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Abstract
Time-multiplexed networks of degenerate optical parametric oscillators have demonstrated remark-
able success in simulating coupled Ising spins, thus providing a promising route to solving complex
combinatorial optimization problems. In these systems, referred to as coherent Ising machines,
spins are encoded in the oscillator phases, and measured at the system output using phase-sensitive
techniques, making intricate phase stabilization necessary. Here, we introduce an optical Ising ma-
chine based on spontaneous polarization symmetry breaking in a coherently driven fibre Kerr
nonlinear resonator. In our architecture, the spins are encoded in the polarization state, allowing
robust, all-intensity readout with off-the-shelf telecom components. By operating in a newly-
discovered regime where nonlinearity and topology lock the system’s symmetry, we eliminate drift
and bias, enabling uninterrupted Ising trials at optical speeds for over an hour, without manual
intervention. This all-fibre platform not only simplifies the hardware but also opens a path to more
stable, high-throughput coherent optical optimization devices for applications from finance to drug

design and beyond.
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INTRODUCTION

Ising machines are analogue computational systems which can efficiently solve complex com-
binatorial optimization problems, which arise in various fields such as biology, financial
modeling, drug discovery, and machine learning [1-5]. Numerous realizations have been
demonstrated in recent years, such as those based on trapped ions [14, 15], superconduct-
ing circuits [16], electronic oscillators [17], spatial light modulation [18], phase-transition
nano-oscillators [19], and microresonator solitons [20]. These devices consist of a network of
coupled physical elements, each of which can occupy one of two stable states that encode bi-
nary spin variables to realize a network of artificial spin states. By judiciously coupling those
spins to one another, the entire system can be designed to emulate the Ising model [6]. In
particular, measurement of the collective output of the network of artificial spins allows one
to infer the minimum energy (ground) state of the Ising Hamiltonian H = — 3. J;;0:0;,
where J;; describes the coupling and o; = #1 denotes the spins. Because many impor-
tant combinatorial optimization problems — that cannot be efficiently solved using classical
computers — can be represented as the minimum energy search of the Ising Hamiltonian,
Ising machines offer a potentially groundbreaking approach for a diverse range of problems
(1, 12, 13].

Networks of degenerate optical parametric oscillators (DOPOs) represent one of the most
successful physical implementations of Ising machines. Known as coherent Ising machines
(CIMs), these devices leverage the bistable output phase of each oscillator to realize a net-
work of artificial, binary spin states [6-11]. They are particularly appealing owing to their
ability to operate at room temperature, provide arbitrary all-to-all connections between
spins, enable parallel processing which imparts inherent scalability, and efficiently solve
large optimization problems with excellent speed and efficiency [21, 22]. Yet, despite their
evident successes, today’s state-of-the-art CIMs still exhibit limitations. In particular, com-
plex phase-stabilization is required to maintain appropriate spin coupling, and to achieve
robust read-out of the network state via homodyne detection [8, 9, 23]. Achieving perfect
stabilization of the entire system remains challenging, often necessitating post-selection pro-
cedures to reject any of the trials that drift out of phase, thereby limiting the overall speed
and efficiency with which the system can find a sufficiently good solution [22, 24, 25].

Here, we experimentally demonstrate proof-of-concept results of a novel optical Ising ma-



chine design, that addresses some of the limitations of existing systems. We circumvent
the inherent complexities of representing spin states in optical phase, as used in the CIM
architecture, by instead using optical polarization, whereby spins can be discriminated via
straightforward intensity measurements. We realize polarization spins by leveraging sponta-
neous polarization symmetry breaking that manifests itself in coherently driven optical fibre
Kerr resonators [26-28]. Moreover, by operating in a recently discovered topological sym-
metry protected regime [29, 30], our artificial spins are intrinsically insulated from unwanted
biases, enabling robust Ising operation without the need for post-selection. In demonstra-
tions employing chains of up to 100 spins with all-optical dual neighbour coupling, we achieve
continuous repeated measurements of the Ising spin evolution for periods exceeding one hour.
Compounded by the fact that our novel Ising machine operates at 1,550 nm wavelength and
makes exclusive use of off-the-shelf telecommunications components, we believe that our
implementation offers a promising route towards improved performance, robustness, and

stability of CIMs.

RESULTS

Polarization spins

We begin by describing the origin of the artificial polarization spins that underpin our
concept. Our Ising machine is built around a passive optical Kerr ring resonator formed
from a segment of single-mode optical fibre that is closed on itself with a standard fused
fibre coupler that is externally, coherently-driven by a single pump laser (see Fig. la and
Methods). The resonator exhibits two orthogonal polarization modes, corresponding to the
principal polarization states that map back to themselves at the end of each round trip. We
denote the complex amplitudes of the intracavity electric field along the two polarization
modes of the resonator as F; and Ej.

Our system incorporates three polarization controllers (PC1, PC2, and PC3 in Fig. 1a).
PC1 is used to align the polarization of the external drive along one of the principal po-
larization modes of the resonator (here assumed E;). PC2, positioned inside the resonator,
acts as a localized birefringent defect. It is configured to introduce a 7 relative phase shift
between the resonator modes, so as to operate in the symmetry protected regime described

in ref. 29 and briefly recounted below. Finally, PC3 is placed at the output of the resonator
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FIG. 1. Origin of artificial polarization spins. a, Schematic illustration of the core system
components. PC: polarization controller, PBS: polarizing beam-splitter. b, As the external driving
field (along cavity mode E7, blue) is tuned into resonance, the undriven mode Es is parametrically
generated (red) with bistable phases ¢g and ¢ = ¢+ 7 relative to the driving field. Solid (dotted)
curves represent stable (unstable) states and the shaded regions highlight depletion (gain) of E;
(E3) due to parametric coupling. ¢, Due to the 7 phase shift induced by PC2, the phase of the
parametrically-generated field Fy swaps after each round-trip time ¢y (left axis), which corresponds
to an alternation of the hybridized polarization mode intensities, e.g. |E|? (right axis). Depending
on the initial phase of Fg, two distinct binary sequences exist (green and purple), which define
two artificial polarization spin states, as shown in d. e, When observed stroboscopically over two
round trips, the generation of the phase bistable field Es corresponds to a spontaneous symmetry

breaking (pitchfork) bifurcation in the hybrid mode intensity.

and is part of the spin read-out stage.

At sufficiently high pump power, the resonances of the fibre ring are tilted due to the
Kerr nonlinearity (see Fig. 1b). The required driving power threshold is comparable to that
associated with the occurrence of temporal cavity solitons, as well as other localized and
periodic structures of Kerr resonators [26, 27, 29]. When the external driving field is detuned
from the resonance, the intensity of the driven mode |F;|? is low and the undriven mode is
2

empty, |Es|* ~ 0. However, as the driving frequency is tuned towards the peak of the tilted

resonance, parametric four-wave-mixing causes the undriven mode Fs to grow (Fig. 1b, red



curve) with two possible phase shifts relative to the driven mode, ¢ and ¢, = ¢g + 7 [29].
Furthermore, the 7 phase shift caused by the birefringent defect (induced by PC2) forces
a periodic round-trip to round-trip swapping between the two phase states, i.e. g = ¢,
(Fig. 1c).

The bistable phase of Es is associated with two different polarization states for the intra-
cavity field. These can be resolved in intensity by projecting the resonator output (using PC3
and a polarizing beam-splitter, PBS) onto hybridized modes defined as Ey = (E;+iE)/v/2.
In terms of these modes, one polarization state is associated with intensities |E, |* = Iyax
and |E_|?> = L, and the other vice versa. Moreover, the periodic swapping of the phase of
E5 results in the periodic swapping of the hybridized mode intensities |E, |? = |E_|? (Fig. 1c,
right axis). Because the initial state is selected randomly, from noise, a measurement of the
intensity of one of the hybrid modes (say |F|?) therefore yields one of the two unbiased
sequences: (Imax, Imins Imaxs Tminy --) OF (Lmin, Imax, Tmins Imax, ---), which define our artificial
spin states, +1 and —1 (Fig. 1d). Taking into account the parity of the round-trip index,
these can be unequivocally discriminated by a single intensity measurement [30]. Note that
the periodic swapping of our artificial spins can be seen as the excitation of Floquet states,
which have been recently suggested to offer advantages for escaping local minima of a target
Ising Hamiltonian [31].

We must emphasize that the localized birefringent defect induced by polarization con-
troller PC2 is crucial to obtain robust, bias free spins. As described in ref. 29, this defect
introduces an attractor in the dynamical system that fundamentally eliminates the effect
of all asymmetries, even in scenarios involving an imperfect m phase shift or a misaligned
driving polarization state. This balancing of asymmetries has been experimentally shown
to remain robust even when the intended 7 phase defect deviates by more than a cavity
linewidth [29, 32]. It is also worth noting that, when examined over two round trips, the
growth of the undriven mode Fs corresponds to a symmetry-protected polarization sponta-
neous symmetry breaking (SSB) bifurcation for the hybridized mode intensities |E|* (see
Fig. le), highlighting the suitability of the resultant states to act as spins of an Ising machine
[33-35].

Experimental implementation
For experimental demonstration, we use a 57-m-long resonator constructed from standard

MetroCor single-mode optical fibre closed on itself with a 95/5 coupler (see also Methods).



As shown in Fig. 2, the resonator incorporates a polarization controller (PC2 as described
above) and a 99/1 tap-coupler through which the intracavity field is extracted, yielding an
overall measured cavity finesse of 42. We coherently drive the resonator with a train of 5 ps
pulses derived from a 4.69 GHz repetition-rate electro-optic (EO) comb generator seeded
by a narrow-linewidth laser at 1,552 nm wavelength. The repetition rate is set such that
an integer number of pulses fit into the 273 ns round-trip time tg of the resonator. Each of
the driving pulses will undergo the polarization dynamics described above, thus realizing a
time-multiplexed network of artificial spins, with the number of spins N adjustable with a
pulse picker placed at the EO comb output.

To couple the artificial spins and define an Ising network corresponding to a particu-
lar problem, we use a measurement and feedback approach, where the instantaneous state
of each spin inside the cavity — determined from the output intensities along one of the
hybrid modes (say |Ey|?) — is used to perturb the driving conditions of other spins. Per-
turbations are applied by adding a weak driving component along the Fy; mode, which is
phase-modulated based on the desired coupling. The phase-modulator is placed ahead of
PC1 in one arm of a Mach-Zehnder configuration set up between a pair of PBSs (see Fig. 2),

with the other arm channeling the orthogonal E; driving field. An extra polarization con-
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FIG. 2. Experimental setup of the polarization coherent Ising machine. 5 ps pulses
derived from an EO comb source synchronously drive a Kerr fibre resonator along the F; polar-
ization mode, defining time-multiplexed artificial spins (see also Fig. 1). The spins are read out
by measuring the hybrid mode intensity |F|?> and coupled together through feedback via phase-
modulation (PM) of a small driving component along the Fo mode. PC: polarization controller,

PBS: polarizing beam-splitter, EDFA: erbium-doped fibre amplifier.



troller (PC4) controls the amplitude of the Ey driving component, and thereby the overall
coupling strength of the network.

Minimization of the Ising energy of the network is obtained by sweeping (red-shifting)

the driving laser carrier frequency across the polarization SSB bifurcation point of the Kerr
resonator (see Fig. le). In the absence of coupling, this frequency sweep causes the artificial
spins to randomly select one of the two available states with equal probability [30]; in the
presence of coupling, the spins are attracted to the collective configuration that minimizes
the Ising energy (this is shown explicitly at the end of the Methods). That optimal solution
can then be read-out by simply measuring the intracavity intensity along one of the hybrid
modes (|E4|?).
For a proof-of-concept demonstration, we consider a one-dimensional spin chain with anti-
ferromagnetic coupling, where each spin is coupled to its two nearest neighbours with free
boundary conditions (see Methods for implementation details). Figure 3 illustrates a typi-
cal single run of our Ising machine executed on a 64-spin chain. Figure 3a shows the peak
hybridized intensity |E, |* of one of the intracavity pulses (blue curve), as the driving laser
frequency is slowly swept across the SSB bifurcation point over 1,000 round trips, corre-
sponding to 273 us. The red curve envelope highlights the growing differential between the
high and low intensity states as the bifurcation develops, while the inset shows the dynamics
over a shorter time frame, where the round-trip to round-trip swapping of the hybridized
intensity is clearly visible.

For further insights, Fig. 3b shows the evolution of all 64 spins. We now plot differential
intensities Ip calculated for each pulse over consecutive round-trips, with the swapping
dynamics unwrapped for clarity, ic. Iy = (—=1)"(|E""™|2 — |[E"™[2) (where m denotes
the round-trip index). The solid black curve highlights the evolution of one particular spin,
corresponding to Fig. 3a. Initially, noisy fluctuations about zero differential intensity (dashed
line) that are driven by the collective state of the network can be observed, before a clear
final spin state emerges. Figure 3b also reveals that the spin distribution stabilizes after
approximately 600 round trips, corresponding to ~ 160 us. Assigning spin states +1 and
—1 based on the sign of the signals plotted in Fig. 3b, we can calculate the corresponding
evolution of the Ising energy H, which is plotted in Fig. 3¢ (blue curve). Clearly, the Ising
network evolves towards a low energy state. The green curves in Fig. 3c¢ represent the

evolution of the maximum and minimum Ising energies obtained from 1,500 independent
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FIG. 3. Single run of our Ising machine for a 64-spin chain. a, Peak hybridized intensity
|E4|? of a single intracavity pulse (blue) as the driving laser frequency is swept over time. The
outer red lines highlight the envelope of the evolution, while the zoomed inset reveals the round-
trip to round-trip swapping dynamics. b, Unwrapped differential i ntensities ofall 64 s pins over
consecutive resonator round trips. The colours map directly to the measured differential intensity,
with the black curve highlighting one particular spin. The dashed black line shows the decision
threshold for the artificial s pins. ¢, C orresponding e volution o f t he I sing e nergy o f t he network
(blue). The green curves and shading represent the bounds expected from numerical simulations.
The inset shows the final network state for the Ising trial shown in (b), where yellow

highlights mark ‘defects’.
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ments of the distribution shown in b conducted over a time period exceeding one hour. No manual
adjustments to the setup were required over this time frame and no trials were rejected. The bars
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numerical simulations of the experiment (see Methods). Finally, the inset shows a pictorial
representation of the final network state of the system corresponding to (b). The yellow
highlights show the system defects, which account for the final energy of this particular

realization being higher than the ground state.



To illustrate the statistical behaviour of our Ising machine, Fig. 4a shows the distribution
of final Ising energies of 64-spin chains obtained over 1,500 experimental trials, compared
with corresponding numerical simulations (see Methods). We note an excellent agreement
between both distributions. In particular, we observe that the distributions are concentrated
towards the true ground state, which is reached around 20% of the time (in this model, Ising
energies range from —63 to +63 in steps of 2). In Fig. 4b, we measure the energy distribu-
tions over 1500 trials under conditions of weaker feedback coupling, again finding excellent
agreement between experiments and theory. Figure 4c¢ shows results from repeated mea-
surements of the Ising energy distribution with this weaker coupling, obtained over different
batches of 1,500 trials recorded over a time period exceeding one hour. Remarkably, the en-
ergy distribution remains steady over this duration, highlighting the robustness of our Ising
machine. Notably, no manual adjustments were made to the setup during the experiment,
and every trial was included in the statistics without any rejection (see Methods).

We now study in more detail our Ising machine’s performance and how it scales with the
number of spins. The primary metric we consider is the time-to-solution Ty, defined as [34]

log(0.01) ] |

L |t W

which represents the time required for a certain solution — in our case the ground state —
to be found with a 99 % probability given the time T, for a single run of the Ising machine
and the probability P for the machine to yield that solution in a single run. For our
implementation, T,, also known as the annealing time, is the time taken to sweep the laser
frequency through the SSB bifurcation ( 273 us in the case of Fig. 3; see also Methods).
Although decreasing the annealing time T, speeds up the Ising machine’s operation, it
also reduces the probability P of finding the ground state. Accordingly, one can expect
the existence of an optimal annealing time. This can be observed in the data presented in
Fig. 5a, where we plot experimentally obtained time-to-solutions 7T as a function of annealing
time 7, for different spin chain lengths (see Methods). Our experimental data reveals that
the optimal annealing time, marked by the black boxes where the minima in the data are
located, scales with the system size, with larger systems requiring longer individual run
times to minimize the time-to-solution.

Finally, Figs 5b and c illustrate how the time-to-solution of our Ising machine scales with

the number of spins N. It has been suggested that a major advantage of DOPO-based co-
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herent Ising machines is that they can outperform other well-studied optimization platforms
such as classical neural networks, with a performance advantage that becomes increasingly
substantial for large problem sizes [36]. While extensive studies of the dependence of the
time-to-solution on problem size remain relatively scarce [24, 37|, experiments shown in
Figs 5b and c suggest that our polarization-based Ising machine is consistent with a scaling
on the order of exp(v/N).

The data shown in Figs. 5b and ¢ were obtained by considering chains of N = 10 to
N = 100 spins, with the annealing time set for each case to the optimal value estimated
from measured data (Fig. 5a). We then fitted the measured time-to-solutions obtained for
10 to 56 spins to two different scaling models, exp(v/N) (black curve) and exp(N) (green
curve). Comparing those fits to the entire dataset, as shown in Figs 5b and ¢, provides strong
evidence of performance that indeed aligns with the exp(v/N) scaling. The R? parameters
for the fits, evaluated for the entire dataset and displayed on the plot, further reinforce these
findings. Notably, for trials extending up to 100 spins, the exp(\/ﬁ ) scaling consistently
serves as an upper bound for the data, underscoring its applicability to our system (see also
Methods). This provides evidence that our Ising machine may scale well for larger and more
useful problems, and similar tests will be applied to networks of greater connectivity and

more complex topology in future studies.

DISCUSSION

Our work demonstrates that spontaneous polarization symmetry breaking in externally-
driven Kerr resonators enables a novel form of optical coherent Ising machine, in which spins
can be discriminated with straightforward intensity measurements. Our scheme critically
leverages the recent discovery that a localized birefringent defect can protect the symmetry
of the system [29], thus ensuring stable and bias-free polarization spins.

We have presented proof-of-concept experimental results showcasing continuous opera-
tion of the machine with up to 100 coupled spins for over an hour, with no need for any
post-selection or manual adjustments. The observed scaling behaviour, consistent with an
exp(\/ﬁ ) dependence, underscores the platform’s potential for solving larger, more com-
plex problems. Although stabilizing long fiber cavities is inherently challenging, our method

avoids the need for additional phase stabilization in detection and feedback, offering a simple



and robust paradigm.

We note that our system can still be optimized, in particular by adjusting the finesse of
the resonator. A lower finesse, which translates into a shorter resonator photon lifetime,
would speed up the overall dynamics, enabling lower annealing time for the same resonator
length. Experimentally, this can be trivially achieved by introducing extra losses at the
expense of a higher driving power. However, the number of round trips available to apply
perturbations would also be reduced. This suggests a trade-off between speed, driving power
(finesse), and solution quality similar to the findings presented in Fig. 5a.

Because the focus of our work has been on proof-of-concept demonstration of the overall
scheme, the coupling topology has been limited to a comparatively simple one-dimensional
spin chain, yet we emphasize that all-to-all coupling can be readily achieved in our scheme by
using established methods based on field-programmable gate arrays (FPGAs) [8, 9, 22]. We
believe that the full telecommunications compatibility of our setup, combined with the fun-
damental symmetry protection and the ability to resolve the spin states using intensity-only
measurements, positions our scheme as a highly promising avenue to solve complex combina-
torial optimization problems with unprecedented robustness and stability. We envisage this
stability being especially important as investigations towards implementing optical coupling

become more feasible [43, 44].

METHODS

Resonator design

Our ring resonator is built around 57 m of MetroCor single-mode fibre. The fibre has a Kerr
nonlinearity coefficient v ~ 2.5 W='km ™" and it exhibits normal group-velocity dispersion
at the 1,552 nm driving wavelength. Note that normal dispersion is important to suppress
modulation instabilities that may otherwise impact the dynamics. The ring includes a
95/5 fibre coupler for injection of the driving field and a 99/1 tap coupler for extraction
and monitoring of the intracavity field. Overall, the resonator has a total round-trip time
tr = 273 ns, corresponding to a cavity free-spectral range FSR = 1/tg = 3.666 MHz, and
a cavity finesse of about F = 42. This corresponds to 15 % power loss per round trip and
to a photon lifetime of 1.8 us, which characterises the relaxation time of the system. The

detuning scan must remain slower than this lifetime to ensure sufficient dissipation and allow



the system to relax back to the symmetric state between trials.

EO comb generator

The resonator is coherently driven with a train of 5-ps-long pulses generated from an electro-
optic (EO) frequency comb seeded with a 1 kHz-linewidth continuous-wave (cw) laser. The
cw beam is first passed through a phase modulator, followed by an intensity modulator
[38]. Both modulators are driven in phase by the same RF clock synthesizer [38]. The
resultant comb is then spectrally broadened through 2.2 km of dispersion-compensating fibre,
and subsequently undergoes nonlinear (soliton) compression through a 1-km-long segment
of SMF-28 fibre. Finally, a nonlinear-amplifying loop mirror eliminates the residual low-
intensity background existing between the pulses. The RF clock of the EO comb determines
the repetition rate of the generated pulses. In our case, it is set at 4.6928 GHz, corresponding
to 1,280 x FSR, thus ensuring synchronized driving of the resonator. The desired number
of spins N (i.e. pulses per round-trip) is selected with a pulse picker implemented with
an electro-optic modulator driven by a pulse-pattern generator. The spacing between the
intracavity pulses is set to be 0.85 ns. This is wide enough to avoid any potential tail
interactions between adjacent pulses, guaranteeing the independence of each spin. Our
system operates reliably over a range of driving powers, from 0.4 to 1 W peak power. When
we vary the number of spins, the EDFA is adjusted to keep the peak power of the driving

pulses within that range.

Laser frequency sweep across the SSB bifurcation
To maintain the fibre resonator near the polarization SSB bifurcation point while we sweep
the driving laser frequency, we use the technique of ref. 39 to actively stabilize the detuning
between the driving laser and a cavity resonance. Specifically, a low-power cw signal derived
from the driving laser is frequency-shifted via an acousto-optic modulator and launched into
the resonator in the counter-propagating direction relative to the primary driving pulses
associated with the Ising spins. The intracavity power level of this signal is then locked
to a setpoint using a PID controller that actuates the driving laser frequency through a
piezoelectric transducer in the laser head, thus actively stabilizing the frequency detuning.
The driving laser frequency can then be periodically swept around the setpoint to anneal
the spins and run the Ising machine by superimposing a sinusoidal voltage on top of the

PID feedback signal. The annealing time T, referred to in the text then corresponds to half



the sinusoidal period. In this way, many Ising runs can be performed consecutively, without

any resetting protocol.

Implementation of the 1D Ising spin chain

The 1D Ising spin chain coupling topology is implemented by placing a 50/50 beamsplitter
behind the PBS at the cavity output. The two output ports of the beamsplitter are each
followed by an optical delay line, before photodetection. The electrical signals from the
two photodetectors are then combined before being applied directly to the phase-modulator
acting on the FE, driving component. The optical delays are adjusted so that each spin
influences the driving pulse corresponding to the spin immediately up and down the chain,
respectively, at the next round-trip. As our N spins never fill up the entire resonator, the
two spins at the edge of the chain are only coupled to one neighbour each, which effectively

corresponds to free boundary conditions.

Coupling calibration and stabilization

The two arms of the Mach-Zehnder interferometer used to phase-modulate the FEy driving
component are typically affected by a slow long-term relative phase drift (over several sec-
onds). Such drift effectively affects the overall polarization state of the driving beam, which
we monitor with a commercial polarimeter before the driving beam is injected into the res-
onator. To achieve stable operation, an error signal derived from a combination of multiple
Stokes parameters read out from the polarimeter is fed into a PID controller acting on a
fibre strecher placed in one arm of the Mach-Zehnder interferometer. The optimal setpoint
of the PID is obtained by a calibration routine, whereby we step the fibre stretcher while
running the Ising machine continuously. In this way, we can determine the driving beam
Stokes parameters yielding the minimal Ising energy (with averages taken over 300 runs).
Once the calibration is performed, stable operation can be maintained for periods exceeding

one hour.

Determination of time-to-solutions, T;
The time-to-solutions plotted in Fig. 5 are determined for each point out of 1,500-4,500 runs
of the Ising machine. From these batches of results, we extract each time the probability P

of reaching the ground state, which is then introduced into Eq. (1).

Numerical model

The numerical simulation results presented in Figs 3¢ and 4a were obtained with a simplified



model where the individual spins are represented as cw fields. Minimal differences were ob-
served when considering the full fine temporal structure of the spins, and this was neglected
for computational efficiency. Specifically, we iterate, for each spin, the following Ikeda map,

which corresponds to the boundary conditions of our fibre resonator [40],

Ef?“l)(o) = e‘aEﬁ?)(L)e_i‘;O + V0 By cos x, (2)
E§1’?+1) (O) — efaEg;L) (L)efi((sofﬂ)

i¢§m+l)

+0 Ei(siny)e (3)

Here, EYZ)(Z) and Eé";)(z) represent the electric fields of the two polarization modes of
spin o; at the m-th round trip, L = 57 m is the resonator length, # = 0.05 is the power
transmission coefficient of the input coupler, with all other losses lumped into @ = 7/ F =
0.075, while d¢ is the round-trip phase detuning of the E; mode (swept from 0 to 0.8 @),
with the equation for the second mode also including the 7 phase shift defect for topological
symmetry protection [29]. Ei, is the amplitude of the driving field, with P,, = | Fi,|* the total
(peak) driving power, and x represents the effective driving polarization ellipticity, reflecting
the setting of PC4. These were set to match with experimental observations. Specifically
we used P, = 0.4 W and x = 0.1 rad for the simulation results of Fig. 3¢ while P,, = 0.7 W

¢§m+1) accounts for the

and x = 0.1 rad and 0.05 rad, respectively, in Fig. 4a,b. Finally,
E5 driving phase modulation through which we implement the coupling between the spins

and is given by

oY =gy g BN (4)
7

Here J;; describes the coupling topology while g relates to how strong we amplify the elec-
tronic signal driving the phase modulator and which — together with y — affects the overall
coupling strength of the spin network. The value of g in numerical simulations is initially
estimated based on experimental measurements, and then further fine-tuned to match the
experimental results. We used g = 0.4 for 64 spins (as in Figs 3 and 4), with a scaling based
on the number of spins and coupling matrix as described in [24]. Finally, environmental noise
is represented by adding weak uncorrelated white noise with random phase and amplitude

to the driving field Ei,, thereby seeding the onset of symmetry breaking.

Propagation along the resonator round-trip from z = 0 to L is described by coupled



nonlinear wave equations of the form

8E172(Z) .
o

?) Evg +inCE;LES (5)

Numerical integration is performed with a fourth-order Runge-Kutta method, and assuming
modes of linear polarization states (corresponding to B = 2/3 and C' = 1/3) [41, 42], with
v =2.5 W tkm™! the nonlinearity coefficient of the fibre.

We close this Section by highlighting how the mean-field model that was dervied in the
Methods of [29] to describe topological symmetry protection can be generalized to include

the additional coupling-induced phase shift ¢ng+1)

defined above. Over two round trips, we
find that the evolution of the F» mode amplitude picks up an additional driving term of the

form

V0 iy (sin x) [eig X Tl BETRP _ ey J“‘ETJ)"Q] : (6)

Under the assumption of small phase perturbation, this becomes

igV0 By (sin x) <Z Jij []E m+1 _|E gm J)ﬂ) _ (7)

E(m+1 2 — |EY m)|2, matches with our definition of the spins o; based

The value in bracket, |
on differential intensity Ip. Hence, the driving perturbation on each spin o; takes the form
of >, Jijo; and maps to the Ising Hamiltonian [6]. This demonstrates that the intended
[sing Hamiltonian is correctly implemented even in the presence of coupling, subject only to

limitations imposed by amplitude heterogeneity, which is a constraint shared with existing

CIM architectures [37].
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