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Abstract

Multiple myeloma (MM) is associated with skewed T cell activation and function which is present
in asymptomatic myeloma precursor conditions, but underlying mechanisms of progression
remain undefined. Here, we assemble a large single-cell RNA sequencing dataset of the bone

marrow and blood from patients with MM, precursor conditions, and non-cancer controls. We



demonstrate that, unlike solid cancers, MM is not characterized by T cell exhaustion, but by
antigen-driven terminal memory differentiation. This is influenced by tumour-intrinsic features
including tumour burden and expression of antigen-presentation genes. Expanded TCR clones
accumulating in MM are not enriched with viral specificities but accumulate in effector states in
highly-infiltrated marrows. Additionally, we identify a role for T cell dynamics in patients treated
with autologous stem cell transplantation and demonstrate T cell features predict progression
from precursor to symptomatic MM. Together, these results suggest that anti-tumour immunity

drives a distinctive form of cancer-associated T cell differentiation in MM.



Introduction

T cells are polyfunctional immune cells and fundamental players in anti-tumour immunity?. In solid
cancers, evidence suggests early in carcinogenesis tumour growth can be curtailed by tumour-
reactive T cells. However, persistent activation drives these cells away from functional memory
states towards a hypo-responsive state of terminal differentiation termed exhaustion'?,
characterised by the expression of immune checkpoint molecules like programmed cell death
protein 1 (PD-1), contributing to cancer progression in solid cancers. This complex interaction is
believed to shape tumours from the early precursor stages to relapsed and refractory disease?.
Understanding these insights has refined the treatment of solid tumours through the development

of immunotherapies targeting exhausted T cells®.

Multiple myeloma (MM) is a haematological malignancy of bone marrow (BM) plasma cells (PC)
that is largely incurable*, but is invariably preceded by precursor states of increased risk of
progression: monoclonal gammopathy of undetermined significance (MGUS) and smouldering
multiple myeloma (SMM)®. While not every MGUS or SMM patient will progress, virtually every
MM patient has transitioned through these stages®. Thus, there is a pressing clinical need to
understand the determinants of disease progression, so as to accurately identify individuals who
may benefit from monitoring and intervention. Current risk factors rely largely on measures of
tumour bulk®, namely the levels of plasma cell infiltration in the bone marrow (BM PC %) and
serum concentrations of paraprotein (malignant clone-derived immunoglobulin) and beta2-
microglobulin (B2m). However, the role of the BM immune microenvironment, particularly T cells,
in progression remains poorly understood. Available reports of altered immune cell function and
phenotype suggest that, like solid tumours, the progression from precursor state to frank MM is
accompanied by loss of immune control’. Understanding how MM drives alterations in T cell state

and function is complicated by the influence of patient advanced age and marrow homeostatic T



cell differentiation®®. This, together with high inter-individual immune heterogeneity, confounds

attempts to identify associations between T cells and tumour biology or progression.

To solve this, we combined newly-generated single-cell RNA sequencing (sScRNA-seq) and T-cell
receptor (TCR) sequencing (scTCR-seq) data with 12 published studies (see Methods), compiling
an atlas of over a million single cells from 255 individuals to interrogate T-cell dynamics while
controlling for natural and tumour-associated sources of inter-individual variation. We show for
the first time that the T-cell landscape in MM displays features of antigen-driven terminal memory
differentiation and highlight the features of tumour biology that drive this. We identify a role for T-
cell dynamics in the response to autologous stem cell transplantation (ASCT) and observe that
alterations in T-cells predict progression from precursor SMM to active MM. Our findings provide

a framework for understanding tumour-immune interactions in disease evolution and therapy.

Results

Effective integration of scRNA-seq datasets allows a detailed classification of immune cell
populations

To study immune differentiation through myeloma disease evolution we generated a large SCRNA-
seq map of BM (n = 240 samples, 77.6%) and peripheral blood (PB; n = 68, 22.4%) cells from
untreated MGUS (n = 23, 9%), SMM (n = 60, 25%) and MM (n = 67, 25%) patients alongside non-
cancer controls (n = 105, 41%; Fig.1; Supplementary Fig.1A and B; Supplementary Data 1).
Together, we collated 1,079,979 cells from 255 individuals with RNA and clinical data, 109 with
additional scTCR-seq data, and 1 with cellular indexing of transcriptomes and epitopes (CITE-
seq) data. Patients were on average older than controls (controls median 55 range 21-87, MGUS

median 62 range: 41-81, SMM median 62 range: 29-81, MM median 62 range: 38-77,



Supplementary Fig.1C). As expected, BM PC % and serum paraprotein levels were higher in MM

compared to SMM (PC% P = 0.001, paraprotein P < 0.05, Wilcoxon test; Supplementary Fig.1D).

Following quality control and correcting for batch effects (see Method; Supplementary Fig.2A and
B), cells were clustered to 9 major cell types and phenotyped using RNA expression, protein
expression via CITE-seq, and de novo label prediction tools (Fig.2A and B; Supplementary Fig.2C
to E). T cells (defined as CD3D*CD3E*CD3G*CD8A* or CD4* RNA and CD3* protein) comprised
roughly half (50.2%) the cells in the dataset, with another quarter occupied by similar proportions
of myeloid cells (FCN1*FCER1G*CD14*; 15%) and haematogenic progenitors
(CD34*MPO*TYMS*; 11%). The remainder of the dataset was largely comprised of equivalent
numbers of NK cells (KLRD1*FCG3RA*CD56"; 8%), B cells (CD79A*CD19*; 7.5%), and plasma

cells (MZB1*SDC1*; 6.6%).

The use of different sorting strategies across studies precluded in-depth analysis of overall
immune composition. However, plasma cells and progenitors were enriched in BM-derived
samples relative to PB (P <0.001 and P < 0.001, respectively, Wilcoxon test; Fig.2B), suggesting
a relative lack of haemodilution in BM aspirates. As expected, plasma cells were most highly
enriched in the BM of patients relative to controls (P < 0.001, Wilcoxon test). However, the global
distribution of cell types was otherwise similar in diseased and control marrows, suggesting
progression to myeloma may be associated with more granular alterations to immune

composition.

In-depth T cell phenotyping reveals diverse early and late differentiated CD4* and CD8* T cell

populations in the marrow and blood



To further probe immune perturbations in disease evolution, T cells were isolated, re-integrated
and re-clustered to 19 discrete phenotypes and transcriptional states based on expression of RNA

and protein markers (Fig.2C and D; Supplementary Fig.3A to C; Supplementary Data 2 and 3)%1°.

Naive and central memory T cells (defined by SELL and CCR7, Tn and Tcm) composed the
majority of CD4* cells (Tn 49% of CD4* T cells, Tcm: 21%), while the remainder were composed
of diverse regulatory (FOXP3* Treg, 8.4%), T helper 17 (CCR6* Thl7 7.2%), effector memory
(KLRG1*GZMK* Tem 6.1%) and Tem re-expressing CD45RA (GZMB*GNLY*CD45RA* Temra,
8.7%) states. CD8* cells were classified by differentiation stage including early differentiated Tn
(20% of CD8* T cells) and Tcm (4.6%), intermediate Tem (37%), and GZMB and GNLY-
expressing terminally differentiated terminal effector memory (Tte, 18%) and Temra (15%) states.
CD8* Tem were further sub-divided by the expression of early differentiation markers like TCF1
(TCF7; Tem.TCF7*) or S1PR1 (Tem.S1PR1*) alongside activation markers like CD69
(Tem.CD69%). The two terminally differentiated CD8* subsets were distinguished based on the
expression of specific markers like Hobit (ZNF683; T terminal effector, Tte) or NK cells genes
such as NKG2C (KLRC) and CD45RA protein (Supplementary Fig.3C; Temra) and were enriched
in senescence-associated genes (SenMayo; CD8* Tte: P = 0.03, NES=1.6; CD8* Temra: P =
0.03, NES=1.5, GSEA, Supplementary Data 4). Additionally, rare clusters of tissue resident (Trm,
5.1%) and exhausted (Tex, 0.7%) CD8* T cells were identified by the expression of ITGA1 and
PD-1 (PDCDL1), respectively. Additional T cell subsets were identified by the expression of specific
markers, including IFN-stimulated cells by ISG15, invariant subsets by CD161 (KLRB1),
proliferating T cells by MKI67, and effector T cells (Teff) by effector molecules like TNF-a. (TNF)
and IFNG alongside the enrichment of a Teff gene signature (Effector versus memory!!; P =
0.005, NES=3.5, GSEA). We also explored heterogeneity among CD4* Treg and invariant T cells

by performing additional sub-clusterings of these subsets (see Methods; Supplementary Fig.4A).



This functional annotation was consistent with patterns of TCR expansion (Fig.2E; Supplementary
Fig.3D), with clonally expanded clusters expressing late differentiation markers. The majority
(79.8%) of invariant MAIT TCRs were found in cells of invariant cluster, of which 97% were MAITs
(Supplementary Fig.4A). Our phenotypes showed high concordance with published and predicted
cluster labels (Supplementary Fig.3E), arguing for a faithful representation of T cell phenotypes

in our integrated dataset.

The marrow of myeloma patients is not enriched in exhausted T cells

Exhausted CD8* Tex were identified via high expression of PDCD1 and TIGIT, alongside other
RNA markers of exhaustion like CXCL13 and LAYN? (Fig.2, F; Supplementary Fig.3B).
Importantly, CD8* Tex were distinguished from PDCD1-expressing CD8* Tem.CD69*. While
CD8* Tem.CD69* cells did express higher levels of exhaustion markers like PDCD1 and TOX
than non-exhausted bone marrow T cells (P < 0.001 and P < 0.001, one-way ANOVA; PDCD1.:
adjusted P < 0.001, marker gene testing; Fig.2G; Supplementary Fig.3F), it was at lower levels
than CD8" Tex (P < 0.001 and P < 0.001, Wilcoxon test) and further lacked other markers of
exhaustion like LAYN and CXCL13 (Fig.2G, Supplementary Fig.3B). A dedicated sub-clustering
of CD8" Tem.CD69* did not identify a subset of these cells with features of CD8" Tex
(Supplementary Fig.3G). Therefore, despite expressing some exhaustion-associated markers at

low levels, CD8" Tem.CD69* are not phenotypically exhausted T cells.

We extended this phenotypic description by characterising the function of CD8* Tem.CD69".
CD69* and CD69- fractions of memory (CCR7-) CD8" T cells were isolated from 3 MM patient
marrows and activated cells in vitro (see Methods). After stimulation, CD69* cells possessed no
significant differences in 4-1BB and effector cytokine expression (Supplementary Fig.4C),

suggesting these cells are not functionally impaired relative to other CD8* Tem.



Interestingly, the CD8* Tex cluster was almost entirely composed of cells from a single myeloma
patient (1181 of 1222 cells, 97%; Fig.2H) who contributed the majority of exhaustion marker-
expressing cells (Supplementary Fig.3H), suggesting CD8* Tex were a donor-specific
phenomenon. Furthermore, when excluding this patient, CD8* Tex were not significantly enriched
in the BM of MGUS, SMM or MM patients relative to controls (P = 0.76, one-way ANOVA,; Fig.2l).
In contrast, CD8" Tem.CD69* cells were seen in a much higher number of patients (Fig.2H),
although, like CD8" Tex, these cells were not enriched in patients relative to controls (P = 0.86,

one-way ANOVA; Fig.2l).

We also explored the contribution of bone marrow tissue on T cell composition. Similar T cell
phenotypes were observed in the BM and PB (Supplementary Fig.4D), but the proportion of T cell
clusters differed (Supplementary Fig.4E). Notably, CD8* Tem.CD69* were enriched in the BM of
both patients and controls (P < 0.001 and P < 0.001, Supplementary Fig.4F), suggesting intrinsic

marrow biology regulates the abundance of this subset.

These data lead us to suggest that exhausted T cells are rarely seen in myeloma, with the
abundant and functional CD8* Tem.CD69* being phenotypically distinct from exhausted cells.
Neither subset was associated with disease progression, although CD8* Tem.CD69* were

enriched in the marrow in health and disease.

T cells in diseased marrow of both pre-malignant SMM and overt MM display skewed
differentiation resembling exaggerated age-related changes

We next asked how the relative abundance of T cell subsets in the BM was altered across disease
stages. BM T cell composition was strikingly similar in patients and controls (Fig.2A,;
Supplementary Fig.5A-B). Therefore, we compared the T cell composition of controls with each

myeloma disease stage in turn, statistically controlling for age. The most prominent difference in



BM T cell composition between health and disease was the loss of naive, CD4* Th1l7 and
Invariant cells and an enrichment of CD4* and CD8* Temra, CD8* Tte, and IFN-stimulated cells
(adjusted P < 0.1 for all, linear regression; Fig.3B; Supplementary Fig.5C). When removing the
one patient who contributed the majority of CD8* Tex cells (97% cells; Fig.2H), this cluster was
not enriched in MM relative to controls independent of age (P = 0.54, linear regression). As non-
cancer controls included hip replacement and deceased donors, we repeated our analysis with

only healthy donors and obtained the same results (Supplementary Fig.5D).

Low-risk MGUS possessed a T cell composition with the fewest differences from non-diseased
control marrows (Supplementary Fig.5C). Conversely, T cell composition was similar between the
higher-risk but pre-cancerous SMM and symptomatic MM (Supplementary Fig.5E). While the
normalised abundance of CD8* Tex was lower in SMM than MM independent of age (P < 0.001,
linear regression), in terms of unnormalized counts this only represented 8 MM patients with a
median of 1 CD8* Tex cells each, suggesting a lack of sufficient cell numbers to properly perform
this comparison. Next, we collated available risk data for patients in our dataset, and compared T
cell composition between international staging system (ISS) and SMM Mayo risk groups®!2
(Supplementary Fig.5F). While this analysis found no differences between risk groups, with the
exception for an increased abundance of CD4* Tem in ISS groups Il and lll, these comparisons
were limited by risk annotations and may not accurately reflect differences between these groups.
However, taken together these results suggest that smouldering and overt myeloma are

associated with similar T cell alterations independent of patient age.

To quantify global changes to T cell composition, we ran principal component analysis (PCA) on
patients’ T cell cluster abundance data. The first principal component explaining the highest
fraction of variance in T cell composition (PC1, 21.9%; Supplementary Fig.5H) described a

compositional shift from naive and early subsets towards terminal memory cytotoxic clusters



(Fig.3C and D). Therefore, we termed PC1 “T cell skewing”. T cell skewing was greatest (meaning
an enrichment of terminal memory clusters) in SMM and MM relative to controls independent of
age (P < 0.004 and P < 0.001, respectively, linear regression; Fig.3E), demonstrating this metric
captured the major alterations to T cells in myeloma. Conversely, T cell skewing was associated
with age independent of patient group (P =0.013, linear regression, R = 0.29, Pearson correlation;
Fig.3E and F; Supplementary Fig.51). Therefore, T cell skewing is a feature of both age and
disease, meaning myeloma-associated T cell differentiation directly resembles T cell alterations
seen during ageing, or, patients possess an exaggerated form of T cell ageing. Using linear
regression, we calculated the degree of exaggerated T cell ageing and excess T cell years (see
Methods) and found both trended to rise with advanced disease (MGUS versus MM P = 0.13 and
P < 0.07 respectively, one-way ANOVA; Fig.3G; Supplementary Fig.5J) suggesting this effect

scales linearly with disease severity.

PC1 values and the abundance of terminal memory subsets in the BM showed a strong correlation

with PB (Fig.3H), indicating a similarity to systemic T cell alterations seen with ageing?®.

Taken together, these data suggest SMM and MM are associated with a pattern of T cell

differentiation skewing closely resembling alterations observed during T cell ageing.

Features of antigen-specific responses underpin myeloma-associated T cell differentiation

Next, we analysed features of the TCR repertoire. Repertoire clonality was associated with T cell
skewing in patients independent of age (P < 0.001, linear regression, R = 0.68; Fig.4A). We
observed similar results when restricting analysis to CD8-expressing memory clones (P < 0.01,
linear regression, R = 0.46; Fig.4A). Both the clonality and the abundance of expanded CD8*

memory clones trended for enrichment in MM relative to controls (Fig.4B). T cell skewing and



CD8*" memory diversity did not correlate in controls (P = 0.48, linear regression; Supplementary

Fig.6A), suggesting clonal expansion may be a unique feature of T cell differentiation in myeloma.

The accumulation of TCRs possessing similar CDR3 sequences indicates responses against
common antigens. We grouped all expanded TCRs in the dataset (11,545 clones) into 279
clusters (composed of 1,014 clones, 8.8% of input; see Methods; Fig.4C; Supplementary Fig.6B
and C). To prioritise grouping TCRs recognising antigens in the same human leukocyte antigen
(HLA) background, TCR clustering was restricted within individuals. An increasingly large fraction
of the TCR repertoire was occupied by clustered clones in MM (median 8.7% range 3-35) relative
to SMM (median 3.1% range 0-11.3; P = 0.0009) and this fraction correlated with T cell skewing
(R =0.4, P =0.02, Pearson correlation; Fig.4D). T cell skewing was specifically associated with
the clustering of GZMB-expressing CD8* memory cells (R =0.47, P = < 0.01; Fig.4E), suggesting
conserved antigen-specific responses drive T cell differentiation in myeloma, specifically among

GZMB-expressing subsets.

We next explored the antigen specificity of these T cells. TCR specificity databases are mostly
composed of viral antigens, allowing us to ask if viral antigen specificities were involved in T cell
differentiation and clonality in myeloma (see Methods). In 19 SMM and MM patients BM samples
we found a median of 7 (range 2-88) putative HLA-matched viral-reactive TCRs (Supplementary
Fig.6D and E). Putative viral-reactive clones occupied a range of T cell clusters, including naive
and effector memory phenotypes. Comparing gene expression between clones with and without
putative viral specificity annotations, we found clones predicted to not be viral-specific expressed
genes characteristic of terminal memory such as GZMB, perforin (PRF1) and Hobit (ZNF683;
Fig.4F; Supplementary Data 4). We summarised the expression of these genes into a non-viral
specificity gene signature (Supplementary Data 4). Non-viral signature expression mapped to

GZMB* terminal memory clusters (Supplementary Fig.6F), correlated with T cell skewing, clonality



and repertoire clustering (Fig.4G), and was enriched in MM relative to precursor conditions
(Fig.4H). Taken together, these data show MM-associated T cell differentiation occurs alongside
alterations to the TCR repertoire resembling antigen-directed T cell immunity which are distinct

from viral-specific TCR clones.

Tumour-intrinsic features drive two clonally-related patterns of T cell differentiation

We next asked if features of tumour biology may drive T cell skewing. We examined serum
paraprotein and beta2-microglobulin (B2m) concentrations, plasma cell marrow infiltration, and
tumour cell transcriptional state (see Methods, Supplementary Fig.7). We included all patients

irrespective of disease stage.

We did not find an association between T cell skewing and tumour transcriptional state, BM PC
%, or B2m levels (Supplementary Fig.8A and B). However, we observed a positive correlation
between high serum paraprotein and enhanced T cell skewing (R = 0.43, P < 0.03, Pearson
correlation; Fig.5A), alongside the abundance of CD8* Temra (R = 0.5, P = 0.01) and high TCR
clonality (R = 0.53, P < 0.01; Fig.5A; Supplementary Fig.8C). This association was independent
of age (P < 0.05, linear regression) and exaggerated T cell ageing similarly correlated with
paraprotein (Supplementary Fig.8C). We recapitulated this finding in two additional cohorts.
Firstly, 10 SMM and 30 untreated MM patients were profiled by cytometry by time-of-flight
(CyTOF; see Methods; Supplementary Data 5, Supplementary Fig.9A) and the abundance of
CD8* Temra (CD28-CD45RA*) correlated with paraprotein (R = 0.38, P = 0.053, Pearson;
Fig.5B). Secondly, a large group of 175 precursor patients (n = 33 MGUS, n = 142 SMM) were
profiled at recruitment by flow cytometry (Supplementary Fig.9B). Using a minimal set of markers,
we approximated T cell skewing via the abundance of IL7R- (late differentiated) CD8* T cells
(Supplementary Fig.8D). In this cohort, the abundance of IL7TR-CD8* T cells significantly

correlated with paraprotein independent of age (R = 0.24, P < 0.001 Pearson correlation; P



independent of age P < 0.001 linear regression, Fig.5C). Together, this connects T cell skewing

observed in patients with serum paraprotein levels, indicating a relationship with tumour bulk.

We speculated that tumour-intrinsic features were associated with individual T cell clusters.
Analysis of T cell cluster abundance with BM PC % and transcriptional pathway activity in tumour
cells revealed effector T cells (Teff) were enriched in highly-infiltrated marrows populated by
tumour cells expressing stress-associated genes (BM PC%: R = 0.55, tumour stress: R = 0.6;
Fig.5D; Supplementary Fig.8E). Several other clusters were significantly correlated with tumour
stress, including positive and negative associations with CD8* Trm and CD4* Tem, respectively
(Supplementary Fig.8E). The expression of a smaller set of T cell effector genes (CD69, TNF,
IFNG) possessed the same correlations (BM PC%: R = 0.43, tumour stress: R = 0.79, Pearson
correlation; Supplementary Fig.8F), suggesting a T cell effector program specifically was

associated with BM PC % and tumour stress.

The co-occurrence of tumour-associated memory and effector T cells suggested a differentiation
process between these two states. We therefore asked if effector T cells were clonally related to
terminal memory subsets. Clonally expanded CD8* effector T cells were significantly enriched
among CD8* Temra (P < 0.001, chi-squared test; Fig.5E). Additionally, clonally expanded Teff
cells enriched in marrows containing stressed tumours expressed markers characteristic of CD8*
Temra (Fig.5F). Therefore, terminally differentiated memory clones accumulating in MM are
continuous with effector-like T cells in highly-infiltrated marrows, suggesting these states are

linked by a T cell differentiation pathway.

Finally, we asked if tumour genomic features were associated with T cell skewing. t(4;14) (positive
n = 6, negative n = 17) was not significantly associated with T cell skewing (P = 0.45, Wilcoxon

test) but a 1q gain (positive n = 10, negative n = 19) trended to enrich for enhanced T cell skewing



(Supplementary Fig.7G; P = 0.057, Wilcoxon test), potentially connecting this adverse prognostic

factor to T cell differentiation.

Myeloma-associated T cell differentiation possesses features of anti-tumour immunity

To identify molecular drivers of tumour-immune crosstalk, we analysed the expression of
intercellular signalling molecules in tumour-associated T cell subsets (see Methods). This analysis
identified an intercellular signalling network dominated by T cell effector molecules IFN-y and
TNF-a and antigen-presentation pathways (Fig.5G). Patients with high T cell effector cytokine
expression possessed the highest corresponding pathway activity in tumour cells (IFN-y: R = 0.3,
P < 0.05; TNF-a: R = 0.76, P < 0.001, Pearson correlation; Supplementary Fig.8G),
mechanistically linking these processes. Notably, MHC and antigen processing and presentation
genes were significantly enriched (GSEA, adjusted P < 0.1) in tumour cells for 6 of 16 (37.5%)
patients tested (Fig.5H). Interestingly, non-viral specificity signature expression was highest in
patients whose tumour cells significantly upregulated the MHC pathways (P = 0.021, Wilcoxon
test; Fig.5H), suggesting that MM-associated T cell differentiation contains a component of tumour
reactivity that was connected to tumour MHC class | expression and potentially antigen

presentation.

To explore tumour-reactivity, we utilised a recently-reported gene signature of tumour-reactive
BM T cells in MM?*2 and found significant positive correlation with our non-viral gene signature (P
< 0.001, R = 0.55 Pearson correlation; Supplementary Fig.8H). We also reasoned that if MM-
associated T cell differentiation was linked to tumour reactivity, this might be revealed in the
response to immunotherapy. We acquired additional scRNA-seq data from 3 patients who
responded to T cell engager (TCE) therapy!* and identified TCRs which significantly expanded

post-treatment (see Methods; Supplementary Fig.8l). Interestingly, T cells bearing these TCRs



highly expressed the non-viral specificity signature pre-treatment (Fig.51). Together, this suggests
this phenotype contains tumour-reactive TCR clones with the capability to respond to

immunotherapy.

Finally, we asked if T cell-associated pathway activity in tumour cells was related to outcome. In
an independent cohort of 599 MM patients, we found patients whose tumours highly expressed
either MHC or stress pathway genes had superior outcome (MHC P = 0.031 and stress P =0.014,
log-rank test; Fig.5J), suggesting that T cell differentiation dynamics associated with these

tumour-intrinsic processes may influence clinical outcomes.

Autologous stem cell transplantation enhances T cell skewing through the expansion of pre-
existing clones contributing to poor outcome

We next asked how the T cell dynamics we observed in untreated patients are altered by anti-
tumour therapy. Autologous stem cell transplantation (ASCT) is standard of care in fitter patients
with newly diagnosed MM. Work in patients and mouse models has suggested that the benefit of
ASCT relies on the augmentation of anti-tumour T cell immunity'>16, To explore this hypothesis,
we analysed bone marrow samples from newly diagnosed transplant-eligible patients who

received ASCT with deep TCR-seq, scRNA-seq and scTCR-seq (Fig.6A).

Repertoire clonality rose significantly following ASCT (P < 0.001, paired Wilcoxon; Fig.6B).
Similarly, the frequency of CDRS3 clusters among expanded TCRs rose post-ASCT (Fig.6C). We
modelled the abundance of TCRs pre- and post-treatment with a Poisson framework (see
Methods) to identify TCRs which significantly increased in abundance post-treatment (Fig.6D).
Among these clones, 29% (range 10.7-48) were present at low abundance pre-treatment. Using
pre-treatment samples found in the larger scRNA-seq dataset (Fig.2), we identified the baseline

phenotype of clones which expanded post-ASCT and found they predominantly occupied



terminally-differentiated and effector CD8* T cell clusters (Fig.6E) and highly expressed the non-
viral signature (P < 0.001, unpaired Wilcoxon; Fig.6F). In contrast, clones we annotated as viral-
reactive (see Methods) did not significantly expand post-ASCT (Corrected P > 0.05, Poisson
model). We independently performed scRNA-seq on 4 samples from patients taken post-ASCT
and found that ASCT-expanded clones post-treatment expressed terminal differentiation and Teff
genes such as GZMB and TNF (Fig.6G) and expressed significantly higher levels of the non-viral
signature (P < 0.001, mixed-effect model with patient as random effect). Together, this shows

ASCT is associated with alterations resembling antigen-driven CD8* T cell differentiation.

We next asked if the abundance of clonally expanded terminally differentiated CD8* T cells was
reflective of response to therapy. ASCT patients were followed for a median of 3.9 years (range
1-5.8) after which 12 of 19 (63%) patients relapsed. The presence of detectable residual tumour
in the marrow post-ASCT (minimal residual disease positive, MRD-positive) is associated with
earlier relapse!’. Notably, we found that post-ASCT marrow T cells from MRD-positive patients
demonstrated significantly higher TCR clonality (P = 0.035, Fig.6H). As ASCT-expanded clones
were terminally-differentiated pre-treatment (Fig.6E), we asked if T cell skewing prior to ASCT
was associated with poor outcome. We identified MM patients in our CyTOF cohort who received
ASCT and clustered CD8* T cells into phenotypes aligned with our scRNA-seq data
(Supplementary Fig.8J). The abundance of CD8* Tte and CD8* Temra in pre-treatment samples
was significantly associated with MRD-positivity (P = 0.02 and P = 0.03 respectively, unpaired
Wilcoxon test; Supplementary Fig.6l), suggesting T cell skewing at diagnosis predicts poor

outcome following ASCT.

T cell skewing is not associated with rapid SMM progression
Finally, we explored whether T cell dynamics could be used to improved SMM risk stratification.

To assess an association between T cell features and progression, 199 precursor disease



patients were followed for a median of 1.1 years (range 1-5.8) after which 25 (15%) patients
progressed to active disease (Fig.7A). As expected, we found an association between time-to-
progression and known progression-associated clinical features (BM PC %, paraprotein, FLC

ratio: P < 0001 log-rank test for all).

Firstly, we asked whether T cell skewing identified SMM patients at high risk of progression. T
cell skewing was not significantly enhanced in MM relative to SMM in either our sScRNA-seq (P =
0.53; Fig.3C) or CyTOF (P = 0.37; Supplementary Fig.10A) cohorts. Similarly, in our flow
cytometry cohort the abundance of late-differentiated IL7R-CD8* T cells was not higher in SMM
patients who subsequently progressed relative to non-progressors (P = 0.25, one-way ANOVA;
Fig.7B). As such, there was only a weak trend between IL7R-CD8* T cells and time-to-
progression (P = 0.13, log-rank test; Fig.7C). These results demonstrate that T cell skewing
presents similarly in asymptomatic SMM and active MM and, in this cohort, does not predict

progression.

Regulatory CD4* T cells loss is a biomarker to predict risk of SMM progression

To explore T cell features which might identify SMM patients at increased risk of progression, we
returned to our analysis comparing SMM and MM patients (Supplementary Fig.5E). We observed
a reduction in the abundance of CD4* Treg in MM relative to SMM in the scRNA-seq (uncorrected
P = 0.03) and CyTOF (P = 0.05) cohorts (Fig.7D). In the larger flow cytometry cohort, we found
CD4* Treg abundance was reduced in SMM patients that subsequently progressed relative to
both non-progressors and MGUS patients (Fig.7E, left; Supplementary Fig.9B; Supplementary
Fig.10B). As no individual CD4* Treg sub-cluster correlated with CD4* Treg loss (Supplementary
Fig.4A; P > 0.1 for all, Pearson correlation) we concluded this represented an overall depletion of

CD4* Treg numbers. As such, this effect was also seen in the reduction of CD4* Treg among total



(non-tumour) cells in progressing SMM patients (Fig.7E, right). Together, this suggests CD4* Treg

loss defines active myeloma relative to precursor disease.

We explored the ability of CD4* Treg loss to serve as a marker of SMM progression. We focused
on the abundance of CD4* Treg among non-tumour cells as this quantification was independent
of existing risk factors (paraprotein P = 0.64 and BM PC % P = 0.58, Pearson correlation;
Supplementary Fig.10C). MGUS and SMM patients with low CD4* Treg abundance (<0.53% non-
tumour cells) were significantly more likely to progress to MM (P = 0.016 log-rank test, hazard
ratio =2.7; Fig.7F). We obtained the same results when removing MGUS patients (n = 167 SMM,
P = 0.035 log-rank test hazard ratio = 2.4). Multivariate analysis showed CD4* Treg abundance
predicted progression independently of existing SMM risk models (Mayo P = 0.04, IMWG P =
0.08; Fig.7G). Together, this suggests that CD4* Treg loss represents a putative biomarker for

SMM risk.

Discussion

In this study, we curated a large cohort of single-cell data across 12 studies and 259 donors to
understand alterations to T cells in precursor and symptomatic MM. We enhanced our analysis
by analysing the TCR repertoire, the BM and PB, and tumour cells. This allowed us to identify the
specific features of tumour biology associated with T cell differentiation in MM, independent of
natural heterogeneity attributable to tissue and age. We describe two patterns of myeloma-
associated T cell differentiation (Fig.8): (1) terminal memory T cells with features of antigen-
specific differentiation and lacking viral-specificity accumulate in proportion to serum paraprotein
(tumour bulk); and (2) effector T cells are enriched in highly-infiltrated marrows populated by
stressed tumour cells. As these two MM-associated T cell subsets are clonally related (Fig.5E

and F), we suggest they represent the in situ differentiation of tumour-reactive clones



accumulating through disease evolution, which then circulate in the blood. Finally, we
demonstrate the relevance of T cell dynamics in newly diagnosed patients receiving ASCT and

rapidly-progressing precursor patients, identifying clinical associations with T cell functionality.

Our findings resolve conflicting reports on the presence of exhausted T cells in myeloma and a
poor history of checkpoint inhibition in this setting®2%. We show exhausted T cells are not
pervasively enriched in myeloma and are distinct from the more abundant CD8* Tem.CD69*
which match descriptions of PD-1-expressing CD8* T cells in healthy donors?%22, The presence
of these “pseudo-exhausted” cells may have led to misidentification of exhausted cells in myeloma
patients?®, especially given their enrichment in the bone marrow (Supplementary Fig.4F). Our
results align closely with a recent report showing CD8* Tex are absent in MM patient marrows?*
but are a feature of extramedullary lesions?®, with the latter report suggesting marrow-intrinsic
biology curtails exhaustion. It could be speculated that the donor-specific CD8* Tex (Fig.2H)
represents the accidental or unreported sampling of an extramedullary lesion. While not
phenotypically exhausted or functionally impaired (Supplementary Fig.4C), CD8* Tem.CD69*
may still be involved in bone marrow pathology, as cells resembling this phenotype possess
negative and positive associations with the response to TCE therapy in advanced MM and

combination therapy in SMM, respectively'426,

We show myeloma is associated with an enrichment of terminally differentiated clonal memory T
cells, extending previous reports?-?° by demonstrating an independence from age and showing
concurrent changes to the TCR repertoire and systemic T cells. These alterations are similarto T
cell immunosenescence changes seen during ageing®, implying MM patients have prematurely
aged T cell compartments (Fig.3E to G). Exaggerated T cell ageing in precursor conditions may
explain the increased risk of infections in these patients®, and impede the ability to control tumour

growth, facilitating progression. Additionally, this pattern of T cell differentiation could



mechanistically represent tumour-targeting T cell responses. Patient-derived T cells show
evidence of tumour-reactivity in myeloma!3332  specifically terminal memory CD8*
phenotypes'333, supporting our in-silico evidence that non-viral reactivity may contribute to
myeloma-associated T cell differentiation (Fig.4F and G). However, inflammation, pervasive in
the myeloma marrow34, can alternatively drive antigen-independent memory T cell

differentiation3.

We have previously reported in newly diagnosed MM patients that induction chemotherapy and
ASCT resulted in BM T cell activation and TCR repertoire clonality®¢. Here, we extend those
observations by showing ASCT-expanded clones are terminally differentiated CD8* T cells that
are detectable in this phenotype pre-treatment, indicating that pre-existing antigen-experienced T
cells expand following ASCT, consistent with previous reports in patients and mice56. However,
as clonal expansion was most prominent in patients with residual disease post-treatment (Fig.6H),
this response may not be effective in eradicating residual tumour and suggests further therapy
may be needed to augment T cell function post-ASCT. Agents that stimulate T cell function, such
as immunomodulatory drugs or CD38 monoclonal antibodies, may be required because, while
tumour-reactive T cells in SMM and MM are not phenotypically exhausted (Fig.4), they possess
hallmarks of senescent Temra differentiation, including expression of T-bet (TBX21) and ZEB22.
Furthermore, other immunosuppressive immune cells and genomic sub-clonality may also

prevent tumour-reactive T cells from mounting effective responses in myeloma.

T cell skewing presented similarly in asymptomatic SMM and overt MM (Fig.3) and progressing
and non-progressing SMM (Fig.7B-C). This suggests that SMM is an immunologically mature
entity in regard to this axis of T cell differentiation and would explain the poor ability of T cell
skewing to identify rapidly-progressing SMM patients. Furthermore, T cell skewing was more

closely associated with serum paraprotein than disease stage (Fig.5A-C). Further work is needed



to explain this association, but we note malignant immunoglobulin-derived peptides can serve as
immunogenic epitopes®’. While we were unable to comprehensively compare T cell features and
tumour genomic classification, a similar pattern of T cell skewing was previously shown to be

enhanced in hyperdiploid patients®.

Our observations indicate that CD4* Treg loss represents a T cell biomarker for rapidly-
progressing SMM patients (Fig.7D-G). While appearing at odds with earlier reports describing
immunosuppressive CD4* Treg in overt MM3%40, CD4* Treg constitute a component of the normal
haematopoietic niche*!, hence their depletion may reflect early reshaping of the BM

microenvironment towards a state favouring progression.

Our findings provide a conceptual framework for how T cells are altered during myeloma disease
evolution and highlight the importance of contextualising immune heterogeneity with tumour

biology when exploring immune biomarkers in myeloma.



Methods

Clinical sample acquisition

Bone marrow aspirates from individuals with myeloma or precursor conditions were obtained from
patients included in one of four ongoing clinical trials: (1) Defining risk in smouldering myeloma
for early detection of multiple myeloma (COSMOS), a multicentre, observational UK study in
smouldering myeloma (NCT05047107, COSMOS study UK Research Ethics Committee
reference: 270077); (2) Risk-Adapted therapy Directed According to Response (RADAR), a
randomised phrase I/l trial in newly diagnosed patients with multiple myeloma eligible for
transplant (UK  Research  Ethics = Committee  reference:  20/L0O/0238)*;  (3)
Carfilzomib/Cyclophosphamide/Dexamethasone with Maintenance Carfilzomib in Untreated
Transplant-eligible Patients with Symptomatic MM to Evaluate the Benefit of Upfront ASCT
(CARDAMON), a phase Il trial (UK Research Ethics Committee reference: 148600)*3; (4) Biology
of Myeloma, an observational study open to all plasma cell disorder patients treated at University
College London Hospitals (Research ethics committee reference: 07/Q0502/17). Bone marrow
aspirates from non-cancer controls were collected as a by-product of routine elective orthopaedic
surgery (hip or knee replacements) via the UCL/ UCLH Biobank for Studying Health and Disease
(UK Research Ethics Committee no: 272816). Material was obtained following written informed

consent in accordance with the Declaration of Helsinki.

Sample acquisition and processing

Bone marrow aspirates were collected in ethylenediamine-tetraacetic acid (EDTA, Cambridge
Bioscience, 60-00030-11) and processed within 24 hours of collection. Mononuclear cells (MNCs)
were isolated by Ficoll Paque density gradient centrifugation, using SepMate tubes (StemCell
Technologies, 85420). Freshly isolated BM MNCs were analysed for tumour infiltration (BM PC
%) by multi-parameter flow cytometry. Tumour cell marrow infiltration was determined as the

frequency of live BM MNCs cells co-expressing CD38 and CD138 (Supplementary Fig.1E). For



CyTOF experiments, MNCs were cryopreserved in 90% FBS and 10% DMSO prior to use. For

flow cytometry experiments, samples were assessed fresh immediately after acquisition.

Multi-parameter flow cytometry antibody staining, data acquisition and analysis

Single cell suspensions from freshly isolated BM mononuclear cells were resuspended in PBS,
blocked with 5% mouse and rat serum and stained with the following antibodies: CD138-PE
(1:100; MI15, BioLegend, 356504), CD38-PE-Cy7 (1:25; HB7, BioLegend, 356608), CD3-BV785
(1:100; OKT3, BioLegend, 317330), CD56-BV605 (1:100; NCAM16.2, BD Biosciences, 562780),
CD4-FITC (1:50, OKT4, BioLegend, 317408), CD8-PB (1:100, RPA-T8 BioLegend, 301033),
CD25-BV711 (1:100, M-A251, BioLegend, 356138), CD127-PECy5 (1:100, A019D5 BioLegend,
351324). Fixable Viability Stain-780 (1:250; BD Biosciences, 65-0865-14) was used for dead cell
exclusion. Samples were measured by LSRFortessa Cell Analyser (BD Biosciences) and

manually gated (Fig.9B) with FlowJo (v10, BD Biosciences).

scRNA-seq and scTCRseq sample and library preparation

For newly-generated “T cell-enriched/depleted” scRNA-seq samples T cells were enriched from
freshly isolated BM MNCs by magnetic separation using a Pan T cell Isolation Kit (Miltenyi Biotec,
130-096-535) and CD15 MicroBeads (Miltenyi Biotec, 130-046-601). After sorting, the T cell
depleted and enriched compartments were pelleted and resuspended in 0.04% BSA in PBS at
108 cells/mL and loaded onto the Chromium Controller (10X Genomics). For newly generated
‘CD8-enriched’ samples T cells were enriched using the same protocol with the addition of CD4
MicroBeads (Miltenyi Biotec, 120-000-440) and only CD8-enriched samples were loaded. This
generated a total of 47 libraries. All samples were processed using the Chromium Next GEM
Single Cell 5’ Dual Index Kit (10X Genomics, v2) following manufacturer’s protocol. T cell and
CD8-enriched samples were additionally processed using the VDJ kit (10x Genomics). The

libraries were sequenced by Illumina NovoSeq 6000. We used CellRanger v6.0.0 pipeline (10x



Genomics) to align gene expression (GEX) and V(D)J (Immune Profiling) experiments using the
GRCh38-2020-A and vdj_GRCh38_alts_ensembl-5.0.0 human reference genomes, respectively.
Across samples, a median of 6367 cells with a median proportion of 0.76 cells with productive V

J spanning TRA and TRB pairs per-sample.

Publicly available data

To assemble our large integrated dataset, scRNA-seq data from 12 published studies was
acquired and combined with newly generated data (Supplementary Data 6)1826-2844-51
Specifically, data shared through the gene expression omnibus (GEO) can be accessed for Maura
et al. under the accession GSE161195, Bailur et al. GSE163278, Oetjen et al. GSE120221,
Granja et al. GSE139369, Zavidij et al. GSE124310, Kfoury et al. GSE143791, Zheng et al.
GSE156728, Botta et al. GSE205393, and Friedrich et al. GSE216571. Data shared via dbGaP

for Sklavenitis-Pistofidis et al. can be accessed under accession phs002476.v1.pl. Data shared

online can be accessed for Stephenson et al. at covidl9cellatlas.org, Conde et al. at

tissueimmunecellatlas.org, and Liu et al. at humancellatlas.org/projects/2ad191cd-bd7a-409b-

9bd1l-e72b5e4cce8l.

Filtering, integration, clustering, and dimensionality reduction of SCRNA-seq data

scRNA-seq data were analysed using scanpy (1.8.2)%2. Gene-barcode matrices for all newly
generated and re-analysed samples were assigned unique sample-specific barcodes, merged,
and subset to high-quality cells for integration (minimum unique genes >200, minimum total
counts >500, total percentage mitochondrial chromosome-encoding transcripts <10%, total
percentage transcripts encoding haemoglobin genes HBB, HBA1 and HBA2 <20%). Cells called
as doublets by scrublet (0.2.3)% were removed. Samples with <100 high-quality cells were

removed before integration.



For integration, we utilised single-cell variational inference (scVI) from the scvi-tools package
(0.15.2)%4. A subset of 7000 highly variable genes across batches were calculated using log (x+1)
normalised gene expression with the function scanpy.pp.highly variable genes (adata,
batch_key="batch”) to identify genes with consistently high inter-cellular variation across different
batches. Specific gene groups which can vary between cells for technical (mitochondrial,
representing cell stress) or irrelevant biological (immunoglobin and TCR genes, representing
lymphocyte clonality) reasons were excluded from highly variable genes to prioritise clustering on
phenotype-defining genes. The un-normalised expression of these 7000 variable genes was
prepared for a scVI model using the function scvi.model.SCVI.setup_anndata () with sample batch
as the batch key and sample identifier and 10x chemistry as categorical covariate keys. A scVI
model was then initialised with the following non-default parameters: scvi.model.SCVI
(n_latent=30, n_layers=2, dropout_rate=0.2, gene_likelihood="nb”). These parameters (number
of variable genes, number of latent dimensions and hidden layers, dropout rate) were selected
through a parameter sweep focused on minimising batch influence on integrated latent
representation and retaining biological identity (data not shown). Minimisation of batch influence
was assessed by linear regression of latent dimensions against batch covariates as implemented

by scib (https://github.com/theislab/scib). The retention of biological identity was assessed by

analysing the separation of CD4* and CD8* T cells (the median log ratio of CD4-expressing and
CD8A-expressing cells closest to zero across clusters). This model was trained for a maximum
of 400* (20,000*x) epochs where x was the number of input cells. Integration was first performed
on all cells then repeated for just T cell clusters using 5000 highly variable genes but otherwise
identical parameters.

The latent representation of the trained scVI model was used to create a k-nearest neighbours
graph using scanpy.pp.neighbors (adata, n_neighbors=10) for subsequent graph-based
clustering using the Leiden algorithm. The size of the local neighbourhood (n_neighbors=10) and

Leiden clustering resolutions were selected for optimum granularity of biological clusters. Analysis



of the latent representation was used as input for creation of a uniform manifold approximation
and projection (UMAP, scanpy default parameters) or Minimum-Distortion Embedding using
pymde (0.1.15)%®. For visualisation of a large number of cells on either UMAP or MDE, scattermore

(1.0) was used to create dot plots.

Differential expression and pathway analysis of sScRNA-seq data

Differential expression between specified conditions was performed using scran (1.26.2) function
pairwiseTTests () between specified contrasts with batch as the blocking level for each cell to
model for batch effects. This restricts differential expression comparisons within individual
batches and pools the downstream result, meaning no inter-batch comparisons were performed
(which would incur batch effects). Marker genes were combined with supervised analysis of the
expression of known RNA and protein markers to phenotype clusters. Genes were identified as
significantly differentially expressed with a false discovery rate (FDR, Benjamini and Hochberg-
adjusted P-value) of <0.1. Pathway analysis of differentially expressed genes was performed
using fgsea (1.24.0) with gene set enrichment analysis of gene sets from BIOCARTA, KEGG and

REACTOME databases accessed via msigdbr (7.5.1; Supplementary Data 3).

Phenotyping gene expression clusters from scRNA-seq data

Cluster markers genes were calculated using log-normalised expression of all genes in a study-
aware fashion using the findMarkers function (scran) specifying test.type="wilcox” and batch as
the blocking level for each cell. Clusters characterised by expression of known stress-associated
genes (for example, JUN, FOS)% or by co-expression of marker genes for independent
phenotypes (for example, T and B cells) were removed. For T cell cluster phenotyping, clusters
lacking expression of CD3D, CD3E and CD3G or both CD4 and CD8A were removed. Cell type
prediction tools were run with default parameters: “Azimuth”

(https://azimuth.hubmapconsortium.org/) and “Celltypst” (https://www.celltypist.org/). Manually




curated T cell naive and cytotoxicity gene signatures were taken from Chu et al.5”. Gene sets
were applied to cells UCell (2.2.0)%8.

CD4* Treg sub-clusters were defined by early markers CCR7 and TCF7, suppressive molecules
CD25 (IL2RA) and CTLA4, and activation markers GITR (TNFRSF18) and OX40 (TNFRSF4;
Supplementary Fig.4A). The invariant cluster was composed of y8 T cells (gdT) (defined by
TRDV2 and TRDC) alongside KLRB1 and SLC4A10-expressing MAIT cells (Supplementary
Fig.4B). One MAIT sub-cluster was enriched in Th17 RORC and CCR6 possibly corresponding

to MAIT17 cells®®.

Differential abundance analysis of scRNA-seq data

We normalised cell type abundance following a compositional data framework®. For each
sample, cluster counts were derived and zero values replaced by a Bayesian-multiplicative
replacement strategy which preserves the ratios between non-zero clusters, implemented using
the zCompositions (1.4.0-1) function cmultRepl ()%, generating zero-imputed pseudo-counts. The
centered log-ratio (CLR) transformation was then used to transform pseudo-counts relative to the
geometric mean of all clusters in a given sample, implemented using the compositions package
(2.0-6) function clr(). The CLR transformation thus reports cell type abundance relative to the per-
sample average seeking to reduce the mutual dependency of proportional data®?.

Normalised cluster abundances were used as input for a combination of intercept-only and
additive regression models exploring the relationship between cluster abundance and different
conditions (for example, patient group, or patient group and age) as described. Selected
comparisons were also performed using a mixed-effect model with an additional random effect
term (for sample, study of origin) implemented using ImerTest (3.1-3).

For samples from Stephenson et al.*” the median age of each age range was used (for example,
52.5 was used for the 50-55 group). For the model in Fig.3E, age values were binarized to above

and below the median (62 years) but results remained significant when modelling age as a



continuous variable in both SMM (disease P < 0.001, age P =0.01, linear model) and MM (disease
P < 0.001, age P = 0.02, linear model). T cell skewing was greatest (enrichment of terminal
memory clusters) in SMM and MM relative to controls independent of age (P < 0.004 and P <
0.001, respectively, linear regression; Fig.3E). In the cases of patients with longitudinal
sampling*64°, only the first longitudinal timepoint was analysed unless otherwise specified. For
analysis of paraprotein data, only patients with IgG and IgA isotype tumours (which produce heavy
chain paraprotein molecules measurable in serum) were analysed.

The abundance of invariant and CD4* Treg sub-clusters was not significantly different between
health and disease (all comparisons P > 0.1, linear regression), except for an enrichment of y3 T

cells and CD4* Th17-like MAITs in SMM relative to controls (Supplementary Fig.5G).

Unsupervised ordination of T cell composition and calculation of exaggerated T cell ageing
Normalised T cell cluster abundance was scaled per-cluster and used as input for PCA using the
base R stats function prcomp. For the comparison of T cell skewing with the peripheral blood
(Fig.3H), we first re-scaled normalised peripheral blood T cell cluster abundance to the same
centre and range of the scaled BM T cell abundance matrix. Next, we multiplied this scaled PB
matrix by the pre-calculated BM PCA feature loadings via feature (cluster)-wise matrix
multiplication, yielding the PC1 values for the input PB matrix.

Exaggerated T cell ageing was calculated by first constructing a linear regression model
examining the relationship between PC1 and age for non-cancer controls only. The residuals of
this model (Supplementary Fig.5J) were normality distributed as assessed by Shapiro-Wilk test
(P = 0.89), Kolmogorov-Smirnov test (P = 0.97) and visually via a quantile-quantile plot
(Supplementary Fig.5K). Next, the age of cancer patients was used to predict PC1 values for
each patient in this model. The difference between predicted and real PC1 values (residuals) for
each patient was interpreted as the difference between the T cell skewing expected for each

patient’s age versus their observed T cell skewing, respectively. These residual-derived values



were termed “exaggerated T cell ageing”. A patient was considered to have exaggerated T cell
ageing if their values were greater than zero (meaning skewing was greater than expected for
their age). Similarly, “excess T cell years” were calculated as the residuals between a patient’s

real age and the age predicted from their PC1 values by a model of PC1 and age in controls.

Label transfer

We validated our phenotypes in an independent scRNA-seq dataset of BM T cells from healthy
donors (n = 3) alongside precursor disease (n = 7) and MM patients (n = 10) from Botta et al. (19).
The scANVI model from the scvi package was used for label transfer, using the Botta et al. dataset
as the query and the full T cell dataset as the reference. The query dataset underwent the same
pre-processing and gene filtering as the full T cell dataset. This processed query dataset was then
used as input for a sSCANVI model. For the input reference model of this scANVI model, the full T
cell dataset integration SCVI model was used. This scANVI model was then trained with the same
hyperparameters as this scVI model. Next, the trained scANVI model was used to predict the T
cell phenotype of unlabelled query cells based on labelled reference cells following the scArches
semi-supervised surgery pipeline®. Briefly, a k-nearest neighbours’ graph was constructed from
the joint query and reference latent space generated by the trained scANVI model. Then, based
on the abundance of labelled reference cells near unlabelled reference cells, each reference cell
was assigned a weighted prediction for each possible reference label. High confidence predicted
labels (uncertainty value >0.2) were determined to be the T cell phenotype of each query cell and
taken forward for downstream analysis. This approach made accurate predictions of cell type

identity matching the same expression profile as the larger dataset (Supplementary Fig.4G)

scTCRseq pre-processing, clonal expansion calculation, T cell subset identification and clustering
TCR paired alpha and beta clones (clonotypes) were defined by CellRanger VDJ

(raw_clonotype_id, clonotype_id) by matching shared V and J gene and nucleotide CDR3



sequences for alpha and beta TCR chains. Clonotypes were appended to single cells by matching
cell barcodes. For scTCR-seq derived from published data, we utilised published clonotype
identifiers. Clonal expansion was calculated as the abundance of cells labelled with each
clonotype identified in each sample. CD8* and CD4" clones were identified by the presence of of
>75% of a clone’s cells within CD4* or CD8" clusters (otherwise, were removed). Repertoire
clonality was calculated among each specific subset of cells (such as all T cells or CD8* memory
cells) with a minimum of 100 cells using Simpson’s diversity index®*. Clusters of TCRs with similar
sequence features were identified within a single patient’s alpha or beta chain repertoire using
terdist3 (0.2.2)% using default parameters. TCR clustering networks were constructed and
visualised using igraph (R, 1.4.2). CDR3 sequence logos were created with Logomaker

(https://logomaker.readthedocs.io/en/latest/).

For analysis of scTCR-seq from Friedrich et al.'* (Supplementary Fig.8l), clones which
significantly expanded post-treatment was identified with a Poisson framework, modelling the
abundance of each clone pre- and post-treatment as the number of events and the total number

of cells in each sample as the rate of Poisson sampling (to account for differences in sample size).

Annotation of HLA-matched viral reactivity-annotated TCR clones

HLA genotypes for 19 patients were derived using arcasHLA ¢ ran on Cellranger output bam files
(possessorted_genome_bam). All 19 patients were newly sequenced for this study and therefore
a combination of T cell-enriched/depleted and CD8-enriched (Supplementary Fig.1B) samples
were available. arcasHLA was ran on every sample for each patient. HLA genotype for class |
and class Il HLA was almost entirely identical across samples for an individual. In the rare cases
of two different samples of the same patient possessed different HLA genotypes, both predicted
genotypes were ignored.

Each donor’s repertoire was then compared against the annotated TCR reactivity database

VDJdb, IEDB and CEDAR®7-° subset to TCRs with annotated reactivity against an epitope from



a single human virus: cytomegalovirus (CMV), Epstein Bar virus (EBV), Influenza A, or severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). TCRs annotated as reactive against
more than one human virus were also removed. The viral dataset set was further subset to HLA-
matched sequences for each patient's HLA genotype. A query TCR clone was annotated as
putatively viral-reactive if at least one alpha or one beta chain CDR3 sequence perfectly matched
a CDR3 annotated against the same virus in the database, and this clone’s paired chain also
perfected matched or possessed a highly similar CDR3 sequence to the same virus in the same
HLA background. CDR3 similarity was performed as described previously™. Briefly, each TCR
chain’s CDR3 amino acid sequence was deconstructed into a series of overlapping triplets.
Pairwise similarity between two CDR3 was defined as the number of shared triplets normalized

to the number of triplets per comparison.

Analysis of tumour cell transcriptional state

To analysed tumour cell transcriptional features, we identified putative malignant clones via clonal
immunoglobulin usage. We then scored 67,656 plasma cells from 46 patients with a set of pan-
cancer transcriptional pathways (Supplementary Fig.7E, Supplementary Data 3). We additionally
identified individual genes enriched in individual patient’s tumour cells relative to normal plasma
cells (Supplementary Fig.7F, Supplementary Data 3) to identify pathways frequently upregulated

by tumour cells across multiple patients.

Identification of malignant plasma cell clones in sScCRNA-seq

Patient plasma cells were isolated from the clustering of all cells (Fig.2A) and patients with < 50
plasma cells were removed. This generated 67,656 plasma cells from 46 patients with a median
of 467 plasma cells each (range: 76—13,638). To identify tumour cells among plasma cells, we
leveraged the clonal plasma cell origin of myeloma. First, we attached the expression of all

available immunoglobin genes to each cell, after removing any gene filtering performed earlier.



Then, for each plasma cell, we identified the most highly expressed light variable (kappa or
lambda), heavy variable, and heavy constant chains. We next quantified and ranked the
abundance of every gene for each chain among an individual’'s plasma cells (Supplementary
Fig.7A). Most individuals possessed a single gene for each chain which was expressed by the
majority of plasma cells (light variable median 95% range: 31-100%, heavy constant median 96%
range: 35-100%, heavy variable median 91% range: 24-100%). The frequency of different light
and heavy variable genes among tumour cells matched previously reported frequencies in
myeloma’?, including IGHV3-30 in 3 (6.5%) and IGKV1-39 in 2 (4.3%) patients. We inferred that
clonal immunoglobulin expression corresponded to clonal plasma cells and labelled any plasma
cell expressing the most highly abundant gene for each chain in that donor as a tumour cell. This
method yielded 67,048 predicted tumour cells. Predicted tumour cells uniquely co-expressed
clonal immunoglobulin genes (Supplementary Fig.7B) and expressed genes characteristic of their
translocation subgroups (Supplementary Fig.7C)"?, suggesting they did represent malignant cells.
These cells composed the majority of plasma cells in all patients but were most abundant in MM

(Supplementary Fig.7D).

Transcriptional pathway analysis of tumour cells in scRNA-seq data

To analysis tumour cell transcriptomes, we scored tumour cells using a set of pan-cancer
transcriptional pathways” (Supplementary Data 3) using UCell. To compare the expression of
individual pathways between patients, we calculated the abundance of cancer cells highly
expressing a given pathway as the percentage of cells with expression greater than one standard

deviation above the median across all patient’s tumour cells.

Identification of novel pathways enrichmened in malignant cells
To identify novel sets of genes enriched in malignant relative to normal plasma cells, we first

isolated each the tumour cells from each patient in turn. Next, we performed differential



expression between each patient’s tumour cells only and all other plasma cells not classified as
malignant. Differential expression was only performed between cells from the same sequencing
batch. This yielded a set of malignant-enriched genes for each patient. Pathway analysis was
then performed as described. The pathways significantly enriched among malignant-associated

genes in four or more patients were identified (Supplementary Fig.7F).

Cell-cell interaction analysis
Differentially-expressed genes from T and tumour cells were screened for cognate ligand-receptor
interactions in the OmniPath database™ via OmnipathR (3.15.1). From this set of interactions, a

cell-cell interaction graph was created with igraph and visualised with ggraph (2.2.1).

Transcriptional pathway expression in CoMMpass

We analysed an association between the expression of the stress and MHC pathways
(Supplementary Data 3) with overall survival in bulk RNA sequencing samples from the
CoMMpass cohort of newly diagnosed MM patients, with RNA sequencing data processed and
normalised as described in Bauer et al. 7>. We calculated the expression of the pathway by taking
the expression of each constituent gene, scaling expression between 0 and 1, and taking the

average.

Patient outcome analysis

We assessed the predictive power of (1) transcriptional pathway expression for overall survival in
patients in the CoMMpass dataset (Fig.5J); (2) T cell subset abundance and time-to-progression
(Fig.7C and F). Covariate thresholds (such as expression level) for outcome were selected using
the maximally selected rank statistic as implemented by maxstat (0.7-25). The association
between this threshold and outcome was assessed using univariate or multivariate (as in Fig.7G)

Cox proportional hazards regression models using the “survival” (3.5-5) with default parameters.



Deep TCR sequencing

Before the RNA extractions samples were T cell enriched, by performing Pan T cell isolation
(Miltenyi Biotec), following manufacturer protocol. RNA was extracted using RaliaPrep RNA Cell
Miniprep System (Promega), following the manufacturer's instructions. RNA integrity was
assessed by TapeStation (Agilent Technologies). TCR a-chain and B-chain sequencing was
performed by utilizing whole RNA extracted from CD138-depleted cells from 19 patients with
matched pre- and post-ASCT samples, by using a quantitative experimental and computational
TCR sequencing pipeline described™. Clonality and clustering of deep TCR-seq samples was

calculated identically to scTCR-seq.

CD69* T cell subset functional assessment

Bone marrow MNCs were obtained from patients enrolled on the RADAR study via density
gradient centrifugation with Ficoll-Paque (Cytivia 17144003). Samples were then enriched for T
cells using magnetic-activated cell sorting (Pan T cell isolation kit, Miltenyi Biotec, 130-096-535)
and stained for flow-activated cell sorting with CD8-eFluor450 (1:100, SK1, Invitrogen 48-0087-
42), CD69-BV605 (1:100, FN50, Biolegend 310938), CCR7-BV785 (1:100, GO43H7, BioLegend
353229), and Fixable Viability Dye eFluor 780 (1:250, eBioscience, 65-0865-14). An aliquot of
unsorted cells was saved for staining (stim—). Cells were sorted into CD8*CCR7-CD69* and
CD8*CCR7-CD69- fractions and both were collected. Cells were then resuspended at 1x106/ml
in RPMI (Gibco 12027599) 10% FBS (Gibco 10500-064) 2mM L-Glutamine and stimulated with
25ul/ml ImmunoCult (STEMCELL, 100-0785) or 10uL/ml TransAct (Miltenyi, 120-111-160)
overnight at 37°C (5% CO;). Brefeldin A (Biolegend, 420601) was added 4 hours prior to
harvesting of cells. Cells were then harvested, washed, and extracellular antibodies stained for

30 mins in the dark at 4°C; CD57-FITC (1:100, HNK-1, Biolegend 359603), PD-1-BB700 (1:100,



EH12.1, Biolegend 566460), Fixable Viability Dye eFluor 780 (1:250, eBioscience, 65-0865-14),
CD3-BVv421 (1:100, SK7, Biolegend 344834), CD8-V500 (1:100, RPA-T8, BD Harizon, 560774),
CD69-BV605 (1:100, FN50, Biolegend 310938), CCR7-BV785 (1:100, G043H7, Biolegend
353229), and 4-1BB-PE-Dazzle (1:100, 4B4-1, Biolegend 309825). Cells were then washed,
permeabilised, and intracellular markers stained (FoxP3/Transcription Factor Staining Buffer Set,
eBioscience 00-8333-56) for 30 mins in the dark at 4°C: IFN-G-PE, (1:100, 4S.B3, Invitrogen, 12-
7319-41) and TNF-a-APC (1:100, MAb11, Biolegend, 502912). Cells were then washed, and data

acquired on NovoCyte Quanteon.

CyTOF antibody staining, data acquisition and analysis

Details on antibodies are listed in Supplementary Data 5. Conjugation of the purified antibodies
with metal reporters was performed with the MaxPar X8 and MaxPar MCP9 antibody labelling kits
(Fluidigm Sciences) according to the manufacturer's instructions. Frozen bone marrow MNCs or
the CD138-negative populations were thawed rapidly at 37°C and resuspended into pre warmed
thawing media of RPMI (Sigma-Aldrich) containing 20% FBS, 2mM EDTA (pluriSelect) and 5mg
DNase (Sigma-Aldrich). Cell suspensions were washed and filtered to form a single cell
suspension. Cells were incubated with 5mM Cell-ID Cisplatin (Fluidigm Sciences) in serum free
RPMI for 3 minutes at room temperature (rT) to identify dead cells. Cells were then washed and
incubated with human Fc block (BioLegend) for 10 minutes at rT before being barcoded using 6-
choose-3 Cadmium CD45 Live Barcoding (Fluidigm Sciences). All samples were stained in the
same batch. After live cell barcoding, the combined samples were then stained with metal-
conjugated antibodies for surface antigens for 30 minutes at rT. After staining, cells were washed
with MaxPar Cell Staining Buffer (Fluidigm Sciences, 201068) and permeabilised with MaxPar
nuclear antigen staining buffer before staining with metal-conjugated antibodies for intracellular

antigens. Cells were again washed and fixed using 1.6% paraformaldehyde. Cells were then



incubated with Cell-ID intercalator-Ir (Fluidigm Sciences) to stain all cells in MaxPar Fix and Perm
Buffer (Fluidigm Sciences, 201067) and aliquoted and frozen in cryovials. Stained samples were
thawed and washed on the day of acquisition.

Cells were acquired on the Helios mass cytometer (Fluidigm Sciences). Data from different days
were normalized by using EQ Four Element Calibration Beads (Fluidigm Sciences). Data was
debarcoded using the Fluidigm CyTOF software and patient sample fcs files run from different
days were concatenated. Before downstream analysis, initial data clean-up was carried out using
FlowJo. Live CD3* cells were exported by manual gating on Event_length, Residual, Offset, DNA
(**Yr and °2Ir), live cells (**°Ir) and CD3 expression (8%Y). Further manual CyTOF gating of T cell

phenotypes (Supplementary Fig.9A) was performed with FlowJo (v10, BD Biosciences).

CyTOF clustering

CyTOF data were analysed using a custom R pipeline using gated CD8* T cells as input. Batch
effects were normalised using the R package Cytofln (0.0.0.9000) using technical replicates
(multiple aliquots of the same sample) in each batch. Batch correction was assessed using
expression distribution and UMAP plots (not shown). Batch-corrected expression values were
arcsine-transformed and clustered using FlowSOM (2.6.0) on a 12 x 12 node self-organising map.
Clusters were assigned to phenotypes based on known CD8* T cell markers (Supplementary
Fig.8J) including CD8* Temra (CD27-CD28-GZMB*Thet*CD45RA*) and CD8* Tte (CD27-CD28~

GZMB*CD57%)

Statistical analyses

Box plots represent the first and third quartiles around the median with error bars extending 1.5
times the interquartile range (IQR). For comparison of means in box plots, P-values were

calculated by either two-sided unpaired Wilcoxon test or one-way ANOVA followed by Tukey’s



test for pairwise comparison evaluation as indicated. Correlation coefficient (R) and P-values for
correlations were calculated by Pearson correlation. In linear regression slopes, shaded regions
represent the 95% confidence interval. For hierarchal clustering on heatmaps, Euclidean distance

was used as the default distance measure.

Data Availability
The unprocessed sequencing data have been deposited in the Sequence Read Archive under

the accession PRJNA1401834 (https://www.ncbi.nlm.nih.gov/bioproject/1401834). The

processed single-cell RNA and TCR data (CellRanger outputs) have been deposited in the

Zenodo repository under the accession 13171648 (https://zenodo.org/records/13171648). The

full integrated single-cell RNA and TCR datasets and cohort information have been deposited in

the Zenodo repository under the accession 17418275 (https://zenodo.org/records/17418275). All

data are included in the Supplementary Information or available from the authors, as are unique
reagents used in this Article. The raw numbers for charts and graphs are available in the Source

Data file whenever possible.

Code Availability
The code to reproduce the analysis have been deposited on GitHub under the accession

kanefos/myeloma-singlecell.
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Fig 1. Overview of study. A dataset of 308 blood and bone marrow samples from a cohort of
255 patients and controls was derived from newly generated and published single-cell RNA
sequencing (scRNA-seq) and single-cell T cell receptor (TCR) sequencing (scTCR-seq) datasets.
Phenotyping, differential abundance, and TCR analysis were performed across tissues and
clinical groups, compared with tumour-intrinsic features, and explored in the treatment and

precursor disease settings.



Fig 2. Integrated scRNAseqg analysis of myeloma patients, precursor conditions, and
controls reveals a diverse T cell landscape not defined by T cell exhaustion. (A)
Visualisation of cell type clusters by uniform manifold approximation and projection (UMAP). (B)
Bar chart comparing cell type composition in non-cancer controls (Non, n = 102), MGUS (n = 20),
SMM (n = 58) and MM (n = 54) patients (left) and in the peripheral blood (PB) and bone marrow
(BM) of all controls and patient groups (Pt.; right). (C) Visualisation of T cell clusters by minimum-
distortion embedding (MDE). The expression of CD4, CD8A, and naive and cytotoxic genes
signatures is inset below. (D) Dot plot comparing the expression of marker genes in T cell clusters.
(E) MDE plot showing the clonal expansion of T cell receptor (TCR) clones. (F) Dot plot comparing
the expression of T cell exhausted-associated genes in indicated CD8* T cell subsets. Legend as
in (D). (G) Box and violin plots comparing T cell exhaustion signature and exhaustion-associated
gene expression in CD8* Tex, CD8* Tem.CD69* and other CD8* clusters. For the three groups a
random sample of n = 1,000 cells from Zheng et al. are shown. ** = P = 0.001, * = P < 0.05, NS
=P > 0.05. (H) Pie charts comparing the proportion of CD8* Tex and CD8* Tem.CD69* clusters
from each individual. Each slice represents a unique individual. (I) Box plots comparing the
abundance of CD8* Tex and CD8* Tem.CD69* in the BM in non-cancer controls (n = 71), MGUS
(n =16), SMM (n = 48) and MM (n = 41) patients. Box plots represent the first and third quartiles
around the median with error bars extending 1.5 times the IQR. P-values derived by one-way

ANOVA followed by Tukey’s test.



Fig 3. Step-wise alterations to bone marrow T cell composition occur through myeloma
disease evolution. (A) Visualisation of bone marrow (BM) T cells clusters (top) and per-cell
density (smoothed 2D histogram of cell abundance, bottom) by minimum-distortion embedding
(MDE) in non-cancer controls, MGUS, SMM and MM patients. For each group a sample of 20,000
cells is shown. (B) Box plots comparing the normalised abundance of BM CD8* Tn (left) and CD8*
Tte (right) in non-cancer controls (Non; n = 71), MGUS (n = 16), SMM (n = 48) and MM (n = 41)
patients. (C) Left, Box plot comparing the degree of the BM T cell skewing (the first principal
component (PC1), 21.9% variance) in Non (n = 67), MGUS (n = 16), SMM (n = 44) and MM (n =
39) patients. Right, representation of the clusters with the highest (blue) and lowest (red)
contribution (loading) to PC1. (D) Dot plot showing the significant positive correlation between T
cell skewing and cytotoxic gene signature expression in BM T cells. (E) Forest plot showing the
significant independent associations between T cell skewing and both disease stage and age. P-
values derived from linear regression (see Methods). (F) Dot plot showing the absolute difference
between T cell skewing in controls and MM patients across the range of ages. Inset P-values
indicate the significance of the association between T cell skewing and age independent of
disease (age | disease) and disease independent of age (disease | age). P-values derived from
linear regression. R values calculated by Pearson correlation. (G) Box plot showing exaggerated
T cell ageing and excess T cell years (see Methods) in MGUS (n = 16), SMM (n = 44) and MM (n
= 37) patients. Residuals values of precisely zero or less than zero (indicating T cell skewing or
T cell years expected or less for a patient’s age) is indicated with shaded region. (H) Dot plots
showing the significant positive correlation between T cell skewing (left) and the abundance of
CD8* Tte (right) in the peripheral blood (PB) and BM in Non (n = 4), SMM (n = 19) and MM (n =
1) patients. Box plots represent the first and third quartiles around the median with error bars
extending 1.5 times the IQR. For (B), (C) and (G) P-values calculated by one-way ANOVA

followed by Tukey'’s test. For (D) and (H) R and P-values were derived by Pearson correlation.



Fig 4. Features of antigen-experienced T cell receptor repertoires underpin myeloma-
associated T cell differentiation. (A) Dot plots showing the significant positive correlation
between T cell skewing and TCR clonality (logio 1/Simpson’s diversity) of all T cells clones (left,
SMM n = 32, MM n = 15) and CD8+ memory clones (right, SMM n = 22, MM n = 9) in the bone
marrow (BM). (B) Box plots comparing the clonality (left) and abundance of non-expanded clones
(right) of CD8* memory clones in the BM of non-cancer controls (Non, n = 15), SMM (n = 19) and
MM (n = 12) patients. (C) Network plots showing CDR3 clusters from two representative patients.
Each node represents a TCR clone and each connected edge a co-clustering. The beta chain
CDR3 sequence logo for the cluster indicated by an asterisk is shown below. (D) Left, Box plot
comparing the percentage of clustered expanded TCRs in SMM (n = 19) and MM (n = 12). Right,
dot plot showing the significant positive correlation between T cell skewing and the percentage of
clustered expanded TCRs in MGUS (n = 1), SMM (n = 18) and MM (n = 12) patients (E) Left, Dot
plot showing the significant positive correlation of T cell skewing and the percentage of GZMB*
CD8* Tem (CD8* Tte and CD8* Temra) cells among clustered TCR clones. Right, minimum-
distortion embedding (MDE) showing cells from CDR3 cluster annotated with asterisk in (C) with
colour representing different clones. (F) Left, differential expression results between T cells
possessing TCR clones annotated as viral-reactive (see Methods) versus all other clones.
Labelled genes constitute the non-viral signature. Corrected P-values calculated with unpaired T-
test and Holm—Bonferroni correction. Right, box and violin plot comparing the average expression
of the non-viral signature in expanded viral and non-viral clones. (G) Dot plots showing the
significant positive correlation between non-viral specificity signature expression and T cell
skewing (left), the percentage of clustered TCRs among expanded TCRs (centre), and TCR
clonality (right) in the BM of MGUS, SMM and MM patients. (H) Box plot comparing non-viral
specificity signature expression in the BM of MGUS (n = 16), SMM (n = 45) and MM (n = 40)
patients. Box plots represent the first and third quartiles around the median with error bars

extending 1.5 times the IQR. For (A), (D, right), (E, left) and (G) R and P-values were calculated



by Pearson correlation. For (B), (D, left), (F, right) P-values derived by two-sided Wilcoxon test.

For (H), P-values derived by one-way ANOVA followed by Tukey’s test.



Fig 5. Tumour-intrinsic features are associated with T cell differentiation. (A) Dot plot
showing the significant positive correlation between serum paraprotein (g/L) and T cell skewing,
TCR clonality (logio 1/Simpson’s diversity), and the abundance of CD8" Temra as % T cells in
MGUS (n=1), SMM (n = 11) and MM (n = 13) patients. (B and C) Dot plot showing the significant
positive correlation between serum paraprotein and the abundance of effector memory T cells
(Tem) as % of CD8* T cells by Cytometry by time-of-flight (CyTOF; B; SMM n = 10, MM n = 30)
and IL7R- cells among CD8* T cells by flow cytometry (C; MGUS n = 32, SMM n = 142). (D) Dot
plot showing the significant positive correlation between the abundance of effector T cells (Teff)
and bone marrow (BM) plasma cell (PC) % (left; MGUS n = 1, SMM n = 12, MM n = 9) and the
abundance of tumour cells expressing stress-associated genes (right; MGUS n =2, SMM n =12,
MM n = 18). (E) Left, dot plot representing TCR overlap between CD8* Teff clones and other
CD8* T cell clusters. Ratio of observed to expected (Ro/e) and P-values derived by chi-squared
test. Right, bar chart showing the CD8* T cell cluster composition of clones shared with Teff. (F)
Dot plot showing the significant positive correlation between CD8* Temra signature expression in
Teff cells and the % of tumour cells expressing the stress-associated pathway. (G) Network plot
showing the ligand-receptor network of Teff and tumour cells. Shown are signalling molecules
significantly enriched in effector T cells whose cognate signalling partners were up-regulated by
tumour cells. Tumour genes associated with MHC, IFN-y or TNF-a pathways are labelled. (H)
Left, heatmap showing the expression of MHC and antigen-presentation genes in tumour cells
relative to non-cancer plasma cells in 16 patients. Patients were grouped into “MHC high” (n = 8)
and “MHC low” (n = 7) based on the co-enrichment of multiple MHC genes. Right, box plot
comparing the expression of the non-viral specificity signature in patients with high or low
expression of MHC genes. (I) Box and violin plot comparing the expression of the non-viral
specificity signature in TCR clones which did and did not significantly expand following T cell
engager (TCE) therapy. Scoring was performed in pre-treatment samples from n = 3 patients. (J)

Kaplan—Meier curve showing the impact of high (red) and low (blue) expression of the MHC and



stress pathways on overall survival in 598 newly diagnosed untreated multiple myeloma patients
enrolled in the ComMMpass trial. P-value calculated with log-rank test. Box plots represent the
first and third quartiles around the median with error bars extending 1.5 times the IQR. For (A),
(B), (C), (D) and (F) R and P-values were calculated by Pearson correlation. For (H) and (I) P-

values derived by two-sided Wilcoxon test.



Fig 6. T cell skewing is associated with autologous stem cell transplantation. (A) Schematic
depicting sampling and assessment of an independent cohort of multiple myeloma patients
treated with autologous stem cell transplant (ASCT) as frontline therapy. Samples were taken at
diagnosis and at day 100 (D100) post-ASCT. (B) Box plots comparing beta chain TCR clonality
(logio 1/Simpson’s diversity) in pre- (n = 10) and post-treatment (n = 19) samples of patients
receiving ASCT. (C) Box plots comparing the abundance of clustered expanded alpha chains in
pre- (n = 10) and post-treatment (n = 14) samples of patients treated with ASCT. (D) Alluvial plots
showing the abundance of TCR clones which significantly increased in abundance post-treatment
in patients receiving ASCT. Each bar represents a single TCR beta chain and is coloured by
whether it was absent pre-treatment (Novel, not present pre-treatment) or was more frequent
post-treatment (Expanded, present in low abundance pre-treatment). Corrected P-values
calculated with Poisson test and Holm—Bonferroni correction. (E) Bar charts showing the pre-
treatment abundance and phenotype of TCR clones which expanded significantly post-ASCT. (F)
Box and violin plot comparing the pre-treatment expression of the non-viral signature in TCR
clones which did and did not expand significantly post-ASCT. (G) Dot plot showing the post-
treatment expression of selected marker genes in TCR clones which significantly expanded post-
ASCT relative to other clones. (H) Box plot comparing post-ASCT alpha chain TCR clonality in
patients who achieved minimal residual disease (MRD) positivity (MRD+; n = 13) and negativity
(MRD-; n = 5) at D100 post-ASCT. (I) Box plot comparing CD8* T cell CyTOF cluster (see
Methods) abundance in pre-treatment samples from patients who achieved MRD+ (n = 7) and
MRD- (n = 10) at D100 post-ASCT. Box plots represent the first and third quartiles around the

median with error bars extending 1.5 times the IQR. P-values derived by two-sided Wilcoxon test.



Fig 7. CD4* Treg loss but not T cell skewing is associated with progression from SMM to
symptomatic disease. (A) Left, composition of precursor disease flow cytometry cohort. SMM-
prg. and SMM-non indicate SMM patients who did and did not progress, respectively. Right,
Kaplan—Meier curve showing the frequency of progression in the precursor disease cohort. (B)
Box plots comparing the abundance of IL7R- cells among CD8* T cells in MGUS (n = 32), SMM-
non (n = 142) and SMM-prg. (n = 25) patients. Vertical line indicates the abundance threshold
used in (C). (C) Kaplan—Meier curve showing the impact of high (orange) and low (grey) IL7TR~ %
CD8* on the frequency of progression in 199 precursor disease patients. Number of patients at
risk inset below (D) Box plots comparing the abundance of CD4* Treg in SMM and MM patients
in scRNA-seq (SMM n =44, MM n = 39) and CyTOF (SMM n = 10, MM n = 30) samples. (E) Box
plots comparing the abundance of CD4* Treg among CD4* T cells (left) and non-tumour cells
(right) in MGUS (n = 32), SMM-non (n = 142) and SMM-prg. (n = 25) patients. Vertical line
indicates the abundance threshold used in (F). (F) Kaplan—Meier curve showing the impact of low
(orange) and high (grey) CD4* Treg abundance (% non-tumour cells) on the frequency of
progression in 199 precursor disease patients. (G) Forest plot showing the significant relationship
between risk of progression with the abundance of CD4* Treg among non-tumour cells and IMWG
or Mayo SMM risk classification. P-values calculated with two-sided Cox proportional hazard
model without multiple testing correction are inset. ClI, confidence interval. Box plots represent
the first and third quartiles around the median with error bars extending 1.5 times the IQR. For
(B) and (E), P-values derived by one-way ANOVA followed by Tukey’s test. For (D) P-values

derived by two-sided Wilcoxon test. For (C) and (F) P-value calculated with log-rank test.



Fig 8. Summary of findings and proposed biological model. With increased disease severity,
T cells transition from early differentiated subsets to terminal memory GZMB-expressing subsets
with features of an antigen-experienced repertoire (collectively, termed T cell skewing). A similar
effect occurs throughout healthy ageing, and in patients this effect is associated with serum
paraprotein. In highly-infiltrated marrows (high BM PC %), terminal memory subsets (which are
also found in the peripheral blood) are clonally related with effector subsets. Here, TCR specificity
and effector cytokines (IFN-y and TNF-a) are involved in T cell-tumour interactions. This process

gives rise to the accumulation of terminal memory cells associated with T cell skewing.



Editor’s Summary

Multiple myeloma involves alterations to T cell function, but mechanisms underlying disease evolution remain
unclear. Here the authors find that, unlike solid cancers, multiple myeloma lacks exhausted T cells and is instead
characterized by antigen-driven terminal memory T cell differentiation, which may be driven by tumour-intrinsic
features including tumour burden and antigen-presentation gene expression.

Peer review information: Nature Communications thanks P. Leif Bergsagel, Arun Wiita who co-reviewed with
Bonell Patifio-Escobar; and the other anonymous reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.
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