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Abstract

The duration of super-emitting events (>100 kg h™") in oil and gas basins remains
insufficiently understood but is key for reporting programs and mitigation strategies. Carbon
Mapper conducted aerial surveys from April 30 to May 17, 2024, over the New Mexico Permian
Basin, covering 276,000 wells, 1100 compressor stations, 175 gas processing plants, and 27,000
km of pipeline. We find over 500 super-emitting sources with 300 of these sources observed
repeatedly across multiple days. We quantify total super emissions by integrating individual
events with observationally constrained event durations (5.98 -14.7 Gg CH4) and compare to
total emissions derived from basin average snapshots (12.7 + 0.92 Gg CHa4). This gap between
emission estimates is reconciled through assumptions on missed detections, characteristic event
duration, detection frequency, and diurnal variability. Emission events generally lasted for at
least 2 hours, and a small subset of sources (18 total), persistently emitted throughout the entire
campaign, representing a near-term opportunity for mitigation. When compared to regional flux
estimates derived from independent observations, we estimate super-emitters to contribute
approximately 50% (37-73%) towards total emissions. Frequent wide-area monitoring is crucial
for capturing rare super-emitter events that, together with other emission sources, drive basin-

level variability and emission intensity.

Introduction

Super-emitting methane sources (>100 kg CH4 h™")! disproportionately contribute to total
emissions in many large oil and gas producing basins®>*, meaning that a relatively small fraction
of infrastructure (~0.5-1%) may represent a large contribution to total emissions®. This outsized
effect from super-emitters therefore in many cases drives basin-level variability and intensity®.
Super-emissions result from a variety of processes across the oil and gas supply chain, including
what are commonly thought to be short duration known process events (e.g., liquids unloadings,
compressor blowdowns, other pressure releases) or process aberrations (e.g., faulty equipment,

leaking infrastructure, other operational issues).

The contribution of super-emitters to net emissions on a regional basis remains difficult
to parametrize in traditional bottom-up modeling approaches that quantify emissions using

emission factors and activity data’, due to several key challenges. First, because super-emitters



are rare relative to total infrastructure in a basin, robustly constraining the probability
distributions of these events requires surveying a significant amount of representative
infrastructure: identifying and characterizing events occurring at a rate of one in one hundred or
one in one thousand necessitates tens to hundreds of thousands of site-level observations.
Available ground-based facility-scale measurements, which have historically provided an
emission factor foundation for some bottom-up inventories®, are limited in spatial coverage to
date and collectively: multiple measurement campaigns have resulted in only a few thousand
site-level observations across multiple basins®. Second, many ground-based emissions
monitoring technologies have not been rigorously validated for quantification of facility-scale
emissions at high emission rates. In one blinded controlled-release study, ground based
continuous monitors severely underestimated super-emitter sized events, likely due to the
challenges in quantifying and accounting for transport dynamics and the vertical structure of
methane plumes’. These two factors (spatial sampling and quantification bias) independently
complicate unbiased characterization of super-emissions within traditional bottom-up
inventories® and generally have the effect of reducing the net influence of super-emitters against

regional net emission totals®.

Unbiased treatment of facility-scale measurements from broad areas can clarify the
relative role of super-emitters against net regional emissions. Measurement informed inventories
successfully prototyped in previous studies perform this function of disentangling larger emitter

210.11 “and provide an empirical and statistical

contributions compared to other sources
mechanism to reconcile the bottom-up and top-down emission estimates at the basin level. A key
assumption in these analyses is that population statistics from a single scan of a basin provide
generalizable information about the prevalence and contribution of super-emitters. Aerial
measurement technologies, such as fixed-wing LiDAR!? and passive remote sensing'*>!> have
been pivotal to these studies, enabling efficient observation of the thousands to hundreds of
thousands of sites needed to understand the dynamics of super-emitters. To date, aerial
quantification shows little to no systematic bias at high emission rates when evaluated against
blinded controlled releases'®. Other studies have quantified the super-emitter contribution to total

emissions through integration of data from multiple observing systems (e.g., tall towers, aircraft,

satellites) that separately quantify total emission fluxes and super-emitting sources>>.



Though useful for application of basin-level inventory accounting, such approaches
provide limited information regarding the true intermittency and duration of emission events at
individual sites. This is of great importance for reporting programs such as the U.S. Greenhouse
Gas Reporting Program (GHGRP), which requires operators to report methane emissions from
large sources to the U.S. Environmental Protection Agency (EPA). In 2024, EPA updated the oil
and gas reporting protocols of the GHGRP (Subpart W), requiring the reporting of “other large
releases” above 100 kg h! (i.e., super-emitters). Similarly, the United Nations Oil and Gas
Methane Partnership 2.0 (OGMP) provides a measurement-based framework for oil and gas
companies to report and track their emissions with site-level measurements, with the goal of
improving accountability and progress towards emission mitigation targets. In this framework,
understanding the intermittency and duration of emissions is essential for accurate accounting

and reconciliation.

Given the complexity of oil and gas systems, relatively little public data exists
characterizing representative emission durations across general classes of operations. One study,
performed at two midstream compressor stations in New York using continuous emissions
monitoring system (CEMS) observations and operators reports, estimated average super-emitter
durations of 30 minutes, with a minority but significant number of events lasting longer than 5
hours'®. However, super-emitters events span various infrastructure types and supply-chain
segments (e.g., tanks, flares, pipelines), and are operator dependent. A separate study'* based on
broad aircraft surveys over a six-week period found a class of persistently super-emitting
infrastructure in the Permian Basin, associated with multiple infrastructure types, indicating that

some event may have durations longer than sub-hour.

In this study, we conducted intensive aerial surveys over a three-week period between
April and May 2024 on the New Mexico side of the Permian Basin. The campaign was
specifically designed to address questions related to both the intensity and duration of super-
emitters across all infrastructure and supply chain categories within the domain. Thousands of
infrastructure elements were surveyed daily, often multiple times per day, and over multiple
days. We identify hundreds of super-emitter events, estimate their durations based purely from
observations, and attribute each event to specific infrastructure using high-resolution visible

imagery and geographic information system (GIS) datasets. We compare the sub-basin level



emission estimate to an emission estimate derived through integration of individual events, based
on their calculated event durations. Our findings reveal that a small but significant fraction of
super-emitter events were persistent throughout the campaign, highlighting the potential for

substantial near-term methane mitigation.

Results
Survey Design and Methane Detection Limit

Carbon Mapper conducted an airborne campaign with the Global Airborne Observatory
(GAO; https://asnerlab.org/projects/global-airborne-observatory/) over the New Mexico (NM)
side of the Permian Basin between April 30 — May 17, 2024 (Figure 1). The survey was designed
for two primary objectives: (1) to cover the vast majority of NM oil and gas infrastructure and
production at least once to estimate basin-level emissions from super-emitters (referred to here as
the “Full Region”), and (2) to focus on high-production regions with multiple revisits over
subsections of the basin to quantify the duration of super-emitter events. These intensive areas of

interest were subdivided into two regions, the “West Box” and the “East Box.”

The Full Region covers 12,000 km? which according to the Rextag oil and gas
infrastructure database (https://www.rextag.com), includes 67,000 wells, 98% of NM Permian oil
Production, and 98% of NM Permian gas production, along with 295 compressor stations and 45
gas processing plants. During the campaign, the Full Region was mapped wall-to-wall, meaning
complete coverage of all oil and gas infrastructure, including 17,000 miles of gathering and
transmission pipelines. The West Box covers 1,200 km?, including 6400 wells, 16% of NM
Permian oil production, and 22% of NM Permian gas production. It was mapped entirely
multiple times per day on May 1, 13, and 15, with partial coverage on 4 additional flight days.
The East Box also covers 1,200 km?, including 9,200 wells, 35% of NM Permian oil production,
and 42% of NM Permian gas production. It was mapped entirely multiple times per day on April
30 and May 14, with partial coverage on 4 additional flight days. Together, we estimate over
200,000 site level observations were made during the course of the campaign, when accounting

for multiple survey revisits.



Carbon Mapper processes GAO radiance to identify, geolocate, and quantify large
methane emission sources at sub-facility scales. These algorithms have been rigorously tested
through blinded controlled release experiments, with releases ranging from 5.0 to 1500 kg per
hour!'®. The 90% probability of detection, hereafter referred to as detection limit (DL), in these
controlled environments ranges between 10-45 kg per hour'®. Alternatively, assuming a power-

law distribution of oil and gas emissions in a basin'>!?

, one can estimate the DL from the data by
identifying the emission level at which the frequency of detections diverges from a power-law
distribution. During the course of the campaign, 1,380 plumes were detected, and their frequency
distribution suggests a DL between 70-150 kg h! (Details provided in the Supplementary
Notes). Therefore, for the purpose of this study, we assume near-full detection sensitivity to the
super-emitter class (>100 kg h") of emissions. All plumes detected and summarized in this

survey were determined to originate from the oil and gas sector.

Contribution of super-emitters to total regional emissions

Figure 2a shows the locations of methane detections. To aggregate these detections into a
domain-level super-emitter emission estimate (here, the NM Permian Basin), we must account
for uneven temporal sampling across domain. This is done by dividing the entire survey domain
into discrete 0.05° x 0.05° (=5 x 5 km?) grid cells and summing detected emissions per complete
observational scan of each grid cell. For example, if a grid cell was surveyed in its entirety five
times, there would be five independent emission estimates (“sums” of plumes) for that grid cell.
In cases where an emission source was observed twice in rapid succession due to overlaps in
airborne image acquisition during a single scan, only the first source observation of that source is

included in the scan’s emission total.

We then derive a campaign-average emission rate for each grid cell by averaging all
independent emission estimates for that grid cell. Applying this across all grid cells produces a
heatmap of super-emissions within the surveyed areas (Figure 2b). Uncertainties for each grid
cell (1o) are calculated by first summing individual plume emission uncertainties within a single
scan. There may be correlation between the emission quantification of two independent plumes

detected in a single scan that could be caused by errors in wind speed and concentration



retrievals, hence the choice of linear uncertainty summation. To estimate uncertainty in the mean
estimate across all independent scans of a grid cell, we sum in quadrature the uncertainties across
all scans for that grid cell as each individual scan is spaced by at least several hours and consists
of independent concentration retrievals. As each grid is assumed to be an independent contributor
to the total emissions within the domain, we estimate regional emissions (e.g., the Full Region)
by summing mean emissions for all relevant grid cells that pertain to that domain, with
uncertainties combined in quadrature. Using this method, we estimate 0.65 + 0.06 Tg a™' for the
Full Region and 0.27 £ 0.02 Tg a! for the combined West + East Boxes (hereafter referred to as
the “Intensive Box™). A sensitivity analysis of grid cell resolution and alternative emission

quantification procedures is described in the Supplementary Notes.

We compare regional super-emitter estimates to total CHs emission fluxes derived from
satellite observations by the TROPOspheric Monitoring Instrument (TROPOMI) onboard the
Sentinel-5p satellite?®. We use the Integrated Methane Inversion (IMI) system, previously applied
to the Permian Basin?!*? (Methods), to relate coarse (5.5 x 7 km?) atmospheric concentration
datasets retrieved from TROPOMI to net emission fluxes (25 x 25 km? resolution) through
inverse atmospheric transport modeling regularized by a Bayesian prior emission estimate
(Methods). Assimilating TROPOMI observations during the aircraft campaign period (Figure
2¢), we find the total methane flux from this region of the Permian to be 1.28 +£0.31 Tg a™,
where the reported uncertainty here represents the one-sigma variability in weekly TROPOMI

flux estimates over the campaign.

Comparison of total flux to sources detected aerially suggests that approximately 50% of
emissions were contributed by super-emitters, or 37-73% when including 1o uncertainties from
both airborne and IMI quantification approaches. This partitioning between super-emitters and
other emission sources is consistent with previous analyses'3"!>. The number of super-emitting
sources is small relative to the total infrastructure surveyed: 464 emission sources were detected
at well sites, compressor stations, or gas plants, representing approximately 0.7% of
infrastructure according to the Rextag database, and 65 pipeline sources (gathering and
transmission) were detected, representing one detection per 420 kilometers of pipeline. This
highlights the disproportionate contribution of super-emitters to regional emissions in the New

Mexico Permian Basin.



The multiple revisits of the Intensive Box show substantial variability in the “heavy-tail”
of emission distributions across comprehensive scans. Figure 3a shows cumulative emission
distributions for each complete scan of the Intensive Box. Emissions quantified at instantaneous
rates above 1000 kg h™! account for 10-20% of total super-emissions for the first and second
scans, while detections over this threshold account for 30-40% of total super-emissions for the
third and fourth scans. Figure 3b shows the total emissions for each observation scan within the
Intensive Box. Similarly, the total emissions estimated from the first and second scans (0.21-0.22

Tg a!) are 30-40% lower than those estimated from the third and fourth scans (0.32-0.35 Tg a™).

There are multiple possible explanations for this observed variability. One possibility is
inherent temporal variability in the underlying probability of super-emissions within a dense and
complex basin like the Permian. While we cannot rule this out, another possibility is that
although each scan includes measurements of all assets in the Intensive Box, the sample size
remains relatively small, and the observed variability is simply due to expected statistical
variability. Each scan of the Intensive Box resulted in 80-116 super-emitter detections, but only
2-11 detections above 1000 kg h™!. Given that these emissions above 1000 kg h™!' can constitute
up to 40% of the super-emitter total, it is entirely possible that the observed variability is largely
explained by small sample size effects. When including all scans, the resulting distribution
becomes smoother and more robust, with 972 total detections and 49 detections greater that 1000
kg h'! contributing 23% to total super-emissions. This suggests that for basins with emissions
size distributions similar to the Permian, reliably quantifying the upper tail of the distribution
(>1000 kg h™"), even within a relatively large sub-region, requires measuring all assets multiple
times. Figure 3 is suggestive that four scans is sufficient to capture the rightmost tail of the
distribution, but further study with increased spatiotemporal sampling can improve
understanding on observational requirements for best characterization of this portion of the
distribution. For the middle section of the emissions size distribution, comprising emissions from
approximately 100-1000 kg h™!, observed results are more stable. Across the first four scans,
estimated total emissions below 1000 kg h™! range from 0.18-0.22 Tg a’!, showing less variability
than when considering the full emission distribution. This suggests that for emissions in this size
range, a single comprehensive scan may be sufficient, at least for a region with an emissions size

distribution similar to that of the New Mexico Permian.



Comparing time-integrated to time-averaged emission totals

Through repeat observations, we derive estimates for characteristic super-emitter event
durations, and estimate that most events are greater than two hours, with some events lasting
days. We arrive at this conclusion through analysis and reconciliation of several related but
independent metrics: First, we track and estimate bounds for each super-emitter event’s start and
end time over the course of the campaign from observations alone. Second, we quantify spatial
detection frequencies (number of events per km? per hour surveyed) to understand the prevalence
and spatial distribution of super-emitter events within the surveyed area. Third, for days where
we sampled the East and West Boxes intensively, we estimate the probability of detection
reoccurrence for sources that were observed subsequently minutes to hours after the first
detection. These three metrics together are used to compare against the 0.27 + 0.02 Tg a’! super-
emission aggregate rate estimated for the Intensive Box were it assumed to emitting at that rate

continuously during the entirety of the campaign.

We bound super-emitter events start and end times through observations. We detected
1380 individual plumes from 529 sources during the campaign. The Intensive Box contains 274
sources, from which we estimate 369 super-emitter events (Methods). A total of 174 super-
emitter events both started and ended during the campaign (“finite” events); 18 emitted for the
entirety of the campaign (“unbounded” events); and 177 either started during the campaign but
were still emitting at the campaign’s end or were already emitting at the campaign start but
ended before the campaign’s conclusion (“mixed” events). We associate durations for each
super-emitter event, bounded by the shortest and longest possible event times estimated by direct
observation (Methods). The median shortest and median longest duration for finite events
(respectively) is 2.4 to 145 hours, for mixed events is 0.14 to 129 hours, and for unbounded
events is 387 to 411 hours. The distribution of shortest and longest event durations (hours) for

each class of event is shown in Supplementary Figures 22-25.

We integrate the total emission for each event using the average emission rate estimated
across all detections for that event and the estimated event duration. Figure 4 shows the sum of
emissions integrated from all detected events in the Intensive Box across the full campaign,

using both shortest and longest possible event durations, and compares to the basin-level



emission estimate (0.27 £ 0.02 Tg a™!), which is assumed constant and integrated across the
entirety of the campaign (12.7 + 0.92 Gg), hereafter referred to as “Integrated Average.”
Integration of super-emitter events using the shortest duration results in 5.98 Gg, with 2.18 Gg
(36%) from unbounded events, 2.44 Gg(41%) from mixed events, and 1.36 Gg(23%) from finite
events. Integration using the longest durations results in higher total emissions (14.7 Gg), with
2.33 Gg (16%) from unbounded events, 5.21 Gg (35%) from mixed events, and 7.20 Gg (49%)

from finite events.

The Integrated Average is assumed to represent an unbiased estimate of total methane
released during the survey, i.e., it statistically accounts for sources missed by the aircraft during
hours of non-observation®. The time-integrated estimates under the shortest and longest duration
assumptions represent the total emission contributions of events directly observed by the aircraft.
Therefore, the difference between the Integrated Average and time-integrated estimates
represents an estimate of emissions anticipated but not directly observed. The difference between
the Integrated Average estimate in Figure 3a and the shortest-duration time-integrated estimate
reveals a 6.67 Gg gap in total emission estimates. In contrast, the difference between the
Integrated Average and the longest-duration time-integrated estimate results in an unrealistic -2.0
Gg surplus in emissions, indicating that the longest estimated event durations derived from
observations is likely too large. Several single-detection finite events do not have a follow-up
observation for an extended period, often days, which likely artificially inflates the longest

duration estimate.

The 6.67 Gg gap between the Integrated Average and shortest-duration time-integrated
estimate in Figure 4 is indicative of how aggregation of site-level reporting could potentially
represent a biased estimate of regional emissions. This potential bias, or gap, is caused by (1)
inaccurate estimation of event durations, and/or (2) incomplete or missing emission information
from a set of sites that were emitting for some period of time. Therefore, to reconcile the 6.67 Gg
gap, we must further assess the representativeness of each of these factors. Specifically, the
emission gap (G; units kg) between the Integrated Average and the shortest-duration time-
integrated estimate (i.e., 6.67 Gg) can be reconciled through a set of non-observed events

emitting at a characteristic emission rate O (units kg h™'), and characteristic duration D (units



hours), during non-observed hours 7 (units hours), over an area 4 (km?), related to the

spatiotemporal frequency of events F (units events km h'!) via the following relationship:

G

F= D*Q*T*A

(1)

Figure 4b shows the outcome of F from equation (1) assuming Q = 150 kg h™! (e.g., the
mode of the emission distribution in Supplementary Figure 1), and G = 6.67 Gg, using a variety
of event duration values D. As expected and shown, if characteristic event durations are assumed
to be longer, then fewer events must have occurred to reconcile the 6.67 Gg gap (and vice-versa).
To estimate a single representative value of D for this campaign, we analyzed sources with
multiple observations per day, where the spacing between the first plume detection and last
observation (regardless of subsequent detection) was at least two hours (i.e., April 30, May 1,
May 14-15; 230 sources total). Supplementary Figure 25 shows the distribution of time
differences between first and last detection for these sources. Sixty-nine percent of plume
detections were followed by repeat detections at least two hours later, with a median duration of
2.4 hours. The 2.4-hour median is primarily set by observation revisit time, as only 2% of
sources were observed more than three hours after the initial detection. Restricting this analysis
to sources previously classified as finite (77 sources total) yields similar results, with median
duration of 2.3 hours. We also estimate F' for this campaign through analysis of plume detection
timestamps and full-image acquisition geometries, and find that we detected 2.2 short-duration

finite super-emitter events h™! km™.

We test the likelihood of longer (2.4 hours) versus shorter (8.3 minutes; the minimum
finite event duration quantified in this study) characteristic timescales for short-duration finite
events by application of equation (1) and Figure 4b compared to spatial detection frequency F
that we observed during the campaign. Assuming finite super-emitter events characteristically
last 8.3 minutes in equation (1) translates to a detection frequency (F) of 35 events h'! km
surveyed, which is 16 times higher than the detection frequency we actually observed during the
campaign. When instead 2.4 hours are assumed as a characteristic event duration, equation (1)
estimates 2.0 events h™! km™ surveyed, which is very close to 2.2 events h'! km™ we observed
during the survey. This point is visually conveyed in Figure 4b - the modeled non-observed event

duration and detection frequencies from equation (1) nearly intersect the observed duration (2.4



hours) and detection frequency (2.2 events h™! km) values. This intersection supports the
assumption that the population statistics observed during the survey likely continued similarly
during non-observation hours. If instead one assumes shorter event durations, this implies a
much higher frequency of super-emitters events during periods of non-observation than was

actually observed during the survey, which may be unlikely.

These results underscore the importance of proper duration estimation for site-level
accounting across the complex set of processes that lead to super-emissions. Assuming a single
duration value for all super-emitter events can severely bias aggregate accounting of emissions.
For example, if we apply a 2.4 hour duration, the value derived for finite short-lived events, to all
detected events in this study, the regional aggregate emission estimate would be 0.21 Gg,
whereas applying a single 72 hour duration to all detected events would result in 6.4 Gg, not
dissimilar to the shortest-duration integrated estimate in Figure 4a. Future study could connect
durations we derived to operator-level information where available, so that more characteristic
durations can be applied appropriately to specific processes. However, given the continuing
uncertainty, we do find clear evidence in this study that a small but significant fraction of super-
emitters last days to weeks, and that short-lived super-emitter events likely persist for at least 2

hours.

Diurnal variability may also drive the size of the emission gap. A previous study using a
network of continuously observing towers in the Permian showed that daytime-centric
measurement studies may overestimate emissions in the Permian by as much as 27%, due to
unaccounted diurnal variability?. To account for this, we can scale G in equation (1) by 0.73 to
represent possible diurnal effects. However, as shown in Figure 4b (purple curve), this
adjustment eliminates the intersection point between candidate duration/frequency pairs and
independent duration/frequency estimates, suggesting some combination of shorter event
durations or fewer detections during unobserved hours. Ultimately further study with more
continuous observations can help reduce lingering uncertainty. Since detection frequency and
event duration are closely linked, future studies must balance observing systems that maximize

spatial coverage with those that maximize temporal coverage.

Super-emitter duration by infrastructure type



Each source was attributed to broad infrastructure categories using simultaneously
acquired 5 m visible imagery, asynchronously collected high resolution visible imagery (<1m)
from Mapbox (www.mapbox.com), and the Rextag GIS database (see Supplementary Notes).
Sources were assigned to the following infrastructure categories: compressors, flares, tanks, and
pipelines (gathering or transmission). We also classified sources that do not fall into those
categories but that were clearly located within the footprint of a well site or gas plant as “other
well site” and “other gas plant,” respectively. Lastly, any sources for which a clear infrastructure
designation could not be made, due to a combination of incomplete GIS information or unclear
visible imagery, were classified as “other.” Figure 5a shows the breakdown of sources attributed
to infrastructure categories across both the entire survey domain and the Intensive Box.
Compressors constitute the majority of detected sources across the full survey domain (27%) and
represent a significant fraction of sources (25-39%) across duration categories in the Intensive
Box. Combined with pipelines, these sources together make up 39% of all sources detected.
These results highlight sustained, large emission activity associated with gathering and boosting
activities in the Permian, a pattern that has been noted in multiple measurement surveys dating
back to 201942526 After compressors, the most prevalent source categories are other well-sites

(24%), tanks (22%), pipelines (12%), flares (11%), and other gas plant sources (2%).

Across super-emitter event duration classes within the Intensive Box, there is some slight
variation in infrastructure prevalence (Figure 5b). For example, among finite events, other well-
site emissions are more prevalent (36% of all finite sources) than compressors (25%), whereas
across unbounded events, well-site events are much less prevalent (6% of unbounded sources)
compared to compressors (39%). Using a related metric, source persistence or detection
frequency (number of detections divided by number of overpasses) (Figure 5c), other well-site
sources are more intermittent (median 25%) than any other source category. This, along with
their high prevalence among finite-duration events, suggests that these detections are generally
shorter-lived and potentially associated with planned or known operations. In contrast, attributed
tank sources, many of which are located at well-sites, are more persistent (40%) and have lower
prevalence among finite events than other well-site emissions: 22% of tank sources pertain to the
finite class, compared to 36% of other well-site emissions. Emissions from tanks can results from
a variety of causes, ranging from short-lived safety events (e.g., flashings) to longer-lived

operation inefficiencies (e.g., open hatches, leaks). The observations of more persistent, longer-



lived tank emission suggests that a subset of these sources pertain to the latter category, meaning

that focused attention on these sources could potentially lead to significant emission reduction.

Discussion

Facility-scale point source super-emitter observations support multiple use cases: (1)
improving characterization of basin scale emissions, (2) enhancing internal or external operator
reporting of emissions, and (3) identifying and prioritizing emission mitigation opportunities. For
the first use case (basin-scale emission estimation), understanding the contribution of super-
emissions to the basin total requires several key observational constraints, including detection
sensitivity to a critical range of super-emitters (i.e., DL ~100 kg h") and broad spatial sampling
across a basin to capture the inherent low frequency of these emitters. In absence of these two
observing requirements, layers of inference can be used to fill in spatial and sensitivity gaps, but
such inference may introduce bias and misrepresent the impact of large emission sources on
regional emissions. This study observed all infrastructure and production on the New Mexico
side of the Permian Basin during an 18-day campaign, capturing representative statistics on
super-emitters during the observation period. We estimate that super-emitters account for 50%
(37-73% range) of total emissions in this domain, highlighting the disproportionate impact,

consistent with previous studies using independent measurement systems>!>?7,

Reporting programs like GHGRP Subpart W rely on event duration for the reporting of
large emission events. Operator information from known process events or data from supervisory
control and data acquisition (SCADA) systems can be valuable for estimating event durations.
However, in many cases, operators may not have detailed information from all emission events?®,
especially in instances of unexpected leaks or malfunctions. In these cases, atmospheric
observations can be useful for filling gaps by independently quantifying event durations.
Nevertheless, a fundamental limitation of current observing systems is the inability to
simultaneously provide the spatial coverage needed to estimate basin-level super-emitter
contributions and the temporal resolution required to constrain the duration of individually
events. In this study we estimated event durations directly from aerial observations, focusing on
areas of the Permian that were observed repeatedly (the Intensive Box). Integration of these

events using the shortest and longest possible event durations results in total emissions ranging



from 5.98 to 14.7 Gg CH4. When isolating to the unbounded category, where we have the
greatest confidence in emission duration, we find that mitigation of these 18 sources, most of
which are from compressors, would result in sizable emission and cost reductions (6,180 £+ 2,100

kg hh).

Overall, we demonstrated that frequent wide-area monitoring of oil and gas basins for
super-emitters uncovers a diverse array of processes, infrastructure types, emission magnitudes,
and event durations. We find evidence suggesting that characteristic super-emitter durations are
often on the scale of hours. Ultimately, leveraging a tiered observing system that uses multiple
technologies and vetted data sources (e.g., operator reports) can further reduce quantification
uncertainty across the oil and gas supply chain. In particular, developing algorithms or
leveraging new technology that can quantify and attribute site-level emissions at a critical set of
sites basin-wide, with high temporal sampling, and reliably low detection limits can be pivotal
for further improved characterization of emission dynamics for most sources that make up
regional emissions. Some aerial survey deployments can provide both the spatial breadth and
revisit frequency needed to build evidence of characteristic duration and emission magnitude,

which are key for validating reporting programs and identifying areas for immediate mitigation.

Methods
Super-emitter event duration calculation

Super-emitter event durations are estimated directly from repeat aerial observations, with
a focus on the East and West Boxes, where multiple overpasses were made over the course of the
campaign. To classify site-level sources, we cluster plume detections in space, time, and by
infrastructure using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm with a local neighborhood of 250-m?’. DBSCAN is an unsupervised clustering
algorithm that groups closely packed points in a dataset together. We then classify super-emitter
events by the binary detection outcome of each observation for each source. If a detection
follows a non-detection, it constitutes the start of a new event. If a non-detection follows a
detection, it constitutes the end of an event. A single emission source can therefore have multiple

super-emitter events. For events whose first or last observation results in a detection (or both),



the duration of the event is unbounded, meaning we have no information to suggest how much

longer earlier or later relative to the campaign, the emission event started or ended, respectively.

This process of super-emitter event identification from direct observation results in four
categories: (1) finite, meaning we observed the beginning and end of the event; (2) unbounded
start, meaning the first observation resulted in a detection, but the event ended before the
campaign concluded; (3) unbounded end, meaning the event was observed to start during the
campaign, but the last observation was a detection; and (4) unbounded, meaning that all
observations resulted in a detection. For the sake of comparison in this manuscript, we group

unbounded end and unbounded start events together to make a mixed category.

Durations for each event are constrained to the shortest and longest possible lengths
based on observations. For example, if a source was observed four times, and only the second
and third observations resulted in detections, this would constitute a finite event, with the
shortest possible duration being the time elapsed between second and third observations and the
longest possible duration being the time between the first and fourth observations. In this
example, it is possible that the source temporarily stopped emitting between the second and third
observations, which was not observed. Had it been observed, it would have resulted in two
distinct events with total durations shorter than this single event duration. However, this potential
bias is assumed to be negated by cases of non-detections between successive observations when,
in reality, there may have been a temporary super-emitter event went undetected. Therefore, for
the purpose of this study, we follow the duration estimation procedure as described above and
assume that missed detections and non-detections between site observations are equally likely.
Further study with distributed CEMS systems or more intensive aerial survey could reduce
lingering uncertainty related to these assumptions, presuming they are representative of all

infrastructure in a basin.

For unbounded cases, we restrict the duration to either the campaign start or end for the
purpose of understanding emissions strictly within the time domain of the aerial campaign itself.
For example, for an unbounded start event where the first observation resulted in a detection and
the second observation a non-detection, the shortest possible duration would be near-
instantaneous given the single snapshot detection, and the longest possible duration would be the

time elapsed between the start of the campaign (first observation of any site) and the second



observation. Technically, a shortest duration could be estimated from a two-dimension plume
image itself, as the concentration at the tail of an observed plume must have traveled from the
source’s origin over a period of time. However, rigorous estimation of these lengths scales would
require complex atmospheric modeling, and in cases of remote sensing, the true spatial
atmospheric distribution of a plume is anticipated to be longer than what is observed by a sensor,
as an observing system will have difficulty distinguishing concentration enhancements below its
instrument’s sensitivity. For examples where the super-emitter event only contained a single
detection, we assume an 8.3-minute shortest duration, as that represents the minimum nonzero
event duration based on observations from this survey and is within the range of durations

described by a previous study!®.

TROPOMI flux inversion

We use the Integrated Methane Inversion (IMI) version 2.0 to quantify total Permian
methane emissions during the study period, using TROPOMI observations from the blended
TROPOMI+GOSAT retrieval product’®. Emissions are inferred at 0.25° x 0.25° resolution for
200 grid elements across the basin (Figure 2c) and at coarser resolution for 16 buffer elements
outside the basin, which serve to capture external emissions and pad the rectangular inversion
domain (26.5°N-37°N, 97.1875°W-108.125°W). The inversion also optimizes the boundary
conditions along the four cardinal edges of the domain. We use the IMI 2.0 default prior
emission estimates and assume lognormal error statistics on emissions*?. The IMI setup in this
study was configured as part of a larger analysis**, where the inferred or satellite-derived
emission estimate for one week is used to update the prior estimate for the following week’s
inversion. Previous study has shown that weekly emissions derived from IMI runs in this
continuously updating prior mode become insensitive to the original choice of prior after 8
weeks of assimilation?!. The IMI setup described here was initialized several years before the
time period of this study*2. We use the default IMI 2.0 values for prior errors (a uniform
geometric standard deviation of 2 for all emission elements), observational errors (15 ppb), and
regularization parameter (y=1). IMI emission estimates described in this study represent an
estimated total flux — i.e., emissions from all potential sources and sectors within the regional

domain described in this study, which in the Permian basin is dominated by oil and gas.



Data Availability

Plume datasets are generally available via Carbon Mapper’s Public Data Portal
(data.carbonmapper.org). TROPOMI XCH4 data is available via the Registry of Open Data on

Amazon Web Services (https://registry.opendata.aws/sentinel5p/). Source Data to reproduce

figures are deposited in a Zenodo public repository>>.

Code Availability

The IMI source code is available online (https://carboninversion.com/). Source code to reproduce

figures and analyses in this study is deposited in a Zenodo public repository>*.

References

1. U.S. Environmental Protection Agency. Standards of performance for new,
reconstructed, and modified sources and emissions guidelines for existing sources: Oil
and natural gas sector climate review. Fed. Regist. 40, CFR Part 60 (2024). Available at
https://www.federalregister.gov/documents/2024/03/08/2024-00366 (accessed 10 Mar
2025).

2. Sherwin, E. D., Rutherford, J. S., Zhang, Z., Chen, Y., Wetherley, E. B., Yakovlev, P. V.
et al. US oil and gas system emissions from nearly one million aerial site measurements.
Nature 627, 328-334 (2024).

3. Naus, S., Maasakkers, J. D., Gautam, R., Omara, M., Stikker, R., Veenstra, A. K. et al.

Assessing the relative importance of satellite-detected methane superemitters in

quantifying total emissions for oil and gas production areas in Algeria. Environ. Sci.
Technol. 57, 19545-19556 (2023).
4. Lauvaux, T., Giron, C., Mazzolini, M., d’ Aspremont, A., Duren, R., Cusworth, D. et al.
Global assessment of oil and gas methane ultra-emitters. Science 375, 557-561 (2022).
5. Cusworth, D. H., Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner, G. P. et al.

Strong methane point sources contribute a disproportionate fraction of total emissions



10.

11.

12.

13.

14.

across multiple basins in the United States. Proc. Natl Acad. Sci. U.S.A. 119,
2202338119 (2022).

Pandey, S., Worden, J., Cusworth, D. H., Varon, D. J., Thill, M. D. & Jacob, D. J.
Relating multi-scale plume detection and area estimates of methane emissions: A
theoretical and empirical analysis. Preprint at https://doi.org/10.31223/X52M54 (2024).
Omara, M., Zavala-Araiza, D., Lyon, D. R., Hmiel, B., Roberts, K. A. & Hamburg, S. P.
Methane emissions from US low production oil and natural gas well sites. Nat. Commun.
13, 2085 (2022).

Williams, J. P., Omara, M., Himmelberger, A., Zavala-Araiza, D., MacKay, K.,

Benmergui, J. et al. Small emission sources disproportionately account for a large
majority of total methane emissions from the US oil and gas sector. EGUsphere 2024, 1—
31 (2024).

Chen, Z., El Abbadi, S. H., Sherwin, E. D., Burdeau, P. M., Rutherford, J. S., Chen, Y. et
al. Comparing continuous methane monitoring technologies for high-volume emissions:
A single-blind controlled release study. ACS ES&T Air (2024).

Conrad, B. M., Tyner, D. R., Li, H. Z., Xie, D. & Johnson, M. R. A measurement-based
upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and
different sources than official estimates. Commun. Earth Environ. 4, 416 (2023).
Johnson, M. R., Conrad, B. M. & Tyner, D. R. Creating measurement-based oil and gas
sector methane inventories using source-resolved aerial surveys. Commun. Earth
Environ. 4, 139 (2023).

Kunkel, W. M., Carre-Burritt, A. E., Aivazian, G. S., Snow, N. C., Harris, J. T., Mueller,
T. S. et al. Extension of methane emission rate distribution for Permian Basin oil and gas
production infrastructure by aerial LIDAR. Environ. Sci. Technol. 57, 12234-12241
(2023).

Cusworth, D. H., Duren, R. M., Thorpe, A. K., Olson-Duvall, W., Heckler, J., Chapman,
J. W. et al. Intermittency of large methane emitters in the Permian Basin. Environ. Sci.
Technol. Lett. 8, 567-573 (2021).

Chen, Y., Sherwin, E. D., Berman, E. S., Jones, B. B., Gordon, M. P., Wetherley, E. B. et
al. Quantifying regional methane emissions in the New Mexico Permian Basin with a

comprehensive aerial survey. Environ. Sci. Technol. 56, 4317-4323 (2022).



15.

16.

17.

18.

19.

20.

21.

22,

23.

Sherwin, E., Kruguer, J., Wetherley, E. B., Yakovlev, P. V., Brandt, A. & Deiker, S.
Comprehensive aerial surveys find a reduction in Permian Basin methane intensity from
2020-2023. SSRN Preprint 5087216 (2024).

El Abbadi, S. H., Chen, Z., Burdeau, P. M., Rutherford, J. S., Chen, Y., Zhang, Z. et al.
Technological maturity of aircraft-based methane sensing for greenhouse gas mitigation.
Environ. Sci. Technol. (2024).

U.S. Environmental Protection Agency. Petroleum and natural gas systems subpart W:
Greenhouse Gas Reporting Program (2024). Available at

https://www.epa.gov/system/files/documents/2025-

01/w_petroleumnaturalgassystems_infosheet 2024.pdf (accessed 6 Feb 2025).

Yang, S. & Ravikumar, A. Assessing the performance of continuous methane monitoring
systems at midstream compressor stations. ChemRxiv Preprint
https://doi.org/10.26434/chemrxiv-2024-qgfdbh (2024).

Ayasse, A. K., Cusworth, D., O’Neill, K., Fisk, J., Thorpe, A. K. & Duren, R.
Performance and sensitivity of column-wise and pixel-wise methane retrievals for
imaging spectrometers. Atmos. Meas. Tech. 16, 6065-6074 (2023).

Veefkind, J. P., Aben, I., McMullan, K., Forster, H., De Vries, J. & Otter, G. et al.
TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of
atmospheric composition. Remote Sens. Environ. 120, 70-83 (2012).

Varon, D. J., Jacob, D. J., Hmiel, B., Gautam, R., Lyon, D. R., Omara, M. et al.
Continuous weekly monitoring of methane emissions from the Permian Basin by
inversion of TROPOMI satellite observations. Atmos. Chem. Phys. Discuss. 2022, 1-26
(2022).

Estrada, L. A., Varon, D. J., Sulprizio, M., Nesser, H., Chen, Z., Balasus, N. et al.
Integrated Methane Inversion (IMI) 2.0: An improved research and stakeholder tool for
monitoring total methane emissions worldwide. EGUsphere 2024, 1-31 (2024).

Barkley, Z. R., Davis, K. J., Miles, N. L. & Richardson, S. J. Examining daily temporal
characteristics of oil and gas methane emissions in the Delaware Basin using continuous
tower observations. J. Geophys. Res. Atmos. 130, e2024JD042050 (2025).



24,

25.

Zaimes, G. G., Littlefield, J. A., Augustine, D. J., Cooney, G., Schwietzke, S. & George,
F. C. et al. Characterizing regional methane emissions from natural gas liquid unloading.
Environ. Sci. Technol. 53, 4619-4629 (2019).

Lyon, D. R., Hmiel, B., Gautam, R., Omara, M., Roberts, K. A., Barkley, Z. R. et al.
Concurrent variation in oil and gas methane emissions and oil price during the COVID-
19 pandemic. Atmos. Chem. Phys. 21, 6605-6626 (2021).

26. Warren, J. D., Sargent, M., Williams, J. P., Omara, M., Miller, C. C., Roche, S. et al.

27.

28.

29.

30.

31.

32.

33.

Sectoral contributions of high-emitting methane point sources from major US onshore oil
and gas producing basins using airborne measurements from MethaneAIR. EGUsphere
2024, 1-22 (2024).

Guanter, L., Warren, J., Omara, M., Chulakadabba, A., Roger, J. & Sargent, M. et al.
Remote sensing of methane point sources with the MethaneAlIR airborne spectrometer.
EGUsphere 2025, 1-22 (2025).

Zimmerle, D., Dileep, S. & Quinn, C. Unaddressed uncertainties when scaling regional
aircraft emission surveys to basin emission estimates. Environ. Sci. Technol. 58, 6575—
6585 (2024).

Schubert, E., Sander, J., Ester, M., Kriegel, H. P. & Xu, X. DBSCAN revisited, revisited:
Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42, 1-21
(2017).

Balasus, N., Jacob, D. J., Lorente, A., Maasakkers, J. D., Parker, R. J., Boesch, H. et al. A
blended TROPOMI+GOSAT satellite data product for atmospheric methane using
machine learning to correct retrieval biases. Atmos. Meas. Tech. 16, 3787-3807 (2023).
Hancock, S. E., Jacob, D. J., Chen, Z., Nesser, H., Davitt, A. & Varon, D. J. et al.
Satellite quantification of methane emissions from South American countries: A high-
resolution inversion of TROPOMI and GOSAT observations. EGUsphere 2024, 1-33
(2024).

Varon, D. J., Jacob, D. J., Estrada, L. A., Balasus, N., East, J. D., Pendergrass, D. C. et al.
Seasonality and declining intensity of methane emissions from the Permian and nearby
US oil and gas basins. Environ. Sci. Technol. 59, 16021-16033 (2025).

Cusworth, D. Data and code to accompany “Duration of super-emitting oil and gas
methane sources”. Zenodo https://doi.org/10.5281/zen0do.17862303 (2024).



Acknowledgements

The Carbon Mapper team acknowledges the support of their sponsors including the High Tide
Foundation, Bloomberg Philanthropies, and other philanthropic donors. Portions of the Carbon
Mapper work were funded by the NASA Carbon Monitoring System. The Global Airborne
Observatory (GAO) is managed by the Center for Global Discovery and Conservation Science at
Arizona State University. The GAO is made possible by support from private foundations,
visionary individuals, and Arizona State University. Work by E.D.S and S.C.B. was supported by
the California Energy Commission (SUMMATION project, agreement number PIR-17-015). It
does not necessarily represent the views of the Energy Commission, its employees, or the State
of California. The Energy Commission, the State of California, its employees, contractors, and
subcontractors make no warranty, express or implied, and assume no legal liability for the
information in this report; nor does any party represent that the uses of this information will not
infringe upon privately owned rights. This paper has not been approved or disapproved by the
California Energy Commission, nor has the California Energy Commission passed upon the
accuracy or adequacy of the information in this paper. This manuscript has been authored by
authors at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231
with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by
accepting the article for publication, acknowledges, that the U.S. Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of

this manuscript, or allow others to do so, for U.S. Government purposes.

Author Contributions

D.H.C designed the study, performed the main analysis, and wrote the manuscript. D.B, A.A,
R.M.D performed additional analyses of plume datasets. G.P.A and J.H. acquired GAO data.
D.J.V performed the TROPOMI regional flux inversion. E.D.S. and S.C.B. performed additional
statistical and uncertainty analyses. D.B, A.A, RM.D, G.P.A, J.H, D.J.V, E.D.S, S.C.B provided

feedback on the manuscript.

Competing Interests



The authors declare no competing interests.

Figure Captions

Figure 1. Observation coverage of aerial survey. (a) Flight outlines of observed areas by Carbon
Mapper, with Rextag reported well-sites, compressor stations, and gas plants overlaid. The green
and orange square polygons represent areas of high production and intensive aerial surveys. (b)
Number of complete observational revisits across discrete 0.05 x 0.05° regions within the basin.

Figure 2. Methane results from the survey. (a) Locations of aerial plume detections. (b) Plume
detections averaged to 0.05 x 0.05° grid cells, following the methods described in the text. (c)
Total emission fluxes (~25 x 25 km?) from the Permian Basin, derived from inversion of
TROPOMI satellite observations. The inset black box represents the area surveyed during the
airborne campaign. (d) Comparison between emissions estimated by TROPOMI (inset black box
in (c¢) and super-emissions within the same area (b)), where uncertainties represent one standard
deviation.

Figure 3. Variability assessment of Intensive Box. (a) Cumulative distributions of emissions in
the Intensive Box for each observational scan. (b) Total emissions in the Intensive Box for each
observational scan. The horizontal bar represents the estimated total emissions for the Intensive
Box following the multi-scan aggregation procedure described in the text and shown in Figure 2.
Uncertainties represent one standard deviation

Figure 4. Results from estimating durations of super-emitter events in the Intensive Box. (a)
Total emissions from the Intensive Box (West and East Boxes combined, see Figure 1),
integrated over the course of aerial survey, assuming either constant emissions (“Integrated
Average”, left bar, 16 uncertainty), or integration from detected sources using the shortest or
longest emission durations constrained directly by aerial observations (middle and right bars,
respectively). (b) Relationship between detection frequency and event duration during hours of
non-observation needed to reconcile the emission gap estimate, derived by differencing the
Integrated Average and Shortest Duration estimate (a) and described by equation (1).

Figure 5. Infrastructure counts for detected sources during the campaign with associated source
persistence. (a) Infrastructure counts for sources across the entire survey spatial domain. (b)



Infrastructure counts for sources in the Intensive Box, broken out by super-emitter duration
category. (c) Median persistence (number of detections divided by number of observations) for
infrastructure in the Intensive Box.

Editor’s Summary

Aerial surveys over the Permian Basin found 500+ major methane leaks, many recurring. A few
sites leaked continuously and offer quick mitigation wins. These super-emitters may produce
~50% of regional emissions, underscoring the need for frequent monitoring.

Peer review information: Nature Communications thanks the anonymous reviewers for their
contribution to the peer review of this work. A peer review file is available.
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