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Abstract 

Agricultural production requires low-cost sensors capable of delivering reliable, high-resolution data across 

large areas. Rising food demand, limited arable land, and severe soil degradation have accelerated the 

adoption of precision agriculture, which relies on real-time monitoring of soil, plant, and environmental 

conditions. Central to this shift is the development of scalable sensor technologies enabled by advances in 

materials science. Printing techniques, including inkjet, screen, aerosol jet, 3D printing, and direct laser 

writing, offer versatile routes to fabricate flexible, large-area, and plant-integrated sensors. This Review 

surveys recent progress in printable low-dimensional materials for agricultural sensing, examines their 

physicochemical properties in relation to sensor performance, and discusses key challenges and future 

opportunities requiring interdisciplinary integration. 
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Introduction 

Global agriculture is under increasing pressure to meet the growing demand for food while dealing with 

climate variability, resource limitations, and stricter sustainability regulations1. As a pillar of modern 

society, agriculture has undergone extensive industrial and market-driven transformations, leading to higher 

productivity but also introducing pressing environmental challenges worldwide. Recent geopolitical shifts 

and socio-economic trends underscore the key role of agriculture in food systems, economic development, 

and global stability. Simultaneously, approximately 40% of the Earth's land area is dedicated to agriculture, 

while only 11% is considered cultivable and suitable for crop production2. Productive land and fertile soil 

remain our most critical non-renewable geo-resources. Erosion and pollution caused by humans, however, 

lead to the depletion of 24 billion tonnes of fertile soil each year, causing an annual economic loss of 

approximately USD 490 billion3. In this context, securing food supplies requires integrated strategies that 

enhance productivity while preserving environmental integrity4–7. 

 

A promising approach to address these challenges is the integration of precision agriculture (Fig. 1a) with 

AI-driven data processing for more accurate decision support8–10. This enables precise control for targeted 

delivery of resources (fertilizers, pesticides, irrigation water), thereby increasing crop yields, saving cost, 

and minimizing environmental impact11–13. The importance of real-time and on-site data on soil properties 

(moisture, pH, nutrient composition)14, plant physiology (hormone levels, stress markers)15, and 

environmental conditions (temperature, light intensity, relative humidity (RH), CO2 concentration)16 is 

essential for optimizing agricultural management4,5,17,18. Agricultural applications require sensors capable 

of monitoring key parameters such as soil nutrients, moisture, salinity, pH, and leaf-level indicators, 

including humidity/VPD, metabolites, and stress biomarkers. These measurements are taken across diverse 

environments, including soil, leaves, stems, fruits, irrigation lines, and both open-field and greenhouse 

systems. Printed and biodegradable sensors are well-positioned to meet these needs by enabling continuous, 

distributed monitoring, which supports timely decisions in irrigation, fertilization, and plant stress 

management.  

 

Printing technologies offer exactly what agriculture needs: low-cost, flexible, and biodegradable sensors 

that can be produced at scale and deployed anywhere on the plant or in the field. This makes printed devices 

strong candidates for overcoming the practical limitations of current sensing tools. Traditional approaches, 

including manual sampling for laboratory analysis and visual crop inspection, are slow, labour-intensive, 

and often inaccurate. While visual observation can be automated through plant imaging, it typically detects 

symptoms only after physiological stress has already progressed and the first stress signals have been 

activated, thereby hindering timely decision-making19. Plants rapidly respond to dynamic stressors (Fig. 
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1b) by the emission or accumulation of chemical signals, such as ion fluxes20, small radicals [e.g., reactive 

oxygen species (ROS)21], volatile organic compounds (VOCs) (e.g., methanol, acetic acid, methyl 

jasmonate)22 or phytohormones23, over timescales ranging from seconds to days24. Specific fast-occurring 

signals, such as superoxide radicals, occur at precise moments, serving as concrete signals that activate a 

plant response cascade and may be missed with low and insufficient sampling frequency25. Although 

conventional methods such as leaf-disc punching26, freeze extraction27, or root exudate sampling28 are 

widely used in plant monitoring, they become unsuitable for repeated real-time measurements and may 

even alter the physiological processes studied29. These invasive assays are also incompatible with field 

deployment because they require controlled handling, cold-chain transport, and benchtop instrumentation, 

which are impractical across distributed plots and can miss the critical moment when the plant senses 

changing environmental conditions. Consequently, advancements in sensor technology that continuously 

monitor plant biochemical changes prioritize continuous, non-destructive measurement approaches14,15,30. 

Constant monitoring of these dynamic signals, rather than discrete interval sampling, can enable researchers 

and growers to gain deeper insight into plant defence mechanisms and identify emerging threats on time. 

In response, autonomous electrochemical and optical sensor systems are increasingly implemented, 

providing continuous monitoring and enabling rapid, data-driven interventions in real-time, thus 

minimizing substantial damage and reducing costs31–35. 

 

Among these autonomous systems, electrochemical sensors represent a prominent class of devices that 

enable selective detection and quantification of analytes when integrated with conductive and 

electrochemically active advanced materials36,37. Sensors can be directly integrated into soil38 and plant 

tissues39 or attached to leaves40,41 for continuous monitoring of ions14, ROS40, and metabolites39. Optical 

sensors offer additional opportunities and, compared to electrochemical sensors, provide a complementary 

signal that can be effectively utilized for applications in real-time monitoring42,43. Optical sensors use a non-

invasive detection mechanism (e.g., drone technology44, see Fig. 1b) and seamless integration with systems 

such as infrared sensing45, fluorescence monitoring46, or RGB imaging43,47 make them an effective 

alternative to electrochemical detection. Optical sensors, however, face significant challenges, including 

delayed responses in capturing the plant’s current state, since physiological changes often appear in optical 

observations much later than in electrochemical readouts48,49. Although both electrochemical (fast response, 

high sensitivity) and optical (non-invasive detection, smooth integration into real-world applications) 

sensors exhibit significant potential for plant monitoring, many currently market-available systems fall 

short in practical agricultural applications. 
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Despite recent advancements, current commercial plant sensors are limited to basic environmental metrics 

such as soil moisture, temperature, humidity, and light. A major limitation of current commercial plant-

monitoring systems is their reliance on conventional electronic components (their architectures do not 

incorporate printed electronics) and simple resistive measurement principles, which are optimized for soil-

level parameters rather than direct leaf or stem interface. They often lack precision and remain too costly 

(ranging from USD 100 to USD 2000 per device) for large-scale, multi-point agricultural monitoring 

deployment. Crucially, these devices lack functional materials. They are unable to detect key physiological 

markers, such as specific ions, phytohormones, or other signaling molecules, which are critical for precision 

agriculture and early-warning diagnostics. Examples of such commercially available systems include the 

Xiaomi Mi Flora Monitor, Willow Plant Sensor, FYTA Beam, EarthOne, and Sonoff for consumer 

applications, as well as agricultural-grade sensors such as Sensoterra, Niubo, CropX, Arable, and METOS, 

which similarly focus on soil parameters rather than plant biochemical status. This gap underscores the 

urgent need for advances in materials development, signal transduction, data processing, and sensor 

durability to ensure reliable performance under variable and fluctuating environmental conditions. 

Addressing these limitations requires not only innovation in sensor hardware but also the integration of 

predictive modeling techniques, such as machine learning (ML), with real-time data acquisition. Such 

integration can transform raw sensor outputs into actionable insights, enabling early detection of stress 

signals and allowing farmers to implement timely, targeted interventions guided by data-driven decision-

making50–52. 

 

Among various platforms for agricultural monitoring, printed sensors stand out for their unique potential 

to meet the scalability, cost-efficiency, and deployment demands of precision agriculture14,15,39,40,38. 

Although many reported demonstrations rely on non-crop species, chosen as model plants because their 

large and mechanically robust leaves facilitate early prototyping of printed and inkjet-printed devices, the 

underlying sensing principles and fabrication strategies remain directly transferable to crop-relevant 

systems. By using additive manufacturing techniques, including screen printing (SP)14,53, inkjet printing 

(IJP)54,55, 3D printing (3DP)40,56, aerosol jet printing (AJP)57,58, or direct laser writing (DLW)59,60, printed 

sensors reduce overall costs and shorten production cycles compared to conventional methods, such as 

photolithography and vacuum deposition61,62. These devices can be easily integrated on flexible63–66 or 

biodegradable67–69 substrates, enabling environmentally friendly deployment and facilitating scalable 

production of advanced sensor arrays optimized for real-world agricultural applications (Fig. 1c). 

Moreover, advances in the development of functional electrochemically active inks containing metal 

nanoparticles70–73, polymers74–76, carbon77–79, or biomolecules80–82 are further expanding the portfolio of 

applications in sensor design. However, several challenges must be addressed, including excessive material 
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consumption (SP, 3DP)83,84 and significant irreversible losses during electrode fabrication due to ink 

retention on the mesh, stencil, and squeegee, particularly in SP85. In addition, optimizing print compatibility 

with many substrates is still demanding, which is one of the main drawbacks of IJP86,87. Despite all the 

challenges, the dynamic and rapidly evolving field of printing technology has great potential to meet all the 

demands of smart agriculture by improving production processes, minimizing or eliminating redundant 

steps in conventional methods, and facilitating rapid prototyping to provide robust, sensitive, and adaptable 

sensors (Fig. 1c). For realistic agricultural use, sensors must be robust against environmental stressors such 

as temperature variation, sunlight, moisture, and plant movement. Encapsulated ultrathin printed devices, 

as demonstrated in recent studies, already show stable multi-day operation on living leaves. Calibration and 

signal stability are essential due to fluctuating field conditions, while biodegradable substrates allow tunable 

device lifetimes with minimal environmental impact. Integration with wireless data systems and simple 

readout electronics enables real-time processing of plant information for automated management. 

 

Furthermore, these methods have significant promise beyond agricultural monitoring, extending to 

wearable, biomedical, and environmental sensing systems. This Review, however, concentrates specifically 

on their implementation and adaptation for crop and plant monitoring, where biocompatibility, 

conformability, and environmental resilience are critical. While several Reviews have discussed printed 

electronics or biosensors in general, none have provided a unified comparison of all major printing 

technologies specifically in the context of plant and agricultural monitoring. This Review bridges that gap 

by integrating screen, inkjet, 3D, aerosol jet, and laser-based printing within a single framework, 

highlighting their unique advantages, limitations, and complementarities for scalable, sustainable, and real-

world sensing applications. 

 

This Review explores the emerging role of printing technologies in enabling real-time and continuous 

monitoring for smart agriculture. We begin by outlining printing methods specifically developed for plant 

science applications, emphasizing their potential for scalable, rapid, and customizable sensor fabrication. 

A comprehensive analysis of key additive manufacturing techniques follows, including their respective 

advantages, limitations, and future directions. We also examine the critical physicochemical properties of 

printable inks, such as viscosity, surface tension, particle morphology, and postprocessing requirements, 

which directly influence print quality and device performance. The Review further investigates the potential 

of advanced low-dimensional materials, including MXenes, transition metal dichalcogenides (TMDs), and 

graphene derivatives, as promising ink platforms for plant monitoring. In conclusion, we highlight 

emerging trends and emphasize the importance of an integrated interdisciplinary approach that connects 
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plant science, materials engineering, and data analytics to drive innovations and deliver impactful solutions 

on a global scale. 

 

Printing technologies 

Printing technology, in the context of electronic and sensor development, refers to the additive patterning 

of functional materials onto a wide variety of substrates using digitally or physically guided deposition 

methods. Unlike traditional subtractive techniques such as photolithography, which require multistep 

processes involving masking, etching, and cleanroom environments with UV or electron beam exposure88, 

printing offers a more cost-effective, scalable, and environmentally friendly alternative61,89. One of the 

defining advantages of printing technologies is their broad substrate compatibility. Devices can be printed 

on both conventional materials, such as plastics90, textiles91, and glass92, or biodegradable substrates93–95, 

including cellulose paper96, and even natural plant surfaces such as leaves and stems57,97,98. This versatility 

supports the development of sustainable, field-deployable sensors that can naturally degrade after use, 

reducing agricultural waste and aligning with the principles of the circular economy and environmental 

protection. In addition, printed electronics enable the integration of a wide range of functional materials, 

such as metal nanoparticles70–73, carbon nanomaterials77–79, polymers74–76, or bio-inks81. Each printing 

technique offers distinct advantages for sensor fabrication, and the selection of a specific method depends 

on the target application and performance requirements (for an overview of key parameters, see 

Supplementary Table 1). SP remains the preferred method for depositing thick, viscous coatings using 

simple equipment, making it ideal for large-scale applications where printing resolution is not a critical 

factor. Its outstanding scalability and compatibility with roll-to-roll manufacturing processes make it 

particularly advantageous for large-scale industrial production. In contrast, IJP excels in high-resolution 

printing capability with minimal material waste, allowing for the precise design of small, sophisticated 

shapes. A key advantage of IJP is its fully digital, maskless workflow that enables rapid prototyping, in 

which geometries and deposition parameters can be modified in software and printed immediately without 

screens. With computer-aided design (CAD) tools, patterns can be adjusted in a few clicks and directly 

transferred to the printer, shortening design cycles, reducing non-recurring tooling costs, and enabling on-

the-fly iteration for sensor arrays and gradients. The IJP is technically versatile to deal with various ink 

properties and chemistries, utilizing different types of droplet formation mechanisms and jetting techniques. 

The most popular techniques are thermal inkjet, piezoelectric inkjet, aerosol jet printing, and 

electrohydrodynamic (EHD) jet printing99. The thermal IJP is praised for its simple methodology, cost-

effectiveness, and suitability with water-based inks. This technique produces droplets through a nozzle by 

vapor bubbles produced from localized heating pulses in the ink compartment99. However, this method is 

preferred to thermally stable inks, while heat-sensitive or thermally degradable materials cannot be printed 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

suitably. To overcome such limitations, piezoelectric IJP is widely used due to its room-temperature printing 

capability. This method produces a jetting droplet of ink from pressure pulses generated by a piezoelectric 

actuator through voltage variations99. The piezoelectric IJP systems offer precise droplet formation control, 

ensure ink stability, and are employed extensively for printed electronics and flexible device manufacturing. 

This method is limited in its applicability to flat surfaces due to the contact-based printing process. To tackle 

contactless printing on 3D or complex surfaces, more advanced type jetting, such as Aerosol IJP, is popular. 

This method generates aerosol from the ink by pneumatic or ultrasonic integration with sheath gas to drop 

ink on substrate99. Furthermore, the pneumatic aerosol jet is highly valued for its ability to rapidly prototype 

and print on non-planar or flexible substrates, thereby expanding design freedom compared to traditional 

inkjet methods for printing fine features (~10 µm). IJP techniques, such as EHD printing, can produce prints 

with high resolution in submicron to nanoscales. This technique is driven by electric field modulation to 

the nozzle that generates charged droplets by electrostatic forces99. However, it is limited by the low 

viscosity of the ink for better printing performance. It is increasingly favored for high-precision electronics 

and the fabrication of micro- and nano-sensors. Its ability to print at the nanoscale surpasses that of 

piezoelectric or aerosol jet methods, making it the premier choice for ultra-fine patterning. Meanwhile, 3DP 

further expands the design space by enabling complex three-dimensional architectures for new sensor 

geometries and integrated systems. This technique has wide technological provisions according to printing 

material, ink or feeds. These include 3DP techniques such as Fused Deposition Modeling (FDM), 

Stereolithography (SLA), Direct Light Processing (DLP), Direct Ink Writing (DIW), and Selective Laser 

Sintering (SLS), based on their operation, material capabilities, and relative advantages100. FDM printers 

print thermoplastic polymer-based filament layer by layer through extrusion from a heated nozzle. The 

versatile polymers for FDM printers are polylactic acid, nylon, and acrylonitrile butadiene styrene, which 

can also be printed with a range of nanomaterial composites. Hence, it offers a range of material possibilities 

with rapid prototyping, cost-effective operation, and high accessibility. It is limited by low resolution, 

typically in the range of a few hundred micrometers, in printed layers with inferior surface finishes due to 

the difficulty in extruding from narrow nozzles. For high-resolution 3D prints with micro-scale accuracy, 

UV-light projection-based 3D printing techniques such as SLA and DLP are efficient101. These techniques 

utilize resin-based precursors to build 3D structures through photopolymerization with precise control using 

a UV laser. Furthermore, for rapid 3DP, DLP is equipped with an additional digital micromirror that 

advances the printing process by projecting the entire resin layer at once, rather than tracing with a laser, as 

in the SLA technique. These techniques offer a high resolution as low as 0.05 mm of layer height, which is 

better than FDM. The applicability of these methods is best suited for small parts and microfabrication, 

while it is only suitable for photoactive resins that restrict electronically conducting material printing. To 

print conducting materials or inks, the DIW method is most suitable, which extrudes viscous inks or even 
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pastes through a fine nozzle under controlled conditions. It is enabling direct writing of functional inks, 

biomaterials, or nanomaterials with extrusion control by pneumatic, screw or piston-based functions. It 

excels at creating complex, multi-material, and large-scale 3D structures. The method's flexibility in inks 

makes it suitable for printed electronics and tissue engineering, albeit with lower resolution than resin-based 

techniques102. To achieve complex geometry with high mechanical strength, SLS 3DP is preferred. It utilizes 

a high-power laser to selectively sinter powdered materials (e.g., metal powders, nylon, polyamides) 

without the need for support structures. It is widely used in aerospace, automotive, and dental industries for 

functional prototyping and end-use parts. Its main drawback is the high cost and slow build times101. DLW 

complements these approaches by enabling solvent-free, additive-free fabrication of conductive 

microelectrode patterns through the photothermal conversion of carbon-rich precursors (e.g., polyimide) 

into laser-induced graphene (LIG). This technique provides exceptional resolution and design freedom for 

producing porous, doped, or hierarchical microstructures in a single step. AJP extends this portfolio by 

enabling the deposition of fine, continuous lines with feature sizes down to several micrometers and 

excellent conformity on nonplanar or flexible substrates. Unlike IJP, which relies on direct droplet ejection, 

AJP employs an aerodynamic focusing mechanism to deliver a narrow aerosolized stream of ink toward the 

substrate. This process provides exceptional versatility in printing on irregular or curved surfaces, including 

textiles, polymers, and even biological tissues such as leaves. Furthermore, AJP accommodates a broad 

range of ink viscosities, bridging the gap between the low-viscosity formulations used in IJP and the thicker 

pastes required for SP, while maintaining high resolution and reproducibility. In all five techniques, the 

resulting device performance is determined by the interplay between ink composition, printing resolution, 

substrate adhesion, and post-print processing. SP is recommended for large-area electrochemical electrodes 

and low-cost arrays (e.g., ion, pH, ROS) on flexible films where thick, robust conductors are needed. IJP is 

practical for fabricating high-resolution, conformal electrodes and biofunctional layers with minimal ink 

usage, while AJP is preferred for direct on-leaf or curved-surface features requiring fine lines and good 

conformity. DLW is advantageous for porous, binder-free carbon microelectrodes and chemiresistive, 

humidity or strain sensing, and 3DP is best for structural elements like microneedle patches, housings, and 

clips, that are subsequently functionalized by SP/IJP/AJP. In summary, printing technologies offer an 

additive, adaptable, and environmentally sustainable approach to sensor development that enables rapid 

prototyping, minimal waste, and extensive design flexibility. 

 

Screen printing for crop sensor development 

SP is a versatile, centuries-old technique that has been successfully adapted for modern materials science, 

with applications ranging from energy,103–105 via electronics106–108 to sensing109–111. Its primary advantages 

are simplicity and scalability (massively used in industrial series production), enabling the rapid deposition 
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of commonly 5–1000 µm thick layers112 over large areas at a low cost113. SP has recently emerged as a 

versatile technique for fabricating diverse plant sensors, including screen-printed carbon electrodes 

(SPCEs)14,53,114, wireless115,116, and wearable117–119 devices that can be inserted into soil or attached directly 

to plants for real-time monitoring of their physiology and environmental conditions. Among them, a time-

resolved electrochemical technology for plant root environment in situ chemical sensing (TETRIS14) has 

been developed to enable continuous chemical monitoring using low-cost SP electrochemical sensors (Fig. 

2a). The platform integrated three screen-printed sensors on polyester, including a potentiometric pH sensor 

composed of screen-printed carbon and Ag/AgCl electrodes where polyaniline was electropolymerized on 

the carbon surface to form a pH-responsive working electrode, an amperometric hydrogen peroxide (H2O2) 

sensor consisting of Prussian blue-mediated carbon, carbon, and Ag/AgCl electrodes with a PB-carbon 

working electrode, and an impedance-based salt sensor with two carbon electrodes for ion monitoring (Fig. 

2b). Results demonstrated species-dependent (kale, tomato, and rice) and ion-specific (nutrients and heavy 

metal ions) uptake behaviors, influenced by variables such as plant development stage, ion uptake identity, 

and channel modulation. In addition, the ML model trained on physicochemical descriptors successfully 

predicted normalized uptake rates, emphasizing the system’s potential for data-driven crop screening. RH 

at the plant-environment interface is a key indicator of plant health, as it controls physiological functions 

like transpiration, nutrient transport, and temperature regulation. In addition, elevated RH, especially under 

favorable temperatures, can promote stomatal opening and microbial colonization, increasing susceptibility 

to pathogens and affecting irrigation and crop protection strategies. To this end, a fully SP, ultra-thin (6 

µm) capacitive sensing platform has been designed for direct and non-invasive RH monitoring directly on 

living plant tissues53. The device uses a sandwich capacitor architecture in which carbon-based electrodes 

are encapsulated between two layers of ethyl cellulose and applied via a temporary tattoo method (Fig. 2c). 

This design allows the sensor to be stretchable (Fig. 2d), thus allowing flexible adhesion to different plant 

surfaces while achieving a record-high sensitivity of up to 1000 pF/%RH. Monitoring of RH using 

electrochemical impedance spectroscopy (EIS) demonstrated reliable multi-day operation with high 

accuracy compared to commercial devices. The response time, however, was slower because of the 

diffusion dynamics of material encapsulation. Further advances in encapsulation throughput and device 

miniaturization could reduce this delay and increase suitability for precision agriculture deployments. 

 

Since salicylic acid and ethylene are key signaling molecules primarily involved in pathogen defence and 

general stress responses, including senescence, real-time monitoring is essential for understanding crop 

health. In order to monitor these critical parameters continuously, non-invasively and multiplexed, a fully 

integrated, Internet of Things (IoT)-enabled sensor has been developed capable of wireless real-time data 

transfer to remote devices for centralized analysis and decision-making118. The low-cost, flexible 
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electrochemical sensors were calibrated using laboratory protocols and verified during 60-day field 

experiments on pepper, cabbage, and tomato plants (see Fig. 2e) exposed to variable water stress118. The 

resulting data revealed dynamic correlations between phytohormone levels and water transport. This work 

bridges a long-standing technological gap by providing minimally invasive monitoring with spatiotemporal 

resolution, unlike traditional methods such as high-performance liquid chromatography (HPLC) or gas 

chromatography-mass spectrometry (GC-MS), which are destructive, time-consuming, and lack temporal 

resolution. While continuous monitoring of physiological and chemical parameters, stress-related markers, 

is crucial for assessing plant status and environmental responses, certain agricultural scenarios demand 

specific detection of pathogenic agents. In such cases, molecular recognition of viral or microbial targets 

becomes essential, particularly for early-stage diagnosis and intervention120. Advances in SP platforms have 

extended their application to more complex biosensing configurations. One illustrative case involves carbon 

SPEs modified with electrodeposited gold nanoparticles (AuNPs), enabling the covalent immobilization of 

thiolated DNA probes for the label-free electrochemical detection of Citrus tristeza virus (CTV). This 

system demonstrated high selectivity and sensitivity through EIS, with successful validation in spiked plant 

samples121. Expanding on this approach, a complementary study integrated solid-phase isothermal 

recombinase polymerase amplification directly on AuNP-modified SPEs, achieving in situ nucleic acid 

amplification and detection of CTV at room temperature, without thermal cycling or labeling. The resulting 

sensor reached a limit of detection of 1 pg µL−1 with high reproducibility, offering a viable strategy for 

portable and field-deployable diagnostics122. Together, these examples underscore the versatility of SP 

technologies for integrating molecular recognition and amplification within low-cost, scalable sensing 

platforms tailored for in situ agricultural pathogen monitoring at the relevant care point places and times in 

the field. 

 

Despite all the achievements and advances, SP still faces several technical challenges that must be 

addressed. Ink composition and rheology are among the most critical factors, as optimizing these properties 

is essential for achieving reliable performance and high-resolution patterning. SP requires inks with high 

dynamic viscosity, typically in thesup range of 1,000 to 10,000 mPa·s, to prevent bleeding (unwanted ink 

spreading) and ensure uniform transfer across the screen stencil85. Formulating printable viscous inks that 

retain both stability and functionality (e.g., sensitivity and selectivity of the final sensor) is a major 

challenge and has become an increasing focus for many materials industries123–126. While the development 

of advanced inks based on low-dimensional materials is very promising and has made remarkable 

progress84,87,127, their strong tendency to aggregate at high viscosity poses major difficulties in achieving a 

stable ink. In practice, the ink composition must balance multiple requirements beyond viscosity, including 

conductivity, sufficient adhesion to the substrate, curing properties, and effective functionalization. 
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However, achieving all these ink features requires complex mixtures of active material with solvents, 

binders, and additives that can significantly influence the functionality of the final ink (e.g., limiting access 

to functional groups, thereby reducing selectivity)128. 

 

Resolution limitations are also important, as unlike photolithography or IJP, traditional SP exhibits coarser 

resolution (generally tens to hundreds of micrometers) due to inherent constraints including ink spreading, 

screen mesh geometry, and stencil definition85. Although this resolution is sufficient for many applications, 

it remains inadequate for the new generation of fine microelectronic devices129. These micro-technologies 

play a pivotal role in sensor development, as the emphasis is put on sensor size (plants and their organs can 

be smaller than a centimeter), reducing the material load and, thus, the ecological footprint. While the broad 

compatibility of SP technology with diverse substrates is considered a major advantage, multiple challenges 

persist. Specifically for plant sensors, the surface of living plant organs is irregular and dynamic, and 

therefore, direct printing on leaves or stems via mesh and stencil templates is unfeasible. Moreover, the 

curing or sintering of SP inks typically requires elevated temperatures, posing an additional limitation since 

plants are living organisms. Another key limitation of SP technology is the high material consumption, as 

a significant volume of ink is required to cover the entire stencil mask. In addition, SP suffers from 

considerable irreversible ink loss during electrode fabrication, mainly due to retention on the mesh, stencil, 

and squeegee, resulting in significant material waste85. This limitation becomes especially challenging when 

using high-value biomaterials (crucial for selectivity) such as aptamers, antibodies, or DNA probes, which 

are expensive to produce and typically available in limited quantities. As a result, using SP for these bio-

inks is neither economically nor practically suitable, leading to the functionalization of sensors 

predominantly via the drop-casting method. Although straightforward, this additional step still requires 

relatively large material volumes and suffers from limited reproducibility130, a major bottleneck in sensor 

development131. 

 

As ink properties, particularly viscosity and colloidal stability, are critical for proper SP, further 

optimization in this area will be increasingly important. For instance, stable and highly viscous ink is 

essential for fabricating wearable plant patches53 (see Fig. 2c), enabling direct monitoring of trace-level 

analytes at the leaf interface. A promising direction involves the development of smart inks based on low-

dimensional materials and conductive additives, which offer high electrical conductivity, mechanical 

flexibility, and tunable functionality, thereby enhancing sensor performance and expanding their 

application profile. Particular attention will shift to environmentally friendly, highly concentrated water-

based inks that could progressively replace conventional organic solvent-based formulations. Although 

organic solvent-based inks remain widely used due to advantages such as controlled drying, optimized 
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rheology, and sufficient adhesion, the use of toxic solvents (glycol ether acetates, cyclohexanone, and other 

ketone-based solvents)132,133 limits their deployment in sustainable applications. In this respect, the 

alternative organic solvents or water-based formulations are particularly beneficial for printing on 

biodegradable substrates134. Another key objective is improving print resolution and accuracy by enhancing 

screen and stencil technologies, such as finer mesh geometries or photopatterned stencils, enabling 

micrometer-scale features. This improvement would allow miniaturization, thus the integration of robust 

sensor arrays into compact environments such as greenhouses or hydroponic systems, where space is 

limited. In summary, ongoing research and innovations ensure that SP will be the cornerstone of printed 

electronics, providing a cost-effective, versatile, and readily scalable technique, particularly in scenarios 

where miniaturization and ultra-high resolution are not essential requirements. 

 

Inkjet printing for crop sensor development 

IJP remains one of the most cost-efficient techniques for device prototyping and manufacturing87. This 

technique offers considerable freedom of digital design, non-contact, and additive fabrication by depositing 

picolitre-scale droplets, enabling the formation of precise and high-resolution patterns112,135. Initially 

developed for graphic applications, IJP technology has become an attractive deposition technique for 

materials science and, similar to SP, has gained significant attention from the scientific community, 

covering applications from sensors136–138 and energy139–141 to biotechnology142–144. In contrast to 

conventional SP, this method eliminates the need for masks or meshes, enabling direct transfer of patterns 

from digital designs to substrates145,146. Moreover, inks for IJP can be formulated as water-based systems, 

a feature that is difficult to achieve in SP due to viscosity and wetting constraints87,147,148. IJP significantly 

reduces material consumption (on the order of micrograms149,148) by precise deposition and negligible 

material losses, thus significantly reducing costs. Consequently, it could enable printing of expensive 

biological materials (e.g., aptamers, antibodies, DNA probes) which are not economically viable with SP 

due to the large material volume, the large material requirements and the substantial waste generated. 

Compared to SP or photolithography, IJP is particularly attractive due to its low material consumption, 

high-resolution, and printability on non-traditional substrates, such as irregular natural surfaces like plant 

leaves97,98, all without the need for sophisticated cleanroom facilities required by conventional lithographic 

methods. 

 

Like SP, IJP technology has become increasingly prominent as a method for developing sensors for plant 

physiological monitoring54,97,150–152. For example, IJP has been used to deposit highly conductive 

PEDOT:PSS ink directly onto the biocompatible polyvinyl alcohol cryogels. Unlike SP, which often 

requires high viscosity inks and leads to thicker layers, IJP offered excellent resolution, but especially 
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compatibility with an unconventional soft, hydrated substrate. The sensors were fabricated by inkjet 

printing PEDOT:PSS traces on glass through three passes, followed by drying at 90 °C for 10 min, coating 

with a PVA hydrogel, peeling and re-encapsulation with a second PVA layer, and freeze-thaw crosslinking 

at −20 °C to produce a freestanding electronic cryogel implant (Fig. 3a). This approach allowed for 

monitoring plant ion fluxes and hydration status in tomato stems, which is essential for understanding 

nutrient uptake, water transport, and plant responses to stress151. Further use of IJP enabled the design of 

tattoo-like sensors for non-invasive, long-term measurement and stimulation of electrophysiological signals 

in plants, which are crucial for advancing our understanding of plant signaling. In this context, ultra-

conformal PEDOT:PSS-based electrodes have been developed to address key issues in plant interfacing, 

including invasiveness, low mechanical stability and short operational lifetime. Manufactured on tattoo 

transfer paper and incorporating flexible silver interconnects, this ultra-thin device (<3 μm) adheres to leaf 

surfaces via van der Waals forces, requiring no binders or electrolyte gels (Fig. 3b). Such a sophisticated 

approach enabled the recording of electrophysiological signals in three plant species (Dionaea muscipula, 

Arabidopsis thaliana, and Codariocalyx motorius). The same electrodes were also used to trigger trap 

closure in Dionaea muscipula by electrical stimulation, demonstrating bidirectional functionality. Signal 

acquisition remained reliable for over 10 days, with simple rehydration of the tattoo layer restoring 

performance, thus highlighting the system's robustness97. Even IJP can be utilized for the fabrication of 

microneedle architectures (mainly produced via 3DP, see chapter Three-dimensional printing for crop 

sensor development), offering a scalable and maskless approach for developing minimally invasive sensing 

interfaces. Researchers developed a method for the direct printing of conductive microneedles using silver 

nanoparticle inks and a modified drop-on-demand printing setup equipped with localized heating. This 

configuration enabled rapid in situ solvent evaporation, allowing for the vertical growth of mechanically 

robust and electrically conductive microneedles without post-processing (Fig. 3c). The printed 

microneedles were used for in vivo EIS on mint leaves as a promising technology to monitor plant nutrient 

status150. 

 

Although IJP offers advantages over conventional methods, it faces significant technical limitations that 

hinder its broader use in large-scale sensor development. These issues relate to scalability112 (compared to 

high-throughput screen printing) and primarily to ink composition, with the critical challenge being the 

preparation of submicron particles (<500 nm) that can pass through the narrow nozzles of the inkjet 

printhead112. Additional concerns include substrate compatibility112 and, above all, the limited availability 

of refillable inkjet material printers, which are absent from commercial suppliers. Creating stable, printable 

inks presents a major challenge, as inks must exhibit precisely controlled viscosity (1‒20 mPa·s), surface 

tension, and the required submicron particle size145,153. Another critical bottleneck related to ink 
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composition is printhead clogging, often caused by fast-evaporating inks or particulate deposits in the 

nozzle, which leads to irregular droplet ejection and degraded print quality145,153. Although self-cleaning 

mechanisms help mitigate these issues, ensuring stable performance during extended print sessions remains 

difficult. Additionally, metal-based inks can corrode nozzles or form deposits, further reducing print 

quality153. While strategies such as anti-fouling coatings and ink recirculation systems are under 

investigation, regular nozzle maintenance remains an unavoidable and laborious aspect of IJP112. One of 

the major limitations of IJP compared to SP is its poor compatibility with various substrates, particularly 

glass and metals. Properties such as different hydrophobicity, porosity, and thermal stability of the surface 

significantly affect droplet behavior and adhesion154. Unlike SP and lithography, which rely on physical 

stencils or meshes and require post-processing, IJP is a digital method in which designs can be modified 

with a few computer clicks, eliminating the need for the creation of new masks. This enables rapid 

prototyping and the precise, direct printing of functional materials onto irregular, dynamic surfaces such as 

plant leaves and stems97,98. In conclusion, IJP technology still faces significant challenges despite its 

considerable advantages. Advances in this technology require addressing ink formulation, improving 

substrate compatibility, and, most importantly, an expanded portfolio of printable functional materials. 

 

Future improvements in printing techniques must be aligned with the specific requirements of agricultural 

sensing, including robustness under variable environmental conditions, low-cost fabrication for dense 

deployment, flexibility for conformal integration on leaves and stems, and biodegradability to minimize 

field waste. Advancements in printing resolution, material compatibility, and substrate engineering can 

directly translate into more durable, sensitive, and field-ready sensors for precision agriculture. IJP 

technologies are rapidly evolving due to advances in materials science, engineering, and digital 

manufacturing techniques. Future advancements are expected to enhance high-resolution printing through 

cutting-edge techniques such as EHD printing, also known as E-jet. Unlike conventional inkjet methods, 

EHD printing employs an electric field to generate ultra-fine droplets, achieving resolutions down to a few 

hundred nanometers155,156, thus achieving even greater miniaturization and saving both materials and cost. 

This ultra-high resolution could allow printing of multiplexed electrochemical sensors on small spaces 

(leaves, stems, fruits), enabling simultaneous monitoring of different phytohormones or nutrient ions with 

minimal material consumption. As with SP, significant progress will depend on the development of 

functional inks, as the limited availability of printable smart inks remains a major barrier, mainly due to the 

difficulty of achieving small particle sizes. Innovative formulations based on low-dimensional materials 

(e.g., graphene derivatives127, MXenes84, and transition metal dichalcogenides87) are promising to address 

key challenges in this field. Currently, the availability and cost of high-precision inkjet and EHD printers 

pose significant practical barriers, shaping the current technological baseline for future innovation. The 
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most widely used systems, including the Fujifilm Dimatix and SUSS MicroTec LP50, employ industrial-

grade printheads such as Samba, Konica Minolta, Canon, and Xaar that provide excellent resolution but 

remain bulky and expensive (Dimatix ≈ USD 70,000 and ≈ USD 250 per cartridge). These platforms 

illustrate the existing capabilities from which next-generation portable, miniaturized, and field-deployable 

printing systems are expected to evolve. Their continued development toward lower-cost, compact 

architectures will be crucial for translating high-resolution inkjet and EHD printing into real-world 

agricultural applications. In parallel, a growing number of studies have successfully repurposed commercial 

desktop inkjet printers as ultra-low-cost platforms for fabricating electrochemical sensors. For example, 

consumer-grade systems have been adapted for the deposition of nanomaterial-based inks on flexible 

substrates, such as Mitsubishi Paper Mills NB-TP-3GU100, enabling the prototyping of functional 

electrodes at a fraction of the cost of industrial equipment. Among them, models like the Epson XP-15000 

(ca. USD 400) have been employed for printing metallic nanoparticle inks, particularly silver and gold, 

underscoring their potential to democratize the fabrication of conductive patterns and electrochemical 

interfaces157,158. Although these printers lack fine droplet control and resolution, their accessibility and ease 

of use make them attractive for educational settings, rapid testing, and sensor deployment in low-resource 

environments. A more forward-looking perspective envisions the development of compact, portable 

printers, analogous to those in photography, which allow users to print high-resolution photographs 

immediately after the photo is taken. For example, such portable printers could be mounted on drones 

(already existing with 3DP159) to directly print sensors onto leaves, fruits, or plant-attached patches in big 

fields, and thus have the potential to revolutionize on-site material printing and sensor deployment. Overall, 

the evolution of IJP technology will be shaped by higher resolution, next-generation ink formulations, 

seamless integration into scalable and robust production processes, and, most importantly, the 

miniaturization and enhanced portability of the printers. 

 

Three-dimensional printing for crop sensor development 

3DP has evolved into a powerful platform for materials science160–163. Unlike subtractive methods (CNC 

machining, laser cutting, milling), 3DP creates objects layer by layer from digital designs, allowing 

unprecedented freedom in material shape, structure and composition164. In the last decade, 3DP, which was 

initially used primarily for rapid prototyping of plastic parts, has expanded into diverse applications, 

including printing of tissues165–167, energy-related systems168–170, and flexible electronics171–173. Its appeal 

stems from its ability to accommodate complex geometries without extensive tooling, minimize material 

waste and integrate multiple materials within a single design. These advantages have positioned 3DP as an 

enabling technology across sectors ranging from aerospace174,175 and biomedical engineering176,177 to smart 

sensors178,179. This printing method is more recent than SP and IJP but has nevertheless attracted 
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considerable interest in developing sensors for plant monitoring39,40,180,181. Since 3DP faces a significant 

limitation in the low functionality of the materials contained in the filaments, it is difficult to directly 

fabricate the working electrodes (confining the recognition element) using 3DP alone. 3DP is therefore 

used mainly as a complementary approach alongside techniques such as SP or IJP. For instance, 3DP, 

namely masked-stereolithography apparatus (MSLA), was used for the large-scale fabrication of 

microneedles mounted to the SP sensor platform (Fig. 4a,b) and thus enabled direct monitoring of 

physiological processes from the plant leaf (Fig. 4c)40. Although it has been demonstrated that microneedles 

can be created by IJP150 (see Fig. 3c), the usage of 3DP allowed advanced design by fabrication of hollow 

microneedles (HMAs), which were capable of minimally invasive sampling of apoplastic fluids (liquid 

present in the extracellular spaces of plant tissues, involved in nutrient transport and stress signaling). The 

method enabled rapid prototyping of microneedles with sharp tips (<30 μm) and integrated hollow channels, 

achieving highly reproducible structures using a cheap (ca. USD 450) MSLA 3D printer. Mechanical tests 

demonstrated that HMAs could reliably penetrate plant tissues without significant deformation. In addition, 

in vitro and in vivo tests confirmed their ability to extract sufficient fluid volumes (ca. 15 µL) for proper 

electrochemical analysis. By combining these sophisticated microneedle patches with SP electrodes, the 

sensor platform was capable of real-time detection of key biomarkers related to plant stress responses, such 

as H2O2, glucose, and pH across different plant species. This approach offers notable advantages, including 

low manufacturing cost (<USD 1/device) and high versatility in analyte detection. However, the fluid-based 

extraction strategy is highly dependent on the plant species, as successful electrolyte extraction requires a 

sufficient volume of electrolyte (apoplastic fluid) in the leaf. Therefore, this method cannot be used on 

unsuitable plants, such as plants with thinner or drier leaves. To enable high-throughput, cost-effective, and 

parallel monitoring of programmed cell death in plant tissue, a 3DP sensing device has been developed for 

continuous impedance-based quantification of electrolyte leakage39. The methodology capitalized on 3DP 

to fabricate modular, reusable measurement wells tailored for optimal sensor placement and minimal 

sample volumes, thereby enhancing sensitivity and reducing operational complexity (Fig. 4d). The 

experimental workflow involved controlled infiltration of plant leaves with a bacterial suspension using a 

syringe, excision of leaf discs after incubation, and their transfer into measurement wells for immediate, 

continuous conductivity monitoring, enabling rapid detection of microscopic cellular damage (Fig. 4e). 

Quantitative readouts were achieved by analysing solution conductivity from bacteria-infiltrated leaf discs, 

capturing both macroscopic and microscopic stages of cell death within hours. The system’s architecture 

allowed frequency-resolved EIS across eight channels simultaneously, drastically accelerating data 

acquisition compared to traditional methods. Conventional assays typically rely on manual electrolyte 

leakage measurements at sparse time intervals, requiring labour-intensive sampling and offering limited 

throughput without real-time monitoring capability. 
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Despite rapid progress, several technical and practical challenges hinder the deployment of 3DP in sensor 

development and broader materials research. One of the primary challenges lies in the diversity and 

functionality of materials. Although the library of 3DP materials is expanding, it remains relatively narrow 

and often tailored to specific applications. Advanced materials for aerospace182, automotive183, or 

electronics184 typically demand specialized printers and processes. These high-end systems (e.g., metal laser 

sintering) are costly and require expensive precursors, limiting accessibility. Consequently, identifying 

materials that fulfil the mechanical and chemical criteria for plant sensing remains a major obstacle. In 

addition, conventional polymers (e.g., PLA, ABS, epoxy resins) often exhibit low or no conductivity and 

flexibility185. Another major limitation is the lack of functionality (chemical groups on the surface) in 

printable materials186. Since most materials are based on plastics, resins, or carbons with inert surfaces, they 

fail to provide the chemical specificity required for sensing187. Similarly to SP, 3DP has a significant 

disadvantage in the material consumption to produce the filament, which is impractical when using 

expensive materials such as high-cost metals or biological compounds188. Additionally, 3DP has a relatively 

low resolution, as most techniques cannot match the precision of traditional microfabrication or machining. 

Feature sizes below several tens of micrometers are a practical limit for conventional 3D printers, making 

it challenging to achieve nanoscale geometries or mirror-smooth surfaces189. Improving the resolution of 

printers without loss of speed is an active area of technical development190,191. Scalability, particularly the 

slow printing speed, is another issue, as fabricating a single object can take hours, while producing larger 

or multiple components can take days192. As a result, 3DP is primarily used for prototyping, small-batch 

fabrication, or custom one-off designs. Solving these issues is a primary focus of ongoing materials science 

and engineering research. Innovations are required in printer hardware (to improve resolution and speed), 

printing materials (to expand the palette and increase performance) and process engineering (to ensure 

uniform quality and scalability). Overcoming these limitations will be key to fully exploiting the potential 

of 3DP in industry and scientific research. 

 

Future 3D printers are anticipated to process an increasingly diverse range of materials, including not only 

conventional plastics, metals and ceramics but also functionalized193,194, biological195,196 and even living 

materials197,198. Research is also advancing toward stimulus-responsive materials for 4D printing that can 

change shape or properties over time, adding a dynamic dimension to printed structures199,200. This can be 

used in developing smart sensors used in agriculture to monitor changing weather conditions201. 

Furthermore, new additive techniques are pushing the limits of resolution to the microscale and beyond. 

For example, two-photon polymerization (laser-based 3DP) can produce structures with sub-micron 

features and functions almost as a 3D printer for nanostructures202–204. As these high-resolution printers are 
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further developed and adapted for larger-scale use, they could enable the fabrication of tiny, precise 

components for microfluidics, electronics, and sensors. In plant monitoring, high-resolution printing could 

support the production of microsensors or nano-device systems that interface with plant cells or tissues in 

a minimally disruptive manner, significantly expanding the toolbox for investigating plant biology. For 

3DP to take off, future systems must print faster and greener. One direction is the development of printers 

that operate in parallel, enabling the printing of multiple materials simultaneously. For instance, the system 

can be equipped with multiple synchronized print heads, which pave the way for producing entire electronic 

devices or sensors in a single print205–207. Such approaches could significantly accelerate production and 

enable the efficient fabrication of high-volume batches or structurally large components. Another critical 

aspect is sustainability, with research focusing on recyclable and biodegradable printing materials derived 

from biomass or recycled printing waste to produce new filaments208–211. In agriculture, this could manifest 

as biodegradable 3D-printed sensors that remain in the field post-use and naturally decompose, eliminating 

waste and reducing the environmental footprint. 3DP in materials science rapidly evolves from a 

prototyping tool into a core manufacturing and research technology. The future of 3DP in sensor 

development is expected to converge with complementary techniques such as SP or IJP, enabling the 

production of integrated devices that combine structural versatility with functional precision. For instance, 

inkjet-printed nanoscale sensing components can be seamlessly incorporated into 3D printed platforms 

containing energy storage units such as micro-supercapacitors or fluidic microchannels. This hybrid 

approach offers unprecedented design freedom and allows multifunctional sensor systems to be fabricated 

as unified, compact architectures adapted for device integration and field deployment. By addressing 

current limitations and leveraging emerging innovations, 3DP is poised to redefine the design and 

deployment of functional materials for next-generation electronic platforms. 

 

Direct laser writing-based hybrid printing for crop sensor development 

DLW is a powerful technique for micro- and nanoscale patterning of graphene or carbon-based layers for 

sensing electrodes59,212. It has been widely employed to fabricate electronically conductive patterns on 

substrates such as polyimide (PI) and other natural or synthetic carbon-based polymers through direct laser-

induced conversion of polymer into graphene or carbon213. Unlike cutting or MSLA-based 3D printing 

methods, DLW produces a thick, surface-engraved graphene or carbon layer using pulsed or continuous 

lasers in ambient conditions and is regarded as a partially destructive approach214. DLW enables rapid, 

solvent-free fabrication of microelectrodes in a single step, without additives or binders, and allows precise 

patterning across diverse geometries215. During laser–material interaction, key parameters such as layer 

thickness, porosity, and in situ doping can be finely tuned, offering tailored electrochemical properties216. 

Owing to these advantages, DLW has been applied in the fabrication of flexible micro-supercapacitors and 
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micro-battery electrodes with high storage capacities60. For sensing applications, DLW is often combined 

with other techniques to pre-deposit dopants or post-deposit sensing layers onto patterned surfaces. It has 

also been integrated with film-transfer methods to produce flexible and stretchable strain sensors, 

expanding its utility in wearable electronics. Given the demand for lightweight, conductive, and flexible 

patterned electrodes, DLW has enabled effective strategies for fabricating plant monitoring sensors 

targeting RH, temperature, VOCs, and mechanical strain217–219. 

 

For instance, DLW has been employed to fabricate LIG and graphene oxide (GO)-based humidity sensors 

for real-time monitoring of plant transpiration and plant health16. This approach allows a non-invasive and 

wide distribution of sensors over a large part of the tree, enabling robust and time-dependent monitoring of 

leaf water content (Fig. 5a). In this procedure, a PI substrate serves as the carbon source for patterning 

interdigitated LIG, while a GO film is cast onto the structure as a capacitive sensing layer (Fig. 5b). 

Although GO functions as the humidity-sensitive material, LIG plays a critical role by modulating 

permittivity across humidity levels. This sensor, due to its flexibility, can be mounted directly on a leaf to 

detect non-contact humidity changes associated with stomatal behavior through GO-water interactions. 

Real-time water content sensing demonstrates a rapid capacitive response during water supply and its 

subsequent decline. DLW also enables the fabrication of LIG-based resistive sensors for temperature, strain, 

and light intensity, expanding its utility for plant and environmental monitoring217. DLW parameters, 

including laser power and patterning style, strongly influence electrode morphology and humidity sensing 

performance in plant-based applications218. Beyond PI, natural biopolymers such as TEMPO-oxidized 

cellulose have also been used to produce moisture-stable electrodes via DLW for sensing plant water 

status219. Precise micro-patterning is essential for developing electrochemical sensors that detect plant 

chemical biomarkers, particularly when multiple electrode arrays are integrated on a single substrate, an 

area where DLW excels. Such sensors can be fabricated by printing LIG directly on PI, or transferred onto 

stretchable substrates such as polydimethylsiloxane (PDMS) for flexible sensing platforms220,221. 

 

Another example of DLW is a flexible electrochemical sensor designed for on-leaf detection, which 

combines LIG, MXene, and MoS2 to detect gallic acid, a phenolic compound that is accumulated in plants 

as an antioxidant in response to stress conditions, such as salinity, drought, or pathogen exposure222. 

Serpentine tri-electrodes were fabricated by laser writing porous LIG on PI tape, followed by spin coating 

with PDMS and curing at 120 °C for 10 h before delamination to obtain a stretchable LIG/PDMS substrate. 

The central trace was insulated with PDMS, the reference electrode was patterned with Ag/AgCl ink, and 

the working electrode was sequentially drop-cast with MoS2 and Ti3C2 MXene before air drying. Due to its 

compact size and mechanical flexibility, the sensor adheres directly to leaves and enables in situ, real-time 
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monitoring (Fig. 5c). The LIG three-electrode system was patterned onto PI and transferred onto a PDMS 

substrate via resin casting, enabling highly flexible functionality. To enhance sensitivity and selectivity, the 

working electrode was functionalized with the two-dimensional materials MXene and MoS2, which 

facilitated voltametric detection of gallic acid through a distinct redox response. Under salt-induced stress, 

it delivered rapid and precise electrochemical signals corresponding to the dynamics of gallic acid content 

in leaves, demonstrating its potential for continuous, non-invasive monitoring of plant stress physiological 

response. 

 

DLW offers distinct advantages over techniques such as SP, IJP, and 3DP, owing to its single-step, binder-

free process and high-resolution scalability. However, it remains underexplored in the sensor field and 

presents several technical and fundamental challenges. A primary limitation is the narrow range of 

compatible substrates capable of producing high-quality LIG with adequate sensing performance. LIG is 

typically derived from PI and, to a lesser extent, from cellulose-based natural polymers. Moreover, the 

DLW process depends on a complex interplay of parameters, including laser wavelength, focal length, 

power intensity, scanning speed, and atmospheric conditions, all of which must be precisely optimized to 

ensure consistent material quality. The abundance of tunable variables makes standardization difficult, 

while substrate pre-selection and surface pre-treatment add further complexity. Mechanically, LIG prints 

tend to be brittle and exhibit poor adhesion, limiting their use as stand-alone films. Consequently, transfer 

to adhesive substrates such as PDMS is often required. To expand the sensing capabilities of LIG-based 

systems, additional printing or functionalization steps, such as material deposition or electrochemical 

modification, are frequently needed. Although ambient conditions introduce oxygen-containing groups that 

enhance sensing performance, they also reduce conductivity and degrade the graphitic structure, thereby 

restricting material customizability. Overall, DLW is a sophisticated technique that requires expert-level 

optimization and careful material selection, in contrast to the more accessible nature of SP and IJP. Future 

research should focus on improving LIG mechanical robustness, identifying low-cost and biocompatible 

substrates, developing dedicated, task-specific DLW systems for sensor production, and integrating ML or 

AI-assisted tools to streamline process optimization. 

 

Future directions focus on overcoming current limitations, as this method remains in an early stage for 

printing plant sensors. A key technical priority involves developing in situ functionalization of LIG to 

selectively detect VOCs or chemical biomarkers released by plants, thereby minimizing post-printing 

modifications of LIG substrates. This could be achieved by pre-treating PI or other substrates with suitable 

precursors or introducing reactive gases into the printing chamber. To enhance LIG quality and resolution, 

pulsed laser techniques may be employed in place of continuous laser operation. This approach offers strong 
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potential for large-scale, batch-to-batch sensor fabrication and can be integrated with established methods 

such as inkjet printing, screen printing, or spray coating. Additionally, the DLW process may serve as a 

post-printing strategy to increase the surface area of 3D-printed structures or electrodes, opening pathways 

for next-generation plant sensors.223,224 From a materials perspective, bio-based substrates such as silk, 

wood225, cork226, and even plant leaves offer a sustainable and low-cost platform for sensor fabrication. 

Additional opportunities include replacing PDMS through post-processing or print-transfer techniques 

using natural gels or stretchable biopolymers. Beyond sensing, LIG has been widely investigated in energy 

harvesting and storage systems, including triboelectric, thermoelectric, supercapacitor, and battery 

applications213. These approaches offer future opportunities for printing integrated, self-powered plant 

sensors. To date, only a limited range of dopants, such as iron, Ti3C2, and phosphorene, have been explored 

in DLW-based plant sensor development, whereas a broader spectrum of compositions has been studied in 

human health monitoring applications. Extending these well-established materials, including metal 

chalcogenides, MAX phases, and transition metal oxides, could enhance LIG performance for VOC 

detection. By implementing such strategies, the DLW method has the potential to advance or even transform 

plant sensor development. 

 

Aerosol jet printing for crop sensor development 

Aerosol jet printing enables high-resolution, conformal deposition of functional inks on diverse substrates 

and curved surfaces227,228, making it well-suited for minimally invasive crop sensing57,229. Among the 

primary advantages of AJP are its ultrafine feature resolution230,58, broad material compatibility231, and 

ability to print conformally on soft or non-planar surfaces232. These attributes reduce development cycles 

and enhance design flexibility in biointegrated electronics, aligning with the fabrication requirements of 

plant-attached and leaf-mounted sensors. A key limitation of metallic aerosol-printed electrodes is their 

requirement for post-printing thermal sintering57, which limits integration with temperature-sensitive 

biological tissues. A recent strategy overcomes this constraint by coupling an aerosol jet with a non-thermal 

atmospheric-pressure plasma jet in a coaxial head, which deposits and sinters simultaneously at near-

ambient temperatures57 (Fig. 6a). The configuration envelops the aerosolized ink in a plasma-gas sheath, 

enabling in situ removal of organic stabilizers and densification during deposition while preserving fine 

structural features. This sophisticated approach was applied to print silver-based interdigitated hydration 

sensors directly on a living English ivy leaf (Fig. 6b), achieving high conductivity at biological interfaces 

and stable operation during irrigation and photosynthetic cycles. The printed interdigitated electrodes were 

used to monitor the leaf’s water content by measuring its electrical impedance, which varied as the tissue 

gained or lost moisture. Impedance spectra of hydrated and dehydrated leaves showed that water-rich 

tissues exhibited lower impedance across all frequencies, while dehydration caused ion channels to collapse 
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and resistance to increase, especially at low frequencies where ionic conduction dominates. This behavior 

was further tracked in real time at 10 kHz under controlled changes in humidity, light, and irrigation, where 

impedance increased during dehydration and returned to initial values after re-watering, faithfully reflecting 

the plant’s natural hydration cycle. This simple but powerful method proved that the printed device could 

continuously track plant water dynamics without damaging the tissue, confirming that aerosol-jet-printed 

sensors can operate reliably on living leaves under realistic environmental fluctuations. 

 

Despite its versatility and high resolution, AJP faces several technical and practical challenges that currently 

limit its broader industrial deployment. One of the primary issues lies in the complexity of ink atomization 

and aerosol transport. The process relies on the stable generation of micro-scale droplets, whose size 

distribution, solvent volatility, and carrier-gas dynamics must be carefully balanced to ensure uniform 

deposition227. Small deviations in temperature, flow rate, or nozzle geometry can result in beam deflection, 

overspray, or satellite droplets, all of which compromise line precision and surface morphology233. 

Maintaining this delicate equilibrium becomes increasingly demanding when printing multi-material or 

high-viscosity inks that exhibit complex rheological behavior. 

 

Another challenge involves the stability and compatibility of functional inks. Although AJP supports a 

broader viscosity window than inkjet printing, achieving reliable aerosolization without particle 

aggregation or nozzle clogging remains difficult. Nanoparticle-based inks, particularly those containing 

metals or carbon nanostructures, tend to agglomerate during aerosol generation, leading to inconsistent 

droplet delivery and poor film uniformity234. Furthermore, the high surface area of nanomaterials promotes 

rapid solvent evaporation within the nozzle, often resulting in the partial drying of particles and irregular 

deposition. Ensuring long-term print stability requires precise control of environmental parameters such as 

humidity and carrier-gas composition, together with optimized ink formulation58. 

 

Post-deposition processing presents additional difficulties. Conductive and semiconductive films produced 

by AJP typically require thermal or photonic sintering to achieve adequate electrical performance. These 

steps, however, can induce substrate deformation or crack formation, especially on flexible polymers or 

temperature-sensitive materials235. Achieving high conductivity at low processing temperatures remains 

one of the main technological hurdles for the method236.  

 

Finally, reproducibility and scalability remain important concerns231. The dependence of AJP on multiple 

interdependent parameters, such as atomizer flow, sheath-gas focusing ratio, nozzle-substrate distance, and 

stage velocity, makes process optimization both time-consuming and system-specific. Minor variations in 
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these parameters can produce significant differences in feature width, layer thickness, or surface roughness, 

which challenge large-scale standardization227. Moreover, the cost of specialized equipment, nozzle 

maintenance, and the need for skilled operation hinder its accessibility outside research laboratories. 

 

The future development of AJP will be driven by advances that enhance process control, resolution, and 

material compatibility while reducing complexity and cost. Continued innovation in ink formulation will 

play a central role. The design of stable, low-temperature, and environmentally friendly inks with well-

defined rheological behavior will broaden the palette of printable functional materials. In particular, the 

integration of nanostructured conductors, semiconductors, and dielectrics into multi-phase inks will enable 

the creation of high-performance sensor architectures suitable for flexible, wearable, and miniaturized 

electronics. The development of water-based or biodegradable inks will also support sustainable 

manufacturing and expand applications in biocompatible systems. 

 

Another promising direction involves hybrid manufacturing approaches. Combining AJP with 

complementary additive techniques, such as inkjet, screen, or laser-based printing, will allow multi-material 

integration within a single platform. For instance, AJP can be used for fine conductive traces or 

microelectrodes, while screen printing provides thicker interconnects and inkjet printing enables selective 

deposition of functional coatings or sensing layers. These hybrid workflows will significantly expand 

design flexibility, reduce production time, and facilitate the development of complex device architectures 

with hierarchical structures. 

 

Ultimately, the long-term vision for AJP lies in its transition from a versatile prototyping tool to a robust 

industrial manufacturing technology. Achieving this goal will require the convergence of advanced ink 

chemistry, precision fluid dynamics, real-time quality control, and scalable automation. By overcoming 

current barriers in reproducibility, cost, and process stability, AJP is poised to become one of the most 

adaptable and powerful additive manufacturing techniques for next-generation sensors and flexible 

electronics. 

 

Crucial physicochemical properties of printable inks for screen and inkjet 

printing 

SP inks are typically thick, viscous pastes formulated to pass through a mesh stencil onto a substrate and to 

minimize bleeding. These inks commonly contain micron-sized particles (e.g., spheres or flakes) dispersed 

in a resin or binder matrix, with relatively low solvent content. Their high viscosity ensures the formation 

of thick, mechanically robust, and conductive films, making them well-suited for the printing of robust 
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conductive patterns. SP inks tolerate a broader range of particle sizes and are less sensitive to ageing. In 

contrast, IJP inks are low-viscosity colloidally stable fluids formulated to be ejected through micron-scale 

nozzles. These inks typically incorporate nanoparticles to avoid clogging and ensure smooth jetting. To 

prevent agglomeration, such inks require careful stabilization and ideally should meet strict surface tension 

and viscosity criteria. IJP inks enable high resolution and precise patterning, but also commonly require 

post-processing (e.g., thermal or photonic sintering) to achieve desired properties such as electrical 

conductivity. Detailed parameters are shown in Supplementary Table 2. 

 

 

Rheology 

Rheology is a fundamental parameter in ink formulation, determining key aspects of the printing. When 

setting up a screen print with a novel ink, rheological measurements are the key to achieve fast print speeds 

while maintaining precision. The dynamic viscosity (h) and yield stress can be measured and designed to 

create an ink which passes through a mesh, leaves an even layer of defined thickness and resists spreading 

once deposited. The thixotropy and thermorheological properties of the ink can allow to improve the 

squeegee speed, pressure and angle in the process to work best with novel ink. Viscosity for SP inks ranges 

from 1,000 to 10,000 mPa·s.237 

 

In IJP, the optimal viscosity typically falls within the range of 1–20 mPa·s, ensuring stable jetting 

performance238. A helpful metric in evaluating inkjet printability is the inverse Ohnesorge number (Z), 

which incorporates the Reynolds and Weber numbers and reflects a combined influence of key fluid 

properties such as density, viscosity, and surface tension. While the commonly cited printable range is 

1 < Z < 1487, this should not be interpreted as a rigid constraint in ink design. Especially in the case of 

nanomaterial inks, possible shear thickening and thinning effects should be taken into account and 

considered in the context of the target application. It has already been shown that water-based graphene 

inks are perfectly compatible with inkjet printing technologies148, even though water itself has a Z-value of 

around 40 and therefore does not reach the parameters defined by the device manufacturers. 

 

Surface tension 

Surface tension is another critical ink parameter that must be carefully optimized. While SP typically 

involves more viscous inks, surface tension (typically in 30–70 mN·m−1 range)239 still plays an important 

role by affecting wetting of substrates (low surface tension improves wetting on low surface energy 

substrates), edge resolution, and stencil filling. In IJP, however, it significantly influences droplet formation 

and stability during the jetting phase; surface tension must therefore fall within a narrow optimal range of 
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approximately 20–40 mN·m−1, depending on the solvent system, to ensure stable jetting and consistent 

droplet behavior146. Beyond the printing process itself, surface tension is also essential at the ink-substrate 

interface, where it determines the droplet's ability to wet, spread, and dry uniformly, enabling the formation 

of homogeneous and continuous films. Within the printing industry, it is generally considered that effective 

wetting is achieved when the ink’s surface tension is approximately 7–10  mN·m−1 lower than the surface 

energy of the substrate240. 

 

Solid content 

The solid content of an ink formulation, defined as the total mass percentage of non-volatile components, 

plays a critical role in determining the final film thickness, morphology and overall rheological behavior of 

the ink. When printing the same volume of material, an IJP droplet typically dries to a film thickness on the 

submicron scale, whereas a SP layer can easily reach 10–13 μm. This inherent difference in deposited mass 

per layer is one of the reasons SP is widely favored for applications that demand high conductivity, such as 

printed interconnects and electrodes. Optimizing the solid content ensures sufficient loading of functional 

materials, leading to the formation of uniform films and sufficient conductivity with fewer print passes. SP, 

in particular, accommodates high solid contents (typically 40–70 wt.%)241, enabling the use of formulations 

that are stretchable, thermally stable, or tailored for thick-film deposition. In contrast, IJP inks are limited 

to much lower solid contents (typically 5–30 wt.%, although values as high as 40 wt.% are also common 

especially for silver IJP inks)242 to maintain low viscosity and prevent nozzle clogging, making them ideal 

for high-resolution, material-efficient deposition, especially when using expensive functional materials 

such as gold. 

 

Particle size and shape 

The size and shape of the particles affect the conductivity, film morphology and printability of the resulting 

structures. They also directly impact the cost and stability of the ink formulations. In conductive inks, silver-

based particles are commonly used in various forms: microflakes and microspheres are typical contents of 

electrically conductive SP pastes, while silver nanoparticles are used in IJP inks. Optimizing particle size 

enables efficient percolation pathways and the formation of smooth films. Silver microparticles, for 

instance, are relatively inexpensive and less reliant on organic stabilizers. Experimental studies have shown 

that silver microparticles can be sintered at temperatures below 200 °C, achieving resistivities as low as 

8.33 mW·cm.243 In contrast, silver nanoparticles fuse rapidly at low temperatures due to their high specific 

surface area, strongly curved surfaces, and short diffusion lengths. As a result, treatments below 200 °C 

using thermal or photonic curing can produce highly conductive prints, with resistivities ranging from 

3.45 mW·cm to 8.0 mW·cm244,245. However, these advantages come with challenges, as nanoparticles are 
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more expensive and prone to agglomeration. Despite this, silver nanoparticle inks are routinely used with 

inkjet printheads, such as the Samba from Fujifilm. While utilizing such printers, precise control over 

particle size is essential to prevent nozzle clogging and maintain jetting stability. Although it is not strictly 

necessary to comply with the requirements of the printer manufacturers, which are often conservatively 

undersized, in general, the particle size should be no more than around 500 nm to achieve a stable and 

accurate printing process. Therefore, careful tuning of particle size distribution and shape is crucial for 

balancing conductivity, processability, and reliability in both SP and IJP technologies. 

 

Post-treatment and curing 

Once deposited, printed elements typically undergo a post-treatment or curing step to finalize their 

properties. This process can involve thermal/infrared curing, UV curing, and in advanced cases, laser or 

photonic sintering246. The primary goal is to remove residual solvents, initiate chemical reactions that 

harden the material, sinter metal particles together to form conductive paths or enhance adhesion between 

the printed material and the substrate247. When optimized, post-treatment results in maximal conductivity, 

durable printed features, and robust adhesion, even on thermally sensitive or flexible substrates. For 

example, higher curing temperatures can promote more efficient sintering of conductive particles, leading 

to lower resistivity. However, operating outside the optimal range (such as applying excessive heat or 

insufficient curing time) can lead to substrate deformation, incomplete sintering, poor adhesion, or 

mechanical failure under stress (e.g., bending, crack formation). Thus, careful tuning of the post-treatment 

conditions is critical to ensuring the long-term reliability and performance of printed electronic devices. 

 

Low-dimensional inks for crop sensor development 

Among the most widely used conductive inks in the printing industry are formulations containing metal 

nanoparticles, particularly silver234,248 and gold249,250, or electroactive coordination compounds such as 

Prussian blue251,252, due to their excellent electrical conductivity and printing ability253. These inks are 

primarily used for printing conductive traces and interconnects, essential for creating reliable electrical 

connections in printed electronic devices254. In contrast, for developing sensor platforms, particularly 

working electrodes (recognition part of the sensor), low-dimensional materials such as graphene-based255–

257, TMDs258–260, and MXenes261–263 have emerged as transformative candidates for next-generation printed 

sensors. Their atomically thin two-dimensional structures provide outstanding properties, including high 

conductivity, large specific surface area, broad chemical tunability, and mechanical flexibility. These 

properties are critical for fabricating compact, sensitive, and robust sensor systems. 
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Among them, graphene-based inks remain the most widely used in printable electronics due to their 

versatile functionality (surface chemistry), mechanical strength, and water solubility127. Their tuneable 

surface chemistry, which can be achieved via oxidation264,265, reduction266,267, addition268,269, 

substitution270,271, or heteroatom doping272,273 enables the design of tailor-made sensing platforms274–276. 

Although recent studies have demonstrated that graphene-based materials can form stable water-based ink 

formulations without additives149,148,277, the majority of functional inks still require the use of binders, 

surfactants, or stabilizers to prevent aggregation and sedimentation126,127. Another limitation of graphene 

derivatives is their inherently low conductivity278; for instance, non-conductive graphene oxide (GO) 

requires chemical or thermal reduction toward reduced GO (rGO) with a restored conductivity279. In 

addition, oxygen reduction must be precisely controlled, otherwise rGO is obtained with a low degree of 

functionalization, which is insufficient for immobilization of ions280,281 or (bio)molecules282,283. Beyond 

chemical modification and composite engineering, laser-based strategies have recently emerged as 

powerful tools to simultaneously reduce and nanostructure graphenic materials, enabling the fabrication of 

hybrid heterostructures with improved electrochemical performance (see Chapter 2.4, Direct Laser Writing 

for details). For instance, laser-assisted decoration of GO films with noble metal nanoparticles has enabled 

the production of highly porous, conductive rGO-MNP films without binders or surfactants, showing great 

promise for miniaturized electrochemical sensors284. In parallel, laser-induced heterostructuring approaches 

have enabled the assembly of rGO-TMD hybrids on flexible substrates, forming 2D/2D architectures that 

leverage the conductivity of rGO and the catalytic properties of MoS2, WS2, MoSe2, or WSe2. The resulting 

sensors demonstrated nanomolar detection limits and high operational stability, positioning these 

techniques as promising alternatives for printed biosensing in agricultural and environmental settings285 

 

MXenes, a class of transition metal carbides or nitrides286,287, exhibit semiconducting or even metallic 

conductivity combined with hydrophilicity and diverse surface chemistry (less developed with respect to 

functionalized graphenes288,289), rendering them promising candidates for SP and IJP technologies290. 

However, key limitations hindering their widespread use are the susceptibility to oxidative degradation in 

aqueous or ambient environments, restacking during drying, and the need for toxic etchants (e.g., HF) 

during synthesis290. 

 

TMDs, such as MoS2 and WS2, have intrinsic semiconducting properties with layer-dependent band gaps291, 

enabling their use in photoelectrochemical detection292, flexible field-effect transistors (FETs)293, or light-

responsive sensors294. Nonetheless, they often suffer from low exfoliation yields, ink instability, and re-

aggregation of sheets during print deposition, leading to inhomogeneous film formation with poor electrical 

contact between layers, ultimately compromising device performance295. A targeted combination of these 
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low-dimensional materials to create hybrid inks can eliminate undesirable shortcomings, as their 

complementary properties can provide improved sensitivity, selectivity, and stability296–299. 

 

Leveraging these unique properties, low-dimensional inks are used extensively in developing flexible, low-

cost, high-performance sensors for agriculture300–302,221,303. Specifically, Ti3C2TX MXene, due to its high 

electrical conductivity, hydrophilicity, and favorable rheological behavior, has been employed to develop 

a fully SP, wireless sensor platform for the detection of the volatile stress-related phytohormone ethylene 

on plant surfaces. While the additive-free MXene ink enables rapid, high-resolution printing of 

mechanically robust RF resonators (Fig. 7a), its intrinsic non-specificity toward target gases limits both 

selectivity and sensitivity. To overcome this, palladium nanoparticles (PdNPs) were immobilized on the 

MXene surface (Fig. 7a) to exploit the strong affinity of palladium for ethylene through π-adsorption 

mechanisms. The resulting MXene@PdNPs composite significantly enhanced selectivity for ethylene 

detection, achieving a limit of detection of 0.084 ppm and a pronounced signal response of 1.16% at 1 ppm. 

Due to its high flexibility, the sensor adapts to the fruit surface, enabling real-time monitoring of ethylene 

emissions correlated with ripening stages of apple, banana, mango, and kiwi, as examples, and offers 

wireless, battery-free readout with high reproducibility115. 

 

Owing to its large surface area and chemical functionality, rGO has been utilized to develop a microneedle-

based sensor platform for real-time monitoring of ROS in living plant tissues. However, the inherent 

aggregation tendency of rGO and its limited biocompatibility pose challenges for enzyme immobilization 

and uniform coating, key requirements for stable biosensing interfaces. To tackle these limitations, rGO 

was integrated with chitosan, a naturally derived, biocompatible polymer that enhances dispersion stability 

and provides functional groups for covalent enzyme attachment. This bio-hydrogel, enriched with 

horseradish peroxidase, formed the electroactive layer of the microneedle array, enabling in situ H2O2 

quantification directly within plant leaves (Fig. 7b). The resulting sensor exhibited high sensitivity (14.7 

μA/μM), a low detection limit (0.06 μM), and a rapid response time (see Figs. 7f and 7g), achieving robust 

electrochemical performance across a wide dynamic range (0.1–4500 μM) without the need for sample 

extraction or external instrumentation302. Although dichalcogenides exhibit excellent prerequisites for 

scalable sensor fabrication, such as low-cost input materials and compatibility with liquid-phase deposition 

techniques (solution processing), they often face challenges, including their intrinsically low electrical 

conductivity and limited selectivity toward target analytes. To address these constraints, a hybrid MoS2-

based sensor platform has been engineered for ethylene monitoring in fruits (Fig. 7c). Integrating single-

walled carbon nanotubes (SWCNTs) with exfoliated MoS2 enabled the formation of a conductive, porous 

network, which was subsequently coated with a copper(I) complex for wireless ethylene detection (Fig. 
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7d). This architecture combines the high charge mobility and conductive pathways provided by SWCNTs 

with the ethylene-selective molecular recognition properties of the Cu(I) complex, while MoS2 serves as a 

chemically modifiable semiconducting scaffold (Fig. 7d). The resulting thin-film (ca. 300 nm) sensor 

exhibits sub-ppm sensitivity to ethylene, with rapid and highly selective responses and minimal interference 

from other VOCs. Integrated onto a flexible substrate with low-power wireless transceivers, the platform 

enables real-time monitoring of ethylene molecules released from climacteric fruits under ambient 

conditions, showcasing its potential for scalable deployment in agricultural supply chains301. 

 

Biorecognition and stability 

Printed electrodes in plant sensing are exposed to harsher and more variable environments than typical 

biomedical or wearable sensors. Their long-term performance depends on material selection, substrate–ink 

interactions, and environmental exposure (humidity, UV, temperature). Plants introduce additional factors 

such as surface chemistry variability, growth dynamics, and abrasion, all of which must be considered when 

designing the sensor system304. 

 

Humidity is particularly critical, with environments routinely reaching 80–100% RH. In addition, plants 

are exposed to full-spectrum sunlight, including significant UV-A/UV-B radiation, and outdoor plant 

sensors may also experience temperature fluctuations from −10 °C to 40 °C. These parameters should be 

considered when designing sensor systems for plants. A typical printed plant sensor comprises a substrate 

and an ink. Substrate choice should reflect durability: polyimide (Kapton) generally withstands harsher 

conditions than PET, while TPU is, to date, the most common substrate for stretchable applications305. 

Challenges related to UV and humidity can be mitigated by encapsulating non-active parts of the sensor, 

for example, with Parylene-C, thin PDMS layers, or other protective coatings306. For the active layer, 

sintered metal inks tend to be more brittle than chemically cured metal inks, carbon-based or hybrid 

composites are frequently used to improve stability307,308. Conductive polymers such as PEDOT:PSS are 

excellent for impedance and bio-interfacing, but PEDOT:PSS is humidity-sensitive. Crosslinking or 

encapsulation can substantially improve robustness97. Drawing on advances from human wearable 

electronics, especially encapsulation strategies and stable biointerfaces under sweat, motion, and 

environmental stress, can accelerate progress in plant biosensing. At the same time, plant systems present 

unique challenges and opportunities that will continue to drive new designs accommodating dynamic 

growth, high humidity, and outdoor exposure. 

 

Across work on plants and agriculture, the long-term stability of biological recognition elements remains a 

major limitation41,122,309. Enzyme-based sensors generally remain active for only a few days under 
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continuous use and last stored for a few weeks at 4 °C302. Their catalytic function rapidly declines at elevated 

temperatures, extreme pH, or in chemically complex plant environments122. Antibody immunosensors show 

similar constraints. They have poor tolerance to heat, UV, and proteolysis, and rarely remain stable beyond 

6 weeks in cold storage121,310. Aptamers offer greater thermal and chemical resilience and broad pH ranges, 

but still remain vulnerable to UV damage and nonspecific adsorption of plant phenolics, polysaccharides, 

and proteins311. Consequently, even leading aptamer sensors achieve only months of shelf life and days of 

continuous operation, typically exhibiting progressive drift and fouling over multi-hour 

measurements312,313. This challenge has motivated increasing interest in alternatives such as nanozymes and 

molecularly imprinted polymers (MIPs), which offer far greater environmental resilience303,314,315. 

Systematic lifetime studies under real agricultural conditions (field exposure, diurnal cycles, biofouling) 

are largely absent and remain an open research gap. 

 

Complete system integration of printed sensors for agricultural applications 

To progress printed sensors from the laboratory to real-world application (i.e., greenhouse, fields), 

electronic systems must also be developed that enable sensor integration, signal digitization, data 

processing, and wireless transmission. Given the overwhelming application of printed sensors for 

electrochemical monitoring, most sensors require integration with a potentiostat – an instrument that 

converts a chemical stimulus to an electrical signal – for signal readout and subsequent digitization. 

Potentiostats are typically relatively complex in design, using a trans-impedance amplifier (TIA, to 

transduce signal from chemical to electrical) and a series of analog amplifiers (biosignals are typically at 

nano-scale which are not large enough to surpass the resolution of analog-to-digital converters) and passive 

and active filters (electrical signals are very prone to noise induced from surrounding electromagnetic 

fields) to enable clear and repeatable sampling. For this reason, most demonstrations of printed 

electrochemical sensors offload circuit design and rely on commercial potentiostat modules, with PalmSens 

being one of the most popular providers14,39,145,146. 

 

Due to recent advances in silicon technology that reduce the size and cost of analog electronics, however, 

it is now possible to create application-specific potentiostats that sacrifice versatility for light-weight, 

streamlined performance. These custom platforms can be sufficiently portable, low-cost, and integrate 

additional features such as wireless data communication and data analytics to enable translation to real-

world agricultural environments. Hossain & Tabassum developed a multiplexed plant monitoring system, 

integrating a voltage-divider and TIA circuit to measure physiological resistance-based parameters 

(temperature, strain, pressure, and relative humidity) and ethylene concentration115. An ESP32 

microcontroller is not only used to enable reliable input waveform generation (needed for TIA operation) 
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and output digitization, but also includes Wi-Fi integration to enable wireless data communication with an 

external PC. Importantly, a low-pass filter is added to the reference electrode input of the TIA circuit to 

eliminate high-frequency noise that often couples to analog pins within consumer electronics. With the 

development of this standalone sensing system, all of the sensor data recorded can be wirelessly transmitted 

to a smartphone application for easy and immediate access to experimental data by growers, saving time 

and resources that would be devoted to manual data collection.  

 

Chen et al. used a similar approach to sample, store, and wirelessly transmit data from their printed ethylene 

sensor301. Rather than using electrochemical techniques for ethylene detection, however, the conductance 

of the sensor is recorded using a Wheatstone bridge: a resistance measurement circuit that uses a network 

of resistors to calculate the resistance (inversely proportional to conductance) of an unknown source (i.e. 

the sample). To guarantee high resolution for precise monitoring (0.0008%), a 24-bit analog-to-digital 

converter (>16 million voltage levels) is integrated instead of relying on the standard 8-bit (>1000 voltage 

levels) precision used in most microcontroller boards. Uniquely, this system is wirelessly powered using a 

small battery (3.5 x 2.5 cm). Removing communication and power cables creates a miniaturized form factor 

that can be placed in a variety of physically constrained environments (e.g. food containers). 

 

Notably, Grell et al. integrated their gas-phase ammonium sensor into a custom-designed board to enable 

point-of-use impedance monitoring38. The circuit is designed as a modular unit that contains only the analog 

electronics necessary for impedance sensing, including a TIA for electrochemical transduction and a 

programmable gain network to prevent clipping of the signal during recording. The remaining 

computational tasks, such as digital-to-analog conversion of the input signal, output signal digitization, and 

serial data communication, are offloaded to a microcontroller board (Arduino DUE) which easily connects 

to the sensing module. This approach simplifies and streamlines the hardware development process, though 

the use of versatile plug-and-play computing boards increases the cost of production. Using this system, 

the data collected could then be combined with additional weather factors affecting soil nitrogen levels and 

analysed using supervised ML approaches to predict ammonium as well as nitrate levels (without any 

additional sensing equipment) in soil up to 12 days in the future. 

 

Machine learning systems in smart agriculture 

Machine learning (ML) is transforming modern science by accelerating material design316, guiding drug 

discovery317, and enabling predictive modeling across disciplines318,319. It is also rapidly reshaping plant 

science, where ML integrates diverse streams of sensor, image, and omics data to advance biological 

understanding (Fig. 8). The diagram outlines how ML connects data gathering, preprocessing, and model 
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learning to real-world applications such as stress diagnosis, yield prediction, and digital-twin simulations. 

By closing the loop between continuous sensing and decision-making, ML now underpins precision 

agriculture and the predictive monitoring of crop health. Among its most immediate impacts is the ability 

to interpret the vast amount of data generated by emerging printed and wearable sensors, turning continuous 

physiological measurements into quantitative insights. This convergence between smart sensing and 

intelligent modeling defines the modern frontier of crop-health monitoring. 

 

Crop-health monitoring increasingly combines continuous, plant-attached sensors with ML to turn noisy, 

multimodal signals into interpretable measures of stress type, severity, and timing. Across plant science, 

supervised learning (models trained on labelled examples) has become the mainstay for stress recognition 

and trait prediction, while unsupervised and representation learning (methods that infer patterns directly 

from unlabelled data) reveal structure in high-dimensional data and guide more stable, generalizable 

models. ML thus forms the analytical bridge between complex sensor signals and biological interpretation, 

allowing systems to move from raw measurements toward physiological meaning. 

 

Plant-mounted sensing platforms now routinely classify stress states with compact models. An implantable 

microneedle array, for example, maps electrophysiological time series to stress classes using gradient-

boosted (XGBoost) and tree-based algorithms320. An activatable near-infrared II (NIR-II) fluorescent 

nanosensor, paired with supervised classifiers, distinguishes biotic from abiotic stress in vivo42. A 

multimodal leaf-patch wearable (MapS-Wear) learns spectral–microclimate relationships for early stress 

diagnosis through a hybrid unsupervised/supervised pipeline321. Physiological timing, such as internal 

circadian phase, a regression target critical for intervention planning, can also be estimated from 

transcriptomic profiles using ensemble neural networks (ENNs) trained for cross-condition 

generalization322. Together, these studies show how supervised frameworks convert sensor dynamics into 

actionable biological insight, enabling earlier and more reliable diagnosis. 

 

In image-based phenotyping, ML supports field pipelines that use object detectors and semantic segmenters 

to localize organs, quantify canopy structure, and associate these features with morphological or 

physiological traits. AMULET integrates DeepLab-based segmentation, temporal forecasting (SimVP), and 

explainable ML (TorchGrad) to predict growth and stress traits hours to days in advance from RGB 

imagery43. PlantServation extends this idea to long-term outdoor monitoring, using ML-based phenotyping 

to quantify seasonal pigment shifts and genotype-specific differences51. Together, these approaches 

transform continuous image streams into biologically interpretable trajectories, linking field imaging to 

developmental physiology. 
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Unsupervised and representation learning further organize the complexity of plant data. Dimensionality-

reduction and batch-integration methods such as UMAP, t-SNE, and graph-based clustering underpin recent 

single-cell atlases that map immune cell states (PRIMER) and root adaptations to soil stress. These atlases 

contextualize sensor outputs and reveal pathways underlying stress phenotypes323,324. In sequence-to-

function modeling, deep convolutional networks (CNNs) infer cis-regulatory logic directly from plant 

genomes, providing mechanistic priors that inform downstream trait and stress models325. Even classical 

methods, such as kernel principal component analysis (kPCA) and clustering, remain valuable in wearable-

sensor pipelines, where they compress raw signals before supervised inference. Together, these strategies 

impose order on high-dimensional biology, allowing models to learn structure rather than noise. 

 

Interpretability has also become a defining goal in plant ML. Feature-attribution techniques (e.g., SHAP, 

LIME, Integrated Gradients) and saliency mapping now connect model predictions with physiological 

processes in both multi-omics trait prediction326 and image phenotyping43,51. Knowledge transfer across 

species and data-limited crops represents a parallel frontier from circadian-time ensemble models that 

generalize beyond Arabidopsis322 to strategic roadmaps advocating transfer learning and ML-assisted 

phenomics for orphan crops327. These efforts highlight that transparency and reusability are as important to 

progress as accuracy itself. 

 

Printed and flexible devices generate the data, and ML translates those data into decisions. Together, they 

define a sensor-to-decision continuum that spans classification, regression, calibration transfer, and drift 

correction328. The recent literature outlines a practical taxonomy: supervised classification and regression 

for early stress typing and timing across wearable320, optical42,43, and omics data326; supervised segmentation 

and detection for field phenotyping43,51; and unsupervised representation learning that structures biological 

variation and guides model design323,324,329, with mechanistic ML on enzymes extending these ideas beyond 

sensors330. In this view, ML is not an accessory to sensing but the computational heart that turns printed 

signals into interpretable plant intelligence. 

 

Printed and field-deployable crop sensors will continue to generate torrents of biological signals that rarely 

live in flat Euclidean space. Many of these data occupy curved or constrained manifolds, meaning that 

models encoding geometry (symmetries, graphs, and geodesics) are best positioned to generalize from lab 

to field331. This is not a theoretical curiosity: neural population activity can organize on a torus, reminding 

us that real biological processes often evolve along low-dimensional, manifold structure332. 
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Yet common visualization tools such as t-SNE and UMAP can fracture or over-separate structure, 

producing alluring but misleading patterns. Recent diagnostics reveal that neighbor-embedding maps 

contain intrinsic discontinuities and that hyperparameters, including perplexity, can fabricate spurious sub-

clusters. Before drawing biological conclusions from such embeddings, guardrails and quantitative quality 

scores are essential333. 

 

As ML models move closer to field decision-making, whether flagging stress, scheduling irrigation, or 

recommending interventions, explainability must become a first-class design principle. Reliable 

interpretation requires stability and faithfulness tests, human and lab-in-the-loop validation, and systematic 

cross-checks to ensure that apparent drivers are not artifacts of data or modeling334. Equally important, 

biological data streams often rely on labels that are scarce, biased, or variable across environments. This 

argues for greater use of unsupervised, contrastive, and continual learning to exploit unlabeled, evolving 

sensor inputs and to stress-test conclusions across contexts335. 

 

In short, the field should lean into geometry-aware priors that respect biological structure332, diagnose and 

de-risk embeddings before storytelling333, and rebalance efforts from label-hungry supervision toward 

interpretable, self-supervising frameworks anchored in rigorous sensitivity checks. This is how ML will 

deliver durable, biologically faithful value to printed and flexible sensing for crop health. 

 

Future visions of printed sensors in smart agriculture 

Low-dimensional smart inks 

The future of printed sensors in smart agriculture will be driven by developing novel low-dimensional smart 

inks. These advanced materials offer uniquely tunable electronic, optical, and chemical properties, making 

them especially suitable for integration into miniaturized, high-sensitivity sensor platforms. The focus for 

further innovation will be on the formulation of printable, biocompatible, and water-dispersible compounds 

that are environmentally degradable, aligning with green chemistry principles and enabling sustainable 

deployment in open-field and greenhouse conditions. In this respect, graphene derivatives, MXenes, metal–

organic frameworks (MOFs), covalent organic frameworks (COFs), and nanocomposites based on these 

nanomaterials offer promising properties for these applications. 

 

Biodegradable and eco-friendly substrates 

With the increasing deployment of sensors in agriculture, biodegradable and organic substrates are 

emerging as a major future trend. Traditional plastic-based electronics pose environmental risks when used 

in open-air systems or greenhouses, especially in large-volume, single-use formats. To address this issue, 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

future printed sensors will increasingly rely on sustainable substrates such as cellulose paper, tissue, or 

starch-based films that degrade naturally without harming soil microbiomes or plant systems. Combined 

with water-based inks, biodegradable substrates will support the development of waste-free sensor 

platforms for precision agriculture, which aligns with global sustainability initiatives. 

 

Multi-modal and multiplexed sensing platforms 

Future agricultural diagnostics will increasingly rely on multimodal sensing platforms that integrate 

electrochemical, optical, mechanical, and thermal sensing capabilities into a single device. This 

convergence enables simultaneous monitoring of diverse physiological and environmental parameters, such 

as ion fluxes, stress-related phytohormones, ROS, VOCs, and temperature. Moreover, future platforms will 

incorporate multiplexed sensing architectures, including sensor arrays with multiple working electrodes or 

distinct signal transducers, capable of monitoring several analytes simultaneously in a localized 

environment. Such designs will improve the sensor efficiency and reduce system complexity, fabrication 

time and cost. Multi-modal and multiplexed platforms further allow cross-validation between modalities 

(e.g., correlating temperature shifts with oxidative stress), enhancing diagnostic accuracy and robustness 

against signal drift. These advanced systems will be essential in transitioning from single-analyte detection 

to an integrated, comprehensive plant health monitoring, increasing precision in agriculture with rich, real-

time datasets. 

 

Energy harvesting and self-powered systems 

A significant limitation to the widespread adoption of printed agricultural sensors is their dependence on 

external power sources or the need for frequent battery replacement. As a future trend, integrating energy 

harvesting and self-powered systems will be essential to achieve autonomous, maintenance-free sensor 

networks. New energy harvesting strategies based on solar energy, printed thermoelectric generators 

(exploiting temperature gradients between plants and air), and piezoelectric films (harvesting energy 

through mechanical vibrations from the wind). Combining these technologies with printed electronics with 

very low power consumption will allow fully autonomous sensing units to operate continuously in the field 

and support real-time data collection with minimal environmental impact and without external intervention. 

 

Artificial intelligence-enhanced data processing 

Artificial intelligence (AI) is rapidly transforming the landscape of agricultural sensing, both in the 

development of advanced sensor materials and in the interpretation of complex data from multiple sources. 

On the materials side, ML algorithms are being used to predict key physical and chemical properties, control 

design, and accelerate the discovery of high-performance materials, significantly shortening experimental 
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cycles. At the system level, ML enables the integration of multimodal sensor arrays, allowing for the 

seamless fusion and evaluation of multiple types of monitoring (e.g., electrochemical, optical, and thermal), 

thereby improving and accelerating crop risk prediction. Through intelligent filtering, signal correction, and 

multidimensional pattern recognition, AI tools can detect fine morphological and physiological changes in 

plants before visible symptoms appear. As sensor networks grow in scale and complexity, AI will be 

essential for real-time stress detection, nutrition optimization, and predicting plant growth scenarios. In the 

future, the integration of AI with virtual and augmented reality (VR/AR) platforms will enable intuitive 

interfaces for farmers that link sensor analysis with human-machine interaction in the field, facilitating 

faster decision-making and reducing the impact of environmental fluctuations on plant yield. 

 

Wireless data transmission 

As sensors become increasingly widespread, miniaturized, and integrated into plant tissues and growth 

environments, their utility depends not only on sensitivity and selectivity but also on the ability to transmit 

data wirelessly and reliably in real-time. Next-generation sensors will be closely coupled with low-power 

wireless communication protocols, including Bluetooth or near-field communication (NFC), to enable 

seamless connectivity across sensor networks in greenhouses and open-field environments. The integration 

of these communication interfaces with self-powered sensor units and cloud-based AI systems will enable 

fully autonomous sensing pipelines that include data collection, transmission, and remote analysis. Such 

interconnections will be essential for implementing real-time feedback mechanisms in smart agriculture, 

where signals from leaf sensors, soil probes, or environmental monitors can autonomously drive irrigation, 

nutrient delivery, or climate control. 

 

Smart greenhouse architecture for precision agriculture 

As fertile land continues to decline globally due to urban expansion, climatic pressures, and soil 

degradation, smart greenhouses are becoming essential infrastructures for crop production. These systems 

with autonomous controlled environments offer an ideal platform for regulating light, humidity, 

temperature, and nutrient supply through real-time AI-driven analysis. By integrating electrochemical and 

optical sensors throughout the greenhouse environment (e.g., soil, leaves, stems, fruits, or greenhouse 

construction), ML evaluation systems can generate robust datasets crucial for the precise and early detection 

of plant stress. Printed technologies, in particular, can facilitate scalable monitoring in environments such 

as greenhouses (high volume is required to achieve sufficient spatial resolution) because of their 

significantly low cost of fabrication and easy customization. Combined with the continually decreasing cost 

and size of low-power electronics, printed sensors can be easily integrated with compact computing 

modules to enable continuous monitoring of key physiological parameters, on-board data processing, and 
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automated wireless transmission to cloud-based servers for secure and easily accessible storage. Such 

devices may act as ‘nodes’ within an IoT network, collecting real-time feedback that can be instantly 

translated using AI to provide unique physiological insights (e.g., nutrient dynamics, stress markers) and 

accessed directly on demand or as part of a decision support system for agricultural intervention. The use 

of printed sensors also adds a whole new modality of data (i.e., electrochemical) to traditionally image-

based training datasets for predictive analytics through AI implementation. Unique non-linear signatures 

can be extracted from deep learning models to provide early/near-immediate indicators of physiological 

change long before visual symptoms appear. Incorporating such data from printed devices could, therefore, 

dramatically reduce the latent period between physiological intervention and predictive output, resulting in 

timelier and, ultimately, more efficient resource utilization. The combination of self-powered sensors, 

energy harvesting technology, and AI-driven decision-making systems will enable autonomous operation, 

where sensor feedback dynamically regulates irrigation, ambient temperature, and fertilization, while 

facilitating continuous monitoring of pest infestation. Future greenhouses will also be equipped with robotic 

interface units capable of targeted interventions to support fully autonomous smart farming. 

 

Outlook 

The convergence of materials science, printing technologies, and plant biology has redefined the 

development of smart sensors for precision agriculture, offering unprecedented potential for either non-

invasive continuous monitoring or structurally integrated sensing, depending on the printing approach 

employed. Printing techniques such as SP, IJP, 3DP, and DLW have each contributed unique capabilities 

to the field, from high-throughput production to microscale patterning. Likewise, the integration of 

advanced low-dimensional materials, including graphene derivatives, MXenes, and transition metal 

dichalcogenides, has elevated the sensitivity, flexibility, and functionality of printed sensors. Yet, despite 

these advances, critical limitations persist, ranging from constraints in ink formulation and accessibility of 

printing hardware to issues of durability, environmental stability, and real-world integration. The gap 

between laboratory innovation and field-deployable systems remains a significant barrier, underscoring the 

need for robust material formulations, platform miniaturization, sustainable substrates, and streamlined 

system integration. While current technologies have laid a strong foundation, achieving reliable, field-ready 

sensors still demands cross-disciplinary refinement at both the material and system levels. 

 

The future of printed agricultural sensing will be defined by the seamless integration of materials design, 

advanced manufacturing, and intelligent data systems. To fully realize this potential, the field must move 

toward hybrid ink formulations that optimize both performance and printability, alongside the development 

of modular, portable printing platforms that bridge the gap between laboratory innovation and on-field 
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deployment. Expanding the commercial availability of functional inks tailored to various printing 

technologies will be a major enabler, broadening access and accelerating adoption. Inks compatible with 

standard office printers offer significant potential to democratize this technology, enabling accessible entry 

points for researchers, innovative growers, and decentralized applications. At the same time, establishing 

robust validation protocols and standardized testing frameworks is crucial to ensure reproducibility, 

regulatory compliance, and scalability across diverse agricultural settings. The rise of ML offers further 

transformative potential, not only for interpreting complex, multidimensional sensor data but also for 

optimizing material formulations, predicting long-term behavior, and enabling autonomous, self-correcting 

sensing platforms. In this vision, printed sensors will evolve into resilient, adaptive systems capable of 

detecting early plant stress responses, implementing precise interventions, and managing resources 

efficiently. By merging sustainable, environmentally friendly materials with smart diagnostics and 

predictive analytics, printed technologies can play a pivotal role in securing global food systems and 

advancing sustainable agriculture. The true challenge now lies not in innovation alone, but in translating 

that innovation into reliable, accessible tools that operate effectively under real-world agricultural field 

conditions, where the future of farming will ultimately be shaped. 

 

In conclusion, we highlight emerging trends, noting that the transition of printed and biodegradable sensors 

from laboratory prototypes to field tools will depend on their robustness, stability, low maintenance 

requirements, and seamless data connectivity. By addressing these practical requirements and aligning 

device design with real agricultural conditions, sustainable plant-wearable devices can become practical 

components of precision agriculture, supporting more resilient crop production. 
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Figure legends 

Figure 1. Illustration of the benefits and future trends in next-generation plant monitoring. a, A 

schematic of precision agriculture showing the foundational benefits of modern farming systems. By 

integrating digital technologies, precision agriculture enables real-time monitoring, smart and controlled 

nutrition, pesticide and water management, thus contributing to increased crop productivity and reduced 
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resource and material costs. b, An image of an advanced smart plant monitoring illustrating the future of 

next-generation diagnostics through diverse sensing modalities, including multimodal and wearable sensor 

platforms. c, Workflow toward manufacturing and utilization of printed sensor, including low-dimensional 

material synthesis, ink formulation, printing, deployment, and data processing. Panel (a) was created in 

BioRender. Alharthi, A. (2026) https://BioRender.com/utumi3x. Panel (b) was created in BioRender. 

Alharthi, A. (2026) https://BioRender.com/zebch33. 

 

Figure 2. Screen printing (SP) sensors for crop monitoring. a, Schematic of TETRIS, showing sensor 

fabrication, growth of seedlings, and recording of measurements using a standard laboratory potentiostat. 

b, Simultaneous measurement of ion concentrations, H2O2 levels, and pH variations enables comprehensive 

monitoring of dynamic chemical changes. c, Illustration of leaf surface moisture detection at four different 

locations in the tree canopy. d, Sensor flexibility. e, Photos of the plant-mounted sensors on the stem and 

leaf. Parts (a,b) are adapted from [Coatsworth, P. et al., Sci. Adv., 2024]14, licensed under CC-BY 4.0 

(https://creativecommons.org/licenses/by/4.0/). Parts (c,d) are adapted from [Strand, E.J. et al., Adv. Sens. 

Res., 2025]53, licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part (e) adapted 

from [Hossain, N.I. et al., Sci. Rep., 2023]118, licensed under CC-BY 4.0 

(https://creativecommons.org/licenses/by/4.0/). 

 

Figure 3. Inkjet printing (IJP) sensors for crop monitoring. a, Illustration of the sensors mounted on 

the plant stem and schematic of the fabrication steps of the electronic cryogels. b, Illustration and photos 

of the tattoo electrode on D. muscipula leaf and SEM image of the leaf surface covered with the electrode. 

c, Photos of the sensor attached to the mint leaf with 100 µm high microneedles and SEM pictures of the 

3 x 3 microneedles. Part (a) is adapted from [Bihar, E. et al., npj Flex. Electron., 2023]151, licensed under 

CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part (b) is is adapted from [Meder, F. et al., 

Adv. Mater. Technol., 2021]97, licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

Part (c) is is adapted from [Rosati, G. et al., Sci. Rep., 2024]150, licensed under CC-BY 4.0 

(https://creativecommons.org/licenses/by/4.0/). 

 

Figure 4. 3D printing (3DP) sensors for crop monitoring. a, Microneedle fabrication via resin filament 

and its design. b, Sensor construction. c, Sensor directly attached to the leaf via the needle properties. d, 

Schematic of individual measurement well assembly during measurement and the photograph of the 3DP 

well assembly. e, Schematic of experimental procedure for leaf disc assay in Nicotiana benthamiana. PC 

and NC denote positive and negative control, respectively. PC is an AVRblb2-carrying Agrobacterium 

tumefaciens suspension of OD600 = 0.1 and NC is an empty vector (EV)-carrying A. tumefaciens 
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suspension of OD600 = 0.1. X and Y contain discrete dilutions of AVRblb2-carrying A. tumefaciens, varied 

between experiments. Inset: Simplified molecular schematic of HR generation via agroinfiltration. Parts (a-

c) were created in BioRender. Panacek, D. (2026) https://BioRender.com/bub5cta. Parts (d,e) are adapted 

from [Collins, A.S.P. et al., Adv. Sci., 2024]39, licensed under CC-BY 4.0 

(https://creativecommons.org/licenses/by/4.0/). 

 

Figure 5. Direct laser writing (DLW)-based sensors for crop monitoring. a, Setup and design of the 

LIG sensor mounted on tree leaves. b, Demonstration of the DLW method for the fabrication of LIG. c, 

Setup of the measurement and design of the LIG functionalized with MXene and MoS2. 

 

Figure 6. Aerosol jet printing (AJP) sensor for plant monitoring. a, Schematic of the AJP consisting of 

an aerosol jet and 

a coaxial atmospheric pressure plasma jet for concurrent ink deposition and sintering. b, The image of a pot 

of English ivy with a hydration sensor directly printed on its leaves. The inset shows a detailed view of the 

printed interdigitated silver electrode. The figure is adapted from [Du, Y. et al., Small, 2025]57, licensed 

under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

 

Figure 7. The use of low-dimensional inks for the development of sensors for crop sensing. a, Photos 

of MXene-printed sensor as smart plant wearable tags on leaf and fruit and fabrication of MXene-based 

sensor. b, Photo of the microneedle sensor mounted on a plant leaf and SEM image of an Au-coated 

microneedle functionalized with chitosan-rGO hybrid. c, Experimental setup for monitoring ethylene 

released by various fruit samples at room temperature using a wireless sensor. d, Schematic of the process 

flow for the fabrication of sensors on a flexible substrate. Part (a) is adapted from [Li, X. et al., Small, 

2023]115, licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part (b) is adapted 

from [Singh, N. et al., ACS Sens., 2025]302, licensed under CC-BY 4.0 

(https://creativecommons.org/licenses/by/4.0/). 

 

Figure 8. Machine learning pipeline connecting plant-centered sensing to agronomic decisions. 

Schematic overview of how machine learning operates across the plant-sensing workflow. a Heterogeneous 

data are collected from optical imaging and video, tabular and time-series measurements, graph-structured 

representations, and multimodal sensor streams, including plant-attached devices. b These signals undergo 

preprocessing and augmentation to clean, normalize, and expand the training distribution. c Supervised, 

semi-supervised, and unsupervised learning cycles develop both task-specific predictors and shared 

representations. d The resulting models support applications such as digital twins, interaction discovery, 
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pathology forecasting, plant analysis, yield prediction, and population management, enabling more accurate 

decisions, earlier stress detection, and more efficient use of resources in precision agriculture. Created in 

BioRender. De Diego, N. (2026) https://BioRender.com/nqq3tvk.  

 

 

 

 

 

 

 

 

Editor’s Summary 

Precision agriculture requires scalable, low-cost sensor technologies capable of delivering real-

time, high-resolution insights into soil, plant, and environmental conditions. Here, the authors 

review printable materials and devices in enabling real-time and continuous monitoring for smart 

agriculture. 

Peer review information: Nature Communications thanks Marc Parrilla, Luisa Petti, Qingshan 

Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this 

work. 
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