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Abstract12

Time-multiplexed networks of degenerate optical parametric oscillators have demonstrated remark-13

able success in simulating coupled Ising spins, thus providing a promising route to solving complex14

combinatorial optimization problems. In these systems, referred to as coherent Ising machines,15

spins are encoded in the oscillator phases, and measured at the system output using phase-sensitive16

techniques, making intricate phase stabilization necessary. Here, we introduce an optical Ising ma-17

chine based on spontaneous polarization symmetry breaking in a coherently driven fibre Kerr18

nonlinear resonator. In our architecture, the spins are encoded in the polarization state, allowing19

robust, all-intensity readout with off-the-shelf telecom components. By operating in a newly-20

discovered regime where nonlinearity and topology lock the system’s symmetry, we eliminate drift21

and bias, enabling uninterrupted Ising trials at optical speeds for over an hour, without manual22

intervention. This all-fibre platform not only simplifies the hardware but also opens a path to more23

stable, high-throughput coherent optical optimization devices for applications from finance to drug24

design and beyond.25

∗ liam.quinn@auckland.ac.nz
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INTRODUCTION26

Ising machines are analogue computational systems which can efficiently solve complex com-27

binatorial optimization problems, which arise in various fields such as biology, financial28

modeling, drug discovery, and machine learning [1–5]. Numerous realizations have been29

demonstrated in recent years, such as those based on trapped ions [14, 15], superconduct-30

ing circuits [16], electronic oscillators [17], spatial light modulation [18], phase-transition31

nano-oscillators [19], and microresonator solitons [20]. These devices consist of a network of32

coupled physical elements, each of which can occupy one of two stable states that encode bi-33

nary spin variables to realize a network of artificial spin states. By judiciously coupling those34

spins to one another, the entire system can be designed to emulate the Ising model [6]. In35

particular, measurement of the collective output of the network of artificial spins allows one36

to infer the minimum energy (ground) state of the Ising Hamiltonian H = −
∑

ij Jijσiσj,37

where Jij describes the coupling and σi = ±1 denotes the spins. Because many impor-38

tant combinatorial optimization problems — that cannot be efficiently solved using classical39

computers — can be represented as the minimum energy search of the Ising Hamiltonian,40

Ising machines offer a potentially groundbreaking approach for a diverse range of problems41

[1, 12, 13].42

Networks of degenerate optical parametric oscillators (DOPOs) represent one of the most43

successful physical implementations of Ising machines. Known as coherent Ising machines44

(CIMs), these devices leverage the bistable output phase of each oscillator to realize a net-45

work of artificial, binary spin states [6–11]. They are particularly appealing owing to their46

ability to operate at room temperature, provide arbitrary all-to-all connections between47

spins, enable parallel processing which imparts inherent scalability, and efficiently solve48

large optimization problems with excellent speed and efficiency [21, 22]. Yet, despite their49

evident successes, today’s state-of-the-art CIMs still exhibit limitations. In particular, com-50

plex phase-stabilization is required to maintain appropriate spin coupling, and to achieve51

robust read-out of the network state via homodyne detection [8, 9, 23]. Achieving perfect52

stabilization of the entire system remains challenging, often necessitating post-selection pro-53

cedures to reject any of the trials that drift out of phase, thereby limiting the overall speed54

and efficiency with which the system can find a sufficiently good solution [22, 24, 25].55

Here, we experimentally demonstrate proof-of-concept results of a novel optical Ising ma-56
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chine design, that addresses some of the limitations of existing systems. We circumvent57

the inherent complexities of representing spin states in optical phase, as used in the CIM58

architecture, by instead using optical polarization, whereby spins can be discriminated via59

straightforward intensity measurements. We realize polarization spins by leveraging sponta-60

neous polarization symmetry breaking that manifests itself in coherently driven optical fibre61

Kerr resonators [26–28]. Moreover, by operating in a recently discovered topological sym-62

metry protected regime [29, 30], our artificial spins are intrinsically insulated from unwanted63

biases, enabling robust Ising operation without the need for post-selection. In demonstra-64

tions employing chains of up to 100 spins with all-optical dual neighbour coupling, we achieve65

continuous repeated measurements of the Ising spin evolution for periods exceeding one hour.66

Compounded by the fact that our novel Ising machine operates at 1,550 nm wavelength and67

makes exclusive use of off-the-shelf telecommunications components, we believe that our68

implementation offers a promising route towards improved performance, robustness, and69

stability of CIMs.70

RESULTS71

Polarization spins72

We begin by describing the origin of the artificial polarization spins that underpin our73

concept. Our Ising machine is built around a passive optical Kerr ring resonator formed74

from a segment of single-mode optical fibre that is closed on itself with a standard fused75

fibre coupler that is externally, coherently-driven by a single pump laser (see Fig. 1a and76

Methods). The resonator exhibits two orthogonal polarization modes, corresponding to the77

principal polarization states that map back to themselves at the end of each round trip. We78

denote the complex amplitudes of the intracavity electric field along the two polarization79

modes of the resonator as E1 and E2.80

Our system incorporates three polarization controllers (PC1, PC2, and PC3 in Fig. 1a).81

PC1 is used to align the polarization of the external drive along one of the principal po-82

larization modes of the resonator (here assumed E1). PC2, positioned inside the resonator,83

acts as a localized birefringent defect. It is configured to introduce a π relative phase shift84

between the resonator modes, so as to operate in the symmetry protected regime described85

in ref. 29 and briefly recounted below. Finally, PC3 is placed at the output of the resonator86
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FIG. 1. Origin of artificial polarization spins. a, Schematic illustration of the core system

components. PC: polarization controller, PBS: polarizing beam-splitter. b, As the external driving

field (along cavity mode E1, blue) is tuned into resonance, the undriven mode E2 is parametrically

generated (red) with bistable phases ϕ0 and ϕπ = ϕ0+π relative to the driving field. Solid (dotted)

curves represent stable (unstable) states and the shaded regions highlight depletion (gain) of E1

(E2) due to parametric coupling. c, Due to the π phase shift induced by PC2, the phase of the

parametrically-generated field E2 swaps after each round-trip time tR (left axis), which corresponds

to an alternation of the hybridized polarization mode intensities, e.g. |E+|2 (right axis). Depending

on the initial phase of E2, two distinct binary sequences exist (green and purple), which define

two artificial polarization spin states, as shown in d. e, When observed stroboscopically over two

round trips, the generation of the phase bistable field E2 corresponds to a spontaneous symmetry

breaking (pitchfork) bifurcation in the hybrid mode intensity.
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and is part of the spin read-out stage.87

At sufficiently high pump power, the resonances of the fibre ring are tilted due to the101

Kerr nonlinearity (see Fig. 1b). The required driving power threshold is comparable to that102

associated with the occurrence of temporal cavity solitons, as well as other localized and103

periodic structures of Kerr resonators [26, 27, 29]. When the external driving field is detuned104

from the resonance, the intensity of the driven mode |E1|2 is low and the undriven mode is105

empty, |E2|2 ≈ 0. However, as the driving frequency is tuned towards the peak of the tilted106

resonance, parametric four-wave-mixing causes the undriven mode E2 to grow (Fig. 1b, red107
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curve) with two possible phase shifts relative to the driven mode, ϕ0 and ϕπ = ϕ0 + π [29].108

Furthermore, the π phase shift caused by the birefringent defect (induced by PC2) forces109

a periodic round-trip to round-trip swapping between the two phase states, i.e. ϕ0 ⇌ ϕπ110

(Fig. 1c).111

The bistable phase of E2 is associated with two different polarization states for the intra-112

cavity field. These can be resolved in intensity by projecting the resonator output (using PC3113

and a polarizing beam-splitter, PBS) onto hybridized modes defined as E± = (E1±iE2)/
√
2.114

In terms of these modes, one polarization state is associated with intensities |E+|2 = Imax115

and |E−|2 = Imin and the other vice versa. Moreover, the periodic swapping of the phase of116

E2 results in the periodic swapping of the hybridized mode intensities |E+|2 ⇌ |E−|2 (Fig. 1c,117

right axis). Because the initial state is selected randomly, from noise, a measurement of the118

intensity of one of the hybrid modes (say |E+|2) therefore yields one of the two unbiased119

sequences: (Imax, Imin, Imax, Imin, ...) or (Imin, Imax, Imin, Imax, ...), which define our artificial120

spin states, +1 and −1 (Fig. 1d). Taking into account the parity of the round-trip index,121

these can be unequivocally discriminated by a single intensity measurement [30]. Note that122

the periodic swapping of our artificial spins can be seen as the excitation of Floquet states,123

which have been recently suggested to offer advantages for escaping local minima of a target124

Ising Hamiltonian [31].125

We must emphasize that the localized birefringent defect induced by polarization con-126

troller PC2 is crucial to obtain robust, bias free spins. As described in ref. 29, this defect127

introduces an attractor in the dynamical system that fundamentally eliminates the effect128

of all asymmetries, even in scenarios involving an imperfect π phase shift or a misaligned129

driving polarization state. This balancing of asymmetries has been experimentally shown130

to remain robust even when the intended π phase defect deviates by more than a cavity131

linewidth [29, 32]. It is also worth noting that, when examined over two round trips, the132

growth of the undriven mode E2 corresponds to a symmetry-protected polarization sponta-133

neous symmetry breaking (SSB) bifurcation for the hybridized mode intensities |E±|2 (see134

Fig. 1e), highlighting the suitability of the resultant states to act as spins of an Ising machine135

[33–35].136

Experimental implementation137

For experimental demonstration, we use a 57-m-long resonator constructed from standard145

MetroCor single-mode optical fibre closed on itself with a 95/5 coupler (see also Methods).146
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As shown in Fig. 2, the resonator incorporates a polarization controller (PC2 as described147

above) and a 99/1 tap-coupler through which the intracavity field is extracted, yielding an148

overall measured cavity finesse of 42. We coherently drive the resonator with a train of 5 ps149

pulses derived from a 4.69 GHz repetition-rate electro-optic (EO) comb generator seeded150

by a narrow-linewidth laser at 1,552 nm wavelength. The repetition rate is set such that151

an integer number of pulses fit into the 273 ns round-trip time tR of the resonator. Each of152

the driving pulses will undergo the polarization dynamics described above, thus realizing a153

time-multiplexed network of artificial spins, with the number of spins N adjustable with a154

pulse picker placed at the EO comb output.155

To couple the artificial spins and define an Ising network corresponding to a particu-156

lar problem, we use a measurement and feedback approach, where the instantaneous state157

of each spin inside the cavity — determined from the output intensities along one of the158

hybrid modes (say |E+|2) — is used to perturb the driving conditions of other spins. Per-159

turbations are applied by adding a weak driving component along the E2 mode, which is160

phase-modulated based on the desired coupling. The phase-modulator is placed ahead of161

PC1 in one arm of a Mach-Zehnder configuration set up between a pair of PBSs (see Fig. 2),162

with the other arm channeling the orthogonal E1 driving field. An extra polarization con-163

Fibre ring resonator

Pulse-picking

PMDriving pulses

EDFA PBS PBS

Driving Coupling

95% : 5%

57 m long SMF fibre

PC4 PC1

PC2

PC3PBS
Frequency 
sweep

4.69 GHz EO comb (1,552 nm) 99% : 1%

Coupling logic

Network state

138

FIG. 2. Experimental setup of the polarization coherent Ising machine. 5 ps pulses

derived from an EO comb source synchronously drive a Kerr fibre resonator along the E1 polar-

ization mode, defining time-multiplexed artificial spins (see also Fig. 1). The spins are read out

by measuring the hybrid mode intensity |E+|2 and coupled together through feedback via phase-

modulation (PM) of a small driving component along the E2 mode. PC: polarization controller,

PBS: polarizing beam-splitter, EDFA: erbium-doped fibre amplifier.

139

140

141

142

143

144
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troller (PC4) controls the amplitude of the E2 driving component, and thereby the overall164

coupling strength of the network.165

Minimization of the Ising energy of the network is obtained by sweeping (red-shifting)166

the driving laser carrier frequency across the polarization SSB bifurcation point of the Kerr167

resonator (see Fig. 1e). In the absence of coupling, this frequency sweep causes the artificial168

spins to randomly select one of the two available states with equal probability [30]; in the169

presence of coupling, the spins are attracted to the collective configuration that minimizes170

the Ising energy (this is shown explicitly at the end of the Methods). That optimal solution171

can then be read-out by simply measuring the intracavity intensity along one of the hybrid172

modes (|E±|2).173

For a proof-of-concept demonstration, we consider a one-dimensional spin chain with anti-185

ferromagnetic coupling, where each spin is coupled to its two nearest neighbours with free186

boundary conditions (see Methods for implementation details). Figure 3 illustrates a typi-187

cal single run of our Ising machine executed on a 64-spin chain. Figure 3a shows the peak188

hybridized intensity |E+|2 of one of the intracavity pulses (blue curve), as the driving laser189

frequency is slowly swept across the SSB bifurcation point over 1,000 round trips, corre-190

sponding to 273 µs. The red curve envelope highlights the growing differential between the191

high and low intensity states as the bifurcation develops, while the inset shows the dynamics192

over a shorter time frame, where the round-trip to round-trip swapping of the hybridized193

intensity is clearly visible.194

For further insights, Fig. 3b shows the evolution of all 64 spins. We now plot differential195

intensities ID calculated for each pulse over consecutive round-trips, with the swapping196

dynamics unwrapped for clarity, i.e. ID = (−1)m(|E(m+1)
+ |2 − |E(m)

+ |2) (where m denotes197

the round-trip index). The solid black curve highlights the evolution of one particular spin,198

corresponding to Fig. 3a. Initially, noisy fluctuations about zero differential intensity (dashed199

line) that are driven by the collective state of the network can be observed, before a clear200

final spin state emerges. Figure 3b also reveals that the spin distribution stabilizes after201

approximately 600 round trips, corresponding to ∼ 160 µs. Assigning spin states +1 and202

−1 based on the sign of the signals plotted in Fig. 3b, we can calculate the corresponding203

evolution of the Ising energy H, which is plotted in Fig. 3c (blue curve). Clearly, the Ising204

network evolves towards a low energy state. The green curves in Fig. 3c represent the205

evolution of the maximum and minimum Ising energies obtained from 1,500 independent206
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FIG. 3. Single run of our Ising machine for a 64-spin chain. a, Peak hybridized intensity

|E+|2 of a single intracavity pulse (blue) as the driving laser frequency is swept over time. The

outer red lines highlight the envelope of the evolution, while the zoomed inset reveals the round-

trip to round-trip swapping dynamics. b, Unwrapped differential i ntensities o f a ll 6 4 s pins over 

consecutive resonator round trips. The colours map directly to the measured differential intensity, 

with the black curve highlighting one particular spin. The dashed black line shows the decision 

threshold for the artificial s pins. c , C orresponding e volution o f t he I sing e nergy o f t he network 

(blue). The green curves and shading represent the bounds expected from numerical simulations. 

The inset shows the final network state for the Ising trial shown in (b), where yellow 

highlights mark ‘defects’. 
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FIG. 4. Statistical distribution of final Ising energies obtained for a 64-spin chain.

a, Comparison of experimental and simulated distributions obtained over 1,500 trials. b, Energy

distribution over 1,500 trials under weaker feedback coupling. c, Repeated experimental measure-

ments of the distribution shown in b conducted over a time period exceeding one hour. No manual

adjustments to the setup were required over this time frame and no trials were rejected. The bars

in black correspond to one standard deviation.
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numerical simulations of the experiment (see Methods). Finally, the inset shows a pictorial207

representation of the final network state of the system corresponding to (b). The yellow208

highlights show the system defects, which account for the final energy of this particular209

realization being higher than the ground state.210
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To illustrate the statistical behaviour of our Ising machine, Fig. 4a shows the distribution218

of final Ising energies of 64-spin chains obtained over 1,500 experimental trials, compared219

with corresponding numerical simulations (see Methods). We note an excellent agreement220

between both distributions. In particular, we observe that the distributions are concentrated221

towards the true ground state, which is reached around 20% of the time (in this model, Ising222

energies range from −63 to +63 in steps of 2). In Fig. 4b, we measure the energy distribu-223

tions over 1500 trials under conditions of weaker feedback coupling, again finding excellent224

agreement between experiments and theory. Figure 4c shows results from repeated mea-225

surements of the Ising energy distribution with this weaker coupling, obtained over different226

batches of 1,500 trials recorded over a time period exceeding one hour. Remarkably, the en-227

ergy distribution remains steady over this duration, highlighting the robustness of our Ising228

machine. Notably, no manual adjustments were made to the setup during the experiment,229

and every trial was included in the statistics without any rejection (see Methods).230

We now study in more detail our Ising machine’s performance and how it scales with the238

number of spins. The primary metric we consider is the time-to-solution Ts, defined as [34]239

Ts = Ta

[
log(0.01)

log(1− P )

]
, (1)240

which represents the time required for a certain solution — in our case the ground state —241

to be found with a 99% probability given the time Ta for a single run of the Ising machine242

and the probability P for the machine to yield that solution in a single run. For our243

implementation, Ta, also known as the annealing time, is the time taken to sweep the laser244

frequency through the SSB bifurcation ( 273 µs in the case of Fig. 3; see also Methods).245

Although decreasing the annealing time Ta speeds up the Ising machine’s operation, it246

also reduces the probability P of finding the ground state. Accordingly, one can expect247

the existence of an optimal annealing time. This can be observed in the data presented in248

Fig. 5a, where we plot experimentally obtained time-to-solutions Ts as a function of annealing249

time Ta for different spin chain lengths (see Methods). Our experimental data reveals that250

the optimal annealing time, marked by the black boxes where the minima in the data are251

located, scales with the system size, with larger systems requiring longer individual run252

times to minimize the time-to-solution.253

Finally, Figs 5b and c illustrate how the time-to-solution of our Ising machine scales with254

the number of spins N . It has been suggested that a major advantage of DOPO-based co-255

10
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231

FIG. 5. Time-to-solution of the polarization Ising machine. a, Experimental time-to-

solution Ts versus annealing time Ta for different spin chain lengths. The black boxes highlight

optimal annealing times. b and c show measured time-to-solution (filled squares) as a function of

the number of spins in logarithmic and linear scale, respectively. The data for spin numbers up to

56 are fitted to e
√
N (black curve) and eN (green curve) models. The corresponding R2 parameters

are evaluated based on the entire dataset. Vertical bars indicate one standard deviation.
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herent Ising machines is that they can outperform other well-studied optimization platforms256

such as classical neural networks, with a performance advantage that becomes increasingly257

substantial for large problem sizes [36]. While extensive studies of the dependence of the258

time-to-solution on problem size remain relatively scarce [24, 37], experiments shown in259

Figs 5b and c suggest that our polarization-based Ising machine is consistent with a scaling260

on the order of exp(
√
N).261

The data shown in Figs. 5b and c were obtained by considering chains of N = 10 to262

N = 100 spins, with the annealing time set for each case to the optimal value estimated263

from measured data (Fig. 5a). We then fitted the measured time-to-solutions obtained for264

10 to 56 spins to two different scaling models, exp(
√
N) (black curve) and exp(N) (green265

curve). Comparing those fits to the entire dataset, as shown in Figs 5b and c, provides strong266

evidence of performance that indeed aligns with the exp(
√
N) scaling. The R2 parameters267

for the fits, evaluated for the entire dataset and displayed on the plot, further reinforce these268

findings. Notably, for trials extending up to 100 spins, the exp(
√
N) scaling consistently269

serves as an upper bound for the data, underscoring its applicability to our system (see also270

Methods). This provides evidence that our Ising machine may scale well for larger and more271

useful problems, and similar tests will be applied to networks of greater connectivity and272

more complex topology in future studies.273

DISCUSSION274

Our work demonstrates that spontaneous polarization symmetry breaking in externally-275

driven Kerr resonators enables a novel form of optical coherent Ising machine, in which spins276

can be discriminated with straightforward intensity measurements. Our scheme critically277

leverages the recent discovery that a localized birefringent defect can protect the symmetry278

of the system [29], thus ensuring stable and bias-free polarization spins.279

We have presented proof-of-concept experimental results showcasing continuous opera-280

tion of the machine with up to 100 coupled spins for over an hour, with no need for any281

post-selection or manual adjustments. The observed scaling behaviour, consistent with an282

exp(
√
N) dependence, underscores the platform’s potential for solving larger, more com-283

plex problems. Although stabilizing long fiber cavities is inherently challenging, our method284

avoids the need for additional phase stabilization in detection and feedback, offering a simple285

12
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and robust paradigm.286

We note that our system can still be optimized, in particular by adjusting the finesse of287

the resonator. A lower finesse, which translates into a shorter resonator photon lifetime,288

would speed up the overall dynamics, enabling lower annealing time for the same resonator289

length. Experimentally, this can be trivially achieved by introducing extra losses at the290

expense of a higher driving power. However, the number of round trips available to apply291

perturbations would also be reduced. This suggests a trade-off between speed, driving power292

(finesse), and solution quality similar to the findings presented in Fig. 5a.293

Because the focus of our work has been on proof-of-concept demonstration of the overall294

scheme, the coupling topology has been limited to a comparatively simple one-dimensional295

spin chain, yet we emphasize that all-to-all coupling can be readily achieved in our scheme by296

using established methods based on field-programmable gate arrays (FPGAs) [8, 9, 22]. We297

believe that the full telecommunications compatibility of our setup, combined with the fun-298

damental symmetry protection and the ability to resolve the spin states using intensity-only299

measurements, positions our scheme as a highly promising avenue to solve complex combina-300

torial optimization problems with unprecedented robustness and stability. We envisage this301

stability being especially important as investigations towards implementing optical coupling302

become more feasible [43, 44].303

METHODS304

Resonator design305

Our ring resonator is built around 57 m of MetroCor single-mode fibre. The fibre has a Kerr306

nonlinearity coefficient γ ≈ 2.5 W−1 km−1 and it exhibits normal group-velocity dispersion307

at the 1,552 nm driving wavelength. Note that normal dispersion is important to suppress308

modulation instabilities that may otherwise impact the dynamics. The ring includes a309

95/5 fibre coupler for injection of the driving field and a 99/1 tap coupler for extraction310

and monitoring of the intracavity field. Overall, the resonator has a total round-trip time311

tR = 273 ns, corresponding to a cavity free-spectral range FSR = 1/tR = 3.666 MHz, and312

a cavity finesse of about F = 42. This corresponds to 15% power loss per round trip and313

to a photon lifetime of 1.8 µs, which characterises the relaxation time of the system. The314

detuning scan must remain slower than this lifetime to ensure sufficient dissipation and allow315
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the system to relax back to the symmetric state between trials.316

EO comb generator317

The resonator is coherently driven with a train of 5-ps-long pulses generated from an electro-318

optic (EO) frequency comb seeded with a 1 kHz-linewidth continuous-wave (cw) laser. The319

cw beam is first passed through a phase modulator, followed by an intensity modulator320

[38]. Both modulators are driven in phase by the same RF clock synthesizer [38]. The321

resultant comb is then spectrally broadened through 2.2 km of dispersion-compensating fibre,322

and subsequently undergoes nonlinear (soliton) compression through a 1-km-long segment323

of SMF-28 fibre. Finally, a nonlinear-amplifying loop mirror eliminates the residual low-324

intensity background existing between the pulses. The RF clock of the EO comb determines325

the repetition rate of the generated pulses. In our case, it is set at 4.6928 GHz, corresponding326

to 1, 280 × FSR, thus ensuring synchronized driving of the resonator. The desired number327

of spins N (i.e. pulses per round-trip) is selected with a pulse picker implemented with328

an electro-optic modulator driven by a pulse-pattern generator. The spacing between the329

intracavity pulses is set to be 0.85 ns. This is wide enough to avoid any potential tail330

interactions between adjacent pulses, guaranteeing the independence of each spin. Our331

system operates reliably over a range of driving powers, from 0.4 to 1 W peak power. When332

we vary the number of spins, the EDFA is adjusted to keep the peak power of the driving333

pulses within that range.334

Laser frequency sweep across the SSB bifurcation335

To maintain the fibre resonator near the polarization SSB bifurcation point while we sweep336

the driving laser frequency, we use the technique of ref. 39 to actively stabilize the detuning337

between the driving laser and a cavity resonance. Specifically, a low-power cw signal derived338

from the driving laser is frequency-shifted via an acousto-optic modulator and launched into339

the resonator in the counter-propagating direction relative to the primary driving pulses340

associated with the Ising spins. The intracavity power level of this signal is then locked341

to a setpoint using a PID controller that actuates the driving laser frequency through a342

piezoelectric transducer in the laser head, thus actively stabilizing the frequency detuning.343

The driving laser frequency can then be periodically swept around the setpoint to anneal344

the spins and run the Ising machine by superimposing a sinusoidal voltage on top of the345

PID feedback signal. The annealing time Ta referred to in the text then corresponds to half346
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the sinusoidal period. In this way, many Ising runs can be performed consecutively, without347

any resetting protocol.348

Implementation of the 1D Ising spin chain349

The 1D Ising spin chain coupling topology is implemented by placing a 50/50 beamsplitter350

behind the PBS at the cavity output. The two output ports of the beamsplitter are each351

followed by an optical delay line, before photodetection. The electrical signals from the352

two photodetectors are then combined before being applied directly to the phase-modulator353

acting on the E2 driving component. The optical delays are adjusted so that each spin354

influences the driving pulse corresponding to the spin immediately up and down the chain,355

respectively, at the next round-trip. As our N spins never fill up the entire resonator, the356

two spins at the edge of the chain are only coupled to one neighbour each, which effectively357

corresponds to free boundary conditions.358

Coupling calibration and stabilization359

The two arms of the Mach-Zehnder interferometer used to phase-modulate the E2 driving360

component are typically affected by a slow long-term relative phase drift (over several sec-361

onds). Such drift effectively affects the overall polarization state of the driving beam, which362

we monitor with a commercial polarimeter before the driving beam is injected into the res-363

onator. To achieve stable operation, an error signal derived from a combination of multiple364

Stokes parameters read out from the polarimeter is fed into a PID controller acting on a365

fibre strecher placed in one arm of the Mach-Zehnder interferometer. The optimal setpoint366

of the PID is obtained by a calibration routine, whereby we step the fibre stretcher while367

running the Ising machine continuously. In this way, we can determine the driving beam368

Stokes parameters yielding the minimal Ising energy (with averages taken over 300 runs).369

Once the calibration is performed, stable operation can be maintained for periods exceeding370

one hour.371

Determination of time-to-solutions, Ts372

The time-to-solutions plotted in Fig. 5 are determined for each point out of 1,500–4,500 runs373

of the Ising machine. From these batches of results, we extract each time the probability P374

of reaching the ground state, which is then introduced into Eq. (1).375

Numerical model376

The numerical simulation results presented in Figs 3c and 4a were obtained with a simplified
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model where the individual spins are represented as cw fields. Minimal differences were ob-

served when considering the full fine temporal structure of the spins, and this was neglected

for computational efficiency. Specifically, we iterate, for each spin, the following Ikeda map,

which corresponds to the boundary conditions of our fibre resonator [40],

E
(m+1)
1,i (0) = e−αE

(m)
1,i (L)e−iδ0 +

√
θ Ein cosχ , (2)

E
(m+1)
2,i (0) = e−αE

(m)
2,i (L)e−i(δ0−π)

+
√
θ Ein(sinχ) e

iϕ
(m+1)
i . (3)

Here, E
(m)
1,i (z) and E

(m)
2,i (z) represent the electric fields of the two polarization modes of377

spin σi at the m-th round trip, L = 57 m is the resonator length, θ = 0.05 is the power378

transmission coefficient of the input coupler, with all other losses lumped into α = π/F ≈379

0.075, while δ0 is the round-trip phase detuning of the E1 mode (swept from 0 to 0.8α),380

with the equation for the second mode also including the π phase shift defect for topological381

symmetry protection [29]. Ein is the amplitude of the driving field, with Pin = |Ein|2 the total382

(peak) driving power, and χ represents the effective driving polarization ellipticity, reflecting383

the setting of PC4. These were set to match with experimental observations. Specifically384

we used Pin = 0.4 W and χ = 0.1 rad for the simulation results of Fig. 3c while Pin = 0.7 W385

and χ = 0.1 rad and 0.05 rad, respectively, in Fig. 4a,b. Finally, ϕ
(m+1)
i accounts for the386

E2 driving phase modulation through which we implement the coupling between the spins387

and is given by388

ϕ
(m+1)
i = g

∑
j

Jij|E(m)
+,j |2 . (4)389

Here Jij describes the coupling topology while g relates to how strong we amplify the elec-390

tronic signal driving the phase modulator and which — together with χ — affects the overall391

coupling strength of the spin network. The value of g in numerical simulations is initially392

estimated based on experimental measurements, and then further fine-tuned to match the393

experimental results. We used g = 0.4 for 64 spins (as in Figs 3 and 4), with a scaling based394

on the number of spins and coupling matrix as described in [24]. Finally, environmental noise395

is represented by adding weak uncorrelated white noise with random phase and amplitude396

to the driving field Ein, thereby seeding the onset of symmetry breaking.397

Propagation along the resonator round-trip from z = 0 to L is described by coupled398
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nonlinear wave equations of the form399

∂E1,2(z)

∂z
= iγ

(
|E1,2|2 + B|E2,1|2

)
E1,2 + iγCE∗

1,2E
2
2,1 . (5)400

Numerical integration is performed with a fourth-order Runge-Kutta method, and assuming401

modes of linear polarization states (corresponding to B = 2/3 and C = 1/3) [41, 42], with402

γ = 2.5 W−1 km−1 the nonlinearity coefficient of the fibre.403

We close this Section by highlighting how the mean-field model that was dervied in the404

Methods of [29] to describe topological symmetry protection can be generalized to include405

the additional coupling-induced phase shift ϕ
(m+1)
i defined above. Over two round trips, we406

find that the evolution of the E2 mode amplitude picks up an additional driving term of the407

form408

√
θ Ein(sinχ)

[
eig

∑
j Jij |E

(m+1)
+, j |2 − eig

∑
j Jij |E

(m)
+, j |

2
]
. (6)409

Under the assumption of small phase perturbation, this becomes410

ig
√
θ Ein(sinχ)

(∑
j

Jij

[
|E(m+1)

+, j |2 − |E(m)
+, j |2

])
. (7)411

The value in bracket, |E(m+1)
+, j |2 − |E(m)

+, j |2, matches with our definition of the spins σj based412

on differential intensity ID. Hence, the driving perturbation on each spin σi takes the form413

of
∑

j Jijσj and maps to the Ising Hamiltonian [6]. This demonstrates that the intended414

Ising Hamiltonian is correctly implemented even in the presence of coupling, subject only to415

limitations imposed by amplitude heterogeneity, which is a constraint shared with existing416

CIM architectures [37].417

DATA AVAILABILITY418

The data that support the plots within this paper and other findings of this study are419

available from the corresponding author upon request.420
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CODE AVAILABILITY421

The code that supports the plots within this paper and other findings of this study are422
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