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Abstract 

Multiple myeloma (MM) is associated with skewed T cell activation and function which is present 

in asymptomatic myeloma precursor conditions, but underlying mechanisms of progression 

remain undefined. Here, we assemble a large single-cell RNA sequencing dataset of the bone 

marrow and blood from patients with MM, precursor conditions, and non-cancer controls. We 
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demonstrate that, unlike solid cancers, MM is not characterized by T cell exhaustion, but by 

antigen-driven terminal memory differentiation. This is influenced by tumour-intrinsic features 

including tumour burden and expression of antigen-presentation genes. Expanded TCR clones 

accumulating in MM are not enriched with viral specificities but accumulate in effector states in 

highly-infiltrated marrows. Additionally, we identify a role for T cell dynamics in patients treated 

with autologous stem cell transplantation and demonstrate T cell features predict progression 

from precursor to symptomatic MM. Together, these results suggest that anti-tumour immunity 

drives a distinctive form of cancer-associated T cell differentiation in MM. 
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Introduction 

T cells are polyfunctional immune cells and fundamental players in anti-tumour immunity1. In solid 

cancers, evidence suggests early in carcinogenesis tumour growth can be curtailed by tumour-

reactive T cells. However, persistent activation drives these cells away from functional memory 

states towards a hypo-responsive state of terminal differentiation termed exhaustion1,2, 

characterised by the expression of immune checkpoint molecules like programmed cell death 

protein 1 (PD-1), contributing to cancer progression in solid cancers. This complex interaction is 

believed to shape tumours from the early precursor stages to relapsed and refractory disease1. 

Understanding these insights has refined the treatment of solid tumours through the development 

of immunotherapies targeting exhausted T cells3. 

 

Multiple myeloma (MM) is a haematological malignancy of bone marrow (BM) plasma cells (PC) 

that is largely incurable4, but is invariably preceded by precursor states of increased risk of 

progression: monoclonal gammopathy of undetermined significance (MGUS) and smouldering 

multiple myeloma (SMM)5. While not every MGUS or SMM patient will progress, virtually every 

MM patient has transitioned through these stages6. Thus, there is a pressing clinical need to 

understand the determinants of disease progression, so as to accurately identify individuals who 

may benefit from monitoring and intervention. Current risk factors rely largely on measures of 

tumour bulk5, namely the levels of plasma cell infiltration in the bone marrow (BM PC %) and 

serum concentrations of paraprotein (malignant clone-derived immunoglobulin) and beta2-

microglobulin (B2m). However, the role of the BM immune microenvironment, particularly T cells, 

in progression remains poorly understood. Available reports of altered immune cell function and 

phenotype suggest that, like solid tumours, the progression from precursor state to frank MM is 

accompanied by loss of immune control7. Understanding how MM drives alterations in T cell state 

and function is complicated by the influence of patient advanced age and marrow homeostatic T 
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cell differentiation8,9. This, together with high inter-individual immune heterogeneity, confounds 

attempts to identify associations between T cells and tumour biology or progression.  

 

To solve this, we combined newly-generated single-cell RNA sequencing (scRNA-seq) and T-cell 

receptor (TCR) sequencing (scTCR-seq) data with 12 published studies (see Methods), compiling 

an atlas of over a million single cells from 255 individuals to interrogate T-cell dynamics while 

controlling for natural and tumour-associated sources of inter-individual variation. We show for 

the first time that the T-cell landscape in MM displays features of antigen-driven terminal memory 

differentiation and highlight the features of tumour biology that drive this. We identify a role for T-

cell dynamics in the response to autologous stem cell transplantation (ASCT) and observe that 

alterations in T-cells predict progression from precursor SMM to active MM. Our findings provide 

a framework for understanding tumour-immune interactions in disease evolution and therapy. 

  

Results 

Effective integration of scRNA-seq datasets allows a detailed classification of immune cell 

populations 

To study immune differentiation through myeloma disease evolution we generated a large scRNA-

seq map of BM (n = 240 samples, 77.6%) and peripheral blood (PB; n = 68, 22.4%) cells from 

untreated MGUS (n = 23, 9%), SMM (n = 60, 25%) and MM (n = 67, 25%) patients alongside non-

cancer controls (n = 105, 41%; Fig.1; Supplementary Fig.1A and B; Supplementary Data 1). 

Together, we collated 1,079,979 cells from 255 individuals with RNA and clinical data, 109 with 

additional scTCR-seq data, and 1 with cellular indexing of transcriptomes and epitopes (CITE-

seq) data. Patients were on average older than controls (controls median 55 range 21–87, MGUS 

median 62 range: 41–81, SMM median 62 range: 29–81, MM median 62 range: 38–77; 
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Supplementary Fig.1C). As expected, BM PC % and serum paraprotein levels were higher in MM 

compared to SMM (PC% P = 0.001, paraprotein P < 0.05, Wilcoxon test; Supplementary Fig.1D).  

 

Following quality control and correcting for batch effects (see Method; Supplementary Fig.2A and 

B), cells were clustered to 9 major cell types and phenotyped using RNA expression, protein 

expression via CITE-seq, and de novo label prediction tools (Fig.2A and B; Supplementary Fig.2C 

to E). T cells (defined as CD3D+CD3E+CD3G+CD8A+ or CD4+ RNA and CD3+ protein) comprised 

roughly half (50.2%) the cells in the dataset, with another quarter occupied by similar proportions 

of myeloid cells (FCN1+FCER1G+CD14+; 15%) and haematogenic progenitors 

(CD34+MPO+TYMS+; 11%). The remainder of the dataset was largely comprised of equivalent 

numbers of NK cells (KLRD1+FCG3RA+CD56+; 8%), B cells (CD79A+CD19+; 7.5%), and plasma 

cells (MZB1+SDC1+; 6.6%). 

 

The use of different sorting strategies across studies precluded in-depth analysis of overall 

immune composition. However, plasma cells and progenitors were enriched in BM-derived 

samples relative to PB (P < 0.001 and P < 0.001, respectively, Wilcoxon test; Fig.2B), suggesting 

a relative lack of haemodilution in BM aspirates. As expected, plasma cells were most highly 

enriched in the BM of patients relative to controls (P < 0.001, Wilcoxon test). However, the global 

distribution of cell types was otherwise similar in diseased and control marrows, suggesting 

progression to myeloma may be associated with more granular alterations to immune 

composition. 

 

In-depth T cell phenotyping reveals diverse early and late differentiated CD4+ and CD8+ T cell 

populations in the marrow and blood 
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To further probe immune perturbations in disease evolution, T cells were isolated, re-integrated 

and re-clustered to 19 discrete phenotypes and transcriptional states based on expression of RNA 

and protein markers (Fig.2C and D; Supplementary Fig.3A to C; Supplementary Data 2 and 3)2,10.  

 

Naïve and central memory T cells (defined by SELL and CCR7, Tn and Tcm) composed the 

majority of CD4+ cells (Tn 49% of CD4+ T cells, Tcm: 21%), while the remainder were composed 

of diverse regulatory (FOXP3+ Treg, 8.4%), T helper 17 (CCR6+ Th17 7.2%), effector memory 

(KLRG1+GZMK+ Tem 6.1%) and Tem re-expressing CD45RA (GZMB+GNLY+CD45RA+ Temra, 

8.7%) states. CD8+ cells were classified by differentiation stage including early differentiated Tn 

(20% of CD8+ T cells) and Tcm (4.6%), intermediate Tem (37%), and GZMB and GNLY-

expressing terminally differentiated terminal effector memory (Tte, 18%) and Temra (15%) states. 

CD8+ Tem were further sub-divided by the expression of early differentiation markers like TCF1 

(TCF7; Tem.TCF7+) or S1PR1 (Tem.S1PR1+) alongside activation markers like CD69 

(Tem.CD69+). The two terminally differentiated CD8+ subsets were distinguished based on the 

expression of specific markers like Hobit (ZNF683; T terminal effector, Tte) or NK cells genes 

such as NKG2C (KLRC) and CD45RA protein (Supplementary Fig.3C; Temra) and were enriched 

in senescence-associated genes (SenMayo; CD8+ Tte: P = 0.03, NES=1.6; CD8+ Temra: P = 

0.03, NES=1.5, GSEA; Supplementary Data 4). Additionally, rare clusters of tissue resident (Trm, 

5.1%) and exhausted (Tex, 0.7%) CD8+ T cells were identified by the expression of ITGA1 and 

PD-1 (PDCD1), respectively. Additional T cell subsets were identified by the expression of specific 

markers, including IFN-stimulated cells by ISG15, invariant subsets by CD161 (KLRB1), 

proliferating T cells by MKI67, and effector T cells (Teff) by effector molecules like TNF- (TNF) 

and IFNG alongside the enrichment of a Teff gene signature (Effector versus memory11; P = 

0.005, NES=3.5, GSEA). We also explored heterogeneity among CD4+ Treg and invariant T cells 

by performing additional sub-clusterings of these subsets (see Methods; Supplementary Fig.4A). 
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This functional annotation was consistent with patterns of TCR expansion (Fig.2E; Supplementary 

Fig.3D), with clonally expanded clusters expressing late differentiation markers. The majority 

(79.8%) of invariant MAIT TCRs were found in cells of invariant cluster, of which 97% were MAITs 

(Supplementary Fig.4A). Our phenotypes showed high concordance with published and predicted 

cluster labels (Supplementary Fig.3E), arguing for a faithful representation of T cell phenotypes 

in our integrated dataset. 

 

The marrow of myeloma patients is not enriched in exhausted T cells 

Exhausted CD8+ Tex were identified via high expression of PDCD1 and TIGIT, alongside other 

RNA markers of exhaustion like CXCL13 and LAYN10 (Fig.2, F; Supplementary Fig.3B). 

Importantly, CD8+ Tex were distinguished from PDCD1-expressing CD8+ Tem.CD69+. While 

CD8+ Tem.CD69+ cells did express higher levels of exhaustion markers like PDCD1 and TOX 

than non-exhausted bone marrow T cells (P < 0.001 and P < 0.001, one-way ANOVA; PDCD1: 

adjusted P < 0.001, marker gene testing; Fig.2G; Supplementary Fig.3F), it was at lower levels 

than CD8+ Tex (P < 0.001 and P < 0.001, Wilcoxon test) and further lacked other markers of 

exhaustion like LAYN and CXCL13 (Fig.2G, Supplementary Fig.3B). A dedicated sub-clustering 

of CD8+ Tem.CD69+ did not identify a subset of these cells with features of CD8+ Tex 

(Supplementary Fig.3G). Therefore, despite expressing some exhaustion-associated markers at 

low levels, CD8+ Tem.CD69+ are not phenotypically exhausted T cells. 

 

We extended this phenotypic description by characterising the function of CD8+ Tem.CD69+. 

CD69+ and CD69– fractions of memory (CCR7–) CD8+ T cells were isolated from 3 MM patient 

marrows and activated cells in vitro (see Methods). After stimulation, CD69+ cells possessed no 

significant differences in 4-1BB and effector cytokine expression (Supplementary Fig.4C), 

suggesting these cells are not functionally impaired relative to other CD8+ Tem. 
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Interestingly, the CD8+ Tex cluster was almost entirely composed of cells from a single myeloma 

patient (1181 of 1222 cells, 97%; Fig.2H) who contributed the majority of exhaustion marker-

expressing cells (Supplementary Fig.3H), suggesting CD8+ Tex were a donor-specific 

phenomenon. Furthermore, when excluding this patient, CD8+ Tex were not significantly enriched 

in the BM of MGUS, SMM or MM patients relative to controls (P = 0.76, one-way ANOVA; Fig.2I). 

In contrast, CD8+ Tem.CD69+ cells were seen in a much higher number of patients (Fig.2H), 

although, like CD8+ Tex, these cells were not enriched in patients relative to controls (P = 0.86, 

one-way ANOVA; Fig.2I). 

 

We also explored the contribution of bone marrow tissue on T cell composition. Similar T cell 

phenotypes were observed in the BM and PB (Supplementary Fig.4D), but the proportion of T cell 

clusters differed (Supplementary Fig.4E). Notably, CD8+ Tem.CD69+ were enriched in the BM of 

both patients and controls (P < 0.001 and P < 0.001, Supplementary Fig.4F), suggesting intrinsic 

marrow biology regulates the abundance of this subset. 

 

These data lead us to suggest that exhausted T cells are rarely seen in myeloma, with the 

abundant and functional CD8+ Tem.CD69+ being phenotypically distinct from exhausted cells. 

Neither subset was associated with disease progression, although CD8+ Tem.CD69+ were 

enriched in the marrow in health and disease. 

 

T cells in diseased marrow of both pre-malignant SMM and overt MM display skewed 

differentiation resembling exaggerated age-related changes  

We next asked how the relative abundance of T cell subsets in the BM was altered across disease 

stages. BM T cell composition was strikingly similar in patients and controls (Fig.2A; 

Supplementary Fig.5A-B). Therefore, we compared the T cell composition of controls with each 

myeloma disease stage in turn, statistically controlling for age. The most prominent difference in 
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BM T cell composition between health and disease was the loss of naïve, CD4+ Th17 and 

Invariant cells and an enrichment of CD4+ and CD8+ Temra, CD8+ Tte, and IFN-stimulated cells 

(adjusted P < 0.1 for all, linear regression; Fig.3B; Supplementary Fig.5C). When removing the 

one patient who contributed the majority of CD8+ Tex cells (97% cells; Fig.2H), this cluster was 

not enriched in MM relative to controls independent of age (P = 0.54, linear regression). As non-

cancer controls included hip replacement and deceased donors, we repeated our analysis with 

only healthy donors and obtained the same results (Supplementary Fig.5D).  

 

Low-risk MGUS possessed a T cell composition with the fewest differences from non-diseased 

control marrows (Supplementary Fig.5C). Conversely, T cell composition was similar between the 

higher-risk but pre-cancerous SMM and symptomatic MM (Supplementary Fig.5E). While the 

normalised abundance of CD8+ Tex was lower in SMM than MM independent of age (P < 0.001, 

linear regression), in terms of unnormalized counts this only represented 8 MM patients with a 

median of 1 CD8+ Tex cells each, suggesting a lack of sufficient cell numbers to properly perform 

this comparison. Next, we collated available risk data for patients in our dataset, and compared T 

cell composition between international staging system (ISS) and SMM Mayo risk groups5,12 

(Supplementary Fig.5F). While this analysis found no differences between risk groups, with the 

exception for an increased abundance of CD4+ Tem in ISS groups II and III, these comparisons 

were limited by risk annotations and may not accurately reflect differences between these groups. 

However, taken together these results suggest that smouldering and overt myeloma are 

associated with similar T cell alterations independent of patient age. 

 

To quantify global changes to T cell composition, we ran principal component analysis (PCA) on 

patients’ T cell cluster abundance data. The first principal component explaining the highest 

fraction of variance in T cell composition (PC1, 21.9%; Supplementary Fig.5H) described a 

compositional shift from naïve and early subsets towards terminal memory cytotoxic clusters 
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(Fig.3C and D). Therefore, we termed PC1 “T cell skewing”. T cell skewing was greatest (meaning 

an enrichment of terminal memory clusters) in SMM and MM relative to controls independent of 

age (P < 0.004 and P < 0.001, respectively, linear regression; Fig.3E), demonstrating this metric 

captured the major alterations to T cells in myeloma. Conversely, T cell skewing was associated 

with age independent of patient group (P = 0.013, linear regression, R = 0.29, Pearson correlation; 

Fig.3E and F; Supplementary Fig.5I). Therefore, T cell skewing is a feature of both age and 

disease, meaning myeloma-associated T cell differentiation directly resembles T cell alterations 

seen during ageing, or, patients possess an exaggerated form of T cell ageing. Using linear 

regression, we calculated the degree of exaggerated T cell ageing and excess T cell years (see 

Methods) and found both trended to rise with advanced disease (MGUS versus MM P = 0.13 and 

P < 0.07 respectively, one-way ANOVA; Fig.3G; Supplementary Fig.5J) suggesting this effect 

scales linearly with disease severity.  

 

PC1 values and the abundance of terminal memory subsets in the BM showed a strong correlation 

with PB (Fig.3H), indicating a similarity to systemic T cell alterations seen with ageing8. 

 

Taken together, these data suggest SMM and MM are associated with a pattern of T cell 

differentiation skewing closely resembling alterations observed during T cell ageing.  

 

Features of antigen-specific responses underpin myeloma-associated T cell differentiation 

Next, we analysed features of the TCR repertoire. Repertoire clonality was associated with T cell 

skewing in patients independent of age (P < 0.001, linear regression, R = 0.68; Fig.4A). We 

observed similar results when restricting analysis to CD8-expressing memory clones (P < 0.01, 

linear regression, R = 0.46; Fig.4A). Both the clonality and the abundance of expanded CD8+ 

memory clones trended for enrichment in MM relative to controls (Fig.4B). T cell skewing and 
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CD8+ memory diversity did not correlate in controls (P = 0.48, linear regression; Supplementary 

Fig.6A), suggesting clonal expansion may be a unique feature of T cell differentiation in myeloma. 

 

The accumulation of TCRs possessing similar CDR3 sequences indicates responses against 

common antigens. We grouped all expanded TCRs in the dataset (11,545 clones) into 279 

clusters (composed of 1,014 clones, 8.8% of input; see Methods; Fig.4C; Supplementary Fig.6B 

and C). To prioritise grouping TCRs recognising antigens in the same human leukocyte antigen 

(HLA) background, TCR clustering was restricted within individuals. An increasingly large fraction 

of the TCR repertoire was occupied by clustered clones in MM (median 8.7% range 3-35) relative 

to SMM (median 3.1% range 0-11.3; P = 0.0009) and this fraction correlated with T cell skewing 

(R = 0.4, P = 0.02, Pearson correlation; Fig.4D). T cell skewing was specifically associated with 

the clustering of GZMB-expressing CD8+ memory cells (R = 0.47, P = < 0.01; Fig.4E), suggesting 

conserved antigen-specific responses drive T cell differentiation in myeloma, specifically among 

GZMB-expressing subsets. 

 

We next explored the antigen specificity of these T cells. TCR specificity databases are mostly 

composed of viral antigens, allowing us to ask if viral antigen specificities were involved in T cell 

differentiation and clonality in myeloma (see Methods). In 19 SMM and MM patients BM samples 

we found a median of 7 (range 2-88) putative HLA-matched viral-reactive TCRs (Supplementary 

Fig.6D and E). Putative viral-reactive clones occupied a range of T cell clusters, including naïve 

and effector memory phenotypes. Comparing gene expression between clones with and without 

putative viral specificity annotations, we found clones predicted to not be viral-specific expressed 

genes characteristic of terminal memory such as GZMB, perforin (PRF1) and Hobit (ZNF683; 

Fig.4F; Supplementary Data 4). We summarised the expression of these genes into a non-viral 

specificity gene signature (Supplementary Data 4). Non-viral signature expression mapped to 

GZMB+ terminal memory clusters (Supplementary Fig.6F), correlated with T cell skewing, clonality 
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and repertoire clustering (Fig.4G), and was enriched in MM relative to precursor conditions 

(Fig.4H). Taken together, these data show MM-associated T cell differentiation occurs alongside 

alterations to the TCR repertoire resembling antigen-directed T cell immunity which are distinct 

from viral-specific TCR clones. 

 

Tumour-intrinsic features drive two clonally-related patterns of T cell differentiation 

We next asked if features of tumour biology may drive T cell skewing. We examined serum 

paraprotein and beta2-microglobulin (B2m) concentrations, plasma cell marrow infiltration, and 

tumour cell transcriptional state (see Methods, Supplementary Fig.7). We included all patients 

irrespective of disease stage. 

 

We did not find an association between T cell skewing and tumour transcriptional state, BM PC 

%, or B2m levels (Supplementary Fig.8A and B). However, we observed a positive correlation 

between high serum paraprotein and enhanced T cell skewing (R = 0.43, P < 0.03, Pearson 

correlation; Fig.5A), alongside the abundance of CD8+ Temra (R = 0.5, P = 0.01) and high TCR 

clonality (R = 0.53, P < 0.01; Fig.5A; Supplementary Fig.8C). This association was independent 

of age (P < 0.05, linear regression) and exaggerated T cell ageing similarly correlated with 

paraprotein (Supplementary Fig.8C). We recapitulated this finding in two additional cohorts. 

Firstly, 10 SMM and 30 untreated MM patients were profiled by cytometry by time-of-flight 

(CyTOF; see Methods; Supplementary Data 5, Supplementary Fig.9A) and the abundance of 

CD8+ Temra (CD28–CD45RA+) correlated with paraprotein (R = 0.38, P = 0.053, Pearson; 

Fig.5B). Secondly, a large group of 175 precursor patients (n = 33 MGUS, n = 142 SMM) were 

profiled at recruitment by flow cytometry (Supplementary Fig.9B). Using a minimal set of markers, 

we approximated T cell skewing via the abundance of IL7R– (late differentiated) CD8+ T cells 

(Supplementary Fig.8D). In this cohort, the abundance of IL7R–CD8+ T cells significantly 

correlated with paraprotein independent of age (R = 0.24, P < 0.001 Pearson correlation; P 
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independent of age P < 0.001 linear regression, Fig.5C). Together, this connects T cell skewing 

observed in patients with serum paraprotein levels, indicating a relationship with tumour bulk. 

 

We speculated that tumour-intrinsic features were associated with individual T cell clusters. 

Analysis of T cell cluster abundance with BM PC % and transcriptional pathway activity in tumour 

cells revealed effector T cells (Teff) were enriched in highly-infiltrated marrows populated by 

tumour cells expressing stress-associated genes (BM PC%: R = 0.55, tumour stress: R = 0.6; 

Fig.5D; Supplementary Fig.8E). Several other clusters were significantly correlated with tumour 

stress, including positive and negative associations with CD8+ Trm and CD4+ Tem, respectively 

(Supplementary Fig.8E). The expression of a smaller set of T cell effector genes (CD69, TNF, 

IFNG) possessed the same correlations (BM PC%: R = 0.43, tumour stress: R = 0.79, Pearson 

correlation; Supplementary Fig.8F), suggesting a T cell effector program specifically was 

associated with BM PC % and tumour stress. 

 

The co-occurrence of tumour-associated memory and effector T cells suggested a differentiation 

process between these two states. We therefore asked if effector T cells were clonally related to 

terminal memory subsets. Clonally expanded CD8+ effector T cells were significantly enriched 

among CD8+ Temra (P < 0.001, chi-squared test; Fig.5E). Additionally, clonally expanded Teff 

cells enriched in marrows containing stressed tumours expressed markers characteristic of CD8+ 

Temra (Fig.5F). Therefore, terminally differentiated memory clones accumulating in MM are 

continuous with effector-like T cells in highly-infiltrated marrows, suggesting these states are 

linked by a T cell differentiation pathway. 

 

Finally, we asked if tumour genomic features were associated with T cell skewing. t(4;14) (positive 

n = 6, negative n = 17) was not significantly associated with T cell skewing (P = 0.45, Wilcoxon 

test) but a 1q gain (positive n = 10, negative n = 19) trended to enrich for enhanced T cell skewing 
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(Supplementary Fig.7G; P = 0.057, Wilcoxon test), potentially connecting this adverse prognostic 

factor to T cell differentiation. 

 

Myeloma-associated T cell differentiation possesses features of anti-tumour immunity 

To identify molecular drivers of tumour-immune crosstalk, we analysed the expression of 

intercellular signalling molecules in tumour-associated T cell subsets (see Methods). This analysis 

identified an intercellular signalling network dominated by T cell effector molecules IFN- and 

TNF- and antigen-presentation pathways (Fig.5G). Patients with high T cell effector cytokine 

expression possessed the highest corresponding pathway activity in tumour cells (IFN-: R = 0.3, 

P < 0.05; TNF-: R = 0.76, P < 0.001, Pearson correlation; Supplementary Fig.8G), 

mechanistically linking these processes. Notably, MHC and antigen processing and presentation 

genes were significantly enriched (GSEA, adjusted P < 0.1) in tumour cells for 6 of 16 (37.5%) 

patients tested (Fig.5H). Interestingly, non-viral specificity signature expression was highest in 

patients whose tumour cells significantly upregulated the MHC pathways (P = 0.021, Wilcoxon 

test; Fig.5H), suggesting that MM-associated T cell differentiation contains a component of tumour 

reactivity that was connected to tumour MHC class I expression and potentially antigen 

presentation.  

 

To explore tumour-reactivity, we utilised a recently-reported gene signature of tumour-reactive 

BM T cells in MM13 and found significant positive correlation with our non-viral gene signature (P 

< 0.001, R = 0.55 Pearson correlation; Supplementary Fig.8H). We also reasoned that if MM-

associated T cell differentiation was linked to tumour reactivity, this might be revealed in the 

response to immunotherapy. We acquired additional scRNA-seq data from 3 patients who 

responded to T cell engager (TCE) therapy14 and identified TCRs which significantly expanded 

post-treatment (see Methods; Supplementary Fig.8I). Interestingly, T cells bearing these TCRs 
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highly expressed the non-viral specificity signature pre-treatment (Fig.5I). Together, this suggests 

this phenotype contains tumour-reactive TCR clones with the capability to respond to 

immunotherapy. 

 

Finally, we asked if T cell-associated pathway activity in tumour cells was related to outcome. In 

an independent cohort of 599 MM patients, we found patients whose tumours highly expressed 

either MHC or stress pathway genes had superior outcome (MHC P = 0.031 and stress P = 0.014, 

log-rank test; Fig.5J), suggesting that T cell differentiation dynamics associated with these 

tumour-intrinsic processes may influence clinical outcomes. 

 

Autologous stem cell transplantation enhances T cell skewing through the expansion of pre-

existing clones contributing to poor outcome  

We next asked how the T cell dynamics we observed in untreated patients are altered by anti-

tumour therapy. Autologous stem cell transplantation (ASCT) is standard of care in fitter patients 

with newly diagnosed MM. Work in patients and mouse models has suggested that the benefit of 

ASCT relies on the augmentation of anti-tumour T cell immunity15,16. To explore this hypothesis, 

we analysed bone marrow samples from newly diagnosed transplant-eligible patients who 

received ASCT with deep TCR-seq, scRNA-seq and scTCR-seq (Fig.6A).  

  

Repertoire clonality rose significantly following ASCT (P < 0.001, paired Wilcoxon; Fig.6B). 

Similarly, the frequency of CDR3 clusters among expanded TCRs rose post-ASCT (Fig.6C). We 

modelled the abundance of TCRs pre- and post-treatment with a Poisson framework (see 

Methods) to identify TCRs which significantly increased in abundance post-treatment (Fig.6D). 

Among these clones, 29% (range 10.7-48) were present at low abundance pre-treatment. Using  

pre-treatment samples found in the larger scRNA-seq dataset (Fig.2), we identified the baseline 

phenotype of clones which expanded post-ASCT and found they predominantly occupied 
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terminally-differentiated and effector CD8+ T cell clusters (Fig.6E) and highly expressed the non-

viral signature (P < 0.001, unpaired Wilcoxon; Fig.6F). In contrast, clones we annotated as viral-

reactive (see Methods) did not significantly expand post-ASCT (Corrected P > 0.05, Poisson 

model). We independently performed scRNA-seq on 4 samples from patients taken post-ASCT 

and found that ASCT-expanded clones post-treatment expressed terminal differentiation and Teff 

genes such as GZMB and TNF (Fig.6G) and expressed significantly higher levels of the non-viral 

signature (P < 0.001, mixed-effect model with patient as random effect). Together, this shows 

ASCT is associated with alterations resembling antigen-driven CD8+ T cell differentiation. 

 

We next asked if the abundance of clonally expanded terminally differentiated CD8+ T cells was 

reflective of response to therapy. ASCT patients were followed for a median of 3.9 years (range 

1-5.8) after which 12 of 19 (63%) patients relapsed. The presence of detectable residual tumour 

in the marrow post-ASCT (minimal residual disease positive, MRD-positive) is associated with 

earlier relapse17. Notably, we found that post-ASCT marrow T cells from MRD-positive patients 

demonstrated significantly higher TCR clonality (P = 0.035, Fig.6H). As ASCT-expanded clones 

were terminally-differentiated pre-treatment (Fig.6E), we asked if T cell skewing prior to ASCT 

was associated with poor outcome. We identified MM patients in our CyTOF cohort who received 

ASCT and clustered CD8+ T cells into phenotypes aligned with our scRNA-seq data 

(Supplementary Fig.8J). The abundance of CD8+ Tte and CD8+ Temra in pre-treatment samples 

was significantly associated with MRD-positivity (P = 0.02 and P = 0.03 respectively, unpaired 

Wilcoxon test; Supplementary Fig.6I), suggesting T cell skewing at diagnosis predicts poor 

outcome following ASCT. 

 

T cell skewing is not associated with rapid SMM progression  

Finally, we explored whether T cell dynamics could be used to improved SMM risk stratification. 

To assess an association between T cell features and progression, 199 precursor disease 
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patients were followed for a median of 1.1 years (range 1-5.8) after which 25 (15%) patients 

progressed to active disease (Fig.7A). As expected, we found an association between time-to-

progression and known progression-associated clinical features (BM PC %, paraprotein, FLC 

ratio: P < 0001 log-rank test for all). 

 

Firstly, we asked whether T cell skewing identified SMM patients at high risk of progression. T 

cell skewing was not significantly enhanced in MM relative to SMM in either our scRNA-seq (P = 

0.53; Fig.3C) or CyTOF (P = 0.37; Supplementary Fig.10A) cohorts. Similarly, in our flow 

cytometry cohort the abundance of late-differentiated IL7R–CD8+ T cells was not higher in SMM 

patients who subsequently progressed relative to non-progressors (P = 0.25, one-way ANOVA; 

Fig.7B). As such, there was only a weak trend between IL7R–CD8+ T cells and time-to-

progression (P = 0.13, log-rank test; Fig.7C). These results demonstrate that T cell skewing 

presents similarly in asymptomatic SMM and active MM and, in this cohort, does not predict 

progression. 

 

Regulatory CD4+ T cells loss is a biomarker to predict risk of SMM progression 

To explore T cell features which might identify SMM patients at increased risk of progression, we 

returned to our analysis comparing SMM and MM patients (Supplementary Fig.5E). We observed 

a reduction in the abundance of CD4+ Treg in MM relative to SMM in the scRNA-seq (uncorrected 

P = 0.03) and CyTOF (P = 0.05) cohorts (Fig.7D). In the larger flow cytometry cohort, we found 

CD4+ Treg abundance was reduced in SMM patients that subsequently progressed relative to 

both non-progressors and MGUS patients (Fig.7E, left; Supplementary Fig.9B; Supplementary 

Fig.10B). As no individual CD4+ Treg sub-cluster correlated with CD4+ Treg loss (Supplementary 

Fig.4A; P > 0.1 for all, Pearson correlation) we concluded this represented an overall depletion of 

CD4+ Treg numbers. As such, this effect was also seen in the reduction of CD4+ Treg among total 
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(non-tumour) cells in progressing SMM patients (Fig.7E, right). Together, this suggests CD4+ Treg 

loss defines active myeloma relative to precursor disease. 

 

We explored the ability of CD4+ Treg loss to serve as a marker of SMM progression. We focused 

on the abundance of CD4+ Treg among non-tumour cells as this quantification was independent 

of existing risk factors (paraprotein P = 0.64 and BM PC % P = 0.58, Pearson correlation; 

Supplementary Fig.10C). MGUS and SMM patients with low CD4+ Treg abundance (<0.53% non-

tumour cells) were significantly more likely to progress to MM (P = 0.016 log-rank test, hazard 

ratio =2.7; Fig.7F). We obtained the same results when removing MGUS patients (n = 167 SMM, 

P = 0.035 log-rank test hazard ratio = 2.4). Multivariate analysis showed CD4+ Treg abundance 

predicted progression independently of existing SMM risk models (Mayo P = 0.04, IMWG P = 

0.08; Fig.7G). Together, this suggests that CD4+ Treg loss represents a putative biomarker for 

SMM risk. 

 

Discussion 

In this study, we curated a large cohort of single-cell data across 12 studies and 259 donors to 

understand alterations to T cells in precursor and symptomatic MM. We enhanced our analysis 

by analysing the TCR repertoire, the BM and PB, and tumour cells. This allowed us to identify the 

specific features of tumour biology associated with T cell differentiation in MM, independent of 

natural heterogeneity attributable to tissue and age. We describe two patterns of myeloma-

associated T cell differentiation (Fig.8): (1) terminal memory T cells with features of antigen-

specific differentiation and lacking viral-specificity accumulate in proportion to serum paraprotein 

(tumour bulk); and (2) effector T cells are enriched in highly-infiltrated marrows populated by 

stressed tumour cells. As these two MM-associated T cell subsets are clonally related (Fig.5E 

and F), we suggest they represent the in situ differentiation of tumour-reactive clones 
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accumulating through disease evolution, which then circulate in the blood. Finally, we 

demonstrate the relevance of T cell dynamics in newly diagnosed patients receiving ASCT and 

rapidly-progressing precursor patients, identifying clinical associations with T cell functionality.  

 

Our findings resolve conflicting reports on the presence of exhausted T cells in myeloma and a 

poor history of checkpoint inhibition in this setting18–20. We show exhausted T cells are not 

pervasively enriched in myeloma and are distinct from the more abundant CD8+ Tem.CD69+ 

which match descriptions of PD-1-expressing CD8+ T cells in healthy donors21,22. The presence 

of these “pseudo-exhausted” cells may have led to misidentification of exhausted cells in myeloma 

patients23, especially given their enrichment in the bone marrow (Supplementary Fig.4F). Our 

results align closely with a recent report showing CD8+ Tex are absent in MM patient marrows24 

but are a feature of extramedullary lesions25, with the latter report suggesting marrow-intrinsic 

biology curtails exhaustion. It could be speculated that the donor-specific CD8+ Tex (Fig.2H) 

represents the accidental or unreported sampling of an extramedullary lesion. While not 

phenotypically exhausted or functionally impaired (Supplementary Fig.4C), CD8+ Tem.CD69+ 

may still be involved in bone marrow pathology, as cells resembling this phenotype possess 

negative and positive associations with the response to TCE therapy in advanced MM and 

combination therapy in SMM, respectively14,26.  

 

We show myeloma is associated with an enrichment of terminally differentiated clonal memory T 

cells, extending previous reports27–29 by demonstrating an independence from age and showing 

concurrent changes to the TCR repertoire and systemic T cells. These alterations are similar to T 

cell immunosenescence changes seen during ageing8, implying MM patients have prematurely 

aged T cell compartments (Fig.3E to G). Exaggerated T cell ageing in precursor conditions may 

explain the increased risk of infections in these patients30, and impede the ability to control tumour 

growth, facilitating progression. Additionally, this pattern of T cell differentiation could 
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mechanistically represent tumour-targeting T cell responses. Patient-derived T cells show 

evidence of tumour-reactivity in myeloma13,31,32, specifically terminal memory CD8+ 

phenotypes13,33, supporting our in-silico evidence that non-viral reactivity may contribute to 

myeloma-associated T cell differentiation (Fig.4F and G). However, inflammation, pervasive in 

the myeloma marrow34, can alternatively drive antigen-independent memory T cell 

differentiation35. 

 

We have previously reported in newly diagnosed MM patients that induction chemotherapy and 

ASCT resulted in BM T cell activation and TCR repertoire clonality36. Here, we extend those 

observations by showing ASCT-expanded clones are terminally differentiated CD8+ T cells that 

are detectable in this phenotype pre-treatment, indicating that pre-existing antigen-experienced T 

cells expand following ASCT, consistent with previous reports in patients and mice15,16. However, 

as clonal expansion was most prominent in patients with residual disease post-treatment (Fig.6H), 

this response may not be effective in eradicating residual tumour and suggests further therapy 

may be needed to augment T cell function post-ASCT. Agents that stimulate T cell function, such 

as immunomodulatory drugs or CD38 monoclonal antibodies, may be required because, while 

tumour-reactive T cells in SMM and MM are not phenotypically exhausted (Fig.4), they possess 

hallmarks of senescent Temra differentiation, including expression of T-bet (TBX21) and ZEB22. 

Furthermore, other immunosuppressive immune cells and genomic sub-clonality may also 

prevent tumour-reactive T cells from mounting effective responses in myeloma. 

 

T cell skewing presented similarly in asymptomatic SMM and overt MM (Fig.3) and progressing 

and non-progressing SMM (Fig.7B-C). This suggests that SMM is an immunologically mature 

entity in regard to this axis of T cell differentiation and would explain the poor ability of T cell 

skewing to identify rapidly-progressing SMM patients. Furthermore, T cell skewing was more 

closely associated with serum paraprotein than disease stage (Fig.5A-C). Further work is needed 
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to explain this association, but we note malignant immunoglobulin-derived peptides can serve as 

immunogenic epitopes37. While we were unable to comprehensively compare T cell features and 

tumour genomic classification, a similar pattern of T cell skewing was previously shown to be 

enhanced in hyperdiploid patients38.  

 

Our observations indicate that CD4+ Treg loss represents a T cell biomarker for rapidly-

progressing SMM patients (Fig.7D-G). While appearing at odds with earlier reports describing 

immunosuppressive CD4+ Treg in overt MM39,40, CD4+ Treg constitute a component of the normal 

haematopoietic niche41, hence their depletion may reflect early reshaping of the BM 

microenvironment towards a state favouring progression. 

 

Our findings provide a conceptual framework for how T cells are altered during myeloma disease 

evolution and highlight the importance of contextualising immune heterogeneity with tumour 

biology when exploring immune biomarkers in myeloma. 
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Methods 

Clinical sample acquisition 

Bone marrow aspirates from individuals with myeloma or precursor conditions were obtained from 

patients included in one of four ongoing clinical trials: (1) Defining risk in smouldering myeloma 

for early detection of multiple myeloma (COSMOS), a multicentre, observational UK study in 

smouldering myeloma (NCT05047107, COSMOS study UK Research Ethics Committee 

reference: 270077); (2) Risk-Adapted therapy Directed According to Response (RADAR), a 

randomised phrase II/III trial in newly diagnosed patients with multiple myeloma eligible for 

transplant (UK Research Ethics Committee reference: 20/LO/0238)42; (3) 

Carfilzomib/Cyclophosphamide/Dexamethasone with Maintenance Carfilzomib in Untreated 

Transplant-eligible Patients with Symptomatic MM to Evaluate the Benefit of Upfront ASCT 

(CARDAMON), a phase II trial (UK Research Ethics Committee reference: 148600)43; (4) Biology 

of Myeloma, an observational study open to all plasma cell disorder patients treated at University 

College London Hospitals (Research ethics committee reference: 07/Q0502/17). Bone marrow 

aspirates from non-cancer controls were collected as a by-product of routine elective orthopaedic 

surgery (hip or knee replacements) via the UCL/ UCLH Biobank for Studying Health and Disease 

(UK Research Ethics Committee no: 272816). Material was obtained following written informed 

consent in accordance with the Declaration of Helsinki.  

 

Sample acquisition and processing  

Bone marrow aspirates were collected in ethylenediamine-tetraacetic acid (EDTA, Cambridge 

Bioscience, 60-00030-11) and processed within 24 hours of collection. Mononuclear cells (MNCs) 

were isolated by Ficoll Paque density gradient centrifugation, using SepMate tubes (StemCell 

Technologies, 85420). Freshly isolated BM MNCs were analysed for tumour infiltration (BM PC 

%) by multi-parameter flow cytometry. Tumour cell marrow infiltration was determined as the 

frequency of live BM MNCs cells co-expressing CD38 and CD138 (Supplementary Fig.1E). For 
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CyTOF experiments, MNCs were cryopreserved in 90% FBS and 10% DMSO prior to use. For 

flow cytometry experiments, samples were assessed fresh immediately after acquisition.  

 

Multi-parameter flow cytometry antibody staining, data acquisition and analysis 

Single cell suspensions from freshly isolated BM mononuclear cells were resuspended in PBS, 

blocked with 5% mouse and rat serum and stained with the following antibodies: CD138-PE 

(1:100; MI15, BioLegend, 356504), CD38-PE-Cy7 (1:25; HB7, BioLegend, 356608), CD3-BV785 

(1:100; OKT3, BioLegend, 317330), CD56-BV605 (1:100; NCAM16.2, BD Biosciences, 562780), 

CD4-FITC (1:50, OKT4, BioLegend, 317408), CD8-PB (1:100, RPA-T8 BioLegend, 301033), 

CD25-BV711 (1:100, M-A251, BioLegend, 356138), CD127-PECy5 (1:100, A019D5 BioLegend, 

351324). Fixable Viability Stain-780 (1:250; BD Biosciences, 65-0865-14) was used for dead cell 

exclusion. Samples were measured by LSRFortessa Cell Analyser (BD Biosciences) and 

manually gated (Fig.9B) with FlowJo (v10, BD Biosciences). 

 

scRNA-seq and scTCRseq sample and library preparation  

For newly-generated “T cell−enriched/depleted” scRNA-seq samples T cells were enriched from 

freshly isolated BM MNCs by magnetic separation using a Pan T cell Isolation Kit (Miltenyi Biotec, 

130-096-535) and CD15 MicroBeads (Miltenyi Biotec, 130-046-601). After sorting, the T cell 

depleted and enriched compartments were pelleted and resuspended in 0.04% BSA in PBS at 

106 cells/mL and loaded onto the Chromium Controller (10X Genomics). For newly generated 

‘CD8-enriched’ samples T cells were enriched using the same protocol with the addition of CD4 

MicroBeads (Miltenyi Biotec, 120-000-440) and only CD8-enriched samples were loaded. This 

generated a total of 47 libraries. All samples were processed using the Chromium Next GEM 

Single Cell 5’ Dual Index Kit (10X Genomics, v2) following manufacturer’s protocol. T cell and 

CD8-enriched samples were additionally processed using the VDJ kit (10x Genomics). The 

libraries were sequenced by Illumina NovoSeq 6000. We used CellRanger v6.0.0 pipeline (10x 
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Genomics) to align gene expression (GEX) and V(D)J (Immune Profiling) experiments using the 

GRCh38-2020-A and vdj_GRCh38_alts_ensembl-5.0.0 human reference genomes, respectively. 

Across samples, a median of 6367 cells with a median proportion of 0.76 cells with productive V 

J spanning TRA and TRB pairs per-sample. 

 

Publicly available data 

To assemble our large integrated dataset, scRNA-seq data from 12 published studies was 

acquired and combined with newly generated data (Supplementary Data 6)18,26–28,44–51. 

Specifically, data shared through the gene expression omnibus (GEO) can be accessed for Maura 

et al. under the accession GSE161195, Bailur et al. GSE163278, Oetjen et al. GSE120221, 

Granja et al. GSE139369, Zavidij et al. GSE124310, Kfoury et al. GSE143791, Zheng et al. 

GSE156728, Botta et al. GSE205393, and Friedrich et al. GSE216571. Data shared via dbGaP 

for Sklavenitis-Pistofidis et al. can be accessed under accession phs002476.v1.p1. Data shared 

online can be accessed for Stephenson et al. at covid19cellatlas.org, Conde et al. at 

tissueimmunecellatlas.org, and Liu et al. at humancellatlas.org/projects/2ad191cd-bd7a-409b-

9bd1-e72b5e4cce81. 

 

Filtering, integration, clustering, and dimensionality reduction of scRNA-seq data 

scRNA-seq data were analysed using scanpy (1.8.2)52. Gene-barcode matrices for all newly 

generated and re-analysed samples were assigned unique sample-specific barcodes, merged, 

and subset to high-quality cells for integration (minimum unique genes >200, minimum total 

counts >500, total percentage mitochondrial chromosome-encoding transcripts <10%, total 

percentage transcripts encoding haemoglobin genes HBB, HBA1 and HBA2 <20%). Cells called 

as doublets by scrublet (0.2.3)53 were removed. Samples with <100 high-quality cells were 

removed before integration.  
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For integration, we utilised single-cell variational inference (scVI) from the scvi-tools package 

(0.15.2)54. A subset of 7000 highly variable genes across batches were calculated using log (x+1) 

normalised gene expression with the function scanpy.pp.highly_variable_genes (adata, 

batch_key=”batch”) to identify genes with consistently high inter-cellular variation across different 

batches. Specific gene groups which can vary between cells for technical (mitochondrial, 

representing cell stress) or irrelevant biological (immunoglobin and TCR genes, representing 

lymphocyte clonality) reasons were excluded from highly variable genes to prioritise clustering on 

phenotype-defining genes. The un-normalised expression of these 7000 variable genes was 

prepared for a scVI model using the function scvi.model.SCVI.setup_anndata () with sample batch 

as the batch key and sample identifier and 10x chemistry as categorical covariate keys. A scVI 

model was then initialised with the following non-default parameters: scvi.model.SCVI 

(n_latent=30, n_layers=2, dropout_rate=0.2, gene_likelihood=”nb”). These parameters (number 

of variable genes, number of latent dimensions and hidden layers, dropout rate) were selected 

through a parameter sweep focused on minimising batch influence on integrated latent 

representation and retaining biological identity (data not shown). Minimisation of batch influence 

was assessed by linear regression of latent dimensions against batch covariates as implemented 

by scib (https://github.com/theislab/scib). The retention of biological identity was assessed by 

analysing the separation of CD4+ and CD8+ T cells (the median log ratio of CD4-expressing and 

CD8A-expressing cells closest to zero across clusters). This model was trained for a maximum 

of 400* (20,000*x) epochs where x was the number of input cells. Integration was first performed 

on all cells then repeated for just T cell clusters using 5000 highly variable genes but otherwise 

identical parameters. 

The latent representation of the trained scVI model was used to create a k-nearest neighbours 

graph using scanpy.pp.neighbors (adata, n_neighbors=10) for subsequent graph-based 

clustering using the Leiden algorithm. The size of the local neighbourhood (n_neighbors=10) and 

Leiden clustering resolutions were selected for optimum granularity of biological clusters. Analysis 
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of the latent representation was used as input for creation of a uniform manifold approximation 

and projection (UMAP, scanpy default parameters) or Minimum-Distortion Embedding using 

pymde (0.1.15)55. For visualisation of a large number of cells on either UMAP or MDE, scattermore 

(1.0) was used to create dot plots.  

 

Differential expression and pathway analysis of scRNA-seq data 

Differential expression between specified conditions was performed using scran (1.26.2) function 

pairwiseTTests () between specified contrasts with batch as the blocking level for each cell to 

model for batch effects. This restricts differential expression comparisons within individual 

batches and pools the downstream result, meaning no inter-batch comparisons were performed 

(which would incur batch effects). Marker genes were combined with supervised analysis of the 

expression of known RNA and protein markers to phenotype clusters. Genes were identified as 

significantly differentially expressed with a false discovery rate (FDR, Benjamini and Hochberg-

adjusted P-value) of <0.1. Pathway analysis of differentially expressed genes was performed 

using fgsea (1.24.0) with gene set enrichment analysis of gene sets from BIOCARTA, KEGG and 

REACTOME databases accessed via msigdbr (7.5.1; Supplementary Data 3). 

 

Phenotyping gene expression clusters from scRNA-seq data 

Cluster markers genes were calculated using log-normalised expression of all genes in a study-

aware fashion using the findMarkers function (scran) specifying test.type=”wilcox” and batch as 

the blocking level for each cell. Clusters characterised by expression of known stress-associated 

genes (for example, JUN, FOS)56 or by co-expression of marker genes for independent 

phenotypes (for example, T and B cells) were removed. For T cell cluster phenotyping, clusters 

lacking expression of CD3D, CD3E and CD3G or both CD4 and CD8A were removed. Cell type 

prediction tools were run with default parameters: “Azimuth” 

(https://azimuth.hubmapconsortium.org/) and “Celltypst” (https://www.celltypist.org/). Manually 
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curated T cell naïve and cytotoxicity gene signatures were taken from Chu et al.57. Gene sets 

were applied to cells UCell (2.2.0)58. 

CD4+ Treg sub-clusters were defined by early markers CCR7 and TCF7, suppressive molecules 

CD25 (IL2RA) and CTLA4, and activation markers GITR (TNFRSF18) and OX40 (TNFRSF4; 

Supplementary Fig.4A). The invariant cluster was composed of  T cells (gdT) (defined by 

TRDV2 and TRDC) alongside KLRB1 and SLC4A10-expressing MAIT cells (Supplementary 

Fig.4B). One MAIT sub-cluster was enriched in Th17 RORC and CCR6 possibly corresponding 

to MAIT17 cells59.  

 

Differential abundance analysis of scRNA-seq data 

We normalised cell type abundance following a compositional data framework60. For each 

sample, cluster counts were derived and zero values replaced by a Bayesian-multiplicative 

replacement strategy which preserves the ratios between non-zero clusters, implemented using 

the zCompositions (1.4.0-1) function cmultRepl ()61, generating zero-imputed pseudo-counts. The 

centered log-ratio (CLR) transformation was then used to transform pseudo-counts relative to the 

geometric mean of all clusters in a given sample, implemented using the compositions package 

(2.0-6) function clr(). The CLR transformation thus reports cell type abundance relative to the per-

sample average seeking to reduce the mutual dependency of proportional data62.  

Normalised cluster abundances were used as input for a combination of intercept-only and 

additive regression models exploring the relationship between cluster abundance and different 

conditions (for example, patient group, or patient group and age) as described. Selected 

comparisons were also performed using a mixed-effect model with an additional random effect 

term (for sample, study of origin) implemented using lmerTest (3.1-3).  

For samples from Stephenson et al.47 the median age of each age range was used (for example, 

52.5 was used for the 50-55 group). For the model in Fig.3E, age values were binarized to above 

and below the median (62 years) but results remained significant when modelling age as a 
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continuous variable in both SMM (disease P < 0.001, age P = 0.01, linear model) and MM (disease 

P < 0.001, age P = 0.02, linear model). T cell skewing was greatest (enrichment of terminal 

memory clusters) in SMM and MM relative to controls independent of age (P < 0.004 and P < 

0.001, respectively, linear regression; Fig.3E). In the cases of patients with longitudinal 

sampling46,49, only the first longitudinal timepoint was analysed unless otherwise specified. For 

analysis of paraprotein data, only patients with IgG and IgA isotype tumours (which produce heavy 

chain paraprotein molecules measurable in serum) were analysed.  

The abundance of invariant and CD4+ Treg sub-clusters was not significantly different between 

health and disease (all comparisons P > 0.1, linear regression), except for an enrichment of  T 

cells and CD4+ Th17-like MAITs in SMM relative to controls (Supplementary Fig.5G). 

 

Unsupervised ordination of T cell composition and calculation of exaggerated T cell ageing 

Normalised T cell cluster abundance was scaled per-cluster and used as input for PCA using the 

base R stats function prcomp. For the comparison of T cell skewing with the peripheral blood 

(Fig.3H), we first re-scaled normalised peripheral blood T cell cluster abundance to the same 

centre and range of the scaled BM T cell abundance matrix. Next, we multiplied this scaled PB 

matrix by the pre-calculated BM PCA feature loadings via feature (cluster)-wise matrix 

multiplication, yielding the PC1 values for the input PB matrix. 

Exaggerated T cell ageing was calculated by first constructing a linear regression model 

examining the relationship between PC1 and age for non-cancer controls only. The residuals of 

this model (Supplementary Fig.5J) were normality distributed as assessed by Shapiro-Wilk test 

(P = 0.89), Kolmogorov-Smirnov test (P = 0.97) and visually via a quantile-quantile plot 

(Supplementary Fig.5K). Next, the age of cancer patients was used to predict PC1 values for 

each patient in this model. The difference between predicted and real PC1 values (residuals) for 

each patient was interpreted as the difference between the T cell skewing expected for each 

patient’s age versus their observed T cell skewing, respectively. These residual-derived values 
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were termed “exaggerated T cell ageing”. A patient was considered to have exaggerated T cell 

ageing if their values were greater than zero (meaning skewing was greater than expected for 

their age). Similarly, “excess T cell years” were calculated as the residuals between a patient’s 

real age and the age predicted from their PC1 values by a model of PC1 and age in controls. 

 

Label transfer  

We validated our phenotypes in an independent scRNA-seq dataset of BM T cells from healthy 

donors (n = 3) alongside precursor disease (n = 7) and MM patients (n = 10) from Botta et al. (19). 

The scANVI model from the scvi package was used for label transfer, using the Botta et al. dataset 

as the query and the full T cell dataset as the reference. The query dataset underwent the same 

pre-processing and gene filtering as the full T cell dataset. This processed query dataset was then 

used as input for a scANVI model. For the input reference model of this scANVI model, the full T 

cell dataset integration SCVI model was used. This scANVI model was then trained with the same 

hyperparameters as this scVI model. Next, the trained scANVI model was used to predict the T 

cell phenotype of unlabelled query cells based on labelled reference cells following the scArches 

semi-supervised surgery pipeline63. Briefly, a k-nearest neighbours’ graph was constructed from 

the joint query and reference latent space generated by the trained scANVI model. Then, based 

on the abundance of labelled reference cells near unlabelled reference cells, each reference cell 

was assigned a weighted prediction for each possible reference label. High confidence predicted 

labels (uncertainty value >0.2) were determined to be the T cell phenotype of each query cell and 

taken forward for downstream analysis. This approach made accurate predictions of cell type 

identity matching the same expression profile as the larger dataset (Supplementary Fig.4G) 

 

scTCRseq pre-processing, clonal expansion calculation, T cell subset identification and clustering 

TCR paired alpha and beta clones (clonotypes) were defined by CellRanger VDJ 

(raw_clonotype_id, clonotype_id) by matching shared V and J gene and nucleotide CDR3 
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sequences for alpha and beta TCR chains. Clonotypes were appended to single cells by matching 

cell barcodes. For scTCR-seq derived from published data, we utilised published clonotype 

identifiers. Clonal expansion was calculated as the abundance of cells labelled with each 

clonotype identified in each sample. CD8+ and CD4+ clones were identified by the presence of of 

>75% of a clone’s cells within CD4+ or CD8+ clusters (otherwise, were removed). Repertoire 

clonality was calculated among each specific subset of cells (such as all T cells or CD8+ memory 

cells) with a minimum of 100 cells using Simpson’s diversity index64. Clusters of TCRs with similar 

sequence features were identified within a single patient’s alpha or beta chain repertoire using 

tcrdist3 (0.2.2)65 using default parameters. TCR clustering networks were constructed and 

visualised using igraph (R, 1.4.2). CDR3 sequence logos were created with Logomaker 

(https://logomaker.readthedocs.io/en/latest/).  

For analysis of scTCR-seq from Friedrich et al.14 (Supplementary Fig.8I), clones which 

significantly expanded post-treatment was identified with a Poisson framework, modelling the 

abundance of each clone pre- and post-treatment as the number of events and the total number 

of cells in each sample as the rate of Poisson sampling (to account for differences in sample size).  

 

Annotation of HLA-matched viral reactivity-annotated TCR clones 

HLA genotypes for 19 patients were derived using arcasHLA 66 ran on Cellranger output bam files 

(possessorted_genome_bam). All 19 patients were newly sequenced for this study and therefore 

a combination of T cell-enriched/depleted and CD8-enriched (Supplementary Fig.1B) samples 

were available. arcasHLA was ran on every sample for each patient. HLA genotype for class I 

and class II HLA was almost entirely identical across samples for an individual. In the rare cases 

of two different samples of the same patient possessed different HLA genotypes, both predicted 

genotypes were ignored. 

Each donor’s repertoire was then compared against the annotated TCR reactivity database 

VDJdb, IEDB and CEDAR67–69 subset to TCRs with annotated reactivity against an epitope from 
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a single human virus: cytomegalovirus (CMV), Epstein Bar virus (EBV), Influenza A, or severe 

acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). TCRs annotated as reactive against 

more than one human virus were also removed. The viral dataset set was further subset to HLA-

matched sequences for each patient’s HLA genotype. A query TCR clone was annotated as 

putatively viral-reactive if at least one alpha or one beta chain CDR3 sequence perfectly matched 

a CDR3 annotated against the same virus in the database, and this clone’s paired chain also 

perfected matched or possessed a highly similar CDR3 sequence to the same virus in the same 

HLA background. CDR3 similarity was performed as described previously70. Briefly, each TCR 

chain’s CDR3 amino acid sequence was deconstructed into a series of overlapping triplets. 

Pairwise similarity between two CDR3 was defined as the number of shared triplets normalized 

to the number of triplets per comparison. 

 

Analysis of tumour cell transcriptional state 

To analysed tumour cell transcriptional features, we identified putative malignant clones via clonal 

immunoglobulin usage. We then scored 67,656 plasma cells from 46 patients with a set of pan-

cancer transcriptional pathways (Supplementary Fig.7E, Supplementary Data 3). We additionally 

identified individual genes enriched in individual patient’s tumour cells relative to normal plasma 

cells (Supplementary Fig.7F, Supplementary Data 3) to identify pathways frequently upregulated 

by tumour cells across multiple patients. 

 

Identification of malignant plasma cell clones in scRNA-seq 

Patient plasma cells were isolated from the clustering of all cells (Fig.2A) and patients with < 50 

plasma cells were removed. This generated 67,656 plasma cells from 46 patients with a median 

of 467 plasma cells each (range: 76–13,638). To identify tumour cells among plasma cells, we 

leveraged the clonal plasma cell origin of myeloma. First, we attached the expression of all 

available immunoglobin genes to each cell, after removing any gene filtering performed earlier. 
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Then, for each plasma cell, we identified the most highly expressed light variable (kappa or 

lambda), heavy variable, and heavy constant chains. We next quantified and ranked the 

abundance of every gene for each chain among an individual’s plasma cells (Supplementary 

Fig.7A). Most individuals possessed a single gene for each chain which was expressed by the 

majority of plasma cells (light variable median 95% range: 31-100%, heavy constant median 96% 

range: 35-100%, heavy variable median 91% range: 24-100%). The frequency of different light 

and heavy variable genes among tumour cells matched previously reported frequencies in 

myeloma71, including IGHV3-30 in 3 (6.5%) and IGKV1-39 in 2 (4.3%) patients. We inferred that 

clonal immunoglobulin expression corresponded to clonal plasma cells and labelled any plasma 

cell expressing the most highly abundant gene for each chain in that donor as a tumour cell. This 

method yielded 67,048 predicted tumour cells. Predicted tumour cells uniquely co-expressed 

clonal immunoglobulin genes (Supplementary Fig.7B) and expressed genes characteristic of their 

translocation subgroups (Supplementary Fig.7C)72, suggesting they did represent malignant cells. 

These cells composed the majority of plasma cells in all patients but were most abundant in MM 

(Supplementary Fig.7D). 

 

Transcriptional pathway analysis of tumour cells in scRNA-seq data 

To analysis tumour cell transcriptomes, we scored tumour cells using a set of pan-cancer 

transcriptional pathways73 (Supplementary Data 3) using UCell. To compare the expression of 

individual pathways between patients, we calculated the abundance of cancer cells highly 

expressing a given pathway as the percentage of cells with expression greater than one standard 

deviation above the median across all patient’s tumour cells.  

 

Identification of novel pathways enrichmened in malignant cells 

To identify novel sets of genes enriched in malignant relative to normal plasma cells, we first 

isolated each the tumour cells from each patient in turn. Next, we performed differential 
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expression between each patient’s tumour cells only and all other plasma cells not classified as 

malignant. Differential expression was only performed between cells from the same sequencing 

batch. This yielded a set of malignant-enriched genes for each patient. Pathway analysis was 

then performed as described. The pathways significantly enriched among malignant-associated 

genes in four or more patients were identified (Supplementary Fig.7F). 

 

Cell-cell interaction analysis 

Differentially-expressed genes from T and tumour cells were screened for cognate ligand-receptor 

interactions in the OmniPath database74 via OmnipathR (3.15.1). From this set of interactions, a 

cell-cell interaction graph was created with igraph and visualised with ggraph (2.2.1). 

 

Transcriptional pathway expression in CoMMpass 

We analysed an association between the expression of the stress and MHC pathways 

(Supplementary Data 3) with overall survival in bulk RNA sequencing samples from the 

CoMMpass cohort of newly diagnosed MM patients, with RNA sequencing data processed and 

normalised as described in Bauer et al. 75. We calculated the expression of the pathway by taking 

the expression of each constituent gene, scaling expression between 0 and 1, and taking the 

average.  

 

Patient outcome analysis 

We assessed the predictive power of (1) transcriptional pathway expression for overall survival in 

patients in the CoMMpass dataset (Fig.5J); (2) T cell subset abundance and time-to-progression 

(Fig.7C and F). Covariate thresholds (such as expression level) for outcome were selected using 

the maximally selected rank statistic as implemented by maxstat (0.7-25). The association 

between this threshold and outcome was assessed using univariate or multivariate (as in Fig.7G) 

Cox proportional hazards regression models using the “survival” (3.5-5) with default parameters. 
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Deep TCR sequencing 

Before the RNA extractions samples were T cell enriched, by performing Pan T cell isolation 

(Miltenyi Biotec), following manufacturer protocol. RNA was extracted using RaliaPrep RNA Cell 

Miniprep System (Promega), following the manufacturer's instructions. RNA integrity was 

assessed by TapeStation (Agilent Technologies). TCR -chain and -chain sequencing was 

performed by utilizing whole RNA extracted from CD138-depleted cells from 19 patients with 

matched pre- and post-ASCT samples, by using a quantitative experimental and computational 

TCR sequencing pipeline described70. Clonality and clustering of deep TCR-seq samples was 

calculated identically to scTCR-seq. 

  

CD69+ T cell subset functional assessment 

Bone marrow MNCs were obtained from patients enrolled on the RADAR study via density 

gradient centrifugation with Ficoll-Paque (Cytivia 17144003). Samples were then enriched for T 

cells using magnetic-activated cell sorting (Pan T cell isolation kit, Miltenyi Biotec, 130-096-535) 

and stained for flow-activated cell sorting with CD8-eFluor450 (1:100, SK1, Invitrogen 48-0087-

42), CD69-BV605 (1:100, FN50, Biolegend 310938), CCR7–BV785 (1:100, G043H7, BioLegend 

353229), and Fixable Viability Dye eFluor 780 (1:250, eBioscience, 65-0865-14). An aliquot of 

unsorted cells was saved for staining (stim–). Cells were sorted into CD8+CCR7–CD69+ and 

CD8+CCR7–CD69– fractions and both were collected. Cells were then resuspended at 1x106 /ml 

in RPMI (Gibco 12027599) 10% FBS (Gibco 10500-064) 2mM L-Glutamine and stimulated with 

25uL/ml ImmunoCult (STEMCELL, 100-0785) or 10uL/ml TransAct (Miltenyi, 120-111-160) 

overnight at 37C (5% CO2). Brefeldin A (Biolegend, 420601) was added 4 hours prior to 

harvesting of cells. Cells were then harvested, washed, and extracellular antibodies stained for 

30 mins in the dark at 4C; CD57-FITC (1:100, HNK-1, Biolegend 359603), PD-1-BB700 (1:100, 
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EH12.1, Biolegend 566460), Fixable Viability Dye eFluor 780 (1:250, eBioscience, 65-0865-14), 

CD3-BV421 (1:100, SK7, Biolegend 344834), CD8-V500 (1:100, RPA-T8, BD Horizon, 560774), 

CD69-BV605 (1:100, FN50, Biolegend 310938), CCR7-BV785 (1:100, G043H7, Biolegend 

353229), and 4-1BB-PE-Dazzle (1:100, 4B4-1, Biolegend 309825). Cells were then washed, 

permeabilised, and intracellular markers stained (FoxP3/Transcription Factor Staining Buffer Set, 

eBioscience 00-8333-56) for 30 mins in the dark at 4C: IFN-G-PE, (1:100, 4S.B3, Invitrogen, 12-

7319-41) and TNF-a-APC (1:100, MAb11, Biolegend, 502912). Cells were then washed, and data 

acquired on NovoCyte Quanteon. 

 

CyTOF antibody staining, data acquisition and analysis 

Details on antibodies are listed in Supplementary Data 5. Conjugation of the purified antibodies 

with metal reporters was performed with the MaxPar X8 and MaxPar MCP9 antibody labelling kits 

(Fluidigm Sciences) according to the manufacturer's instructions. Frozen bone marrow MNCs or 

the CD138-negative populations were thawed rapidly at 37C and resuspended into pre warmed 

thawing media of RPMI (Sigma-Aldrich) containing 20% FBS, 2mM EDTA (pluriSelect) and 5mg 

DNase (Sigma-Aldrich). Cell suspensions were washed and filtered to form a single cell 

suspension. Cells were incubated with 5mM Cell-ID Cisplatin (Fluidigm Sciences) in serum free 

RPMI for 3 minutes at room temperature (rT) to identify dead cells. Cells were then washed and 

incubated with human Fc block (BioLegend) for 10 minutes at rT before being barcoded using 6-

choose-3 Cadmium CD45 Live Barcoding (Fluidigm Sciences). All samples were stained in the 

same batch. After live cell barcoding, the combined samples were then stained with metal-

conjugated antibodies for surface antigens for 30 minutes at rT. After staining, cells were washed 

with MaxPar Cell Staining Buffer (Fluidigm Sciences, 201068) and permeabilised with MaxPar 

nuclear antigen staining buffer before staining with metal-conjugated antibodies for intracellular 

antigens. Cells were again washed and fixed using 1.6% paraformaldehyde. Cells were then 
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incubated with Cell-ID intercalator-Ir (Fluidigm Sciences) to stain all cells in MaxPar Fix and Perm 

Buffer (Fluidigm Sciences, 201067) and aliquoted and frozen in cryovials. Stained samples were 

thawed and washed on the day of acquisition.  

Cells were acquired on the Helios mass cytometer (Fluidigm Sciences). Data from different days 

were normalized by using EQ Four Element Calibration Beads (Fluidigm Sciences). Data was 

debarcoded using the Fluidigm CyTOF software and patient sample fcs files run from different 

days were concatenated. Before downstream analysis, initial data clean-up was carried out using 

FlowJo. Live CD3+ cells were exported by manual gating on Event_length, Residual, Offset, DNA 

(191Ir and 193Ir), live cells (195Ir) and CD3 expression (89Y). Further manual CyTOF gating of T cell 

phenotypes (Supplementary Fig.9A) was performed with FlowJo (v10, BD Biosciences). 

 

CyTOF clustering 

CyTOF data were analysed using a custom R pipeline using gated CD8+ T cells as input. Batch 

effects were normalised using the R package CytofIn (0.0.0.9000) using technical replicates 

(multiple aliquots of the same sample) in each batch. Batch correction was assessed using 

expression distribution and UMAP plots (not shown). Batch-corrected expression values were 

arcsine-transformed and clustered using FlowSOM (2.6.0) on a 12 x 12 node self-organising map. 

Clusters were assigned to phenotypes based on known CD8+ T cell markers (Supplementary 

Fig.8J) including CD8+ Temra (CD27–CD28–GZMB+Tbet+CD45RA+) and CD8+ Tte (CD27–CD28–

GZMB+CD57+) 

 

Statistical analyses 

Box plots represent the first and third quartiles around the median with error bars extending 1.5 

times the interquartile range (IQR). For comparison of means in box plots, P-values were 

calculated by either two-sided unpaired Wilcoxon test or one-way ANOVA followed by Tukey’s 
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test for pairwise comparison evaluation as indicated. Correlation coefficient (R) and P-values for 

correlations were calculated by Pearson correlation. In linear regression slopes, shaded regions 

represent the 95% confidence interval. For hierarchal clustering on heatmaps, Euclidean distance 

was used as the default distance measure. 

 

Data Availability 

The unprocessed sequencing data have been deposited in the Sequence Read Archive under 

the accession PRJNA1401834 (https://www.ncbi.nlm.nih.gov/bioproject/1401834). The 

processed single-cell RNA and TCR data (CellRanger outputs) have been deposited in the 

Zenodo repository under the accession 13171648 (https://zenodo.org/records/13171648). The 

full integrated single-cell RNA and TCR datasets and cohort information have been deposited in 

the Zenodo repository under the accession 17418275 (https://zenodo.org/records/17418275). All 

data are included in the Supplementary Information or available from the authors, as are unique 

reagents used in this Article. The raw numbers for charts and graphs are available in the Source 

Data file whenever possible. 

 

Code Availability 

The code to reproduce the analysis have been deposited on GitHub under the accession 

kanefos/myeloma-singlecell. 
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Fig 1. Overview of study. A dataset of 308 blood and bone marrow samples from a cohort of 

255 patients and controls was derived from newly generated and published single-cell RNA 

sequencing (scRNA-seq) and single-cell T cell receptor (TCR) sequencing (scTCR-seq) datasets. 

Phenotyping, differential abundance, and TCR analysis were performed across tissues and 

clinical groups, compared with tumour-intrinsic features, and explored in the treatment and 

precursor disease settings. 
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Fig 2. Integrated scRNAseq analysis of myeloma patients, precursor conditions, and 

controls reveals a diverse T cell landscape not defined by T cell exhaustion. (A) 

Visualisation of cell type clusters by uniform manifold approximation and projection (UMAP). (B) 

Bar chart comparing cell type composition in non-cancer controls (Non, n = 102), MGUS (n = 20), 

SMM (n = 58) and MM (n = 54) patients (left) and in the peripheral blood (PB) and bone marrow 

(BM) of all controls and patient groups (Pt.; right). (C) Visualisation of T cell clusters by minimum-

distortion embedding (MDE). The expression of CD4, CD8A, and naïve and cytotoxic genes 

signatures is inset below. (D) Dot plot comparing the expression of marker genes in T cell clusters. 

(E) MDE plot showing the clonal expansion of T cell receptor (TCR) clones. (F) Dot plot comparing 

the expression of T cell exhausted-associated genes in indicated CD8+ T cell subsets. Legend as 

in (D). (G) Box and violin plots comparing T cell exhaustion signature and exhaustion-associated 

gene expression in CD8+ Tex, CD8+ Tem.CD69+ and other CD8+ clusters. For the three groups a 

random sample of n = 1,000 cells from Zheng et al. are shown. ** = P = 0.001, * = P < 0.05, NS 

= P > 0.05. (H) Pie charts comparing the proportion of CD8+ Tex and CD8+ Tem.CD69+ clusters 

from each individual. Each slice represents a unique individual. (I) Box plots comparing the 

abundance of CD8+ Tex and CD8+ Tem.CD69+ in the BM in non-cancer controls (n = 71), MGUS 

(n = 16), SMM (n = 48) and MM (n = 41) patients. Box plots represent the first and third quartiles 

around the median with error bars extending 1.5 times the IQR. P-values derived by one-way 

ANOVA followed by Tukey’s test. 
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Fig 3. Step-wise alterations to bone marrow T cell composition occur through myeloma 

disease evolution. (A) Visualisation of bone marrow (BM) T cells clusters (top) and per-cell 

density (smoothed 2D histogram of cell abundance, bottom) by minimum-distortion embedding 

(MDE) in non-cancer controls, MGUS, SMM and MM patients. For each group a sample of 20,000 

cells is shown. (B) Box plots comparing the normalised abundance of BM CD8+ Tn (left) and CD8+ 

Tte (right) in non-cancer controls (Non; n = 71), MGUS (n = 16), SMM (n = 48) and MM (n = 41) 

patients. (C) Left, Box plot comparing the degree of the BM T cell skewing (the first principal 

component (PC1), 21.9% variance) in Non (n = 67), MGUS (n = 16), SMM (n = 44) and MM (n = 

39) patients. Right, representation of the clusters with the highest (blue) and lowest (red) 

contribution (loading) to PC1. (D) Dot plot showing the significant positive correlation between T 

cell skewing and cytotoxic gene signature expression in BM T cells. (E) Forest plot showing the 

significant independent associations between T cell skewing and both disease stage and age. P-

values derived from linear regression (see Methods). (F) Dot plot showing the absolute difference 

between T cell skewing in controls and MM patients across the range of ages. Inset P-values 

indicate the significance of the association between T cell skewing and age independent of 

disease (age | disease) and disease independent of age (disease | age). P-values derived from 

linear regression. R values calculated by Pearson correlation. (G) Box plot showing exaggerated 

T cell ageing and excess T cell years (see Methods) in MGUS (n = 16), SMM (n = 44) and MM (n 

= 37) patients. Residuals values of precisely zero or less than zero (indicating T cell skewing or 

T cell years expected or less for a patient’s age) is indicated with shaded region. (H) Dot plots 

showing the significant positive correlation between T cell skewing (left) and the abundance of 

CD8+ Tte (right) in the peripheral blood (PB) and BM in Non (n = 4), SMM (n = 19) and MM (n = 

1) patients. Box plots represent the first and third quartiles around the median with error bars 

extending 1.5 times the IQR. For (B), (C) and (G) P-values calculated by one-way ANOVA 

followed by Tukey’s test. For (D) and (H) R and P-values were derived by Pearson correlation. 
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Fig 4. Features of antigen-experienced T cell receptor repertoires underpin myeloma-

associated T cell differentiation. (A) Dot plots showing the significant positive correlation 

between T cell skewing and TCR clonality (log10 1/Simpson’s diversity) of all T cells clones (left, 

SMM n = 32, MM n = 15) and CD8+ memory clones (right, SMM n = 22, MM n = 9) in the bone 

marrow (BM). (B) Box plots comparing the clonality (left) and abundance of non-expanded clones 

(right) of CD8+ memory clones in the BM of non-cancer controls (Non, n = 15), SMM (n = 19) and 

MM (n = 12) patients. (C) Network plots showing CDR3 clusters from two representative patients. 

Each node represents a TCR clone and each connected edge a co-clustering. The beta chain 

CDR3 sequence logo for the cluster indicated by an asterisk is shown below. (D) Left, Box plot 

comparing the percentage of clustered expanded TCRs in SMM (n = 19) and MM (n = 12). Right, 

dot plot showing the significant positive correlation between T cell skewing and the percentage of 

clustered expanded TCRs in MGUS (n = 1), SMM (n = 18) and MM (n = 12) patients (E) Left, Dot 

plot showing the significant positive correlation of T cell skewing and the percentage of GZMB+ 

CD8+ Tem (CD8+ Tte and CD8+ Temra) cells among clustered TCR clones. Right, minimum-

distortion embedding (MDE) showing cells from CDR3 cluster annotated with asterisk in (C) with 

colour representing different clones. (F) Left, differential expression results between T cells 

possessing TCR clones annotated as viral-reactive (see Methods) versus all other clones. 

Labelled genes constitute the non-viral signature. Corrected P-values calculated with unpaired T-

test and Holm–Bonferroni correction. Right, box and violin plot comparing the average expression 

of the non-viral signature in expanded viral and non-viral clones. (G) Dot plots showing the 

significant positive correlation between non-viral specificity signature expression and T cell 

skewing (left), the percentage of clustered TCRs among expanded TCRs (centre), and TCR 

clonality (right) in the BM of MGUS, SMM and MM patients. (H) Box plot comparing non-viral 

specificity signature expression in the BM of MGUS (n = 16), SMM (n = 45) and MM (n = 40) 

patients. Box plots represent the first and third quartiles around the median with error bars 

extending 1.5 times the IQR. For (A), (D, right), (E, left) and (G) R and P-values were calculated 
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by Pearson correlation. For (B), (D, left), (F, right) P-values derived by two-sided Wilcoxon test. 

For (H), P-values derived by one-way ANOVA followed by Tukey’s test. 
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Fig 5. Tumour-intrinsic features are associated with T cell differentiation. (A) Dot plot 

showing the significant positive correlation between serum paraprotein (g/L) and T cell skewing, 

TCR clonality (log10 1/Simpson’s diversity), and the abundance of CD8+ Temra as % T cells in 

MGUS (n = 1), SMM (n = 11) and MM (n = 13) patients. (B and C) Dot plot showing the significant 

positive correlation between serum paraprotein and the abundance of effector memory T cells 

(Tem) as % of CD8+ T cells by Cytometry by time-of-flight (CyTOF; B; SMM n = 10, MM n = 30) 

and IL7R– cells among CD8+ T cells by flow cytometry (C; MGUS n = 32, SMM n = 142). (D) Dot 

plot showing the significant positive correlation between the abundance of effector T cells (Teff) 

and bone marrow (BM) plasma cell (PC) % (left; MGUS n = 1, SMM n = 12, MM n = 9) and the 

abundance of tumour cells expressing stress-associated genes (right; MGUS n = 2, SMM n = 12, 

MM n = 18). (E) Left, dot plot representing TCR overlap between CD8+ Teff clones and other 

CD8+ T cell clusters. Ratio of observed to expected (Ro/e) and P-values derived by chi-squared 

test. Right, bar chart showing the CD8+ T cell cluster composition of clones shared with Teff. (F) 

Dot plot showing the significant positive correlation between CD8+ Temra signature expression in 

Teff cells and the % of tumour cells expressing the stress-associated pathway. (G) Network plot 

showing the ligand-receptor network of Teff and tumour cells. Shown are signalling molecules 

significantly enriched in effector T cells whose cognate signalling partners were up-regulated by 

tumour cells. Tumour genes associated with MHC, IFN- or TNF- pathways are labelled. (H) 

Left, heatmap showing the expression of MHC and antigen-presentation genes in tumour cells 

relative to non-cancer plasma cells in 16 patients. Patients were grouped into “MHC high” (n = 8) 

and “MHC low” (n = 7) based on the co-enrichment of multiple MHC genes. Right, box plot 

comparing the expression of the non-viral specificity signature in patients with high or low 

expression of MHC genes. (I) Box and violin plot comparing the expression of the non-viral 

specificity signature in TCR clones which did and did not significantly expand following T cell 

engager (TCE) therapy. Scoring was performed in pre-treatment samples from n = 3 patients. (J) 

Kaplan–Meier curve showing the impact of high (red) and low (blue) expression of the MHC and 
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stress pathways on overall survival in 598 newly diagnosed untreated multiple myeloma patients 

enrolled in the ComMMpass trial. P-value calculated with log-rank test. Box plots represent the 

first and third quartiles around the median with error bars extending 1.5 times the IQR. For (A), 

(B), (C), (D) and (F) R and P-values were calculated by Pearson correlation. For (H) and (I) P-

values derived by two-sided Wilcoxon test.  

  



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

Fig 6. T cell skewing is associated with autologous stem cell transplantation. (A) Schematic 

depicting sampling and assessment of an independent cohort of multiple myeloma patients 

treated with autologous stem cell transplant (ASCT) as frontline therapy. Samples were taken at 

diagnosis and at day 100 (D100) post-ASCT. (B) Box plots comparing beta chain TCR clonality 

(log10 1/Simpson’s diversity) in pre- (n = 10) and post-treatment (n = 19) samples of patients 

receiving ASCT. (C) Box plots comparing the abundance of clustered expanded alpha chains in 

pre- (n = 10) and post-treatment (n = 14) samples of patients treated with ASCT. (D) Alluvial plots 

showing the abundance of TCR clones which significantly increased in abundance post-treatment 

in patients receiving ASCT. Each bar represents a single TCR beta chain and is coloured by 

whether it was absent pre-treatment (Novel, not present pre-treatment) or was more frequent 

post-treatment (Expanded, present in low abundance pre-treatment). Corrected P-values 

calculated with Poisson test and Holm–Bonferroni correction. (E) Bar charts showing the pre-

treatment abundance and phenotype of TCR clones which expanded significantly post-ASCT. (F) 

Box and violin plot comparing the pre-treatment expression of the non-viral signature in TCR 

clones which did and did not expand significantly post-ASCT. (G) Dot plot showing the post-

treatment expression of selected marker genes in TCR clones which significantly expanded post-

ASCT relative to other clones. (H) Box plot comparing post-ASCT alpha chain TCR clonality in 

patients who achieved minimal residual disease (MRD) positivity (MRD+; n = 13) and negativity 

(MRD-; n = 5) at D100 post-ASCT. (I) Box plot comparing CD8+ T cell CyTOF cluster (see 

Methods) abundance in pre-treatment samples from patients who achieved MRD+ (n = 7) and 

MRD- (n = 10) at D100 post-ASCT. Box plots represent the first and third quartiles around the 

median with error bars extending 1.5 times the IQR. P-values derived by two-sided Wilcoxon test. 
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 Fig 7. CD4+ Treg loss but not T cell skewing is associated with progression from SMM to 

symptomatic disease. (A) Left, composition of precursor disease flow cytometry cohort. SMM-

prg. and SMM-non indicate SMM patients who did and did not progress, respectively. Right, 

Kaplan–Meier curve showing the frequency of progression in the precursor disease cohort. (B) 

Box plots comparing the abundance of IL7R– cells among CD8+ T cells in MGUS (n = 32), SMM-

non (n = 142) and SMM-prg. (n = 25) patients. Vertical line indicates the abundance threshold 

used in (C). (C) Kaplan–Meier curve showing the impact of high (orange) and low (grey) IL7R– % 

CD8+ on the frequency of progression in 199 precursor disease patients. Number of patients at 

risk inset below (D) Box plots comparing the abundance of CD4+ Treg in SMM and MM patients 

in scRNA-seq (SMM n = 44, MM n = 39) and CyTOF (SMM n = 10, MM n = 30) samples. (E) Box 

plots comparing the abundance of CD4+ Treg among CD4+ T cells (left) and non-tumour cells 

(right) in MGUS (n = 32), SMM-non (n = 142) and SMM-prg. (n = 25) patients. Vertical line 

indicates the abundance threshold used in (F). (F) Kaplan–Meier curve showing the impact of low 

(orange) and high (grey) CD4+ Treg abundance (% non-tumour cells) on the frequency of 

progression in 199 precursor disease patients. (G) Forest plot showing the significant relationship 

between risk of progression with the abundance of CD4+ Treg among non-tumour cells and IMWG 

or Mayo SMM risk classification. P-values calculated with two-sided Cox proportional hazard 

model without multiple testing correction are inset. CI, confidence interval. Box plots represent 

the first and third quartiles around the median with error bars extending 1.5 times the IQR. For 

(B) and (E), P-values derived by one-way ANOVA followed by Tukey’s test. For (D) P-values 

derived by two-sided Wilcoxon test. For (C) and (F) P-value calculated with log-rank test. 
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Fig 8. Summary of findings and proposed biological model. With increased disease severity, 

T cells transition from early differentiated subsets to terminal memory GZMB-expressing subsets 

with features of an antigen-experienced repertoire (collectively, termed T cell skewing). A similar 

effect occurs throughout healthy ageing, and in patients this effect is associated with serum 

paraprotein. In highly-infiltrated marrows (high BM PC %), terminal memory subsets (which are 

also found in the peripheral blood) are clonally related with effector subsets. Here, TCR specificity 

and effector cytokines (IFN- and TNF-) are involved in T cell-tumour interactions. This process 

gives rise to the accumulation of terminal memory cells associated with T cell skewing. 
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Editor’s Summary 

Multiple myeloma involves alterations to T cell function, but mechanisms underlying disease evolution remain 

unclear. Here the authors find that, unlike solid cancers, multiple myeloma lacks exhausted T cells and is instead 

characterized by antigen-driven terminal memory T cell differentiation, which may be driven by tumour-intrinsic 

features including tumour burden and antigen-presentation gene expression. 

 

Peer review information: Nature Communications thanks P. Leif Bergsagel, Arun Wiita who co-reviewed with 

Bonell Patiño-Escobar; and the other anonymous reviewer(s) for their contribution to the peer review of this work. 

A peer review file is available. 
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