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Abstract: 

 

Blind structured illumination microscopy (blind-SIM) is a valuable tool for achieving super-

resolution without the need for known illumination patterns. However, in its current formulation 

the algorithm requires many iterations to converge, leading to long inference times and limited 

use for real-time or video-rate imaging. We present unrolled blind-SIM (UBSIM), an algorithm 

which integrates a learnable neural network inside the unrolled iterations of the blind-SIM 

algorithm. UBSIM delivers a reconstruction speed two to three orders of magnitude faster than 

that of current iterative blind-SIM methods, while achieving similar resolution and image quality. 

Furthermore, we demonstrate that UBSIM can be trained in an unsupervised manner that reduces 

hallucinations and produces superior generalization capability when compared to benchmark 

super-resolution networks. We test UBSIM experimentally on live cells and present video-rate 

super-resolution imaging up to 50 Hz. Using our method, we observe dynamic remodeling of the 

endoplasmic reticulum with high spatiotemporal resolution. 

 

Introduction: 

 

Structured illumination microscopy (SIM) is a widely used super-resolution (SR) technique that 

illuminates a sample with spatially non-uniform light to recover high-resolution information1,2. 

While SIM has a moderate two-fold resolution improvement when compared to other SR 

techniques such as STORM or STED, it requires only a handful of raw images to generate a SR 

frame, and thus provides high temporal resolution from both the data acquisition perspective and 
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the SR reconstruction perspective. Over the past decade, SIM has been demonstrated as an 

attractive SR method for cases where video-rate imaging is needed or when exposure time is 

limited due to photobleaching3,4,5. 

 

Various methods of SIM have been demonstrated using either periodic or random illumination 

patterns6,7. Standard periodic illumination SIM requires precise knowledge of the illumination 

patterns and their relative locations to correctly retrieve the frequency domain information of the 

object; thus it is highly sensitive to these parameters. Any mismatch between the assumed and 

actual illumination patterns leads to artifacts and degraded performance8. Therefore, standard 

SIM systems need to be carefully calibrated and maintained for various imaging conditions9, 

which limits their practical applications in biological research. 

 

To overcome this limitation, the blind-SIM algorithm was first developed by Mudry and 

colleagues to utilize randomized illumination patterns for SR image reconstruction10. As an 

iterative, model-based reconstruction method, blind-SIM solves jointly for the object and 

illumination patterns based on constraints of illumination statistics. Several other iterative blind-

SIM algorithms have since been developed based on other various constraints11,12,13,14. A 

thorough comparison of our work with the existing blind-SIM literature is provided in the 

supplementary material (Supp. Table 1). Blind-SIM has proven to be a powerful technique that 

has allowed the design of SIM systems which rely on random illumination patterns that do not 

require calibration and are easier and cheaper to build and maintain.  
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While blind-SIM has greatly reduced the hardware constraints of SIM, it comes with the tradeoff 

of a slow, iterative reconstruction process. Even with GPU-based hardware acceleration, the time 

for a single reconstructed frame can range from tens of seconds to minutes depending on the 

image size and number of input frames. Thus, reconstruction of videos becomes prohibitively 

long and real-time reconstruction is challenging. Ideally, users of a SR system should be able to 

rapidly reconstruct a high-resolution image on-the-fly to be able to evaluate a sample 

immediately. Widespread adoption and use of SR technologies by target groups, such as the 

biology community, relies on the ease of use of such systems. 

 

Recently, data-driven learning-based techniques such as deep learning have become widely used 

for SR image reconstruction. These methods often have much faster inference times than 

traditional iterative reconstruction algorithms and can produce higher quality results in 

challenging conditions, such as shorter exposure times with lower signal-to-noise ratios15,16,17,18. 

However, there are several critical limitations to deep neural networks (DNNs) that prevent their 

widespread use for SR microscopy.  

 

Firstly, most methods using DNNs for SR rely on supervised training strategies where datasets of 

matched low and high-resolution images are needed. Generating a training set of experimental, 

paired images is not typically feasible; therefore simulated data is generated using various types 

of objects combined with the physical model of the imaging process. Yet, it is often unclear how 

well these models will perform when applied to an experimental system where the types of 

objects may differ from the objects the model is trained on. It is well documented that DNNs can 
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overfit to training data and hallucinate when applied to new, unseen data19,20,21. This lack of 

generalizability is a major concern with the use of DNNs in biological imaging. 

 

Secondly, neural networks are so-called black box systems and are not readily interpretable.  

Unlike iterative algorithms, when trained in an end-to-end manner, DNNs typically do not 

explicitly incorporate any knowledge of the physical imaging model22. Thus, it is hard to 

determine whether a DNN is truly learning the more general inverse process of the forward 

model or simply relying on image statistics from the training set to predict the most likely object 

features. 

 

There has been growing interest in combining physics with DNNs for image 

reconstruction23,24,25,26. One promising technique, known as algorithm unrolling (or unfolding), 

uses trainable parameters within the framework of iterative algorithms27,28,29,30. In algorithm 

unrolling, each iteration of an iterative algorithm becomes a layer in a DNN, and multiple layers 

are connected end-to-end, forming the network. In this way, the number of layers in the network 

is equivalent to running an iterative algorithm for the same number of iterations. Within each 

layer, learnable parameters can be included, and the entire network can be trained via 

backpropagation to update these parameters. Unrolled algorithms have been shown to be 

interpretable, generalizable, and require fewer parameters and training data than traditional 

DNNs. 
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In this paper, we propose a new unrolled algorithm we name unrolled blind-SIM (UBSIM). 

UBSIM produces a two-fold improvement in resolution with a reconstruction speed that is two to 

three orders of magnitude faster than iterative blind-SIM in both simulations and experiments. 

Furthermore, we demonstrate that UBSIM generalizes to unseen data far better than reference SR 

DNNs. Lastly, to illustrate its applicability to biological research, we perform live-cell imaging 

of endoplasmic reticulum dynamics with a high-speed SIM acquisition setup utilizing a 

synchronized DMD illumination system. Using UBSIM, we capture the real-time movement and 

collapse of endoplasmic reticulum network structures. 

 

Results 

Derivation of unrolled algorithm 

To begin, we describe the unrolled blind-SIM algorithm following the derivation of the iterative 

algorithm developed by Mudry and colleagues in their paper10. We adopted the same notation for 

consistency. 

 

For structured illumination microscopy, the forward model for each sub-frame M is:  

 

𝑀 = ( 𝐼𝜌 ) ∗ ℎ (1) 
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where 𝐼 is the illumination pattern, 𝜌 is the object and ℎ is the point spread function of the 

detection objective. The aim of SR imaging is to recover 𝜌 given the set of diffraction-limited 

images M. In traditional SIM the illumination patterns 𝐼 are known and only 𝜌 is solved for. 

However, in blind-SIM we must jointly solve for 𝜌 and 𝐼 as the illumination patterns are 

unknown. This is achieved by making an additional assumption that all the illumination patterns 

on average sum to a uniform field: 

 

∑ 𝐼𝑙 ≈ 𝐿𝐼0

𝐿

𝑙=1

 (2) 

 

Where 𝐿 is the number of sub-frames and 𝐼0 is a constant equal to the average intensity received 

by the sample. The error in the uniform approximation drops at a rate of 
1

√𝐿
. See Supplementary 

Section S3 for derivation. 

 

To ensure positivity, 𝐼𝑙 and 𝜌 are rewritten as the square of auxiliary variables such that: 

𝐼𝑙 = 𝑖𝑙
2 

𝜌 = 𝜉2 (3) 

 

The cost function to evaluate potential solutions for the object and illumination patterns can be 

written as: 
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𝐹( 𝜉, 𝑖1, … , 𝑖𝐿−1 ) =  ∑‖𝑀𝑙 − (𝜉2𝑖𝑙
2) ∗ ℎ‖2 +  ‖𝑀𝐿 −  𝜉2𝐼𝐿 ∗ ℎ‖2

𝐿−1

𝑙=1

(4) 

with: 

𝐼𝐿 = 𝐿𝐼0 − ∑ 𝑖𝑙
2

𝐿−1

𝑙=1
 (5) 

 

To solve for the object and illumination patterns, the gradients of the cost function with respect 

to the object and illumination patterns are calculated and the solutions are updated by a weighted 

step: 

𝜉𝑛 = 𝜉𝑛−1 + 𝛼𝑛𝑔𝑛,𝜉  

𝑖𝑙,𝑛 = 𝑖𝑙,𝑛−1 + 𝛼𝑛𝑔𝑙,𝑛,𝑖 (6) 

 

where 𝛼 is the step size, 𝑔 is the gradient, and 𝑛 is the iteration number. This update constitutes 

one iteration of standard gradient descent and is repeated for either a fixed number of iterations 

or until the reduction in cost function plateaus. The Polak-Ribière conjugate gradient method31, 

used by Mudry and colleagues, as well as Nesterov acceleration32, can also be used to 

significantly accelerate optimization. Details of the implementation of these methods are 

included in Supplementary Section S4.  
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Inspired by recent work in algorithm unrolling, we propose using a trainable neural network 

which operates on the gradient as follows for each iteration: 

 

𝜉𝑛 = 𝜉𝑛−1 + 𝛼𝑛CNN( 𝑔𝑛,𝜉  ) 

𝑖𝑙,𝑛 = 𝑖𝑙,𝑛−1 + 𝛼𝑛CNN(𝑔𝑛,𝑖,𝑙) (7) 

 

where CNN is a convolutional neural network for which the weights are learned to minimize the 

cost function across a set of training data. For our algorithm, only one set of weights was learned 

for one CNN which was applied recursively at each iteration.  

 

Figure 1 shows a block diagram for UBSIM. The network consists of a fixed number of iteration 

blocks which serve to update the object and illumination patterns in a similar manner to a 

traditional iterative algorithm. In each iteration block the residual from the cost function is used 

to calculate the gradients for the object and each illumination pattern. The gradients (stacked as 

channels in a tensor object) are then used as inputs to a CNN. The scaled outputs of the CNN are 

added to the original inputs to get the updated object and illumination patterns. The CNN 

operates directly on the gradients similar to how a preconditioner33, 34 or update direction 

calculation31,32,35 is used to accelerate convergence for iterative gradient descent algorithms. In 

this way, the use of the network can be thought of as a type of learned preconditioner36, 37 or 

learned gradient descent38,39,40.41 for which there are examples from literature. 
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We employed an unsupervised training process to optimize the weights of the CNN in the 

unrolled neural network. We used the cost function loss of equation 4 to update the CNN weights 

during the training step rather than a loss function directly comparing the output object and 

ground truth object. This has the added benefit of removing the need for ground truth training 

data and helps with generalization. 

 

For the unrolled network, we selected a modified U-Net architecture with 2 rescaling layers and 

skip connections42 (Supplementary Section S5). We chose this architecture as it is widely used in 

many image processing tasks and is known to have good performance in denoising. Furthermore, 

with less than 250,000 parameters, this model is still relatively small compared to many state-of-

the-art super-resolution models. More details on the training process can be found in the methods 

section and supplementary material. 

 

Evaluation on simulated data 

To evaluate the performance of UBSIM we first tested the algorithm on a set of simulated 

fluorescence images that were generated from experimental microscopy data43 (see 

supplementary material, S7). Simulated data provides ground truth images which we can use to 

quantitatively and qualitatively evaluate the model’s performance. 

 

In Fig. 2a we quantitatively compared the image resolution improvement using several standard 

image quality metrics on a set of test data which were not included in the training process. The 
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mean-squared error (MSE), structural similarity index measure (SSIM) and peak signal-to-noise 

ratio (PSNR) all showed significant improvement for the UBSIM result compared to the 

diffraction-limited widefield images, indicating an improvement in image fidelity.  To estimate 

the improvement in spatial resolution we employed the widely used image decorrelation analysis 

method44. The UBSIM results on average showed a resolution improvement of approximately 2-

fold, which matches with the expectation as the simulated illumination speckles were also 

diffraction-limited with the same numerical aperture (NA) as the detection objective. 

 

Comparisons of reconstruction results on four types of cellular structures are shown in Fig. 2b. 

The cell structures used were microtubules (MT), clathrin-coated pits (CCP), endoplasmic 

reticulum (ER), and F-actin filaments. The results from UBSIM revealed structural features 

which were unable to be seen from the widefield images and matched well with the ground truth 

images. For reference, the results from iterative blind-SIM are also displayed. While iterative 

blind-SIM provided a similar level of resolution improvement, the main advantage of UBSIM is 

the reduced inference time and greater resistance to noise overfitting (see Supplementary Section 

S8). Specific examples of structural feature recovery are presented in Fig. 2c, d. Two regions 

from the microtubule and CCP examples in Fig. 2b are displayed in Fig. 2d. UBSIM was able to 

reveal closely spaced MT filaments and the ring-like structures in CCPs. Line profiles taken from 

both regions in Fig. 2c show close alignment with the ground truth and demonstrate the ability of 

UBSIM to resolve sub-diffraction features. 
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Comparison of inference time 

In Fig. 3 we quantitatively compared the speed for unrolled and iterative blind-SIM. For iterative 

blind-SIM, we ran evaluations using regular gradient descent as well as two accelerated methods: 

nonlinear conjugate gradient descent31 and gradient descent with Nesterov momentum32. 

Additional information on the implementation of these methods is included in Supplementary 

Section S4. There are two ways we assessed the speed: (1) the number of iterations to reach a 

target loss and (2) the time taken for the computation. For each image in the test dataset, we first 

calculated the final cost function value for the result from UBSIM. For this paper we chose a 

UBSIM model with six iteration blocks (see Supplementary Section S10). Next, we ran the 

iterative blind-SIM methods until their cost functions reached the same level as the UBSIM 

result and recorded the time and number of iterations. For a fair comparison, all algorithms were 

written in PyTorch and run on the same GPU (Nvidia RTX 1080 Ti). 

 

We found that UBSIM was on average 3 orders of magnitude faster than the gradient descent 

implementation and 2 orders of magnitude faster than the conjugate gradient descent and 

Nesterov acceleration methods in terms of computation time. UBSIM required 2 orders of 

magnitude fewer iterations than gradient descent and 1 order fewer iterations than the accelerated 

methods. A single 256 x 256 pixel image took approximately 10-20 seconds to reconstruct for 

gradient descent, 1-3 seconds for the accelerated methods, and 10 milliseconds for UBSIM. The 

UBSIM computation time improvement was relatively faster than the iteration improvement due 

to differences in how PyTorch implements the two functions. UBSIM has a fixed number of 

iterations and thus PyTorch uses a static graph, whereas iterative blind-SIM has a variable 

iteration number and requires a dynamic graph. While absolute computation time will vary with 
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hardware, the GPU used here is a consumer-grade card four generations older than current, and 

thus is of negligible cost for many labs. With UBSIM, real-time image reconstruction for video-

rate blind-SIM is possible. In this work, we used a raw image framerate of 100 fps for our high-

speed imaging demonstration. The highest speed experimental data in this paper produced SR 

images at 50 frames per second which required a 20 ms capture time. Therefore, even with 

modest computation power, real-time SR video reconstruction is possible. The improvement in 

speed greatly increases the practical usability of blind-SIM for potential users such as biologists 

as they can now quickly view SR imaging results rather than waiting hours for reconstruction of 

a single video. 

 

Evaluation of generalization performance 

We tested the generalization capability of UBSIM and three common SR networks by training 

them on three separate datasets and cross comparing their performance on each. The SR 

networks we chose to compare with are the U-Net42, Enhanced Deep Residual Network 

(EDSR)45, and Residual Channel Attention Network (RCAN)46. All of these networks have been 

widely used for SR image reconstruction. We generated three simulated datasets consisting of 

ER, CCPs, and digits from the MNIST47 dataset. Each of these objects has distinct structures 

which are different from each other. The U-Net, EDSR, and RCAN networks were all trained in 

a supervised manner where the MSE loss between the predicted and ground truth data was used 

to update the network weights. UBSIM was trained in the same unsupervised method as detailed 

earlier. The networks were trained on the ER, CCP, and MNIST datasets separately and then each 

trained model was applied to test sets from each object type. 
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A qualitative comparison of the networks’ generalization ability is shown in Fig. 4a. In this 

figure, we compared the output of each trained model when applied to a single example from the 

ER test dataset. In the top row are results from each network type when trained on ER data. As 

expected, when the training and test data were drawn from the same distribution, all networks 

produced images that show increased resolution and matched well with the ground truth image. 

However, when the models were tested on out-of-distribution data, a clear difference emerged 

between the unrolled network and the standard models. The middle and bottom rows display the 

model outputs on the ER test data when trained on CCP and MNIST data respectively. UBSIM 

produced results which were visually similar to the results produced from the ER-trained model 

and again showed high fidelity to the ground truth image. Conversely, the results from U-Net, 

EDSR, and RCAN all showed signs of hallucination-based artifacts. For example, when trained 

on CCP data, the standard models produced results which have dot-like characteristics that are 

similar to those seen in the CCP data. When trained on the MNIST-based dataset, the models 

again showed artifacts that are characteristic of the dataset, appearing overly saturated with 

uniform object intensity. Cropped regions from these comparisons are displayed in Fig. 4b. 

 

We quantitatively compared UBSIM to standard networks using the Learned Perceptual Image 

Patch Similarity (LPIPS)48 metric for each network and combination of training and test dataset. 

The LPIPS metric is a perceptual image metric that compares the difference between extracted 

features of images from a pretrained convolutional neural network (VGG49 in our case) and has 

been shown to match well with human perception. We chose a perceptual metric as it is highly 

sensitive to changes in object structure, indicating if artifacts are occurring.  
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Fig. 4c contains a matrix for each network architecture with every combination of training and 

test data. Diagonal elements of the matrix represent cases where the training and test data type 

are the same, whereas all the other elements represent cases where they differ. Each element in 

the matrix contains the average LPIPS-based similarity score for 100 images in a test dataset. 

Here we define the similarity score as 1 − LPIPS, so that the value of 1 indicates perfect 

similarity.  

 

Generalization performance can be determined by assessing the change in similarity score across 

each column of the matrix. The figure shows that UBSIM maintains relatively consistent 

similarity scores across the different test object data types while the other SR networks exhibited 

larger changes when applied to new objects. 

 

Live-cell imaging of actin 

Next, we demonstrated the ability of UBSIM to produce SR images on experimental live-cell 

data. We employed an automated system to control the projection of random, diffraction-limited 

speckle illumination patterns onto our samples using a digital micromirror device (DMD). The 

DMD was synchronized with the camera to ensure that the patterns did not move and were not 

averaged-out during each image exposure period. More details of the experimental setup can be 

found in Supplementary Section S11.  
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We first imaged live COS-7 cells, fibroblast-like cells derived from monkey kidney tissue, 

expressing mNeonGreen-tagged Lifeact, a short peptide which binds F-actin50. The results are 

shown in Fig. 5. The UBSIM model was trained with the same simulated dataset as Fig. 2 and 

contained an even mix of the 4 cell structure types. 

 

UBSIM resulted in a 1.94x resolution improvement over the widefield images as confirmed by 

the image decorrelation metric. The estimated resolution dropped from approximately 300 nm to 

150 nm after the unrolled network. Furthermore, resolution improvement was indicated by 

increased high-spatial-frequency content in the normalized logarithmic Fourier magnitude 

spectra of the widefield and UBSIM images. We were able to resolve closely spaced actin 

filaments that could not be seen in the widefield images (Fig. 5b, c). Additionally, the results 

from UBSIM matched well with the results obtained from iterative blind-SIM, indicating that 

hallucinations were not occurring due to the mismatch between the simulated data used to train 

the model and the experimental data it was tested on. As iterative blind-SIM has no learned 

components, it can serve as a good unbiased benchmark to test against when there is sufficient 

signal-to-noise ratio. 

 

Video imaging of ER dynamics 

To demonstrate video-rate imaging using UBSIM, we imaged the spatiotemporal dynamics of 

ER remodeling in real-time. The ER regulates protein synthesis, folding, and modifications51 and 

is a highly dynamic organelle which forms a dense network with multiple structural elements, 
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including cisternae (sheet-like structures), and tubules52,53. The dense network and rapid 

movements of the ER make it a particularly challenging organelle to image54. 

 

To demonstrate the ability of UBSIM to capture the dynamic movements of the ER in live cells, 

we first used COS-7 cells expressing ER-stagRFP55, a red fluorescent protein targeted to the 

cytoplasmic side of the ER via a transmembrane signal peptide56. Fig. 6a-e presents the UBSIM 

imaging results. We modulated the illumination patterns at 20 fps and used 20 frames for 

reconstruction. To visualize dynamics, we used a rolling-frame reconstruction method with a 2-

frame step to achieve an effective reconstructed video speed of 10 fps. Because this method 

includes a large overlap in frames between reconstructions, it introduces temporal smoothing, but 

can be appropriate for ER where the dynamics of interest (compartment remodeling) occur on 

timescales of seconds and are generally slower than the total SR frame integration time57, 58. Fig. 

6e, shows the dynamics of a tubule region in the ER which could not be seen from the widefield 

images (Fig. 6d). ER tubules are generally peripherally located and exhibit membrane curvature 

as opposed to the sheet-like cisternae structures52. Over the course of approximately two 

seconds, the tubule collapsed as the ER network began to remodel and form a new tubule 

structure. Additional videos of the changing ER networks are included as supplementary material 

(Supplementary Movie 1-5).  

 

Fig. 6f-j presents another set of the UBSIM imaging results for ER, this time expressing ER-

mNeonGreen (a green fluorescent protein). The raw images were captured at 100 fps. Using the 

same rolling window and number of input frames the reconstructed SR video is at 50 fps.  
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Example video reconstructions are included in the supplementary material. We observed the 

rapid collapse of a tubule structure in just under one second as shown in Fig. 6i, j. ER 

remodeling, like what we observed here in our test cases, can function to maintain homeostasis 

and is dynamically regulated in response to changing cellular conditions or stress59. Our 

approach can thus capture the complex and rapid remodeling of the ER and can be utilized in the 

future to characterize ER dynamics under various stressed and diseased conditions. 

 

Discussion 

We present the unrolled blind-SIM algorithm (UBSIM) which can reconstruct SR images from 

unknown illumination patterns with much faster speed than current methods. By incorporating 

learnable parameters with the unrolled, physics-based iterations of the blind-SIM algorithm, we 

can achieve high-resolution images with many fewer iterations, thus reducing the inference time 

by orders of magnitude. UBSIM combines the benefits of neural networks (fast inference time) 

and iterative algorithms (no data bias, physics-based interpretability). Using simulated data, we 

verified the fidelity of UBSIM results against ground truth images and quantified the speed 

improvement. Additionally, we studied the effect of training data composition on image 

reconstruction and found that UBSIM can generalize to unseen data better than benchmark SR 

networks. We further demonstrated live-cell imaging with UBSIM and video-rate imaging with 

up to a 50 Hz reconstructed frame rate. 

 

Our current demonstration results in a two times improvement in resolution as we used 

diffraction-limited speckle patterns for illumination. However, this improvement is 
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fundamentally limited by the resolution of the illumination patterns and not the UBSIM 

algorithm. In future work, we aim to combine high-index substrates with UBSIM to further 

improve the resolution below 100 nm. 

 

While UBSIM provides improvements over current blind-SIM algorithms, there are several 

limitations that must be considered by a potential user. Firstly, UBSIM requires training before it 

can be used for inference, which creates an upfront time cost. For one-off reconstructions, 

iterative methods, despite their longer reconstruction times, may be preferred. However, for 

cases that include repeated image reconstruction, such as video imaging or repeated experiments, 

UBSIM can provide a significant time advantage. Secondly, UBSIM, like all blind-SIM methods, 

requires multiple sub-frames for each reconstructed SR frame which can affect image acquisition 

speeds. In our work we utilize a sliding-frame reconstruction approach in addition to our high-

speed illumination system to boost acquisition speed. However, this approach can cause temporal 

smoothing and is not suitable for cases where the sample movement is generally faster than the 

effective integration time for a single SR frame. Further improvements in blind-SIM acquisition 

speed require either a reduction in sub-frames per reconstructed image or increased speckle 

modulation and camera capture rates. 

 

We envision UBSIM as a useful tool for those in the SR community interested in low-cost, 

flexible, high-speed imaging. UBSIM can enable real-time, video-rate super-resolution with 

modest hardware requirements. Additionally, as UBSIM does not require knowledge of 

illuminations patterns, users can produce SR video without the need for calibrated patterns. 
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Lastly, the superior generalization performance of UBSIM allows users to have confidence in the 

fidelity of reconstructed images without having to carefully consider whether their training 

dataset matches well with the test data. Going forward, UBSIM can be harnessed to study the 

spatiotemporal dynamics of subcellular organelles, like the ER, and uncover the complex biology 

of the cell. 

 

Methods 

Algorithm code and training 

The UBSIM network and iterative blind-SIM codes were written in PyTorch version 2.1.2 with 

Python version 3.10.14. A simulated dataset was generated using images from the BioSR 

dataset43 and the physical forward model for speckle-based incoherent structured illumination. 

The simulated data was generated using code written in MATLAB release R2021b. Code and the 

datasets are provided for open-source use on GitHub and Zenodo respectively (UBSIM code is 

available at https://github.com/Zach-T-Burns/Unrolled-blind-SIM, datasets and simulation code 

are available at https://zenodo.org/records/17852915). Models were trained on a Nvidia A6000 

Ada GPU and inference testing was performed on a Nvidia RTX 1080 Ti GPU. For a typical 

training run, models used an initial learning rate of 1e-4 with reduction upon plateauing and were 

trained for 200 epochs, taking about 2 hours. Specific details on datasets, physical model 

parameters, and training details for each trained model instance can be found in the 

supplementary material (section S6). 
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Optical Setup 

Live-cell imaging was conducted on a customized Olympus IX83 inverted microscope. A 488 

nm CW laser (Coherent Genesis MX488-1000 STM) and a 532 nm CW laser (Laser Quantum 

Ventus 532) were combined and coupled into a multimode fiber (Thorlabs, core diameter: 50 μm, 

NA 0.22). The fiber coupled laser was then collimated and projected to a DMD (Texas 

Instruments DLP4710LC), which generates random illumination patterns. The random patterns 

were then projected with a tube lens and an objective lens (Olympus 60X, 0.8 NA) onto the 

sample plane to produce diffraction-limited speckle illumination patterns. The fluorescence 

signal was detected with a water immersion objective (Olympus 60X, 1.2 NA, effective 1.0 NA 

in thick sample) and bandpass filters (Chroma ET520/40m for mNeonGreen, Semrock FF01-

588/21-25 for stag-RFP). The detected images were captured with a sCMOS camera 

(Hamamatsu ORCA Flash 4.0 V3), which was synchronized with the DMD so that each frame is 

captured with a stabilized speckle illumination pattern. The software HCImage version 4.4.5 was 

used for image collection. 

 

Cell growth and preparation 

COS-7 cells used in this study were acquired from ATCC (CRL-1651). Cells were cultured in 

Dulbecco’s modified Eagle medium (DMEM; Gibco 11995-065) including 4.5 g/L glucose, 4 

mM L-glutamine, 1.5 g/L sodium bicarbonate, and 1 mM sodium pyruvate, which was 

supplemented with 10% fetal bovine serum (FBS, Gibco 26140-079), and 1% (v/v) 

penicillin/streptomycin (Pen/Strep, Gibco 15140-122). Mycoplasma contamination was tested 

routinely in cells and found negative. For experiments, cells were plated onto glass slides two 
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days prior to imaging. 16-24 hours after initial seeding at ~70% confluency, cells were 

transfected with ER-mNeonGreen, ER-stagRFP, or Lifeact-mNeonGreen using Polyjet In Vitro 

DNA Transfection Reagent (SL100688, SignaGen Laboratories). Cells were incubated overnight, 

then the transfection medium was replaced with modified Hank’s balanced salt solution, 

including 1 x HBSS (diluted from 10 X HBSS; Gibco, 14065) with 2 g/L glucose at pH 7.4 for 

imaging. 

 

Constructs 

LifeAct-mNeonGreen was a gift from Dorus Gadella60 (Addgene plasmid #98877 ; 

http://n2t.net/addgene:98877 ; RRID:Addgene_98877). ER-stagRFP was generated as previously 

reported55. ER-mNeonGreen was generated by restriction enzyme cloning. mNeonGreen was 

subcloned into the ER-stagRFP construct, replacing stagRFP, using the BamHI and XbaI 

restriction sites. All constructs were verified by forward and reverse sequencing. 

 

Imaging conditions 

For both ER-stagRFP and ER-mNeonGreen imaging, the image plane laser intensity is 

maintained at 200 W/cm2. The DMD and sCMOS camera are synchronized such that a new 

speckle illumination is projected only after the current frame is readout on the sCMOS to prevent 

distortion in images. For a 512 x 512 raw video at 100 fps, the readout time per frame is 5 ms, 

and the actual exposure time for fluorescence detection is 5 ms. 

 

Data availability 
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The simulated datasets used for training and testing the models presented in this work, along 

with the experimental data used in the figures, are available on Zenodo at 

https://zenodo.org/records/17852915. 

 

Code availability 

 

The code for UBSIM is available on GitHub at https://github.com/Zach-T-Burns/Unrolled-blind-

SIM. MATLAB code for generating the simulated datasets is available on Zenodo at 

https://zenodo.org/records/17852915. 
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Figure Legends/Captions 

 

Fig. 1: Schematic diagram of the unrolled blind-SIM algorithm. The network consists of several iteration blocks 

(IBs) which mimic the update steps of a traditional iterative algorithm. The inset shows the update equations applied 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

in each iteration block to the object (obj) and illumination patterns (ill). Grad is the gradient with respect to each, 𝛼 

is the step size, and CNN is a convolutional neural network. n indicates the iteration step. 

 

Fig. 2: Unrolled blind-SIM performance on simulated data. a, Quantitative comparison of diffraction-limited 

images and UBSIM outputs with ground truth objects on a series of image quality metrics. Boxplots are generated 

using n = 100 independent samples where each sample is a simulated test image not included in the training or 

validation datasets. The center line indicates the median, the box edges denote the first and third quartiles, and the 

whiskers extend to the maximum and minimum datapoints within 1.5x the interquartile range. Outlier points are 

plotted beyond the whiskers. b, Comparison of iterative and unrolled blind-SIM with ground truth and widefield 

(WF) images on different cellular structures. Scale bar: 20 pixels. c, Line profile comparison of indicated regions 

from the cropped regions in d. d, Selected cropped regions from the images in b. Scale bar: 5 pixels. 

 

Fig. 3: Inference time comparison of iterative methods versus unrolled blind-SIM. a, Comparison of 

computation time for image reconstruction. Boxplots are generated using n = 100 independent samples where each 

sample is a simulated test image not included in the training or validation datasets. The center line indicates the 

median, the box edges denote the first and third quartiles, and the whiskers extend to the maximum and minimum 

datapoints within 1.5x the interquartile range. Outlier points are plotted beyond the whiskers. b, Comparison of 

normalized loss versus iteration number. Lines are the average values for 100 test set images. Dashed black line 

marks the average normalized loss for the unrolled network after 6 iterations. 

 

Fig. 4. Comparison of generalization performance of various SR network architectures. a, Predictions from 

various SR models trained on out-of-distribution datasets tested on an ER sample. Rows represent different training 

datasets and columns are different model architectures. Border color indicates similarity score value. b, Comparison 

of cropped region from a. GT is the ground truth image. c, Quantitative comparison of models when tested on cross-

domain data using a LPIPs-based similarity metric. 

 

Fig. 5 UBSIM imaging of actin-stained live COS-7 cells. a, Overlay image comparing widefield (top left) and 

UBSIM (bottom right) images of a live COS-7 cell transfected with Lifeact-mNeonGreen to visualize actin. b, 

Cropped areas from (a) with conditions: (i, iv) widefield (ii, v) iterative (iii, vi) unrolled. Scale bar: 300 nm. c, Line 

profiles are taken from the areas indicated in (i-iii). d, Calculated resolution of widefield and UBSIM images. 

Boxplots are generated using n = 10 repeated measurements from the same sample. The center line indicates the 

median, the box edges denote the first and third quartiles, and the whiskers extend to the maximum and minimum 

datapoints within 1.5x the interquartile range. Outlier points are plotted beyond the whiskers. e, Comparison of 

Fourier-space of widefield (i) and UBSIM (ii) images. 

 

Fig. 6: Videos of ER dynamics. a, Widefield (top left) and UBSIM (bottom right) images of a COS-7 cell 

transfected with ER-stagRFP. b, c, Comparison of widefield (b) and UBSIM (c) images from a dynamic ER region 

in a COS-7 cell. Scale bar: 2 m. d, e, Timelapse of widefield (d) and UBSIM (e) images from cropped region in b, 

c. Scale bar: 300 nm. f, Widefield (top left) and UBSIM (bottom right) images of a COS-7 cell transfected with ER-

mNeonGreen. g, h, Comparison of widefield (g) and UBSIM (h) images on dynamic ER region in a COS-7 cell. 

Scale bar: 1.5 m. i, j, Timelapse of widefield (i) and UBSIM (j) images from cropped region in g, h. Scale bar: 250 
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nm. In this figure, four separate cells are imaged. One each for: a, b-e, f, and g-j. Two additional unique cells are 

imaged in Supplementary Movies 4 and 5. 

 

 

 

 

 

Editor’s Summary 

Burns et al. introduce an unrolled, physics-informed machine learning method that speeds up 

blind structured illumination microscopy by orders of magnitude while preserving 

generalizability, enabling real-time superresolution imaging in live cells. 
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