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Abstract 

Accurately predicting disease progression remains a major challenge in Alzheimer’s 

disease (AD). Here we show that a biomarker-integrated prognostic staging system can stratify 

progression risk across the disease course by jointly incorporating cognitive status, established 

risk factors, plasma biomarkers, and neuroimaging measures. In the K-ROAD cohort (N = 

1,263), the dominant prognostic contributors varied by clinical context—GFAP in cognitively 

unimpaired individuals, hippocampal volume in mild cognitive impairment, and age in 

dementia—while plasma phosphorylated tau-217 provided consistent secondary prognostic 

information across stages. Outcome-specific staging captured clinically meaningful gradients of 

progression risk and informed construction of a unified six-stage framework (Stage 0–IVB) with 

distinct inflection points of accelerated decline. External validation in the ADNI cohort (N = 

290) demonstrated consistent patterns of worsening prognosis, particularly in early and 

intermediate stages. This system provides a clinically interpretable approach to risk stratification 

and may serve as an exploratory framework for biomarker-integrated prognostic stratification in 

AD. 
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Introduction 

Alzheimer’s disease (AD) has a multifactorial etiology, with advanced age as the 

strongest risk factor, while genetic predisposition (apolipoprotein [APOE] ε4 carrier status) and 

female sex also significantly increase susceptibility1,2. These risk factors may influence not only 

the likelihood of developing AD but also the rate of clinical progression3,4. Clinically, AD is 

characterized along a continuum of cognitive stages ranging from cognitively unimpaired (CU) 

to mild cognitive impairment (MCI) and ultimately dementia5. Importantly, the rate of 

progression along this continuum can vary according to the specific cognitive status6 and 

underlying risk profile7-12. 

Neuropathologically, AD features amyloid-β (Aβ) plaques, tau tangles, and 

neurodegeneration such as hippocampal atrophy13. These define the A/T/N 

(amyloid/tau/neurodegeneration) biomarker framework, but the cost and invasiveness of these 

methods drive the need for scalable plasma biomarkers14. To overcome these limitations, 

substantial efforts have been devoted to developing blood-based biomarkers that can capture 

A/T/N categories15-17. Core plasma biomarkers include Aβ42/40 ratio and phosphorylated tau 

species such as pTau181, pTau217 and pTau231, while non-specific markers—such as glial 

fibrillary acidic protein (GFAP) and neurofilament light chain (NfL)—reflect astrocytic 

activation/inflammation and axonal injury/neurodegeneration, respectively14. These plasma 

biomarkers have shown high concordance with their PET or MRI counterparts and have 

demonstrated utility not only for diagnosing AD but also for predicting prognosis, including rates 

of cognitive decline and progression across the disease continuum18-20. Among them, pTau217 

stands out for its exceptional performance in detecting both amyloid and tau pathology18,21,22. In 

this study, preclinical AD was operationally defined as Aβ+ CU individuals, consistent with 
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current secondary prevention trials23. Plasma pTau217 was used as an indirect correlate of tau 

pathology rather than a direct measurement18; therefore, the proposed framework does not 

constitute a biological staging system based on combined amyloid and tau positivity. 

To date, most studies have focused on identifying prognostic factors within individual 

cognitive stages of AD. However, as clinical trials and therapeutic options continue to advance, 

there is a growing need for a unified prognostic framework to provide stage-consistent and 

biologically informed risk stratification across the disease continuum24,25. Such a system would 

enable more consistent communication about prognosis, harmonized interpretation of biomarker 

profiles, and standardized comparison of disease trajectories across studies26. 

In this work, we develop and externally validate a prognostic staging system for AD, 

integrating traditional cognitive status with risk factors and multiple plasma and imaging markers 

to stratify dementia progression risk. To achieve this, we first identify prognostic subgroups 

using survival prediction modeling within each cognitive status, then develop outcome-specific 

stages by merging similar-risk subgroups for each of dementia progression outcomes, and finally 

integrate them into a comprehensive staging framework across the Alzheimer's spectrum. 

 

Results 

Demographics of study participants 

The study included 1,263 participants from the Korea-Registries to Overcome 

dementia and Accelerate Dementia research (K-ROAD) cohort, comprising 224 CU individuals, 

779 with MCI, and 260 with dementia. As detailed in Table 1, mean ± standard deviation (SD) 

of age was 71.8 ± 8.1 years, with female participants constituting 62.5%. Aβ PET positivity 

demonstrated incremental elevation across initial cognitive status (36.2%, 59.8%, and 84.2%, 
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respectively). Longitudinal CDR-SB scores were obtained with a median of 2 assessments per 

participant (interquartile range [IQR] 2–3) over a median follow-up duration of 2.1 years (95% 

confidence interval [CI] 2.0 to 2.2). Clinically meaningful decline was defined using clinical 

dementia rating sum of boxes (CDR-SB) thresholds: ≥ 3 for very mild dementia, ≥ 4.5 for mild 

dementia, and ≥ 9.5 for moderate dementia.  

 

Phase 1. Identifying prognostic risk subgroups through survival prediction modeling 

Participants were classified into prognostic subgroups within each baseline cognitive 

status (CU, MCI, and dementia), with adjacent categories merged based on clinical and statistical 

validation (Fig. 1a). This resulted in 2 subgroups for CU, 3 for MCI, and 2 for dementia, totaling 

7 refined subgroups (Fig. 2). In CU, participants were grouped by GFAP and pTau217: C1 

(GFAP ≤ 195 pg/ml and pTau217 ≤ 0.62 pg/ml) and C2 (GFAP ≤ 195 pg/ml and pTau217 > 

0.62 pg/ml or GFAP > 195 pg/ml) (Fig. 2a). In MCI, hippocampal volume (HV) and pTau217 

were the main discriminators: M1 (HV > 2815 mm3 and pTau217 ≤ 0.68 pg/ml), M2 (HV > 

2815 mm3 with pTau217 > 0.68 pg/ml or HV ≤ 2815 mm3 with GFAP ≤ 122 pg/ml), and M3 

(HV ≤ 2815 mm3 with GFAP > 122 pg/ml) (Fig. 2b). In dementia, subgroups were defined by 

age and pTau217: D1 (> 60 years with pTau217 ≤ 1.1 pg/ml) and D2 (> 60 years with pTau217 

> 1.1 pg/ml or ≤ 60 years regardless of pTau217) (Fig. 2c). Adjusted survival curves showed 

significant differences in progression risk across subgroups for CU (P = 0.011), MCI (P < 0.001), 

and dementia (P < 0.001), with incidence rates and 3-year cumulative incidences supporting 

discriminative validity (Supplementary Table 1). 

 

Phase 2 – Developing unified prognostic staging across the Alzheimer’s disease continuum 
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Prognostic subgroups from Phase 1 were used to generate outcome-specific stages for 

each of three progression outcomes (Fig. 1a): very mild dementia (N = 923), mild dementia (N = 

1,120), and moderate dementia (N = 1,263). These outcome-specific stages were integrated into 

a six-stage unified prognostic system (Stage 0–IVB) reflecting increasing dementia severity (Fig. 

3). Detailed procedures to develop a unified prognostic staging system is presented in 

Supplementary Method 3. 

Adjusted survival curves confirmed effective separation between stages (Fig. 4a), and 

pairwise comparisons demonstrated significant differences in progression risk between all 

adjacent stages (all P < 0.05) (Fig. 4b). Notably, early to intermediate stages (Stage 0–III) were 

primarily distinguished by very mild and mild dementia outcomes, whereas advanced stages 

(Stage IVA–IVB) were driven by moderate dementia outcomes. Higher stages were consistently 

associated with increasing CDR-SB and decreasing MMSE scores (both P < 0.001) (Fig. 4c). 

Marked inflection points in incidence rates and 3-year cumulative incidence were observed at 

Stage 0→I, Stage I→II, Stage II→III, and Stage III→IVA (Table 2), highlighting clinically 

meaningful thresholds for prognosis and intervention. For clarity, we emphasize these key 

transitions, particularly between mid-level stages, as they represent sharp increases in 

progression risk and may serve as optimal points for clinical decision-making. 

 

External validation of the unified staging system using the ADNI cohort  

For external validation, we utilized an independent cohort from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI), comprising 290 participants (160 CU, 118 MCI, and 

12 dementia) with a median follow-up of 5.5 years (95% CI 5.1 to 6.0 years) (Table 1). Adjusted 

survival curves showed consistent patterns of worsening prognosis across stages for very mild 
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and mild dementia outcomes, although moderate dementia differentiation was less distinct due to 

limited event occurrences in lower stages (Fig. 5a, 5b). Also, stages III, IVA, and IVB were 

excluded from analysis due to small sample sizes (N ≤ 10 each). Cognitive trajectories indicated 

progressive worsening, with increasing CDR-SB and decreasing MMSE scores at higher stages, 

aligning with severity escalation (Fig. 5c). Similar patterns were confirmed by 3-year cumulative 

incidence and incidence rates (Supplementary Table 2). 

 

Discussion 

In this study, we developed a proof-of-concept prognostic staging framework for AD 

that integrates cognitive status, traditional risk factors, plasma biomarkers, and neuroimaging 

markers to stratify progression risk across the disease continuum. Unlike prior studies that 

identified prognostic factors within each cognitive stage independently, our approach unifies CU, 

MCI, and dementia into a single continuous framework, enabling stage-consistent interpretation 

of prognosis and transitions over time. 

Our first major finding was that primary prognostic discriminators varied across 

cognitive stages (CU, MCI, and dementia), reflecting the evolving pathophysiology of AD. 

Specifically, the primary discriminators were non-specific markers rather than core AD 

biomarkers: CU – GFAP, representing neuroinflammation; MCI – hippocampal atrophy, 

representing neurodegeneration. In CU, the prominence of GFAP aligns with prior studies 

showing that it predicts future tau accumulation and cognitive decline27,28, likely reflecting early 

astrocytic responses to amyloid pathology13. In MCI, hippocampal atrophy has consistently been 

shown to predict progression to dementia, particularly in the prodromal phase, reinforcing its 

central prognostic role during this transitional stage29,30. In dementia, younger age emerged as the 
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strongest predictor of faster progression3, a pattern consistent with extensive evidence that early-

onset AD follows a more aggressive clinical course. Individuals with early-onset AD typically 

show markedly higher amyloid positivity rates31, greater tau burden on PET32, and more severe 

and widespread cortical atrophy 33compared with late-onset AD. These biological differences—

rather than chronological age itself—likely account for the accelerated progression observed in 

younger patients34,35.  

Across all stages, plasma pTau217 consistently served as a secondary discriminator, 

reinforcing its relevance as a dynamic biomarker that tracks both amyloid- and tau-related 

processes.18,36,37 Indeed, plasma pTau217 has demonstrated independent associations with both 

amyloid and tau pathology.18,38 Notably, our recent work 39demonstrated that pTau217 predicts 

both Aβ (AUC 0.96) and tau (AUC 0.90) PET positivity and distinguishes longitudinal cognitive 

decline across plasma-defined AT profiles, underscoring its utility for prognostic stratification 

even without tau PET. However, GFAP and NfL are not disease-specific, and even pTau217 

partly reflects non–AD processes—including ageing40, cerebrovascular burden41, and other 

neurodegenerative conditions—so these markers should be interpreted as indicators of broader 

neural vulnerability rather than AD-specific pathology. 

Our second major finding was that outcome-specific prognostic staging revealed 

complementary patterns of progression. Early-to-intermediate stages (0–III) were primarily 

separated by very mild and mild dementia outcomes, while later stages (IVA–IVB) were 

distinguished by moderate dementia outcomes. This hierarchical organization enabled us to 

preserve unique prognostic information from each outcome domain before integrating them into 

a unified system. Unlike biological staging frameworks such as A/T/N24, our model does not 

incorporate regional tau PET or quantitative pathological burden and therefore should not be 
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viewed as a biological classification system. Instead, it is an outcome-driven, prognostic 

framework built from T1 biomarkers, non-specific plasma markers, and known clinical risk 

factors—intended to complement, not replace, biological staging approaches. Because T2 

biomarkers such as tau PET are not yet widely available in routine research or clinical settings, 

the present framework necessarily emphasizes prognostic rather than biological classification. 

Within each cognitive stage, individuals exhibited substantial heterogeneity in progression 

risk7,8,12,42, and this variability was captured by the combined contribution of plasma biomarkers, 

neurodegeneration measures, and clinical risk factors. 

Our final major finding was that the unified six-stage system (0–IVB) produced clear, 

stepwise gradients in functional and cognitive decline and identified reproducible inflection 

points at which clinical worsening accelerated. These thresholds may facilitate standardized 

prognostic communication and research-level stratification across the AD continuum. However, 

this framework is not designed for therapeutic decision-making. In particular, eligibility for 

monoclonal antibody therapy requires confirmed amyloid positivity and treatment-response 

biomarkers43—elements that the present system does not assess. Therefore, this model should be 

used strictly for prognostic stratification rather than for guiding treatment selection. 

External validation using the ADNI cohort supported stage-dependent prognostic 

patterns, particularly for early and intermediate stages. However, only 290 of the 378 eligible 

participants could be analyzed because complete plasma pTau217, GFAP, hippocampal volume, 

Aβ PET, and longitudinal CDR data were required for consistent modeling. This resulted in a 

biomarker-enriched subset that underrepresented advanced dementia and limited evaluation of 

later-stage performance. Broader validation using population-based and clinically heterogeneous 

cohorts will therefore be necessary to establish generalizability.  
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The strengths of our study include a relatively large sample size with well-balanced 

representation across the Alzheimer’s continuum. However, several limitations should be 

considered. First, although the K-ROAD cohort used a hybrid recruitment strategy from both 

memory clinics and community dementia prevention centers, it nonetheless represents a 

selectively ascertained research sample rather than a fully population-based or memory-clinic 

cohort. Although individuals with extensive cerebrovascular disease were excluded, only limited 

vascular and genetic variables (age, hypertension, diabetes mellitus, APOE ε4 carrier status, and 

education) were included, and detailed vascular imaging markers or social determinants of health 

were not available—factors that may contribute to mixed pathology. Second, the dataset did not 

include systematic measurements of modifiable lifestyle risk factors (e.g., diet, physical activity, 

sleep, cardiovascular behaviors)44, precluding evaluation of lifestyle-related predictors 

commonly observed in population-based cohorts. Because such assessments are required to 

model prevention in cognitively unimpaired individuals, the present framework should not be 

interpreted as a prevention model. Third, the cohort did not include individuals with atypical AD 

presentations, who may follow distinct clinical trajectories; future studies should examine 

whether this framework generalizes across phenotypic heterogeneity45. Finally, longitudinal 

follow-up will be required to determine whether the staging system reliably predicts long-term 

clinical trajectories. Despite these limitations, this study proposes a unified, biomarker-informed 

prognostic framework that captures heterogeneous progression patterns across the AD continuum 

and provides a structured foundation for future prognostic research, particularly as multimodal 

biomarkers, tau PET, and population-based datasets become increasingly available. 

In conclusion, this study introduces a stage-spanning prognostic structure that leverages 

cognitive status, established risk factors, and scalable biomarker modalities to delineate 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

progression risk across the Alzheimer’s continuum. Rather than functioning as a biological 

staging tool, the framework provides a pragmatic foundation for future work aimed at refining 

individualized prognosis—particularly as broader tau biomarkers, multimodal datasets, and 

population-based cohorts become more widely available. 

 

Methods 

For the K-ROAD cohort, the study was approved by the institutional review board of 

Samsung Medical Center (No. 2021-02-135). All participants provided informed consent, and the 

study was conducted in accordance with the Declaration of Helsinki. The ADNI study was also 

approved by the institutional review boards of all participating sites, and written informed 

consent was obtained from all participants. All data were handled in accordance with relevant 

data protection and privacy regulations. 

 

Participants selection 

We included 1,416 participants with CU, MCI and dementia from K-ROAD project, all 

of whom had available data on baseline demographics including comorbidities, plasma and 

imaging markers, and longitudinal CDR-SB assessments. The K-ROAD project is a nationwide 

initiative involving 25 university-affiliated hospitals across South Korea46. Recruitment was 

conducted both through memory disorder clinics and government-commissioned community 

dementia prevention centers, resulting in a hybrid cohort.  However, we emphasize that this 

hybrid structure does not make the cohort representative of either the general population or a 

typical memory clinic population, as participants were selectively enrolled based on research-

appropriate clinical evaluations and biomarker availability. Inclusion and exclusion criteria for 
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this study have been described in detail elsewhere18. In summary, CU participants met the 

following conditions: (1) no major medical or psychiatric illness that could affect cognitive 

function, and (2) no objective cognitive impairment in any cognitive domain47,48. MCI 

participants met: (1) subjective cognitive complaints reported by the participants or caregiver; (2) 

objective cognitive impairment in one or more cognitive domains (defined as performance below 

-1.0 SD in memory and/or -1.5 SD in other domains, based on age- and education-adjusted 

norms); and (3) preserved instrumental activities of daily living49. Dementia participants fulfilled 

the National Institute on Aging - Alzheimer's Association (NIA-AA) core clinical criteria for 

probable AD dementia50. Notably, baseline cognitive classifications (CU, MCI, and dementia) 

were determined independently of both CDR-SB and biomarker data (e.g., Aβ  PET or plasma 

biomarkers), based solely on standard diagnostic procedures including neuropsychological 

testing, structured interviews, and functional assessments. As a result, each group may include 

individuals with or without biomarker positivity. The comprehensive participant selection flow is 

detailed in Supplementary Fig. 1. 

 

Plasma biomarkers measurement 

Plasma Aβ40, Aβ42, GFAP, and NfL concentrations were measured using the 

commercial Neurology 4-Plex E kit (Quanterix, Billerica, MA, USA). Plasma pTau181 and 

pTau231 concentrations were measured using in-house Simoa assays developed at the University 

of Gothenburg, and pTau217 concentration was measured using the commercial ALZpath 

pTau217 assay kit. All samples were analyzed in a single run with one batch of reagents, and the 

intra-assay coefficient of variation was below 10%. All measurements were performed by 

analysts blinded to clinical data. 
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Brain MRI and hippocampal volume measurement 

Three-dimensional T1-weighted turbo field echo imaging was performed for all 

participants, with a sagittal slice thickness of 1.0 mm and 50% overlap. As previously described, 

hippocampal volume was quantified using an automated segmentation method that combines a 

graph cut algorithm with atlas-based segmentation and morphological opening51.  

 

Aβ PET acquisition and quantification 

 Aβ PET scans were performed using either 18F-Florbetaben (FBB) or 18F-Flutemetamol 

(FMM), following each manufacturer's standardized imaging protocols. Aβ PET binding was 

quantified using the regional direct comparison centiloid (rdcCL) method, with the whole 

cerebellum as a reference region52. This method allows harmonization of FBB and FMM tracers 

without requiring 11C-labelled Pittsburgh compound B images. Aβ PET positivity was defined 

using a global MRI-based rdcCL threshold of 25.5, derived via Gaussian mixture modeling39. All 

imaging data were processed at the Samsung Medical Center laboratory, which served as the 

core center. The median time interval between plasma sampling and Aβ PET imaging was 4 days 

(IQR 0 to 69 days). 

 

Physical comorbidities 

Information on vascular risk factors, including hypertension and diabetes mellitus, was 

obtained from self-reported medical history or from records of current use of antihypertensive or 

antidiabetic medications. 

 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

Longitudinal cognitive assessments 

The CDR-SB score is a measure of cognition and function, obtained by interviewing 

both patient and care partner. Its longitudinal assessments (i.e., CDR-SB profile) are used to 

track dementia progression over time. In this study, baseline CDR-SB was defined as the first 

assessment conducted within ±1 years of either blood sampling or Aβ PET imaging. All 

participants had at least two CDR-SB assessments with a minimum interval of 3 months between 

visits.  

Three survival outcomes of dementia progression were defined using CDR-SB cutoffs of  

≥ 3.0 (very mild dementia), ≥ 4.5 (mild dementia), and ≥ 9.5 (moderate dementia), supported 

by both prior literature53-55 and validation within our cohort. Staging based on CDR-SB cutoffs 

of 0.5, 4.5, and 9.5 showed high concordance with global CDR scores (Cohen’s κ = 0.923 [95% 

CI, 0.910–0.936]; Supplementary Fig. 2). To refine early-stage classification, we compared 

individuals with CDR-SB scores of 0.5–2.5 versus 3.0–4.0. The two groups showed differences 

in baseline MMSE, plasma biomarker levels, and Aβ PET positivity (Supplementary Fig. 3a). 

They also exhibited distinct longitudinal MMSE trajectories with least squares mean plot using 

generalized estimating equation model (Supplementary Fig. 3b), supporting the use of 3.0 as 

the cutoff for very mild dementia.  

For each dementia progression outcome, the time-to-progression was defined as the 

interval from the baseline date to the first visit when CDR-SB exceeded the corresponding 

cutoff. Participants with CDR-SB above the cutoff at the baseline were excluded from the 

analysis of that outcome. 

 

Development process of a unified prognostic staging system  
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Phase 1. Identifying prognostic risk subgroups through survival prediction modeling 

In Phase 1, the entire cohort was divided into three sub-cohorts by initial cognitive status 

(CU, MCI, and dementia) (Fig. 1a). Stratification within each sub-cohort was conducted 

independently by developing a survival prediction model for the corresponding dementia 

progression outcome: very mild dementia for CU, mild dementia for MCI, and moderate 

dementia for dementia.  Candidate prognostic features included risk factors such as age, sex, 

education year, APOE ε4 carrier status, the presence of hypertension and diabetes mellitus, 

plasma biomarkers such as Aβ42/40 ratio, pTau181, pTau217, pTau231, GFAP, and NfL, and 

imaging markers including Aβ PET positivity and MRI hippocampal volume.  

Random survival forest (RSF) was utilized to identify prognostically similar subgroups 

within each cognitive status based on survival outcomes of dementia progression 56 (Fig. 1b). 

Modifications on RSF were made to select optimal prognostic features with their robust cutoff 

points. Firstly, the tree structure was restricted to a maximum depth of one (i.e., performing only 

a single split of each parent node). An optimal cutoff point was determined to enable bifurcation 

based on a numeric feature. For each node, we generated 1,000 bootstrap samples to create 1,000 

single-split trees, each of which was represented by a best-splitting feature with its optimal cutoff 

point. The optimal prognostic feature was selected as the most frequently chosen feature across 

all single-split trees. When the selected feature was numeric, we employed weighted averaging 

of all identified cutoff points to determine the robust cutoff point. Among all unique values of 

the identified cutoff points, we chose the 5 or 10 most frequently identified values and averaged 

them. Following binary partitioning of a parent node, this algorithmic process was applied 

recursively to each resultant child node. The stopping rule for tree expansion was established by 

limiting the numbers of events and participants within a candidate parent node, so that a node 
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cannot be split if it has less than the specified numbers. The cumulative hazard function served 

as the risk score of RSF56, and log-rank splitting57,58 or global non-quantile Brier score splitting59 

were employed for splitting rule. Detailed process was described in Supplementary method 2, 

and modified RSF was applied only in Phase I. 

 

Phase 2. Developing a unified prognostic staging system  

The second phase employed a three-step process to develop a unified prognostic staging 

system (Fig. 1a). Initially, outcome-specific staging was developed by merging prognostic risk 

subgroups with similar risk of each dementia progression based on clinical evaluation: visually 

overlapped adjusted survival curves with non-significant differences in pairwise comparison, and 

similar incidence metrics. Prognostic risk subgroups remained separate if their curves were 

visually distinct and incidence metrics were notably differed, even without statistical 

significance. In the second step, we integrated these outcome-specific categorizations into a 

unified prognostic staging system encompassing dementia progression and cognitive status 

information. Specifically, early stages were derived by focusing on the very mild dementia-

specific categorization; intermediate stages were formed by considering the mild dementia-

specific categorization; and advanced stages were created based on the moderate dementia-

specific categorization. In the final step, the recombined stages were labelled from stage 0 to 

stage IV, with each progressive stage representing increasing disease severity. Adjacent stages 

with overlapping 95% CI for three-year cumulative incidence or incidence rates were assigned to 

the same primary stage, with further refinement into subcategories (A or B) within primary 

stages. Supplementary method 3 illustrates the detailed process for developing the unified 

prognostic staging system. 
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The unified prognostic stages were clinically validated by comparing survival curves for 

dementia progression outcomes, and longitudinal cognitive trajectories for CDR-SB and MMSE 

with adjustment for age, sex, education, and apolipoprotein E (APOE) ε4 status.  

 

External validation with ADNI dataset 

The unified staging system underwent external validation using ADNI dataset, with 

detailed procedures described in the Supplementary method 1. A total of 290 ADNI 

participants with available plasma pTau217, GFAP, hippocampal volume on MRI, and 

longitudinal CDR-SB data were included to match the derivation criteria and minimize selection 

bias. After applying the proposed staging criteria to classify ADNI participants, we assessed 

whether three-year cumulative incidence and incidence rates demonstrated clear differentiation 

between adjacent stages in this independent cohort. Similarly, adjusted survival curves were 

generated and pairwise comparisons using multivariable Cox proportional hazard regression 

models were conducted to evaluate stage differentiation. Finally, the cognitive trajectory 

according to follow-up duration was also assessed whether the magnitude and progression rate of 

cognitive impairment differed between stages in this validation cohort, thereby confirming the 

generalizability of the staging system. 

 

Statistical methods  

Descriptive statistics were calculated for each cohort and proposed staging category, 

with continuous variables presented as mean (SD) and categorical variables as frequencies 

(proportion). Median follow-up duration with corresponding 95% CIs was determined using the 

reverse Kaplan-Meier method60. 
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All proposed subgroups, categories and the unified staging system were evaluated 

through multiple measures. Incidence rates of dementia per 100 person-years with exact Poisson 

95% CIs were calculated61, along with three-year cumulative incidence of dementia with 95% 

CIs (derived as one minus the Kaplan-Meier estimated survival probability at three years)62. We 

assessed whether incidence rates and three-year cumulative incidence demonstrated sufficient 

discrimination between adjacent stages. Adjusted survival curves were drawn using inverse 

probability weights to evaluate potential overlap in dementia progression between stages63. 

These adjusted survival curves for all groups were compared using a log-rank test corrected for 

weighting to check whether all proposed categories have the same curves about probability of 

non-dementia across follow-up time64. Additionally, all pairwise comparisons were conducted 

using multivariable Cox proportional hazards regression models. The P values for all pairwise 

comparisons were adjusted using the Benjamini-Hochberg procedure to account for multiplicity, 

thereby controlling the false discovery rate65. Firth’s bias correction was adopted when some 

groups or categories contain very small number of events66. The longitudinal trajectories were 

estimated using least squares mean plot derived from generalized estimating equations67,68. Age, 

sex, the period of education, and APOE ε4 carrier status were considered as the covariates for 

adjustment.  

Statistical significance was defined as two-sided P values less than 0.05. All statistical 

analyses and RSF modeling were conducted with SAS version 9.4 (SAS Institute, Cary, NC, 

USA) and R version 4.4.1 (The R Foundation, www.R-project.org).  

 

Statistics & Reproducibility 
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Sample sizes were determined by the availability of eligible participants in the K-ROAD 

and ADNI cohorts, with predefined exclusion criteria applied to ensure adequate longitudinal 

follow-up and suitability for survival analyses. This study was observational study and did not 

involve randomization. Plasma biomarker analyses were conducted by investigators blinded to 

clinical and imaging data.  
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Data availability  

 The data supporting the findings of this study include plasma biomarker data, brain 

MRI, and PET imaging data from the K-ROAD cohort, as well as imaging and clinical data from 

the ADNI cohort. These datasets contain sensitive human participant information, which carry a 

potential risk of participant re-identification. Due to ethical restrictions imposed by the 

institutional review boards and the informed consent provided by study participants, the K-

ROAD data cannot be made publicly available without restriction. De-identified K-ROAD data 

are available from the corresponding authors upon reasonable request and subject to approval by 

the relevant institutional review boards and data use agreements. Requests for data access will be 

reviewed and responded to within 2–4 weeks of receipt. Inquiries regarding K-ROAD data 

access should be directed to the corresponding authors (S.W. Seo; sangwonseo@empas.com). 

ADNI data are publicly available through the ADNI data sharing platform 

(https://adni.loni.usc.edu) upon registration and approval, in accordance with ADNI data use 

policies. Source data underlying the figures and tables presented in this study are provided with 

this paper. 
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Table 1. Baseline characteristics of K-ROAD and ADNI cohorts  

Variables 

K-ROAD 
ADNI 

Total 

(N = 290) 

CU 

(N = 

224) 

MCI 

(N = 

779) 

Dementia 

(N = 260) 

Total 

(N = 1,263) 

Age, years 
71.0 ± 

8.0 

72.4 ± 

7.8 
70.7 ± 8.8 71.8 ± 8.1 73.7 ± 7.1 

Female, n (%) 
144 

(64.3) 

480 

(61.6) 
166 (63.8) 790 (62.5) 142 (49.0) 

APOE ε4 carriers, n 

(%) 
70 (31.2) 

350 

(44.9) 
150 (57.7) 570 (45.1) 97 (33.4) 

Education years 
10.5 ± 

4.7 

10.8 ± 

4.7 
10.2 ± 4.9 10.6 (4.7) 16.4 ± 2.6 

Clinical diagnosis 

CU / MCI / 

dementia, n (%) 

- - - 

224 (17.7) / 779 

(61.7) / 260 

(20.6) 

160 (55.2) / 

118 (40.7) / 12 

(4.1) 

Aβ PET positivity, 

n (%) 
81 (36.2) 

466 

(59.8) 
219 (84.2) 766 (60.6) 50 (44.6) 

MRI Hippocampal 

volume, mm3 

2945.9 ± 

597.9 

2614.8 ± 

546.0 

2300.8 ± 

536.8 
2608.9 ± 588.1 3858.3 ± 506.4 

Plasma Aβ42/40  
0.06 ± 

0.01 

0.06 ± 

0.02 
0.06 ± 0.01 0.06 ± 0.02 - 

Plasma pTau181, 

pg/ml 
6.7 ± 5.8 8.2 ± 7.4 10.3 ± 9.8 8.4 ± 7.8 - 

Plasma pTau217, 

pg/ml 
0.5 ± 0.4 0.8 ± 0.6 1.1 ± 0.8 0.8 ± 0.6 0.4 ± 0.3a 

Plasma pTau231, 

pg/ml 
8.9 ± 4.1 

10.6 ± 

5.5 
12.5 ± 5.4 10.7 ± 5.4 - 

Plasma GFAP, 

pg/ml 

112.0 ± 

54.3 

156.0 ± 

135.9 

182.7 ± 

79.0 
153.7 ± 117.0 157.3 ± 90.1a 

Plasma NfL, pg/ml 25.2 ± 32.6 ± 36.1 ± 30.8 32.0 ± 25.7 - 
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11.9 26.4 

Data are shown as mean (standard deviation) unless otherwise stated 

a Plasma pTau217 and GFAP values were harmonized to the K-ROAD cohort using the 

conversion equations (Supplementary Method 1)
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Table 2. Incidence rates and cumulative incidences at three years of the unified staging 

system according to the progression of dementia 

Progression 

outcome 
Na 

The 

number 

of events 

Incidence rates 

per 100 person-year 

(95% CI) 

Three-year 

Cumulative 

incidenceb (95% CI) 

Very mild dementia  

Stage 0 162 3 0.8 (0.2 to 2.4) 0.00 (0.00 to 0.00) 

Stage I 240 32 5.2 (3.7 to 7.4) 0.18 (0.11 to 0.24) 

Stage II 220 92 19.1 (15.6 to 23.4) 0.47 (0.38 to 0.55) 

Stage III 267 172 35.6 (30.7 to 41.3) 0.79 (0.72 to 0.85) 

Stage IVA 21 17 70.3 (43.7 to 113.1) - 

Stage IVB 13 13 75.9 (44.1 to 130.7) 0.92 (0.49 to 0.99) 

Mild dementia  

Stage 0 164 1 0.3 (0.0 to 1.8) 0.00 (0.00 to 0.00) 

Stage I 253 27 4.1 (2.8 to 6.0) 0.14 (0.08 to 0.20) 

Stage II 251 76 13.2 (10.5 to 16.5) 0.34 (0.26 to 0.42) 

Stage III 329 163 24.5 (21.0 to 28.6) 0.59 (0.51 to 0.66) 

Stage IVA 73 54 46.2 (35.4 to 60.3) 0.75 (0.59 to 0.85) 

Stage IVB 50 44 58.1 (43.2 to 78.0) 0.91 (0.74 to 0.97) 

Moderate dementia  

Stage 0 164 0 0.0 (0.0 to 0.0) 0.00 (0.00 to 0.00) 

Stage I 253 5 0.7 (0.3 to 1.8) 0.02 (0.00 to 0.05) 

Stage II 254 16 2.5 (1.5 to 4.1) 0.05 (0.01 to 0.09) 

Stage III 332 45 5.8 (4.4 to 7.8) 0.14 (0.08 to 0.20) 

Stage IVA 132 30 9.5 (6.7 to 13.6) 0.23 (0.12 to 0.33) 

Stage IVB 128 63 22.0 (17.1 to 28.1) 0.54 (0.41 to 0.65) 

a The number of participants 

b Cumulative incidence of dementia to three years 
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Abbreviation: CI, confidence interval 
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FIGURE LEGENDS 

Fig. 1 | Development process of a unified prognostic staging system. a, Overall scheme to 

develop a unified prognostic staging system. b, Detailed process for feature selection and cutoff 

determination to identify prognostic risk subgroups in Phase 1.  

Abbreviations: CU, cognitively unimpaired; MCI, mild cognitive impairment; Dem, dementia; 

CDR-SB, clinical dementia rating–sum of boxes  

 

Fig. 2 | Prognostic risk subgroups identified within initial cognitive status sub-cohorts in 

Phase 1. a, Risk subgroups in cognitively unimpaired (CU) group. b, Risk subgroups in mild 

cognitive impairment (MCI) group. c, Risk subgroups in Alzheimer's type (dementia) group. Left 

panel illustrates survival prediction models developed with selected features and their cutoff 

points within cognitive status sub-cohorts. The resulting prognostic risk subgroups are displayed 

with identical colors designating the same category: C1 and C2 in CU, M1 to M3 in MCI, and 

D1 and D2 in dementia. In the right panel, adjusted survival curves along with p-values indicate 

statistically significant progressive deterioration across prognostic subgroups (P = 0.0106 in 

CU, P = 2.68 × 10−13 in MCI, and P = 0.0005 in dementia). Adjusted survival curves were 

estimated with inverse probability weights and were compared using a log-rank test corrected for 

weighting. All statistical tests were two-sided, and source data are provided as a Source Data file. 

 

Fig. 3 | Outcome-specific progression stages and a unified prognostic staging system across 

the Alzheimer’s disease continuum. Unified prognostic staging system defined through the 

integration of outcome-specific stages. C1 and C2 are prognostic risk subgroups in the 

cognitively unimpaired (CU) group. M1 to M3 are prognostic risk subgroups in the mild 
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cognitive impairment (MCI) group, while D1 and D2 are prognostic risk subgroups in the 

dementia group. Prognostic risk subgroups positioned at the same horizontal level represent 

equivalent stage. Stage labels (e.g., IVA, IVB) reflect clinical progression severity. Detailed 

methods are provided in Supplementary Method 3. 

 

Fig. 4 | Clinical validation of the unified prognostic staging system. Unified prognostic stages 

were clinically validated by comparing dementia progression curves and longitudinal cognitive 

trajectories with adjustment for age, sex, education, and apolipoprotein E (APOE) ε4 status. 

Stage labels reflect clinical progression severity. a, Adjusted survival curves for each dementia 

progression outcome show effective stage differentiation across the cognitive spectrum: very 

mild dementia outcome differentiated lower stages, mild dementia outcome distinctly identified 

intermediate stages, and moderate dementia outcome distinguished advanced stages. Overall 

differences among stages were assessed using a log-rank test corrected for weighting (P =

2.68 × 10−13 in very mild dementia, P = 4.74 × 10−41 in mild dementia, and P =

2.05 × 10−18 in DAT). b, Adjusted pairwise comparisons were conducted using multivariable 

Cox proportional hazards models, and demonstrated statistically significant differences between 

adjacent stages, confirming discriminative validity. P values within each survival outcome were 

corrected for multiple hypothesis testing using a Benjamini-Hochberg procedure. c, Longitudinal 

cognitive trajectories for each stage, measured by clinical dementia rating–sum of boxes (CDR-

SB) and mini-mental state examination (MMSE), show progressively greater decline in higher 

stages over time. Data are presented as least squares means (LSmeans) with 95% confidence 

intervals estimated using generalized estimating equations. All statistical tests were two-sided, 

and source data are provided as a Source Data file. 
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Fig. 5 | External validation of the unified prognostic staging system using the ADNI cohort. 

a, Adjusted survival curves for very mild and mild dementia outcomes shows consistent 

separation of worsening prognosis across stages, while less differentiation is found for moderate 

dementia outcome due to limited event occurrence. A log-rank test corrected for weighting was 

used to assess overall differences among stages, yielding P = 2.03 × 10−6 for very mild

dementia and P = 3.52 × 10−5 for mild dementia, and P = 0.0419 for moderate dementia. Stages

with fewer than 10 participants (i.e. III, IVA, IVB) were excluded from this analysis. b, Pairwise 

comparisons between stages using multivariable Cox proportional hazards models demonstrated 

significant differences in progression risk for adjacent stage pairs, supporting external 

discriminative validity. P values within each survival outcome were corrected for multiple 

hypothesis testing using a Benjamini-Hochberg procedure. c, Longitudinal changes in clinical 

dementia rating–sum of boxes (CDR-SB) and mini-mental state examination (MMSE) also 

showed progressively steeper decline in higher stages over time. Data are presented as least 

squares means (LSmeans) and their 95% confidence intervals estimated with generalized 

estimating equations. All statistical tests were two-sided, and source data are provided as a 

Source Data file. 

Editorial Summary 

This study develops and validates a prognostic staging framework for Alzheimer’s disease by integrating cognitive 

status with blood-based biomarkers, and neuroimaging data, to improve risk stratification across the disease continuum. 

Peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer 

review of this work. A peer review file is available. 
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Phase 1:  Identifying prognostic risk subgroups through survival 
prediction modeling

MCI sub-cohort Dementia sub-cohort

Prognostic risk 
subgroups in CU

Prognostic risk 
subgroups in MCI

Prognostic risk 
subgroups in Dementia

Phase 2: Developing unified prognostic staging across the 
Alzheimer’s disease continuum

Step 3: Labelingfrom Stage 0 to Stage IV

Optimal feature selection and robust cutoff determination to identify 
subgroups having similar prognostic risk

• Candidate prognostic features
Age, sex, education, APOE4 carrier, comorbidities, 

plasma biomarkers, amyloid β positivity, MRI hippocampal volume
• Dementia progression outcomes

Very mild dementia outcome (CDR-SB ≥ 3.0) for CU
Mild dementia outcome (CDR-SB ≥ 4.5) for MCI
Moderate dementia outcome (CDR-SB ≥ 9.5) for Dementia

Prognostic risk 
subgroups in CU

Prognostic risk 
subgroups in MCI

Prognostic risk 
subgroups in Den

Combined 
subgroups

Very mild dementia outcome

Step 1:  Development of outcome-specific progression stages
Combining prognostic risk subgroups with similar risk based on clinical evaluation

Step 2:  Integration based on outcome-specific progression stages

Early stages
Focused on the results of 

very mild dementia outcome

Advanced stages
Focused on the results of

moderate dementia outcome

Prognostic risk 
subgroups in CU

Prognostic risk 
subgroups in MCI

Prognostic risk 
subgroups in Dem

Mild dementia outcome

Combined 
subgroups

Prognostic risk 
subgroups in CU

Prognostic risk 
subgroups in MCI

Prognostic risk 
subgroups in Dem

Moderate dementia outcome

Combined 
subgroups

b

CU sub-cohort

Intermediate stages
Focused on the results of 
mild dementia outcome

Feature selection and cutoff determination
• Feature selection based on selection stability:

Select the most frequently chosen feature across 1,000 trees
• Cutoff determination via weighted averaging: 

Among all identified cutoff values for the selected feature, 
choose the 5 or 10 most frequently identified values and average 
them

Split parent node using the optimal feature and cutoff

Child node 1
Selected feature

≤ Determined cutoff 

Child node 2
Selected feature

> Determined cutoff 

Clinical evaluation of derived risk subgroups
• Comparison of incidence rates and 3-year cumulative incidence
• Assessments of any overlap of adjusted survival curves
• Pairwise comparison using Cox proportional hazard models

If 
indistinguishable

Survival random forest with 1000 trees
(Each tree with maximum depth of 1)

Bootstrap 
sample 1

Child 1-1
feature
≤ cutoff 1

Selected feature 1
with cutoff 1

Child 1-2
feature

> cutoff 1

Bootstrap
sample 2

Child 2-1
feature
≤ cutoff 2

Child 2-2
feature

> cutoff 2

Bootstrap
Sample 1000

Child 1000 -1
feature

≤ cutoff 1000

Child 1000 -2
feature

> cutoff 1000

Satisfying
stopping rule

Not satisfying
stopping rule

Each initial cognitive status sub-cohort
with a corresponding dementia progression outcome

Selected feature 2
with cutoff 2

Selected feature 1000
with cutoff 1000

Not satisfying
stopping rule

Satisfying
stopping rule
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CU
(n=221)

pTau217
≤ 0.62

(n=162)

pTau217 > 
0.62

(n=39)

Level 0

Level 1

Level 2

C2

C1 C2

Level 0

Level 1

Level 2

MCI
(n=773)

MRI HV
> 2815
(n=274)

MRI HV
≤ 2815
(n=499)

pTau217 > 
0.68

(n=81)

GFAP > 122 
(n=329)

pTau217 
≤ 0.68
(n=193)

GFAP ≤ 122
(n=170)

M1 M2 M2 M3

Level 0

Level 1

Level 2

Dementia
(n=260)

Age > 60
(n=222)

Age ≤ 60
(n=38)

pTau217 ≤
1.1

(n=132)

D1

D2

D2

a

c

b

Prognostic risk subgroups in CU sub-cohort

Prognostic risk subgroups in MCI sub-cohort

Prognostic risk subgroups in Dementia sub-cohort

GFAP ≤ 195
(n=201) GFAP > 195

(n=20)

pTau217 >
1.1

(n=90)
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--C10

-M1C2I

-M2-II

-M3-III

D1--IVA

D2--IVB
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a

b

Very mild dementia Mild dementia Moderate dementia

Very mild dementia Mild dementia Moderate dementia

P-values obtained from pairwise comparisons

Adjusted survival curves

IVBIVAIIIIII0
<0.0001<0.0001<0.0001<0.00010.0016 0
<0.0001 <0.0001<0.0001<0.0001I
<0.0001<0.0001 <0.0001 II
0.0001 <0.0001III
0.8624 IVA

IVB

c Longitudinal cognitive trajectories for CDR-SB and MMSE

IVBIVAIIIIII0
<0.0001<0.0001<0.00010.00010.0067 0

<0.0001 <0.0001<0.0001<0.0001I

<0.0001<0.0001 <0.0001 II

<0.0001 <0.0001III

0.0164IVA

IVB

IVBIVAIIIIII0
<0.0001<0.0001<0.00010.0004 0.1138 0

<0.0001<0.0001<0.00010.0065 I

<0.0001<0.00010.0005 II

<0.00010.0830 III

0.0003 IVA

IVB
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a

b

Very mild dementia Mild dementia Moderate dementia

Very mild dementia Mild dementia Moderate dementia

P-values obtained from pairwise comparisons

Adjusted survival curves

c Longitudinal cognitive trajectories for CDR-SB and MMSE

III0
<0.00010.00010
0.0103I

II

III0
<0.0001<0.00010

<0.0001I

II

III0
0.00010.02190

0.0049I

II


