N atu re co m m u n i cati o n S https://doi.org/10.1038/541467-026-68732-6
Article in Press

Biomarker-integrated prognostic stagings for
Alzheimer’s Disease

Received: 6 September 2025 Daeun Shin, Sungjoo Lee, Jun Pyo Kim, Hyemin Jang, Jihwan Yun, Min Young Chun,
Accepted: 14 January 2026 Jehyun Ahn, Seongmi Kim, Kyoungmin Kim, Soyeon Yoon, Hee Jin Kim, Heekyoung

: 1 Kang, Sohyun Yim, Hee Kyung Park, Seonghyeon Kim, Duk L. Na, Henrik Zetterberg, Kaj
Blennow, Fernando Gonzalez-Ortiz, Nicholas J. Ashton, Michael W. Weiner, Sang Won
Seo & Kyunga Kim

Cite this article as: Shin, D,, Lee, S.,
Kim, J.P. et al. Biomarker-integrated
prognostic stagings for Alzheimer’s
Disease. Nat Commun(2026). https:// e are providing an unedited version of this manuscript to give early access to its
doi.org/10.1038/541467-026-68732-6  findings. Before final publication, the manuscript will undergo further editing. Please
note there may be errors present which affect the content, and all legal disclaimers

apply.

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not
have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.



Biomarker-integrated Prognostic Stagings for Alzheimer's Disease

Daeun Shin MD'f, Sungjoo Lee PhD?', Jun Pyo Kim MD, PhD!, Hyemin Jang MD, PhD?,
Jihwan Yun MD, PhD*, Min Young Chun MD, PhD>®, Jehyun Ahn MD', Seongmi Kim MD!,
Kyoungmin Kim MD', Soyeon Yoon MD', Hee Jin Kim MD, PhD!7#9 Heekyoung Kang MD,
PhD!, Sohyun Yim MD!, Hee Kyung Park MD, PhD!, Seonghyeon Kim MD!, Duk L Na MD,
PhD!, Henrik Zetterberg MD, PhD!®!112.13.1415 'K a5 Blennow MD, PhD!%!11617:18 "Eernando
Gonzalez-Ortiz MD'®!! Nicholas J. Ashton PhD!*!9:20.21 ' Michael W. Weiner MD, PhD??, Sang

Won Seo MD, PhD 1’7’8’9*, Kyunga Kim PhD?-23:24%*

!Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of
Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea, postal code: 06351
Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center,
81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.

3Department of Neurology, Asan Medical Center, Ulsan University School of Medicine, 88,
Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea, postal code: 05505

“Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of
Medicine, Seoul, South Korea, postal code: 05278

SDepartment of Neurology, Yonsei University College of Medicine, 145-1, Jayang-ro, Gwangjin-
gu, Seoul, Republic of Korea, postal code: 05025

5Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 225

Geumhak-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea, postal code: 17046



"Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro,
Gangnam-gu, Seoul, Republic of Korea, postal code: 06351

8Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 115
Irwon-ro, Gangnam-gu, Seoul, Republic of Korea, postal code: 06355

Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of
Korea, postal code: 06351

VClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bld strdket 15, vin 3
SU/Sahlgrenska 413 45 Géteborg, Sweden, postal code: 41345

" Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square,
London, UK, postal code: WCIN 3BG

2UK Dementia Research Institute at UCL, London, UK, postal code: WCIN 3BG

I3Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, P.R. China,
postal code: 999077

Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine
and Public Health, University of Wisconsin-Madison, Madison, WI, USA, postal code: 53792

I3 Paris Brain Institute, ICM, Pitié-Salpétriére Hospital, Sorbonne University, 47, boulevard de
[’Hopital, CS 21 414, Paris Cedex 13, Paris, France, postal code: 75646

ISNeurodegenerative Disorder Research Center, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, PR. China, postal code: 230026
"Department of Neurology, Institute on Aging and Brain Disorders, First Affiliated Hospital of
USTC, Hefei, PR. China, postal code: 230026

8King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl

Clinical Neuroscience Institute, De Crespigny Park, London, UK, postal code: SE5 8AF



Banner Alzheimer’s Institute and University of Arizona, Phoenix, AZ, USA, postal code: 85012
20Banner Sun Health Research Institute, Sun City, AZ, USA, postal code: 85351

I Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway, postal
code: 4068

22Department of Radiology and Biomedical Imaging, University of California, San Francisco,
USA, postal code: 94143-0628

ZDepartment of Data Convergence and Future Medicine, Sungkyunkwan University School of
Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea, postal code: 06351
24Department of Digital Health, SAIHST, Sungkyunkwan University, 115 Irwon-ro, Gangnam-

gu, Seoul, Republic of Korea, postal code: 06355

+ These authors contributed equally.

* These authors jointly supervised this work.

Corresponding authors:

Kyunga Kim, PhD

Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center,
81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.

Tel: +82-2-3410-6745; Fax: +82-2-445-2537

E-mail: kyunga.j.kim@gmail.com

Sang Won Seo, MD, PhD



Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of
Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea.
Tel: +82-2-3410-1233; Fax: +82-2-3410-0052

E-mail: sangwonseo@empas.com




Abstract

Accurately predicting disease progression remains a major challenge in Alzheimer’s
disease (AD). Here we show that a biomarker-integrated prognostic staging system can stratify
progression risk across the disease course by jointly incorporating cognitive status, established
risk factors, plasma biomarkers, and neuroimaging measures. In the K-ROAD cohort (N =
1,263), the dominant prognostic contributors varied by clinical context—GFAP in cognitively
unimpaired individuals, hippocampal volume in mild cognitive impairment, and age in
dementia—while plasma phosphorylated tau-217 provided consistent secondary prognostic
information across stages. Outcome-specific staging captured clinically meaningful gradients of
progression risk and informed construction of a unified six-stage framework (Stage 0-IVB) with
distinct inflection points of accelerated decline. External validation in the ADNI cohort (N =
290) demonstrated consistent patterns of worsening prognosis, particularly in early and
intermediate stages. This system provides a clinically interpretable approach to risk stratification

and may serve as an exploratory framework for biomarker-integrated prognostic stratification in

AD.



Introduction

Alzheimer’s disease (AD) has a multifactorial etiology, with advanced age as the
strongest risk factor, while genetic predisposition (apolipoprotein [APOE] &4 carrier status) and
female sex also significantly increase susceptibility'~. These risk factors may influence not only
the likelihood of developing AD but also the rate of clinical progression®*. Clinically, AD is
characterized along a continuum of cognitive stages ranging from cognitively unimpaired (CU)
to mild cognitive impairment (MCI) and ultimately dementia®. Importantly, the rate of
progression along this continuum can vary according to the specific cognitive status® and
underlying risk profile’-12,

Neuropathologically, AD features amyloid-f (AP) plaques, tau tangles, and
neurodegeneration such as hippocampal atrophy'?. These define the A/T/N
(amyloid/tau/neurodegeneration) biomarker framework, but the cost and invasiveness of these
methods drive the need for scalable plasma biomarkers'*. To overcome these limitations,
substantial efforts have been devoted to developing blood-based biomarkers that can capture
A/T/N categories'>!”. Core plasma biomarkers include AB42/40 ratio and phosphorylated tau
species such as pTaul81, pTau217 and pTau231, while non-specific markers—such as glial
fibrillary acidic protein (GFAP) and neurofilament light chain (NfL)—reflect astrocytic
activation/inflammation and axonal injury/neurodegeneration, respectively'*. These plasma
biomarkers have shown high concordance with their PET or MRI counterparts and have
demonstrated utility not only for diagnosing AD but also for predicting prognosis, including rates
of cognitive decline and progression across the disease continuum'®-?°, Among them, pTau217
182122 1

stands out for its exceptional performance in detecting both amyloid and tau pathology

this study, preclinical AD was operationally defined as AB+ CU individuals, consistent with



current secondary prevention trials*>*. Plasma pTau217 was used as an indirect correlate of tau
pathology rather than a direct measurement'®; therefore, the proposed framework does not
constitute a biological staging system based on combined amyloid and tau positivity.

To date, most studies have focused on identifying prognostic factors within individual
cognitive stages of AD. However, as clinical trials and therapeutic options continue to advance,
there is a growing need for a unified prognostic framework to provide stage-consistent and
biologically informed risk stratification across the disease continuum?®*%, Such a system would
enable more consistent communication about prognosis, harmonized interpretation of biomarker
profiles, and standardized comparison of disease trajectories across studies?.

In this work, we develop and externally validate a prognostic staging system for AD,
integrating traditional cognitive status with risk factors and multiple plasma and imaging markers
to stratify dementia progression risk. To achieve this, we first identify prognostic subgroups
using survival prediction modeling within each cognitive status, then develop outcome-specific
stages by merging similar-risk subgroups for each of dementia progression outcomes, and finally

integrate them into a comprehensive staging framework across the Alzheimer's spectrum.

Results

Demographics of study participants

The study included 1,263 participants from the Korea-Registries to Overcome
dementia and Accelerate Dementia research (K-ROAD) cohort, comprising 224 CU individuals,
779 with MCI, and 260 with dementia. As detailed in Table 1, mean + standard deviation (SD)
of age was 71.8 £ 8.1 years, with female participants constituting 62.5%. Ap PET positivity

demonstrated incremental elevation across initial cognitive status (36.2%, 59.8%, and 84.2%,



respectively). Longitudinal CDR-SB scores were obtained with a median of 2 assessments per
participant (interquartile range [IQR] 2-3) over a median follow-up duration of 2.1 years (95%
confidence interval [CI] 2.0 to 2.2). Clinically meaningful decline was defined using clinical
dementia rating sum of boxes (CDR-SB) thresholds: > 3 for very mild dementia, > 4.5 for mild

dementia, and > 9.5 for moderate dementia.

Phase 1. Identifying prognostic risk subgroups through survival prediction modeling

Participants were classified into prognostic subgroups within each baseline cognitive
status (CU, MCI, and dementia), with adjacent categories merged based on clinical and statistical
validation (Fig. 1a). This resulted in 2 subgroups for CU, 3 for MCI, and 2 for dementia, totaling
7 refined subgroups (Fig. 2). In CU, participants were grouped by GFAP and pTau217: C1
(GFAP < 195 pg/ml and pTau217 < 0.62 pg/ml) and C2 (GFAP < 195 pg/ml and pTau217 >
0.62 pg/ml or GFAP > 195 pg/ml) (Fig. 2a). In MCI, hippocampal volume (HV) and pTau217
were the main discriminators: M1 (HV > 2815 mm? and pTau217 < 0.68 pg/ml), M2 (HV >
2815 mm?® with pTau217 > 0.68 pg/ml or HV < 2815 mm?® with GFAP < 122 pg/ml), and M3
(HV < 2815 mm?® with GFAP > 122 pg/ml) (Fig. 2b). In dementia, subgroups were defined by
age and pTau217: D1 (> 60 years with pTau217 < 1.1 pg/ml) and D2 (> 60 years with pTau217
> 1.1 pg/ml or < 60 years regardless of pTau217) (Fig. 2¢). Adjusted survival curves showed
significant differences in progression risk across subgroups for CU (P = 0.011), MCI (P < 0.001),
and dementia (P < 0.001), with incidence rates and 3-year cumulative incidences supporting

discriminative validity (Supplementary Table 1).

Phase 2 — Developing unified prognostic staging across the Alzheimer’s disease continuum



Prognostic subgroups from Phase 1 were used to generate outcome-specific stages for
each of three progression outcomes (Fig. 1a): very mild dementia (N = 923), mild dementia (N =
1,120), and moderate dementia (N = 1,263). These outcome-specific stages were integrated into
a six-stage unified prognostic system (Stage 0—1VB) reflecting increasing dementia severity (Fig.
3). Detailed procedures to develop a unified prognostic staging system is presented in
Supplementary Method 3.

Adjusted survival curves confirmed effective separation between stages (Fig. 4a), and
pairwise comparisons demonstrated significant differences in progression risk between all
adjacent stages (all P <0.05) (Fig. 4b). Notably, early to intermediate stages (Stage 0—I11) were
primarily distinguished by very mild and mild dementia outcomes, whereas advanced stages
(Stage IVA-IVB) were driven by moderate dementia outcomes. Higher stages were consistently
associated with increasing CDR-SB and decreasing MMSE scores (both P < 0.001) (Fig. 4c).
Marked inflection points in incidence rates and 3-year cumulative incidence were observed at
Stage 0—I, Stage [—1I, Stage II—III, and Stage III-IVA (Table 2), highlighting clinically
meaningful thresholds for prognosis and intervention. For clarity, we emphasize these key
transitions, particularly between mid-level stages, as they represent sharp increases in

progression risk and may serve as optimal points for clinical decision-making.

External validation of the unified staging system using the ADNI cohort

For external validation, we utilized an independent cohort from the Alzheimer's
Disease Neuroimaging Initiative (ADNI), comprising 290 participants (160 CU, 118 MCI, and
12 dementia) with a median follow-up of 5.5 years (95% CI 5.1 to 6.0 years) (Table 1). Adjusted

survival curves showed consistent patterns of worsening prognosis across stages for very mild



and mild dementia outcomes, although moderate dementia differentiation was less distinct due to
limited event occurrences in lower stages (Fig. 5a, 5b). Also, stages IlI, IVA, and IVB were
excluded from analysis due to small sample sizes (N < 10 each). Cognitive trajectories indicated
progressive worsening, with increasing CDR-SB and decreasing MMSE scores at higher stages,
aligning with severity escalation (Fig. 5c). Similar patterns were confirmed by 3-year cumulative

incidence and incidence rates (Supplementary Table 2).

Discussion

In this study, we developed a proof-of-concept prognostic staging framework for AD
that integrates cognitive status, traditional risk factors, plasma biomarkers, and neuroimaging
markers to stratify progression risk across the disease continuum. Unlike prior studies that
identified prognostic factors within each cognitive stage independently, our approach unifies CU,
MCI, and dementia into a single continuous framework, enabling stage-consistent interpretation
of prognosis and transitions over time.

Our first major finding was that primary prognostic discriminators varied across
cognitive stages (CU, MCI, and dementia), reflecting the evolving pathophysiology of AD.
Specifically, the primary discriminators were non-specific markers rather than core AD
biomarkers: CU — GFAP, representing neuroinflammation; MCI — hippocampal atrophy,
representing neurodegeneration. In CU, the prominence of GFAP aligns with prior studies
showing that it predicts future tau accumulation and cognitive decline*’-?*, likely reflecting early
astrocytic responses to amyloid pathology'?. In MCI, hippocampal atrophy has consistently been
shown to predict progression to dementia, particularly in the prodromal phase, reinforcing its

central prognostic role during this transitional stage®>*’. In dementia, younger age emerged as the



strongest predictor of faster progression®, a pattern consistent with extensive evidence that early-
onset AD follows a more aggressive clinical course. Individuals with early-onset AD typically
show markedly higher amyloid positivity rates®!, greater tau burden on PET*?, and more severe
and widespread cortical atrophy **compared with late-onset AD. These biological differences—
rather than chronological age itself—likely account for the accelerated progression observed in
younger patients**3°.

Across all stages, plasma pTau217 consistently served as a secondary discriminator,
reinforcing its relevance as a dynamic biomarker that tracks both amyloid- and tau-related
processes.'®337 Indeed, plasma pTau217 has demonstrated independent associations with both
amyloid and tau pathology.'®*® Notably, our recent work **demonstrated that pTau217 predicts
both AP (AUC 0.96) and tau (AUC 0.90) PET positivity and distinguishes longitudinal cognitive
decline across plasma-defined AT profiles, underscoring its utility for prognostic stratification
even without tau PET. However, GFAP and NfL are not disease-specific, and even pTau217
partly reflects non—AD processes—including ageing®’, cerebrovascular burden*!, and other
neurodegenerative conditions—so these markers should be interpreted as indicators of broader
neural vulnerability rather than AD-specific pathology.

Our second major finding was that outcome-specific prognostic staging revealed
complementary patterns of progression. Early-to-intermediate stages (0—III) were primarily
separated by very mild and mild dementia outcomes, while later stages (IVA-IVB) were
distinguished by moderate dementia outcomes. This hierarchical organization enabled us to
preserve unique prognostic information from each outcome domain before integrating them into
a unified system. Unlike biological staging frameworks such as A/T/N**, our model does not

incorporate regional tau PET or quantitative pathological burden and therefore should not be



viewed as a biological classification system. Instead, it is an outcome-driven, prognostic
framework built from T1 biomarkers, non-specific plasma markers, and known clinical risk
factors—intended to complement, not replace, biological staging approaches. Because T2
biomarkers such as tau PET are not yet widely available in routine research or clinical settings,
the present framework necessarily emphasizes prognostic rather than biological classification.
Within each cognitive stage, individuals exhibited substantial heterogeneity in progression
risk”#1242and this variability was captured by the combined contribution of plasma biomarkers,
neurodegeneration measures, and clinical risk factors.

Our final major finding was that the unified six-stage system (0-IVB) produced clear,
stepwise gradients in functional and cognitive decline and identified reproducible inflection
points at which clinical worsening accelerated. These thresholds may facilitate standardized
prognostic communication and research-level stratification across the AD continuum. However,
this framework is not designed for therapeutic decision-making. In particular, eligibility for
monoclonal antibody therapy requires confirmed amyloid positivity and treatment-response
biomarkers*—elements that the present system does not assess. Therefore, this model should be
used strictly for prognostic stratification rather than for guiding treatment selection.

External validation using the ADNI cohort supported stage-dependent prognostic
patterns, particularly for early and intermediate stages. However, only 290 of the 378 eligible
participants could be analyzed because complete plasma pTau217, GFAP, hippocampal volume,
AP PET, and longitudinal CDR data were required for consistent modeling. This resulted in a
biomarker-enriched subset that underrepresented advanced dementia and limited evaluation of
later-stage performance. Broader validation using population-based and clinically heterogeneous

cohorts will therefore be necessary to establish generalizability.



The strengths of our study include a relatively large sample size with well-balanced
representation across the Alzheimer’s continuum. However, several limitations should be
considered. First, although the K-ROAD cohort used a hybrid recruitment strategy from both
memory clinics and community dementia prevention centers, it nonetheless represents a
selectively ascertained research sample rather than a fully population-based or memory-clinic
cohort. Although individuals with extensive cerebrovascular disease were excluded, only limited
vascular and genetic variables (age, hypertension, diabetes mellitus, APOE &4 carrier status, and
education) were included, and detailed vascular imaging markers or social determinants of health
were not available—factors that may contribute to mixed pathology. Second, the dataset did not
include systematic measurements of modifiable lifestyle risk factors (e.g., diet, physical activity,
sleep, cardiovascular behaviors)*, precluding evaluation of lifestyle-related predictors
commonly observed in population-based cohorts. Because such assessments are required to
model prevention in cognitively unimpaired individuals, the present framework should not be
interpreted as a prevention model. Third, the cohort did not include individuals with atypical AD
presentations, who may follow distinct clinical trajectories; future studies should examine
whether this framework generalizes across phenotypic heterogeneity®. Finally, longitudinal
follow-up will be required to determine whether the staging system reliably predicts long-term
clinical trajectories. Despite these limitations, this study proposes a unified, biomarker-informed
prognostic framework that captures heterogeneous progression patterns across the AD continuum
and provides a structured foundation for future prognostic research, particularly as multimodal
biomarkers, tau PET, and population-based datasets become increasingly available.

In conclusion, this study introduces a stage-spanning prognostic structure that leverages

cognitive status, established risk factors, and scalable biomarker modalities to delineate



progression risk across the Alzheimer’s continuum. Rather than functioning as a biological
staging tool, the framework provides a pragmatic foundation for future work aimed at refining
individualized prognosis—particularly as broader tau biomarkers, multimodal datasets, and

population-based cohorts become more widely available.

Methods

For the K-ROAD cohort, the study was approved by the institutional review board of
Samsung Medical Center (No. 2021-02-135). All participants provided informed consent, and the
study was conducted in accordance with the Declaration of Helsinki. The ADNI study was also
approved by the institutional review boards of all participating sites, and written informed
consent was obtained from all participants. All data were handled in accordance with relevant

data protection and privacy regulations.

Participants selection

We included 1,416 participants with CU, MCI and dementia from K-ROAD project, all
of whom had available data on baseline demographics including comorbidities, plasma and
imaging markers, and longitudinal CDR-SB assessments. The K-ROAD project is a nationwide
initiative involving 25 university-affiliated hospitals across South Korea*. Recruitment was
conducted both through memory disorder clinics and government-commissioned community
dementia prevention centers, resulting in a hybrid cohort. However, we emphasize that this
hybrid structure does not make the cohort representative of either the general population or a
typical memory clinic population, as participants were selectively enrolled based on research-

appropriate clinical evaluations and biomarker availability. Inclusion and exclusion criteria for



this study have been described in detail elsewhere!®. In summary, CU participants met the
following conditions: (1) no major medical or psychiatric illness that could affect cognitive
function, and (2) no objective cognitive impairment in any cognitive domain*”**, MCI
participants met: (1) subjective cognitive complaints reported by the participants or caregiver; (2)
objective cognitive impairment in one or more cognitive domains (defined as performance below
-1.0 SD in memory and/or -1.5 SD in other domains, based on age- and education-adjusted
norms); and (3) preserved instrumental activities of daily living*’. Dementia participants fulfilled
the National Institute on Aging - Alzheimer's Association (NIA-AA) core clinical criteria for
probable AD dementia®®. Notably, baseline cognitive classifications (CU, MCI, and dementia)
were determined independently of both CDR-SB and biomarker data (e.g., AB PET or plasma
biomarkers), based solely on standard diagnostic procedures including neuropsychological
testing, structured interviews, and functional assessments. As a result, each group may include
individuals with or without biomarker positivity. The comprehensive participant selection flow is

detailed in Supplementary Fig. 1.

Plasma biomarkers measurement

Plasma AB40, AB42, GFAP, and NfL concentrations were measured using the
commercial Neurology 4-Plex E kit (Quanterix, Billerica, MA, USA). Plasma pTaul81 and
pTau231 concentrations were measured using in-house Simoa assays developed at the University
of Gothenburg, and pTau217 concentration was measured using the commercial ALZpath
pTau217 assay kit. All samples were analyzed in a single run with one batch of reagents, and the
intra-assay coefficient of variation was below 10%. All measurements were performed by

analysts blinded to clinical data.



Brain MRI and hippocampal volume measurement

Three-dimensional T1-weighted turbo field echo imaging was performed for all
participants, with a sagittal slice thickness of 1.0 mm and 50% overlap. As previously described,
hippocampal volume was quantified using an automated segmentation method that combines a

graph cut algorithm with atlas-based segmentation and morphological opening?'.

AP PET acquisition and quantification

AP PET scans were performed using either '®F-Florbetaben (FBB) or '®F-Flutemetamol
(FMM), following each manufacturer's standardized imaging protocols. A PET binding was
quantified using the regional direct comparison centiloid (rdcCL) method, with the whole
cerebellum as a reference region®?. This method allows harmonization of FBB and FMM tracers
without requiring ''C-labelled Pittsburgh compound B images. AB PET positivity was defined
using a global MRI-based rdeCL threshold of 25.5, derived via Gaussian mixture modeling*’. All
imaging data were processed at the Samsung Medical Center laboratory, which served as the
core center. The median time interval between plasma sampling and A PET imaging was 4 days

(IQR 0 to 69 days).

Physical comorbidities
Information on vascular risk factors, including hypertension and diabetes mellitus, was
obtained from self-reported medical history or from records of current use of antihypertensive or

antidiabetic medications.



Longitudinal cognitive assessments

The CDR-SB score is a measure of cognition and function, obtained by interviewing
both patient and care partner. Its longitudinal assessments (i.e., CDR-SB profile) are used to
track dementia progression over time. In this study, baseline CDR-SB was defined as the first
assessment conducted within 1 years of either blood sampling or AB PET imaging. All
participants had at least two CDR-SB assessments with a minimum interval of 3 months between
visits.

Three survival outcomes of dementia progression were defined using CDR-SB cutoffs of
> 3.0 (very mild dementia), > 4.5 (mild dementia), and > 9.5 (moderate dementia), supported
by both prior literature®® and validation within our cohort. Staging based on CDR-SB cutoffs
of 0.5, 4.5, and 9.5 showed high concordance with global CDR scores (Cohen’s k = 0.923 [95%
CI, 0.910-0.936]; Supplementary Fig. 2). To refine early-stage classification, we compared
individuals with CDR-SB scores of 0.5-2.5 versus 3.0-4.0. The two groups showed differences
in baseline MMSE, plasma biomarker levels, and Ap PET positivity (Supplementary Fig. 3a).
They also exhibited distinct longitudinal MMSE trajectories with least squares mean plot using
generalized estimating equation model (Supplementary Fig. 3b), supporting the use of 3.0 as
the cutoff for very mild dementia.

For each dementia progression outcome, the time-to-progression was defined as the
interval from the baseline date to the first visit when CDR-SB exceeded the corresponding
cutoff. Participants with CDR-SB above the cutoff at the baseline were excluded from the

analysis of that outcome.

Development process of a unified prognostic staging system



Phase 1. Identifying prognostic risk subgroups through survival prediction modeling

In Phase 1, the entire cohort was divided into three sub-cohorts by initial cognitive status
(CU, MCI, and dementia) (Fig. 1a). Stratification within each sub-cohort was conducted
independently by developing a survival prediction model for the corresponding dementia
progression outcome: very mild dementia for CU, mild dementia for MCI, and moderate
dementia for dementia. Candidate prognostic features included risk factors such as age, sex,
education year, APOE &4 carrier status, the presence of hypertension and diabetes mellitus,
plasma biomarkers such as Ap42/40 ratio, pTaul81, pTau2l7, pTau231, GFAP, and NfL, and
imaging markers including AP PET positivity and MRI hippocampal volume.

Random survival forest (RSF) was utilized to identify prognostically similar subgroups
within each cognitive status based on survival outcomes of dementia progression °¢ (Fig. 1b).
Modifications on RSF were made to select optimal prognostic features with their robust cutoff
points. Firstly, the tree structure was restricted to a maximum depth of one (i.e., performing only
a single split of each parent node). An optimal cutoff point was determined to enable bifurcation
based on a numeric feature. For each node, we generated 1,000 bootstrap samples to create 1,000
single-split trees, each of which was represented by a best-splitting feature with its optimal cutoff
point. The optimal prognostic feature was selected as the most frequently chosen feature across
all single-split trees. When the selected feature was numeric, we employed weighted averaging
of all identified cutoff points to determine the robust cutoff point. Among all unique values of
the identified cutoff points, we chose the 5 or 10 most frequently identified values and averaged
them. Following binary partitioning of a parent node, this algorithmic process was applied
recursively to each resultant child node. The stopping rule for tree expansion was established by

limiting the numbers of events and participants within a candidate parent node, so that a node



cannot be split if it has less than the specified numbers. The cumulative hazard function served
as the risk score of RSF*®, and log-rank splitting®’°® or global non-quantile Brier score splitting®®
were employed for splitting rule. Detailed process was described in Supplementary method 2,

and modified RSF was applied only in Phase I.

Phase 2. Developing a unified prognostic staging system

The second phase employed a three-step process to develop a unified prognostic staging
system (Fig. 1a). Initially, outcome-specific staging was developed by merging prognostic risk
subgroups with similar risk of each dementia progression based on clinical evaluation: visually
overlapped adjusted survival curves with non-significant differences in pairwise comparison, and
similar incidence metrics. Prognostic risk subgroups remained separate if their curves were
visually distinct and incidence metrics were notably differed, even without statistical
significance. In the second step, we integrated these outcome-specific categorizations into a
unified prognostic staging system encompassing dementia progression and cognitive status
information. Specifically, early stages were derived by focusing on the very mild dementia-
specific categorization; intermediate stages were formed by considering the mild dementia-
specific categorization; and advanced stages were created based on the moderate dementia-
specific categorization. In the final step, the recombined stages were labelled from stage 0 to
stage 1V, with each progressive stage representing increasing disease severity. Adjacent stages
with overlapping 95% CI for three-year cumulative incidence or incidence rates were assigned to
the same primary stage, with further refinement into subcategories (A or B) within primary
stages. Supplementary method 3 illustrates the detailed process for developing the unified

prognostic staging system.



The unified prognostic stages were clinically validated by comparing survival curves for
dementia progression outcomes, and longitudinal cognitive trajectories for CDR-SB and MMSE

with adjustment for age, sex, education, and apolipoprotein E (APOE) &4 status.

External validation with ADNI dataset

The unified staging system underwent external validation using ADNI dataset, with
detailed procedures described in the Supplementary method 1. A total of 290 ADNI
participants with available plasma pTau217, GFAP, hippocampal volume on MRI, and
longitudinal CDR-SB data were included to match the derivation criteria and minimize selection
bias. After applying the proposed staging criteria to classify ADNI participants, we assessed
whether three-year cumulative incidence and incidence rates demonstrated clear differentiation
between adjacent stages in this independent cohort. Similarly, adjusted survival curves were
generated and pairwise comparisons using multivariable Cox proportional hazard regression
models were conducted to evaluate stage differentiation. Finally, the cognitive trajectory
according to follow-up duration was also assessed whether the magnitude and progression rate of
cognitive impairment differed between stages in this validation cohort, thereby confirming the

generalizability of the staging system.

Statistical methods

Descriptive statistics were calculated for each cohort and proposed staging category,
with continuous variables presented as mean (SD) and categorical variables as frequencies
(proportion). Median follow-up duration with corresponding 95% ClIs was determined using the

reverse Kaplan-Meier method®°.



All proposed subgroups, categories and the unified staging system were evaluated
through multiple measures. Incidence rates of dementia per 100 person-years with exact Poisson
95% Cls were calculated®?, along with three-year cumulative incidence of dementia with 95%
Cls (derived as one minus the Kaplan-Meier estimated survival probability at three years)®?. We
assessed whether incidence rates and three-year cumulative incidence demonstrated sufficient
discrimination between adjacent stages. Adjusted survival curves were drawn using inverse
probability weights to evaluate potential overlap in dementia progression between stages®?.
These adjusted survival curves for all groups were compared using a log-rank test corrected for
weighting to check whether all proposed categories have the same curves about probability of
non-dementia across follow-up time%4. Additionally, all pairwise comparisons were conducted
using multivariable Cox proportional hazards regression models. The P values for all pairwise
comparisons were adjusted using the Benjamini-Hochberg procedure to account for multiplicity,
thereby controlling the false discovery rate®. Firth’s bias correction was adopted when some
groups or categories contain very small number of events®®. The longitudinal trajectories were
estimated using least squares mean plot derived from generalized estimating equations®’%. Age,
sex, the period of education, and APOE &4 carrier status were considered as the covariates for
adjustment.

Statistical significance was defined as two-sided P values less than 0.05. All statistical
analyses and RSF modeling were conducted with SAS version 9.4 (SAS Institute, Cary, NC,

USA) and R version 4.4.1 (The R Foundation, www.R-project.org).

Statistics & Reproducibility



Sample sizes were determined by the availability of eligible participants in the K-ROAD
and ADNI cohorts, with predefined exclusion criteria applied to ensure adequate longitudinal
follow-up and suitability for survival analyses. This study was observational study and did not
involve randomization. Plasma biomarker analyses were conducted by investigators blinded to

clinical and imaging data.



Data availability

The data supporting the findings of this study include plasma biomarker data, brain
MRI, and PET imaging data from the K-ROAD cohort, as well as imaging and clinical data from
the ADNI cohort. These datasets contain sensitive human participant information, which carry a
potential risk of participant re-identification. Due to ethical restrictions imposed by the
institutional review boards and the informed consent provided by study participants, the K-
ROAD data cannot be made publicly available without restriction. De-identified K-ROAD data
are available from the corresponding authors upon reasonable request and subject to approval by
the relevant institutional review boards and data use agreements. Requests for data access will be
reviewed and responded to within 2—4 weeks of receipt. Inquiries regarding K-ROAD data

access should be directed to the corresponding authors (S.W. Seo; sangwonseo@empas.com).

ADNI data are publicly available through the ADNI data sharing platform
(https://adni.loni.usc.edu) upon registration and approval, in accordance with ADNI data use
policies. Source data underlying the figures and tables presented in this study are provided with

this paper.
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Table 1. Baseline characteristics of K-ROAD and ADNI cohorts

K-ROAD

ADNI
Variables CU MCI Dementia Total Total
(N= (N= N =290
N=2 =12 ( )
224) 779) ( 60) (N=1,263)
71.0 + 72.4 £
Age, years 70.7 £ 8.8 71.8 £ 8.1 73.7+7.1
8.0 7.8
144 480
Female, n (%) 166 (63.8) 790 (62.5) 142 (49.0)
(64.3) (61.6)
APOE €4 carriers, n 350
70 (31.2) 150 (57.7) 570 (45.1) 97 (33.4)
(%) (44.9)
. 10.5+ 10.8 £
Education years 10.2+4.9 10.6 (4.7) 16.4+2.6
4.7 4.7
Clinical diagnosis 224 (17.7) /1779 160 (55.2)/
CU/MCl1/ - - - (61.7) /260 118 (40.7)/ 12
dementia, n (%) (20.6) (4.1)
AP PET positivity, 466
81 (36.2) 219 (84.2) 766 (60.6) 50 (44.6)
n (%) (59.8)
MRI Hippocampal =~ 29459+ 2614.8+  2300.8 +
2608.9 £ 588.1 3858.3 +506.4
volume, mm® 597.9 546.0 536.8
0.06 + 0.06 +
Plasma AB42/40 0.06 = 0.01 0.06 £0.02 -
0.01 0.02
Plasma pTaul81,
6.7+58 82+74 103+938 84+7.38 -
pg/ml
Plasma pTau217,
0.5+04 08+06 1.1£0.8 0.8+0.6 04+0.32
pg/ml
Plasma pTau231, 10.6 +
89+4.1 125+5.4 10.7+5.4 -
pg/ml 5.5
Plasma GFAP, 112.0 + 156.0 = 182.7 +
153.7+117.0 157.3 £90.1*
pg/ml 543 135.9 79.0
Plasma NfL, pg/ml 252+ 326+  36.1+30.8 32.0+25.7 -




11.9 26.4

Data are shown as mean (standard deviation) unless otherwise stated
? Plasma pTau217 and GFAP values were harmonized to the K-ROAD cohort using the

conversion equations (Supplementary Method 1)



Table 2. Incidence rates and cumulative incidences at three years of the unified staging

system according to the progression of dementia

Progression The Incidence rates Three-year
N? number  per 100 person-year Cumulative
outcome of events (95% CI) incidence® (95% CI)
Very mild dementia
Stage 0 162 3 0.8 (0.2t02.4) 0.00 (0.00 to 0.00)
Stage | 240 32 52(3.7t07.4) 0.18 (0.11 to 0.24)
Stage II 220 92 19.1 (15.6 to 23.4) 0.47 (0.38 to 0.55)
Stage 111 267 172 35.6 (30.7 to 41.3) 0.79 (0.72 to 0.85)
Stage IVA 21 17 70.3 (43.7 to 113.1) -
Stage IVB 13 13 75.9 (44.1 to 130.7) 0.92 (0.49 t0 0.99)
Mild dementia
Stage 0 164 1 0.3 (0.0 to 1.8) 0.00 (0.00 to 0.00)
Stage | 253 27 4.1 (2.8 t0 6.0) 0.14 (0.08 to 0.20)
Stage 11 251 76 13.2 (10.5 to 16.5) 0.34 (0.26 t0 0.42)
Stage I11 329 163 24.5 (21.0 to 28.6) 0.59 (0.51 to 0.66)
Stage IVA 73 54 46.2 (35.4 t0 60.3) 0.75 (0.59 to 0.85)
Stage I[IVB 50 44 58.1 (43.2 to 78.0) 0.91 (0.74 t0 0.97)
Moderate dementia
Stage 0 164 0 0.0 (0.0 t0 0.0) 0.00 (0.00 to 0.00)
Stage | 253 5 0.7 (0.3 to 1.8) 0.02 (0.00 to 0.05)
Stage 11 254 16 2.5(1.5t04.1) 0.05 (0.01 to 0.09)
Stage I11 332 45 5.8(4.4107.8) 0.14 (0.08 to 0.20)
Stage IVA 132 30 9.5(6.7 to 13.6) 0.23 (0.12 t0 0.33)
Stage [IVB 128 63 22.0 (17.1 to 28.1) 0.54 (0.41 to 0.65)

2 The number of participants

b Cumulative incidence of dementia to three years



Abbreviation: Cl, confidence interval



FIGURE LEGENDS

Fig. 1 | Development process of a unified prognostic staging system. a, Overall scheme to
develop a unified prognostic staging system. b, Detailed process for feature selection and cutoff
determination to identify prognostic risk subgroups in Phase 1.

Abbreviations: CU, cognitively unimpaired; MCI, mild cognitive impairment; Dem, dementia;

CDR-SB, clinical dementia rating—sum of boxes

Fig. 2 | Prognostic risk subgroups identified within initial cognitive status sub-cohorts in
Phase 1. a, Risk subgroups in cognitively unimpaired (CU) group. b, Risk subgroups in mild
cognitive impairment (MCI) group. ¢, Risk subgroups in Alzheimer's type (dementia) group. Left
panel illustrates survival prediction models developed with selected features and their cutoff
points within cognitive status sub-cohorts. The resulting prognostic risk subgroups are displayed
with identical colors designating the same category: C1 and C2 in CU, M1 to M3 in MCI, and
D1 and D2 in dementia. In the right panel, adjusted survival curves along with p-values indicate
statistically significant progressive deterioration across prognostic subgroups (P = 0.0106 in
CU, P = 2.68 x 10713 in MCI, and P = 0.0005 in dementia). Adjusted survival curves were
estimated with inverse probability weights and were compared using a log-rank test corrected for

weighting. All statistical tests were two-sided, and source data are provided as a Source Data file.

Fig. 3 | Outcome-specific progression stages and a unified prognostic staging system across
the Alzheimer’s disease continuum. Unified prognostic staging system defined through the
integration of outcome-specific stages. C1 and C2 are prognostic risk subgroups in the

cognitively unimpaired (CU) group. M1 to M3 are prognostic risk subgroups in the mild



cognitive impairment (MCI) group, while D1 and D2 are prognostic risk subgroups in the
dementia group. Prognostic risk subgroups positioned at the same horizontal level represent
equivalent stage. Stage labels (e.g., IVA, IVB) reflect clinical progression severity. Detailed

methods are provided in Supplementary Method 3.

Fig. 4 | Clinical validation of the unified prognostic staging system. Unified prognostic stages
were clinically validated by comparing dementia progression curves and longitudinal cognitive
trajectories with adjustment for age, sex, education, and apolipoprotein E (APOE) €4 status.
Stage labels reflect clinical progression severity. a, Adjusted survival curves for each dementia
progression outcome show effective stage differentiation across the cognitive spectrum: very
mild dementia outcome differentiated lower stages, mild dementia outcome distinctly identified
intermediate stages, and moderate dementia outcome distinguished advanced stages. Overall
differences among stages were assessed using a log-rank test corrected for weighting (P =

2.68 x 10713 in very mild dementia, P = 4.74 X 10~*! in mild dementia, and P =

2.05 x 10718 in DAT). b, Adjusted pairwise comparisons were conducted using multivariable
Cox proportional hazards models, and demonstrated statistically significant differences between
adjacent stages, confirming discriminative validity. P values within each survival outcome were
corrected for multiple hypothesis testing using a Benjamini-Hochberg procedure. ¢, Longitudinal
cognitive trajectories for each stage, measured by clinical dementia rating—sum of boxes (CDR-
SB) and mini-mental state examination (MMSE), show progressively greater decline in higher
stages over time. Data are presented as least squares means (LSmeans) with 95% confidence
intervals estimated using generalized estimating equations. All statistical tests were two-sided,

and source data are provided as a Source Data file.



Fig. 5 | External validation of the unified prognostic staging system using the ADNI cohort.
a, Adjusted survival curves for very mild and mild dementia outcomes shows consistent
separation of worsening prognosis across stages, while less differentiation is found for moderate
dementia outcome due to limited event occurrence. A log-rank test corrected for weighting was
used to assess overall differences among stages, yielding P = 2.03 x 107 for very mild
dementia and P = 3.52 X 1075 for mild dementia, and P = 0.0419 for moderate dementia. Stages
with fewer than 10 participants (i.e. III, IVA, IVB) were excluded from this analysis. b, Pairwise
comparisons between stages using multivariable Cox proportional hazards models demonstrated
significant differences in progression risk for adjacent stage pairs, supporting external
discriminative validity. P values within each survival outcome were corrected for multiple
hypothesis testing using a Benjamini-Hochberg procedure. ¢, Longitudinal changes in clinical
dementia rating—sum of boxes (CDR-SB) and mini-mental state examination (MMSE) also
showed progressively steeper decline in higher stages over time. Data are presented as least
squares means (LSmeans) and their 95% confidence intervals estimated with generalized
estimating equations. All statistical tests were two-sided, and source data are provided as a

Source Data file.

Editorial Summary

This study develops and validates a prognostic staging framework for Alzheimer’s disease by integrating cognitive
status with blood-based biomarkers, and neuroimaging data, to improve risk stratification across the disease continuum.

Peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer
review of this work. A peer review file is available.



Phase 1: Identifying prognostic risk subgroups through survival
prediction modeling

[ CU sub-cohort ][ MCI sub-cohort ] [ Dementia sub-cohort ]
| | |

Optimal feature selection and robust cutoff determination to identify
subgroups having similar prognostic risk
. Candidate prognostic features
Age, sex, education, APOE4 carrier comorbidities,
plasma biomarkers, amyloid B positivity, MRI hippocampalvolume
. Dementia progression outcomes
Very mild dementia outcome (CDR-SB 2 3.0) for CU
Mild dementia outcome (CDR-SB 2 4.5) for MCI
Moderate dementia outcome (CDR-SB 2 9.5) for Dementia

|

Prognostic risk Prognostic risk Prognostic risk
subgroups in CU subgroups in MCI subgroups in Dementia

Phase 2: Developing unified prognostic staging across the
Alzheimer’s disease continuum

v ¥ v

Step 1: Development of outcomespecific progression stages
Combining prognostic risk subgroups with similar risk based on clinical evaluation

Prognostic risk Combined Prognostic sk Combined Progn Combined
groups in MCI subgroups lsubgroups in MC! subgroups lsubgroups in MCI subgroups
Very mild dementia outcome Mild dementia outcome Moderate dementia outcome,

!

Step 2: Integration based on outcomespecific progression stages

Early stages Intermediate stages Advanced stages
Focused on the results of Focused on the results of Focused on the results of
very mild dementia outcome mild dementia outcome moderate dementia outcome

y

Step 3: Labelingfrom Stage 0 to Stage IV

Each initial cognitive status subcohort
with a corresponding dementia progression outcome

Survival random forest with 1000 trees
(Each tree with maximum depth of 1)

Bootstrap Bootstrap Bootstrap
sample 1 sample 2 Sample 1000
e o o
Child1-1  Child 1-2 Child2-1  Child2-2 Child 1000-1  Child 1000-2
feature feature feature feature feature feature
<cutoff1 > cutoff 1 <cutoff2 > cutoff2 < cutoff 1000 > cutoff 1000

Feature selection and cutoff determination
. Feature selection based on selection stability:
Select the most frequently chosen feature across 1,000 trees
+  Cutoff determination via weighted averaging:
Among all identified cutoff values for the selected feature,
choose the 5 or 10 most frequently identified values and average
them

Split parent node using the optimal feature and cutoff

Child node 1 Child node 2
Selected feature Selected feature
Not satisfying < Determined cutoff > Determined cutoff Not satisfying
stopping rule stopping rule
Satisfying Satisfying
stopping rule stopping rule

Clinical evaluation of derived risk subgroups
+  Comparison of incidence rates and 3year cumulative incidence
+  Assessments of any overlap of adjusted survival curves If
. Pairwise comparison using Cox proportional hazard models indistinguishable



a Prognostic risk subgroups in CU sub-cohort
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