experimental trapped-ion platforms*°7°,
leads to an overall success rate of = 0.52, which clearly outperforms the
optimal classical strategy. Instead of reducing p,, also extending the
coherence time to 7, = 100 ms, which has been shown in independent
technical demonstrations” ", leads to a success probability of
Psuccess = 0.67. This demonstrates that for only slightly smaller error
rates on idling qubits and two-qubit gate operations, a regime where
the measurement-free quantum algorithm outperforms its classical
counterpart is reachable today.

Our scheme for Grover’s algorithm can be scaled to a larger search
space, provided enough qubits and sufficiently reliable gate opera-
tions are available. One can implement the FT gate set {H;, CNOT,
CCZ} onlogical qubits encoded within one [[8, 3, 2]] block. In addition,
one can apply an inter-block CNOT-gate between two logical qubits of
two distinct [[8, 3, 2]]-codes’®. These operations enable the imple-
mentation of an oracle and the amplification on more than three qubits
by decomposing the required gates into the available gate sets’.

Discussion

In this work, we introduce and experimentally implement a complete
toolbox of operations for fault-tolerant (FT) universal quantum com-
puting without mid-circuit measurements. Our work presents the first
experimental realization of a FT universal gate set that operates
without mid-circuit measurements and marks the FT implementation
of Grover’s algorithm on a search space of up to N = 8 on encoded
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acting on data qubits, averaged over all data qubits. The area and the color coding
of the squares correspond to the absolute value and the phase of an element of the
x-matrix, respectively. The dashed square represents an ideal outcome, specifically
the identity process.

logical qubits, demonstrating for the first time a FT logical algorithm
without mid-circuit measurements.

Our schemes are tailored toward trapped-ion architectures that
provide all-to-all connectivity’*”>”’, but they can be analogously
implemented on other architectures. For example, neutral atom
platforms have demonstrated the capabilities required for imple-
menting the presented code constructions™”®, These architectures
offer long-range connectivity and high-fidelity single- and two-qubit
gates, while mid-circuit measurements and real-time feedback are
still experimentally demanding due to relatively long measurement
times™’%°, These features make our measurement-free imple-
mentations ideal candidates for neutral atom platforms, potentially
enhancing performance by avoiding costly circuit components,
provided that mid-circuit measurements are no noisier than a two-
qubit gate. Future developments may depend on improvements in
the measurement fidelities.

Future work will include the analysis of our protocols for higher-
distance codes, as outlined above, and the investigation of thresholds
and required overheads in terms of qubit count and gate operations,
including extensions to fault-tolerant realizations under restricted
qubit-connectivity®’. Moreover, we have identified dephasing on idling
qubits during two-qubit gates as a major logical error source in our
experimental demonstration. Further adjustment of our schemes to a
biased noise setting'®?, which is often given in experimental
architectures™"”°, could therefore potentially boost the performance
while reducing overheads.

Our work presents the first demonstration of measurement-free
fault-tolerant quantum computation and lays the ground for further
exploring the full potential of this new paradigm of fault-tolerant
quantum information processing without mid-circuit measurements.

Methods
Qubit reset
The qubit reset procedure allows for a selective reinitialization of some
of the qubits to state |0). Physically, the reset is performed by
quenching the lifetime of the 3’Ds/, manifold by illuminating the ion

chain with the 854 nm laser with subsequent optical pumping to
reinitialize the qubits in the |0) state. The data qubits are hidden in the
4’Sy, manifold 4°S, ,, m, = —1/2),|4°S, 5, m; = +1/2) by means of the
electron shelving technique® during the lifetime quenching to pre-
serve their state. This re-encoding of the data qubits in the
4S5, my= —1/2),147S,5,m;= +1/2) levels instead of the
\4251/2,mj= —1/2), |32D5/2,mj = —1/2) levels results in a higher sen-
sitivity to magnetic field noise and, consequently, lower coherence
time. Therefore, we perform two dynamical decoupling pulses (DD)
with the radio-frequency (RF) antenna driving the transition between
the 4°S,,,m;= — 1/2) and |4°S, 5, m; = +1/2) levels. The sketch of the
procedure is shown in Fig. 4a, while additional details can be found in
ref. 7. The reset procedure does not require recooling of the ion chain,
unlike the full mid-circuit measurement, since the reset ions emit only
a few photons during the procedure. Consequently, the reset is faster
than our current implementation of the mid-circuit measurement
(1.7ms vs. = 30 ms) and the preservation of the data qubit’s state is
higher (process fidelity 0.955(9) vs. 0.908(12)). The x-matrix for the
reset procedure obtained via quantum process tomography is depic-
ted in Fig. 4b. The main fidelity limitation for both processes at the
moment is the coherence of the ground state qubit
(14°Sy)5,my= —1/2) and |4°S,,,m; = +1/2)) of 53(6) ms. The recent
hardware modifications, reducing the magnetic field noise, allowed us
to extend this coherence time to 113(17) ms, which should significantly
improve the fidelity of mid-circuit operations. Moreover, other
trapped-ion setups have demonstrated even higher coherence times
of the order of seconds, e.g. 5. The fidelities can be further boosted by
improving the hiding pulses fidelities by the use of composite pulses®.
The results will be presented in future works.

We make use of the full 16-ion register and use fresh auxiliary
qubits as long as possible. The reset procedure is only used in our
implementation of Grover’s algorithm (see Fig. 3) to reset one auxiliary
qubit that is used for the FT preparation of | + 00), for the [[8, 3, 2]]-
code (see Suppl. Fig. 3e). This auxiliary qubit is later used for the
mapping of one Z-stabilizer of the [[8, 3, 2]]-code, as discussed in
‘Methods’ Subsection ‘Tomography’.

Nature Communications | (2026)17:995


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-026-68533-x

C Source:

an, Source: Auxiliary: Target: b ]

0 2 8) < @) (6) 10-1

S g —

SX"= XsXo, S77= ZsZ, 1072 3

2 b

X¢ © @ 10 9 (6) ~ 1073 ,;

3 107* 4

) — __ E

ZEO—2—> 12 1
zf 13 107°

\_/V

Fig. 5 | Fault tolerance and scaling to higher code distances for measurement-
free logical state teleportation. a We prepare an auxiliary two-qubit GHZ-state to
prevent single faults on auxiliary qubits from causing a logical failure. In addition,
we map two stabilizer-equivalent representations of the joint logical operator with
fully disjoint qubit support onto the auxiliary registers (1, 2). The same strategy is
used in step 3, where two equivalent but fully disjoint logical Z-operators of the
source register are mapped onto two physical qubits. b Numerically determined
scaling of the logical infidelity for FT and non-FT logical teleportation and the H,-
gate, averaged over initial states |0), and | +),. We fix the error parameters

DP=(P1, P2, Pm> Pi» Pidie) tO €xperimental error rates™” and scale these with a com-
mon improvement factor A. We identify a quadratic scaling of the infidelity for the

10
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AR
N 10°
FT protocols with A, which indicates—as expected—that no single fault leads to a
logical failure. The FT teleportation protocol outperforms its non-FT counterpart
already for the current experimental noise parameters (A = 1). The inset shows the
logical infidelities at A = 1 obtained from the experiment (darker color) and
numerical simulations (lighter color). ¢ Scaling measurement-free state teleporta-
tion to surface codes with higher distances d > 2. Each string of qubits connecting
opposing boundaries supports a representation of a logical Xf (upper lattice) and
X[ (lower lattice); one exemplary representation is shown in red. There are d
equivalent representations that have fully disjoint support. Each one can be map-
ped onto an auxiliary d-qubit GHZ-state, and coherent feedback steps can be
applied, which are controlled by the state on d physical auxiliary qubits.

Anticipated performance of measurement-free state
teleportation

The measurement-free logical teleportation schemes are made FT as
illustrated in Fig. 5a. First, we prepare auxiliary two-qubit GHZ-states
[$aux) =(100) +[11))/+/2 stabilized by S§*=XgX, and S3*=ZgZ,,
which ensures that no single fault on an auxiliary qubit propagates to a
logical error when the two registers are coupled. In addition, we map
two representations of the joint logical operator X; X[, that have fully
disjoint support, onto the auxiliary register such that no single fault on
a data qubit leads to a logical error on the output state (panels 1 and 2
in Fig. 5a). Here, the information about each representation of the joint
logical operator is stored in one physical auxiliary qubit, which then
acts as a control qubit in the coherent feedback operation consisting of
CZ-gates. The same strategy is used in step 3, where two representa-
tions of ZE with disjoint support are mapped onto two physical qubits.
The explicit circuits can be found in the ‘Methods’ Subsection ‘Cir-
cuits’. The non-FT (nFT) counterparts of these protocols make use of a
bare physical auxiliary qubit and only map a single representation of
the respective operators onto this auxiliary qubit, which is then used to
control the coherent feedback operation.

In Fig. 5b, we simulate the scaling of the logical infidelity for FT
and non-FT measurement-free logical state teleportation and the
application of the H, -gate operation by means of teleportation. Here,
we consider a multi-parameter noise model, attributing different
error rates to each type of component in the circuits. Specifically, we
consider depolarizing noise on single-qubit gates with a probability
p1=3.6 X107, two-qubit depolarizing noise on two-qubit gates with a
probability p, = 2.5 x 107, flipped physical qubit initializations with a
probability p; = 3 x 107, and flips before the final projective mea-
surements with a probability p,, = 3 x 107, The values of the error
rates correspond to the ones in our experimental setup’'’**2. We
implement dephasing on all idling qubits, where a Z-fault is applied
to each idling physical qubit with a probability pge=(1 — e fse/T2)
given the gate time of the respective operation and the coherence
time 7, = 50 ms. Note that gates in the experimental setup can only
be executed sequentially, which increases the total dephasing time.
The noise channels and numerical methods are explicitly given in
‘Methods’ Subsection ‘Numerical methods’. We scale the error
parameters p(A)=A - (py, P2, Pir P> Pidie) With @ common factor A, such
that A =1 corresponds to the set of parameters as given in the current
experimental setup. As expected, the FT protocols scale

quadratically with A, indicating that the required fault-tolerance
properties are fulfilled.

Our approach for logical state teleportation without mid-circuit
measurements is, in principle, straightforwardly scalable to higher
distance d > 2 surface codes, as illustrated in Fig. 5c. These codes
have d equivalent representations of the logical Pauli operators
which do not share support. For the FT mapping of the weight-d
logical operators, we then have to prepare the auxiliary register fault-
tolerantly in a d-qubit GHZ-state, and apply coherent feedback steps
controlled on the state of d physical auxiliary qubits. However, this
approach requires the FT preparation of potentially high-weight
GHZ-states. An alternative route to scalability could entail con-
catenating the presented schemes to avoid the need for high-weight
physical GHZ-states. Supplementary Fig. 1 shows the averaged
simulated logical error rates for the [[4, 1, 2]]-code. For simplicity,
here we implement a single-parameter noise model where each two-
qubit gate introduces an error with probability p. Additionally, we
count the lowest-weight fault-locations that lead to a logical failure in
the [[4, 1, 2]]-code. Specifically, 1792 weight-two fault-locations lead
to a failure for the initial state | +); and 2784 fault-locations for the
initial state |0),. Note that for each two-qubit gate, we consider 15
possible locations corresponding to the 15 distinct two-qubit Pauli
errors. These counts provide an estimate of the logical failure rate,
which scales as p; = ¢ x p’. Given this polynomial, we can infer the
failure rates for higher levels of concatenation because
pP=c1.p”, e, pP=c-p?, pP=c.pP?*=c3p* and so on. As
shown in Fig. 2, the calculated polynomials (dashed lines) for the first
two concatenation levels agree with the numerically simulated ones
(solid curves). These results demonstrate that our approach for
measurement-free logical state teleportation can be scaled to higher
distances without the need for large GHZ-states. However, within the
error-detecting framework, we always have to discard a fraction of
runs, and this fraction increases with more layers of concatenation,
as can be seen in Suppl. Fig. 1b, because more and higher-weight
errors can be detected. Another approach to achieving scalability is
to rely on different auxiliary states that still maintain fault tolerance
in the presented protocols. Preliminary results indicate that MF FT
operation of distance-3 surface code by means of carefully crafted
quantum circuits without the need of FT prepared GHZ ancillary
states is also viable, but a detailed analysis and generalization to
higher code distances is left for future follow-up work.
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logical H,-gate and the transversal CCZ,-gate for the [[8, 3, 2]] code.

Numerical methods

We use Monte-Carlo simulations to estimate the logical infidelities of
our protocols®. Each circuit component is modeled by first applying
the respective ideal operation, followed by an error E occurring with
probability p. We simulate a depolarizing noise channel after every
single- and two-qubit gate. With probabilities p; and p,, an error from
the respective sets is applied. These probabilities define the corre-
sponding error channels

3 ..
&) = A-pop+5 > EpE

i=1

15 . (1)
&P) (l—pz)p+%_215’zpf’z-

with EX e (X,v,Z} for k = 1, 2, 3 and EX € (IX, X, XX,IY,YLYY,
17,Z1,7Z,XY,YX,XZ,ZX,YZ,ZY} for k=1, ..., 15. All qubits are initi-
alized and measured in the Z-basis, at the very end of the respective
protocols. To simulate faults in these operations, we apply X-flips after
initialization and before measurement, each occurring with prob-
abilities pinic and pmeas, respectively. Moreover, qubits that remain idle
during gate operations may experience dephasing, which we model
with the error channel

Eidie) =1 — Pigie)P + PiaieZPZ. )

The probability p;q.e depends on the execution time ¢ of the performed
gate and the qubit coherence time 7, = 50 ms

1
Pidie = 5 {1 —exp (— T%)} . 3)

In our simulations, we use & = 70 ps as the gate time of single-qubit
gates and t, = 350 pus as the gate time of two-qubit gates, as
summarized in Suppl. Tab. 1.

We measure the final state in the logical X-, Y-, and Z-basis for each
protocol, as described in ‘Methods’ Subsection ‘Tomography’, and
calculate the state fidelity between the ideal logical state p; and the
reconstructed density operator p, obtained after postselecting, as

2
F(pl,p2)=Tr{ \/_pipzx/p—l} : )

We use Qiskit’s Quantum Information package to calculate fidelities®’.

Circuits

Supplementary Fig. 2 shows the explicit circuits that were imple-
mented for FT logical state teleportation discussed in Section ‘Logical
state teleportation without mid-circuit measurement’. Supplementary

Fig. 3 shows the circuit constructions for the FT logical state initi-
alizations on the [[4, 1, 2]]- and the [[8, 3, 2]]-code without mid-circuit
measurements as implemented in the demonstrated protocols. In
these circuits, fault tolerance is maintained even without measure-
ments by means of a flag-qubit-controlled reduction of potentially
dangerous weight-2 errors to weight-1 configurations. Supplementary
Fig. 4 depicts the circuit construction for the application of a single-
logical H,-gate on the [[8, 3, 2]]-code.

Tomography

[[4, 1, 2]]-code. We perform logical state tomography for two logical
input states |0), and |+), considering logical state preparation, state
teleportation and the application of a H,-gate on the [[4, 1, 2]]-code, as
shown in Fig. 1. To this end, we measure in the X-, Y-, and Z-basis to
extract the respective logical expectation values. For measurements in
the X-basis, we measure all physical qubits in the X-basis in the end and
infer the logical X-operator and the X-type stabilizer from this mea-
surement. Analogously, we can extract the logical Z-operator and the
Z-type stabilizers for measurements of all physical qubits in the Z-basis.
However, we cannot simply determine the required stabilizers and the
logical value at the same time for measurements in the Y-basis, because
they share support but are of different Pauli-type, as for example
Y1 = YoXiZ> and the Y-type stabilizer Sy = YyV1Y,Y3. We therefore map
out the Y-stabilizer onto a physical auxiliary qubit with the circuit
shown in Suppl. Fig. 6. Here, the gate ordering ensures that no hook
error, i.e., a fault on an auxiliary qubit that may propagate onto mul-
tiple data qubits, leads to a logical flip in the subsequent measurement,
as any single propagated fault is still detected in the end by a Z-stabi-
lizer. We finally measure the 4 qubits in the Y-, X-, and Z-basis, allowing
us to determine ¥, and one additional Z-stabilizer S3=Z7,7.

[[8. 3, 2]1-code. We perform logical state tomography for each state
prepared with the specified protocol, i.e., logical state preparation and
the logical operations H, and CCZ_on [[8, 3, 2]] for different input
states, as shown in Fig. 6. We consider each individual logical qubit and
perform tomography for each one independently. For measurements
in the X-basis, we measure all physical qubits in the X-basis and
determine the three logical Pauli-operators X?, X!, X2 and the X-sta-
bilizer Sy, as defined in Fig. 2a. Analogously, we extract the logical Z-
operators simultaneously, along with the Z-stabilizers, when measur-
ing all physical qubits in the Z-basis. In this case, we additionally map
out the X-stabilizer Sy onto an auxiliary qubit when performing the H, -
gate to achieve fault tolerance. The circuit that is used for measure-
ments in the Z-basis is shown in Suppl. Fig. 5a. In this circuit, a single
fault may propagate as illustrated in red, but is detected by the Z-
stabilizers afterwards.

For measurements in the Y-basis, we have to take into account that
the different logical operators may share support but are of different
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Fig. 7 | Scaling of the logical infidelity for different logical qubits during the
single logical Hy -gate. We fix the error parameters p = (p;, p,, Pm, P, Pigie) and scale
these with A. A =1 corresponds to the current values in the experimental setup. We
determine numerically the scaling of the logical infidelity for the logical qubit O (a), on
which the H, is applied, and idling logical qubits 1 (b) and 2 (c). The inset shows the

logical infidelities at A = 1 obtained from the experiment (darker color) and from
numerical simulations (lighter color). We find that experimentally and numerically
obtained state fidelities agree within their uncertainty intervals for qubits 1 and 2,
while these values differ on qubit O for certain states, as discussed further in ‘Methods’
Subsection ‘Performance of the FT universal gate set on the [[8, 3, 2]]-code’.

Pauli-type, as for example Y =Y X,Z,X,Xs and Y} =Y X;X,X;Z,, s0
they cannot be extracted simultaneously in a single measurement. We
therefore perform three sets of independent experiments and deter-
mine Y7, ¥}, and ¥ individually. For measurements in the Y-basis, we
also map the Y-stabilizer Sy = Y Y;Y,Y,Y3Ys5Y Y, onto an auxiliary qubit
when performing the H,-gate. We then measure the physical qubits in
different bases to extract the respective logical Y-operator and one
additional Z-stabilizer. An exemplary circuit that is used for measure-
ment in the Y-basis for the extraction of YE is shown in Suppl. Fig. 5b.
When extracting YlL and Yf, we measure the physical qubits in the
bases YoXiX2X324,Z5Z77 and YoZiX2Z3X4ZsXeZ7, respectively.

Moreover, the logical auxiliary qubit is still intact after performing
the single-logical H,-gate. We also projectively measure the logical
auxiliary qubit, extract the stabilizers of the [[4, 2, 2]]-instance, and
postselect for a trivial syndrome to increase the fidelities in our pro-
tocols. Here, we map the Z-stabilizer of the logical auxiliary qubit onto
another physical auxiliary with the circuit shown in Suppl. Fig. 5c.

When we run the full logical Grover search algorithm on the three
qubits of the [[8, 3, 2]]-code, we additionally map two Z-stabilizers
§L,=702,7,75 and S:S3=7,7,757 onto physical auxiliary qubits in
the end in order to maintain fault tolerance.

Number of measurements

In the tomography experiments described in ‘Methods’ Subsection
‘Tomography’, each logical state was measured in three measurement
bases {X, Y, Z} with the same number of measurements for each basis.
The teleportation experiment with the [[4, 1, 2]]-code (see Fig. 1) took
40000 shots for each logical state per measurement basis. The initi-
alization and logical operations with the [[8, 3, 2]]-code (see Fig. 6)
took 7500 shots for each logical state and logical qubit per measure-
ment basis. The Grover’s algorithm demonstration (see Fig. 3) took
37,500 shots per measurement basis. All data sets were split into 12
equal subsets; the tomography was performed for every subset,
yielding 12 values for the fidelity for every experiment. The final fidelity
numbers are the mean and the standard deviation of these 12 values.

Performance of the FT universal gate set on the [[8, 3, 2]]-code
Figure 6 shows the logical state fidelities that were obtained experi-
mentally for FT logical state initialization, the single-logical H, -gate and
the transversal CCZ, -gate on the [[8, 3, 2]]-code. We find that fidelities
are higher if the final target state is a Z-eigenstate, as opposed to an X-
eigenstate, due to dephasing, which does not affect the fidelity for Z-
eigenstates. Additionally, postselection based on the four Z-stabilizers
is more selective than only a single X-stabilizer, which boosts the
fidelities in these cases. The degree of postselection is reflected in the
acceptance rates: the average acceptance rates in the experi-
ment[simulation] after the state initialization are 0.6[0.64] in the X-

basis, 0.48[0.53] in the Y-basis, and 0.3[0.48] for measurements in the
Z-basis; the numbers in brackets indicate the acceptance rate obtained
in the simulation. After the injection of an H,-gate, these are 0.3[0.2]
for measurements in the X-basis, 0.2[0.13] in the Y-basis and 0.1[0.07]
in the Z-basis. The fidelities for the state initialization of |+ 00), and
CCZ,|+00), agree with each other within the given uncertainty
interval, since the CCZ, consists entirely of virtual Z-rotations, thus no
additional operations are physically applied to the qubits.

Figure 7 shows the simulated scaling of the logical infidelity for
the logical H,-gate on the [[8, 3, 2]]-code for each logical qubit. We
scale the noise parameters p(1) =A - (py, P2, Pi» P> Pidie) Eiven the same
values as specified above, such that A = 1 corresponds to the set of
parameters as given for the current experimental setup. The inset
shows the state fidelities for the different logical input states obtained
from experiment and simulation.

We find that the numerically and experimentally obtained fide-
lities agree for the two idling logical qubits, while the fidelities of the
first logical qubit obtained from simulation, shown in blue in Fig. 7a,
differ from the experimental result by more than 14% for logical states
|+00), and |000),. We attribute this deviation to global dephasing
effects due to random fluctuations in the effective magnetic field that
act on all physical qubits simultaneously®, instead of locally and
uncorrelated on each individual qubit. The effect of this global
dephasing on the eight-qubit state can be estimated by considering the
explicit basis states, for example,

L

(100000000 + |11111111)). (5)

Local dephasing on this state leads to decay of the off-diagonal
elements of the density matrix with a factor of e*"*¥, where y is a
decay constant, and ¢ is time. An is the number of positions in the basis
states, where the entries of two basis states differ, and corresponds to
the Hamming distance. For |000), , An = 8 and the decay factor is given
by e Global dephasing, on the other hand, will cause the off-
diagonal elements to decay with a factor of e-@m/2°/2vt55 A is the
difference in magnetization of the basis states, where the magnetiza-
tion of a state is given by the difference between the number of qubits
in the ground state |0) and the remaining number of bits in the excited
state |1)%5,

For |000),, Am = 16 and, thus, this prefactor is given by e>%",
This means that, for |000),, the off-diagonal elements decay eight
times faster for global dephasing than for local. |000), is most sen-
sitive to this global effect, since it is an eight-qubit GHZ-state with
maximal difference in the magnetization between its basis states.
This effect is expected and found to be less pronounced for
[+00), = 3(/00000000) +|11111111) +|11001100) +|00110011)),

Nature Communications | (2026)17:995


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-026-68533-x

a
0.3 simulation
> BN experiment
= 2 4
5 0
38
s 0.1 1 - v
o Q*QQ+\ @w Q"P\Q# 8 N
0.0 4 M e Tae W PL L
T T T T T T T
Q Ly 7 N v 7 L
$0
c 107! .
no dephasing
> BN perfect initialization
= 1077
3
o
5 1073 i
o . oW
10-*
$o $\/ ,.F) $\ .IJI» ,.{,v"b ,,i,ﬂ»
Q Q N N
CalE R A

Fig. 8 | Error budget for H, -gate injection. a, b Simulated and experimentally

obtained probabilities for logical X- and Z-error configurations. The numbers on top
of the bars correspond to the ratio between p(X: X}) and p(X} )p(X}), and p(Z. Z])
and p(Z{)p(ZjL). For example, the determined probability p(XEX{) is 2 times larger

b
simulation
> 0.3 I experiment
=
s 0.2 A
S o
0.1
0.0
N} ' N2 '
e
d ]
0.15 no dephasing
> Bl perfect initialization
3 0.10 :
©
Q
[S
Q 0.05 l l
0.00 l l l .
N N 92 N P v v
(I)Q

than the probability one would expect from independent errors on logical qubits O
and 1, p(X ‘L))p(X 1). ¢, d Probabilities for each logical X- and Z-error configuration
without dephasing, and for a perfectly initialized input state. Here, the probabilities
for X-error configurations are shown on a logarithmic scale for visibility.

where only some coherences decay according to Am = 8 and some
with Am = 4, so twice and eight times faster than for local dephasing.
We only account for local dephasing in our simulations, as char-
acterized in ‘Methods’ Subsection ‘Numerical methods’, which may
partly explain the observed differences between the numerically
determined and the experimental fidelities. The deviation between
experiment and simulation is less pronounced for the two idling
logical qubits, because, considering the states that are most sensitive
to this global dephasing effect, i.e., |000), and |+ 00),, these qubits
stay in the |0)-state throughout the whole protocol and are therefore
not affected by Z-type errors.

Error budget

Logical errors can be correlated in quantum codes that encode
multiple logical qubits, such as block codes® or quantum low-density
parity-check codes’®”. We investigate these correlated errors by
determining the probabilities for each logical error configuration,
including single and correlated errors, for the non-transversal single-
logical H;-gate on the [[8, 3, 2]]-code. To this end, we prepare logical
state | +00), (|0 + +),), then apply the H,-gate to the first qubit and
measure destructively in the Z(X)-basis. From this, we infer if one, two
or all three logical qubits have been flipped, which corresponds to
the probability of logical X(2)-errors. Figure 8a, b shows the prob-
abilities for logical X- and Z-error configurations on the experimental
setup. Notably, logical errors do not occur independently as
pXiX)#p(XDp(X]) and p(ZLZ))#p(Z)p(Z]), as theoretically pre-
dicted in previous works on quantum LDPC codes’’. Figure Sc, d
shows numerical data for a setting without dephasing on idling
qubits and for perfectly initialized logical states, to isolate the con-
tribution of the H-gate protocol. Logical error probabilities decrease
substantially, while the overall distribution is maintained. Notably,
we find that dephasing attributes for a large part of the overall logical
error rate: without dephasing, the logical Z-error rate on qubit O
drops from almost 0.3 (left-most light blue column in Fig. 8b) to less
than 0.1 (left-most orange column in Fig. 8d).

Grover’s search algorithm
The number of required Grover iterations n providing the highest
amplification of the solution-states depends on the size of the search

space N (N =2 = 8 in our case) and the number of solutions s. In this
work, we use a phase oracle®® with two solutions (s = 2)
w € {|011),|101)}: states |011) and |101) are marked by the oracle of
the form

0=CZ,-CoZ,. (6)

The initial equal-superposition state can be represented as a
superposition of solutions and non-solution states®

) 5 Lyrgon,0n19") + J5(1011) +101))

7
NP + \/xlw) = cos O1y) + sin Olw) "

with \/s/N = sin 6, i.e., 0= /6 in our case. The probability of obtaining
avalid solution w when measuring in the computational basis is sS/N =1/
4, and the probability of obtaining an orthogonal non-solution state ¢/
equals (N - s)/N = 3/4. One Grover step is a product of two reflections,
first about the solution states |w) with the oracle O and then about the
initial state |¢) with the diffusion operator D. This corresponds to an
overall rotation of the initial state, and the rotation angle can be
identified to be 26 = i/3 in our case. A single application of the Grover
iteration, including the oracle O and the diffusion operator D, amplifies
the probability of success to 1>, since

D - O[g) = cos((2+1)0) - |¢') + sin((2+1)0) - |w) = |w), ®)

meaning that a solution in the fault-free case is found with certainty.
Analogously, the probability of finding a solution after k Grover
iterations in a noise-free setting is given by sin®((2k +1)6).

A quantum circuit implementing this algorithm is shown in Fig. 3a.
This original circuit can be simplified to allow for a simpler imple-
mentation with logical qubits compiled into available logical gates of
the [[8, 3, 2]]-code, reducing the number of required H,-gates to one.
All operations in the resulting circuit can be fault-tolerantly imple-
mented within the [[8, 3, 2]]-code as described in Section ‘FT toolbox
for universal operations on the[[8,3,2]]-code’.
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Fig. 9 | Anticipated performance of the two-solution Grover search on logical
qubits. We simulate Grover’s search algorithm for the set of noise parameters as
characterized by the current experimental setup (blue), indicating a success
probability of pgyccess = 0.40(4). For a slightly lower two-qubit-gate error rate of
p,=p, —0.01=0.015, we already obtain a total success probability of 0.52(1),
which is above the classical optimal success probability of 0.46, as discussed in
Section ‘Grover search on logical qubits’. If instead of lowering p,, we increase T, by
afactor of 2-100 ms (orange), we find even higher success rates of psccess = 0.67(1).
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Fig. 10 | Probabilities for the two-solution Grover search on physical qubits. We
implement the circuit shown in Fig. 3a on physical qubits and determine the
probabilities for each outcome in the experiment (darker columns) and simulation
(lighter columns).

Projected performance of Grover’s algorithm

We simulate Grover’s algorithm on logical qubits for different sets of
noise parameters in order to estimate how much physical error rates
have to improve to gain an advantage over the classically optimal
success probability of 0.46. Figure 9 shows the simulated probabilities
to find each possible solution state for the initial set of noise para-
meters (blue), for a two-qubit-gate error rate reduced by 1% and for an
increased coherence time 75, =27, =100 ms. Both projected scenarios
outperform the classical counterpart, indicating that even minor
enhancements to the current setup could push performance beyond
this break-even point.

Grover search on physical qubits

We implement Grover’s search algorithm on physical qubits, as
compiled in Fig. 3a on our experimental trapped-ion setup,
accompanied by numerical simulations; the results are shown in
Fig. 10. The total experimental[simulated] success probability of
76(2)%[77(1)%] is larger than for the FT implementation on logical
qubits, indicating that the quantum algorithm executed on logical
qubits is currently still operated above the break-even point with its
counterpart realization on physical qubits.

Data availability

The data provided in the figures in this article, the explicit circuits, and
the code that was used to simulate the presented protocols are avail-
able at https://zenodo.org/records/17375920.
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