N atu re co m m u n i cati o n S https://doi.org/10.1038/541467-026-68812-7
Article in Press

An absolute quantification atlas of small non-
coding RNAs across diverse mammalian tissues and
cell lines

Received: 27 May 2025 Wen Xiao &, Yuli Zheng XEX, Hongdao Zhang X7z 12, Beiying Xu R & 3%, Ruiwen
Accepted: 18 January 2026 Zhang ¥ 3 & Ligang Wu R 31K

Cite this article as: Xiao, W., Zheng, Y., We are providing an unedited version of this manuscript to give early access to its

Zhang, H. et al. An absolute findings. Before final publication, the manuscript will undergo further editing. Please
quantification atlas of small non- note there may be errors present which affect the content, and all legal disclaimers
coding RNAs across diverse apply.

mammalian tissues and cell lines. Nat
Commun (2026). https://doi.org/
10.1038/s41467-026-68812-7

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not
have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.



An absolute quantification atlas of small non-coding RNAs across diverse

mammalian tissues and cell lines

Wen Xiao'', Yuli Zheng'', Hongdao Zhang'-"*, Beiying Xu'!, Ruiwen Zhang", Ligang Wu'"

. Key Laboratory of RNA Science and Engineering, Shanghai Key Laboratory of Molecular
Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular
Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences,
Shanghai, 200031, China.

T The first four authors contributed equally to this work.

* To whom correspondence should be addressed.
Ligang Wu, Email: Igwu@sibcb.ac.cn

Hongdao Zhang, Email: zhanghongdao6@sibcb.ac.cn



ABSTRACT

The low quantitative accuracy of conventional small noncoding RNA sequencing (sncRNA-seq)
methods due to extensive ligation bias commonly limits functional investigation of microRNAs
(miRNAs) and PIWI-interacting RNAs (piRNAs). Here, we develop 4NBoost, a single-tube
sncRNA-seq protocol designed to minimize bias in the estimated absolute quantification of mMiRNA
and piRNA transcripts through the incorporation of quantitative exogenous RNA spike-ins. With
4NBoost, we profile sncRNA expression across 20 murine tissues, 18 macaque tissues, and 24
widely used cell lines, as well as 4 Arabidopsis tissues, to establish a comprehensive quantitative
reference atlas. Compared with existing small RNA databases, our data reveal substantial biases
in miRNA abundance, strand selection, and tissue-specific expression at both individual and
family levels. To further extend its utility, we employ machine learning to model and correct biases
in conventional datasets, effectively recovering ground truth transcript abundances. All 4NBoost
data and the accompanying bias-correction model are freely available via SmRNAQuant
(http://wulg-lab.sibcb.ac.cn/SmRNAQuant/), a web-based repository for exploring sncRNA
expression. Together, the 4NBoost, bias-correction model, and SmRNAQuant provide powerful

resources to advance sncRNA research.



INTRODUCTION

Small non-coding RNAs (sncRNAs), including microRNAs (miRNAs), small interfering RNAs
(siRNAs), and piwi-interacting RNAs (piRNAs), are key regulators in a variety of biological and
pathological processes such as organ development, epigenetic modification, and tumorigenesis
[1-8]. Numerous recent studies have greatly expanded our understanding of the diversity,
complexity, and function of these sncRNAs [9-19]. Given their critical regulatory roles, a robust
and comprehensive understanding of their biological functions requires accuracy in sncRNA
profiling and quantification [20]. Despite the power and versatility of next-generation sequencing
tools for studying sncRNA expression [21, 22], conventional sncRNA library construction typically
relies on T4 RNA ligase for adapter ligation prior to reverse transcription and amplification, which
are prone to introducing biases in quantification [23-26]. These biases primarily arise from the
structure-dependent mechanism of T4-mediated ligation of adapters to sncRNAs, causing certain
sncRNAs to be over- or under-represented, which can ultimately skew conclusions about their
biological functions [27-31].

Several methods have been developed to reduce or minimize these biases, including the use
of terminal randomized adapter sequences and/or high polyethylene glycol (PEG) concentrations,
as reported in methods such as 4N-seq, AQ-seq, IsoSeek, and NEXTflex [9, 15, 29-35]. Despite
these advances, the large majority of sequencing approaches primarily target miRNAs with a 2’-
hydroxyl group (2’-OH) at the 3’ end, which neglects optimization of ligation efficiency for piRNAs
and plant miRNAs, which instead harbor 3’ 2’-O-methyl modifications (2’-Ome) that hinder ligation
[15, 36-39]. Furthermore, many of these methods do not incorporate unique molecular identifiers
(UMis) to correct for PCR bias by eliminating duplicate sequences. Additionally, few of these
sequencing approaches has been adopted to determine estimated absolute quantification of
sncRNAs, which is essential for addressing crucial fundamental research questions related to
sncRNA stoichiometry. For example, miRNA activity has been shown to depend on a threshold
level of expression, with only the most abundant miRNAs capable of effectively mediating target

suppression [40-44]. This indicates that intracellular concentration is tightly coupled to functional



activity. However, absolute expression levels have been measured for only a limited subset of
miRNAs in specific cell or tissue types [43-47]. Additionally, understanding the precise miRNA
concentrations required for regulatory function can be vital to identifying differences between
physiological and pathological processes [48, 49]. Moreover, existing miRNA databases—such
as miRbase [50], MirGeneDB [51], miRmine [52], and DIANA-miTED [53]—as well as
tissue atlas of sncRNAs [54, 55], were constructed using such biased sncRNA sequencing data,
and therefore lack the capacity for accurate absolute quantification. Consequently, a
comprehensive, bias-minimized, and quantitatively accurate reference for sncRNAs has yet to be
established.

To overcome these challenges, in the current study, we developed 4NBoost, a quantitative
mMiRNA and piRNA sequencing technique that minimizes bias in small RNA sequencing through
the incorporation of exogenous ratiometric RNA spike-ins. We applied 4NBoost to generate a
comprehensive reference atlas of sncRNA expression by profiling 259 samples, including 20
tissues from mice, 18 tissues from crab-eating macaques, 24 commonly used cell lines, and 4
tissues from Arabidopsis. To the best of our knowledge, this is the most systematic estimated
absolute quantification of sncRNAs across mammalian tissues and cell lines. To further expand
its utility, we developed an XGBoost-based framework to correct biases in conventional datasets,
enabling accurate reconstruction of ground truth transcript abundances. Additionally, we
developed a web-based database to facilitate access to 4NBoost data, allowing researchers to
retrieve and analyze small RNA expression profiles. Together, the 4NBoost method, correction
model, and online resource constitute a robust platform for advancing both fundamental and

clinical research in small noncoding RNAs.



RESULTS
Construction of 4NBoost with greatly reduced ligation bias for high accuracy sncRNA
quantification

To construct 4NBoost, we modified the 4N-Xu method [35, 56] by first increasing the size of
random nucleotides (NTs) in 5’ adapter from 4 to 7 NTs, while retaining a 3’ adapter of 4 random
NTs that ensures a total of 11 random bases to reduce ligation bias and expand the number of
unique molecular identifiers (UMIs) essential for removing duplicate reads. Based on AmpUMI
model predictions [57] and previous studies [34], we determined that UMIs with 11 random bases
could effectively capture the most abundant molecules with a low probability of UMI collision (1.4%,
Supplementary Figure 1A). To limit the likelihood of generating excessive byproducts associated
with long consecutive random sequences, we also introduced 3 fixed nucleotides into the 7
random nucleotides of the 5’ adapter [58].

We then designed and synthesized 30 spike-ins, including 7 with 2’-O-methyl modifications
at the 3’ end, which enabled the evaluation of the quantitative accuracy of 2’-O-methyl-modified
sncRNAs in addition to miRNAs. We prepared two spike-in pools, including an equimolar pool
(EM) and a ratiometric pool (RM), to test the accuracy and uniformity of the library (Supplementary
Figure 1B). In the ratiometric pool, the concentrations of 30 spike-ins spanned an approximate 2
x 10°-fold concentration range, with 3 oligos per concentration.

Optimization of reaction conditions showed that, in addition to high PEG8000 concentration
[32], the coefficient of variation (CV) of equimolar spike-ins gradually decreased with increasing
concentration of adapters, suggesting that the higher concentration of adapters could further
minimize potential library biases (Supplementary Figure 1C). However, higher adapter
concentrations led to a significant increase in self-ligation byproducts, with up to 90% of raw data
comprising such artifactual sequences that had to be discarded (Supplementary Figure 1D). To
balance library uniformity and data quality, we determined that 0.55 pyM was the optimal
concentration of 3’ and 5 adapters (Supplementary Figure 1E). Additionally, we found that

Lambda exonuclease was more efficient than RecJ exonuclease in depleting excess 3’ adapters



[59, 60] (Supplementary Figure 1F-G).

We then evaluated the accuracy of 4NBoost by adding the EM or RM pools to the total cellular
RNAs and calculating the relative amounts of spike-ins based on the sequencing results.
Compared to TruSeq and AQ-seq, 4NBoost demonstrated the lowest average CV (1.73, 0.56,
and 0.51, respectively, for TruSeq, AQ-seq, and 4NBoost), indicating a marked reduction in library
ligation biases and resulting in more uniform representation of equimolar spike-ins (Figure 1A-B
and Supplementary Figure 1H). Correlation analysis between the expected and observed
abundance of ratiometric spike-ins yielded Pearson’s coefficients > 0.94, indicating that 4NBoost
could accurately reflect small RNA expression levels across varying abundances (Figure 1C).
Notably, in 4NBoost libraries, spike-ins with 3’ end methylation showed similar ligation efficiency
to non-methylated spike-ins (Supplementary Figure 11), in sharp contrast to the TruSeq libraries,
where spike-ins with terminal methylation were detected at over 10-fold lower efficiency compared
to their non-methylated counterparts. This finding was further validated by the 4NBoost library
from mouse testis, which displayed a stronger 1U signal for piRNAs compared to the TruSeq
library (Supplementary Figure 1J).

To assess the sensitivity of 4NBoost, we performed sequencing on serial dilutions of input
RNA, ranging from microgram (ug) to nanogram (ng) and picogram (pg) amounts. As a
benchmark, miRNA expression profiles generated from 1 ug of input RNA were compared with
those from lower input amounts (Supplementary Figure 1K—L). The number of detected miRNA
species remained relatively constant down to 10 ng of input RNA. At 1 ng, reproducibility in miRNA
detection declined moderately, but Spearman correlation coefficients remained high (> 0.7).
Below 1 ng, both the number of detected miRNA species and robustness decreased sharply.
These results indicate that 4NBoost can faithfully profile sncRNA expression from as little as 1 ng
of total RNA without substantial loss of performance.

Finally, we applied 4NBoost to quantify each small RNA by generating standard curves using
the ratiometric spike-ins with known absolute molecule numbers. To validate its accuracy, we

incorporated four additional external spike-ins and found that 4NBoost could predict the molar



quantities of all spike-ins, except the lowest abundance one, with high precision (Pearson’s
coefficient = 0.93; predicted vs ground truth values; Figure 1D). Additionally, a comparison
between miR-221-3p abundance in ten cell lines predicted by 4NBoost and its copy numbers
obtained by RT-gPCR showed a high correlation (Pearson’s coefficient = 0.93) between methods
(Figure 1E). Similarly, miR-21-5p, the most abundantly expressed miRNA across most cell lines,
showed excellent agreement between RT-gPCR and 4NBoost measurements (Pearson’s
coefficient = 0.99, p = 4.95x10-2%; Supplementary Figure 1M). Collectively, these results further
support the high quantitative accuracy of our method. Notably, 4NBoost could accurately quantify

sncRNAs with abundances >10 amol per 100 ng total RNAs.

Construction of a quantitative sncRNA expression atlas of mammalian tissues and cell
lines

Assembling a set of tissues and cell lines commonly used in miRNA studies (Supplementary
Data 1) resulted in a panel of 24 cell lines (n = 4), 20 tissues from BALB/C mice (n = 4), and 18
tissues from crab-eating monkeys (n = 4) (Figure 2A). Using 4NBoost, we then constructed 244
total libraries, among which 242 passed quality control screening (Figure 2B). Each library
contained over 1 million genome-mapped reads (Supplementary Figure 2A), which were further
annotated into various small ncRNA species (Figure 2B). Among these ncRNAs, miRNA was the
most well-represented species in most cell lines and tissues, except in testis samples (Figure 2C).
Correlation analysis of miRNAs between biological replicates showed expression correlations
exceeding 0.9 (Supplementary Figure 2B-D), indicating high reproducibility. The high correlation
of the read counts before and after UMI deduplication for the top 100 most abundant miRNAs
further supports that 11-nt UMIs are sufficient for accurate deduplication with negligible impact
from potential UMI collisions (Supplementary Figure 2E).

Subsequent validation of quantitative accuracy for sncRNAs in each sample with an
additional four spike-ins yielded a correlation coefficient of 0.97 between predicted and ground

truth values (Supplementary Figure 2F-G), thereby confirming the accuracy of 4NBoost. This high



accuracy enabled further estimation of the abundance of each miRNA and piRNA in all cell lines
and tissues in our panel, which we used to construct a dataset of more reliable expression levels.
We also noted that miRNA family quantifications had markedly low CV across biological replicates,
further supporting the stability and reliability of quantification by 4NBoost (Supplementary Figure
2H). Overall, these results indicated that 4NBoost generated robust, quantitative miRNA and

piRNA expression datasets across a wide range of tissues and cell lines.

Comparative analysis of miRNA species and expression across cell lines and tissues

We then applied these quantitative sncRNA datasets to analyze the number of miRNA
species expressed in each cell line and tissue, mitigating the influence of variations in sequencing
depth by randomly selecting 1.5 million mapped molecules from each sample for analysis. In most
cell lines, approximately 600 miRNA species were detected (Supplementary Data 2, Figure 3A),
which was comparable to the 532 average miRNA species reported in the miRmine database [52].
Notably, U20S cells had the highest number of miRNAs (715 species), while the fewest were
detected in MDA-MB-231 cells (266 species). In tissue samples, typically more than 500 miRNA
species were expressed, with the exception of erythrocytes and blood, which had only 328
species (Figure 3B). Of note, some samples with lower miRNA species numbers, e.g.,
erythrocytes and blood, also had a small subset of predominant or overrepresented miRNAs,
such as miR-451. Intriguingly, we also observed that most samples from monkeys had fewer
mMiRNA species compared to the corresponding tissues from mice, likely due to the less
comprehensive miRNA annotation in monkeys. However, detected miRNA numbers may be
influenced by factors such as sncRNA composition or incomplete annotation, and should be
interpreted with caution.

We then compared miRNA concentrations quantified by 4NBoost (Figure 3C-E). Similar to
the distribution of miRNA species across samples, total miRNA contents were comparable among
most cells, with an average of ~2200 amol per 100 ng of total RNAs (Supplementary Data 2,

Figure 3C), or approximately 15 pg (~0.015% of total RNAs), which was consistent with previous



reports [61]. Across cell lines, SH-SYSY cells had the highest miRNA expression level, ~4000
amol per 100 ng total RNA. Across tissues, for example, in monkeys, we found that brain samples
had the lowest average miRNA levels, while heart and lung samples had the highest. By contrast,
in mice, pancreas and testis tissues had the lowest average miRNA levels, whereas lung and skin
samples had the highest miRNA contents (Supplementary Data 2, Figure 3D). As a result of this
variability, Spearman analysis of miRNA concentrations between monkey and mouse tissues
showed low correlation (R = 0.48; Figure 3D), potentially reflecting big differences in miRNA
expression among species. Additionally, due to the overrepresentation of miR-451 in blood and
erythrocyte samples, miRNA quantities were much higher in these samples compared to solid
tissues (Figure 3E).

Notably, although pancreas samples had a higher relative proportion of miRNAs than testis
in mice (Figure 2C), their quantities were not significantly different (Figure 3D). These findings
highlighted the importance of absolute quantification for comparing miRNA expression levels

across different tissues or cell lines.

Improved miRNA expression accuracy with 4NBoost

Previous studies have shown that miRNA dosage influences the strength of downstream
gene regulation, with highly expressed miRNAs commonly selected as key targets for further
investigation [48, 49]. In our study, we focused on these highly expressed miRNAs across various
cell lines and tissues, identifying notable discrepancies between 4NBoost datasets and the
DIANA-mITED database, which shares the greatest overlap in cell lines with our study, as well as
MirGeneDB, a well-established source for miRNA expression data in tissues. Estimated absolute
quantification with 4NBoost suggested that the expression levels of numerous miRNA species,
including pre-mir-19, pre-mir-29, pre-mir-23a, pre-mir-24, pre-mir-126a, pre-mir-143, pre-mir-26a,
and pre-mir-30c were likely underestimated in DIANA-mIiTED and MirGeneDB, while pre-let-7a,
pre-let-7b, pre-let-7c, pre-mir-10a, pre-mir-22, and pre-mir-191 were overestimated in samples

from the same tissues or cell lines (Supplementary Data 3).



To test whether these discrepancies arose through differences among library construction
methods, we analyzed heterodimer structures for both over- and underestimated miRNAs, as the
influence of heterodimer structures formed between RNA and adapters has been widely reported
to influence T4 RNA ligase (Rnl) activity, wherein 5" adapter ligation by Rnl1 favoring RNAs with
an unpaired 5 end [29, 30, 62-64]. This analysis of heterodimer structures in over- and
underestimated miRNAs with 5° RNA adapters revealed that over 85% of the overestimated
mMiRNAs had unpaired 5’ ends, while around 70% of underestimated miRNAs had paired 5' ends
(Supplementary Figure 3A-B), which was consistent with Rnl1 bias for unpaired 5 ends. By
contrast, for 4NBoost data, generated with random adapters, over 90% of these underestimated
miRNAs formed secondary structures more favorable for Rnl1 ligation (Supplementary Figure 3C).
These findings suggested that 4NBoost consequently improved the accuracy of miRNA

expression quantitation, compared to that in DIANA-mIiTED or MirGeneDB.

Analysis of miRNA strand preference by 4NBoost

In addition to the above problem of over- or underrepresentation, ligation bias has also been
identified as a potential source of mis-annotation in miRNA strand preference for certain miRNAs,
such as pre-mir-423, pre-mir-17, pre-mir-106b, and pre-mir-151a. As bias-reducing methods have
been shown to help mitigate this issue [29, 32], we next examined strand preference in 4NBoost
data. This analysis showed that miRNA strand preferences were consistent with previously
validated results for pre-mir-324 [65], pre-mir-423 [32], pre-mir-223 [66], and pre-mir-133a [67]
(Figure 4A, Supplementary Table 1). Moreover, strand preferences measured by 4NBoost also
correlated closely with those obtained by AQ-seq in the HCT116 and HEK293T cell lines
(Pearson’s coefficient = 0.94 and 0.91, respectively), whereas moderate differences were noted
when compared to TruSeq (Pearson’s coefficient = 0.79 for the HCT116 cell line and 0.82 for the
HEK293T cell line; Figure 4B). Subsequent application of a strand selection model to all miRNA,
as previously described [68], and compared with the strand ratio data obtained by 4NBoost and

TruSeq showed that 4NBoost data shared a stronger correlation with model predictions



(Pearson’s coefficient = 0.67) than TruSeq (Pearson’s coefficient = 0.59; Figure 4C), further
emphasizing higher accuracy of 4NBoost in strand ratio measurements.

Examination of strand preference for all detected miRNAs across cell lines and tissues in our
4NBoost data (Supplementary data 4) indicated that >50% of miRNAs preferentially expressed
the 5p strand, whereas >30% preferentially expressed the 3p strand, regardless of species
(Figure 4D). Additionally, although most miRNAs exhibited consistent strand preferences, a small
subset switched the preferred strand depending on the cell type or tissue (Figure 4A). For example,
pre-mir-142a produced markedly more 3p than 5p miRNA in mouse blood; but the 5p and 3p
strands are present at similar levels in other tissues. Likewise, pre-mir-324 and pre-mir-339 in
monkeys, as well as pre-mir-126a and pre-mir-144 in mice, also showed variable strand
preferences. Notably, 4NBoost identified several miRNAs with opposite strand selection
compared to TruSeq or miRBase annotations, including pre-mir-500a, pre-mir-582, pre-mir-671,
and pre-mir-362 (Figure 4E), as well as 15 previously reported miRNAs, such as pre-mir-193a,
pre-mir-374a, and pre-mir-454 [29]. Among these, pre-mir-423 and pre-mir-362 were selected,
and their strand preference was validated by RT-qPCR. The strand ratios estimated by RT-gPCR
were consistent with our dataset but differed from the TruSeq data or miRBase annotations
(Figure 4F-G). Taken together, these results indicated that 4NBoost could provide more reliable

and accurate miRNA strand preference data than other current methods.

Re-evaluation of the expression and tissue specificity of miRNA families

miRNA families, which share a common seed sequence and exhibit high sequence similarity,
often exert cumulative effects on gene expression [69-73]. However, the extent to which previous
biased sequencing approaches affect the accurate measurement of miRNA family expression has
not yet been evaluated. We therefore assessed miRNA family-level expression patterns across
various cell lines and tissues for comparison with other current miRNA databases.

We observed that miRNA families such as let-7, miR-10, and miR-21 were broadly expressed

across human cell lines in 4NBoost data (Figure 5A), which agreed well with previous reports [1,



52, 74, 75]. However, comparison with DIANA-mITED revealed significant discrepancies in certain
miRNA family expression patterns compared with 4NBoost data. For example, miR-15, miR-17,
miR-19, and miR-29 family expression levels were generally underestimated in DIANA-mITED,
while the let-7, miR-10, miR-191, and miR-92 families were overrepresented compared to
4NBoost data (Figure 5B). Further, even more pronounced discrepancies emerged through
comparisons of tissue level data between 4NBoost and MirGeneDB (Supplementary Figure 4A-
B), which indicated that the miR-126, miR-143, miR-19, miR-23, miR-24, miR-26, and miR-29
families were generally underestimated, whereas let-7, miR-1, miR-103, miR-199, miR-10, miR-
181, miR-191 and miR-22 families were overrepresented in MirGeneDB (Supplementary Figure
4C-D). Closer scrutiny of these datasets suggested that these discrepancies likely arose through
inaccurate quantification of specific miRNAs, such as miR-19a and miR-19b in the miR-19 family,
as well as miR-29a, miR-29b, and miR-29c¢ in the miR-29 family, which led to underestimation of
these miRNA families by conventional small RNA sequencing analytical methods (Supplementary
Data 3). Consistent with this, previous studies have also shown that miR-29b ranked only 29th in
the fixed adapter library derived from DLD-1 cells, whereas it was the most abundant miRNA in
the random adapter library [29]. This discrepancy illustrates how miR-29b might be overlooked in
colorectal cancer studies. These cumulative results suggested that 4NBoost data could provide a
more accurate reference for miRNA family expression, which is essential for elucidating their
biological functions and roles in disease processes.

We then focused on identifying ubiquitously expressed or tissue-specific miRNA families,
which revealed that the let-7, miR-10, miR-23, miR-24, miR-26, miR-27, miR-29, and miR-30
families were highly expressed across all solid tissues, and showed remarkably similar expression
levels between mice and monkeys (Figure 5C). These results were in line with the well-
documented roles of these miRNA families in various developmental, cellular, and physiological
processes essential for most tissues [1]. In contrast with the above broadly expressed miRNAs,
we next searched for tissue-specific miRNA families, which are particularly intriguing due to their

potential for specialized functions within specific tissues [52, 76]. To assess tissue specificity, we



calculated the tissue specificity index (TSI) for miRNA families using a well-established method
[77], wherein higher TSI values indicated greater tissue specificity. This analysis uncovered 23
and 30 total tissue-specific miRNA families in 4NBoost data from monkey and mouse tissues,
respectively (TSI = 0.85, Table 1). Among these tissue-specific miRNA families, more than 80%
were consistent with those identified by MirGeneDB (Figure 5D, Table 2-3), which may be
attributable to the high accuracy of relative expression analysis available through all current small
RNA sequencing methods [35].

However, we also found some noteworthy differences with 4NBoost results. First, the tissue-
specific miRNA families identified using 4NBoost data were largely subsets of those identified
using MirGeneDB (12 out of 17). For example, 6 of 11 brain-specific miRNA families identified by
MirGeneDB in monkeys were also detected using 4NBoost. Further analysis revealed that the
miRNA families missed by 4NBoost were predominantly expressed at low levels (Figure 5E), and
were likely filtered out due to the expression cut-off we applied during the analysis process.
Alternatively, 4NBoost analysis identified five tissue-specific miRNA families that were overlooked
by MirGeneDB, such as the kidney-specific miR-204 family, heart-specific miR-135 family, and
spleen-specific miR-335 family in monkey (Table 2), as well as the ovary-specific miR-135 and
miR-202 families in mouse (Table 3). The expression levels of these miRNA families may have
been underestimated by conventional sequencing data compared to 4NBoost (Figure 5F),
potentially leading to their omission from MirGeneDB. Taken together, the capacity for precise
miRNA quantification by 4NBoost facilitates more reliable identification of tissue-specific miRNA

families.

Tissue-specific miRNA families are conserved between mice and monkeys

Since tissue-specific miRNAs have been previously shown to exhibit high conservation
between mice and humans [77, 78], we next applied 4NBoost to explore the conservation of
tissue-specific miRNA families between mice and monkeys. Our results showed that TSI values

were quite similar between species for these miRNA families (Pearson’s coefficient = 0.77,



Supplementary Figure 5A), which was consistent with their comparable expression profiles. This
analysis also showed a high degree of overlap in the tissue-specific expression of miRNA families
between the two species (Supplementary Figure 5B, Table 1). For example, we identified several
well-documented tissue-specific miRNA families, such as the miR-122 family in liver; miR-9, miR-
137, and miR-124 families in brain; miR-133 and miR-1 families in muscle and heart; miR-499
family in heart; miR-144 and miR-451 families in blood; miR-205 family in skin; and miR-216 family
in the pancreas [54, 77, 79-82]. Additionally, we identified some previously unreported tissue-
specific miRNA families in mice and monkeys, including the miR-203 family in the skin, miR-459
and miR-217 families in the pancreas, as well as miR-19 and miR-142 families in the blood. These
findings suggested that tissue-specific miRNA families are conserved across mouse and monkey

tissues.

Re-evaluation of Plant sncRNA abundance

Plant miRNAs and most siRNAs are characterized by 3’-terminal 2’-O-methylation, which
substantially impedes adapter ligation and introduces biases in library construction using
conventional small RNA sequencing methods. To overcome this limitation, we re-evaluated
sncRNA abundance in root, stem, leaf, and flower tissues of the model plant Arabidopsis thaliana
using 4NBoost. Consistent with the well-established features of plant small RNAs, the 4NBoost
profiles were dominated by 21-24 nt sncRNAs, with 21-nt species strongly enriched for 5’ uridine
while 24-nt species preferentially carrying adenine (Supplementary Fig. 6A). Compared with the
conventional TruSeq method, 4NBoost markedly improved the recovery of 24-nt sncRNAs with a
stronger 5’ adenine bias, and significantly enhanced miRNA detection, identifying on average 244
unique miRNAs, nearly 50% more than the 163 miRNAs captured by TruSeq (Supplementary Fig.
6B-D). In addition, TruSeq introduced substantial inaccuracies in miRNA quantification. For
instance, mMiR165a-3p, miR166a-3p, mMiR168a-3p, mMiR168a-5p, and miR166e-5p were
consistently overestimated, whereas miR161.2, miR172a, miR173-5p, and miR167a-5p were

underestimated across all four tissues (Supplementary Fig. 6E). Collectively, these results



demonstrate that 4NBoost provides a more accurate and comprehensive representation of plant

small RNA abundances, overcoming the limitations of conventional sequencing methods.

Machine learning-based correction of sequencing bias in sncRNA expression profiles

To enhance the utility of existing sncRNA sequencing datasets affected by library preparation
bias, we developed a computational framework that corrects biases in conventional expression
profiles, generating quantitatively accurate datasets. We analyzed matched samples processed
using two protocols: the widely adopted NEBNext small RNA library preparation and our optimized
4NBoost method. Using these paired datasets, we trained XGBoost regression models to learn
and correct library-specific artifacts present in conventional sequencing data (Figure 6A). The
correction model exhibited strong performance in reconstructing accurate expression profiles
from biased datasets. For NEBNext-prepared libraries, the predicted expression levels showed
high concordance with those obtained from 4NBoost, with Pearson correlation coefficients of r =
0.87 in the test set and r = 0.86 in the validation set (Figure 6B). Importantly, the model also
improved the ranking accuracy of transcript abundances: the correlation with 4NBoost data
increased from r = 0.51 (uncorrected) to r = 0.85 (corrected) in the test set (Figure 6C). Internal
validation further confirmed the robustness of the model, yielding similarly high correlations
(Pearson’s r = 0.83; Figure 6D). In summary, this regression-based correction framework enables

accurate reinterpretation of existing sncRNA-seq datasets by mitigating protocol-induced biases.

SmRNAQuant: an integrated 4NBoost database

To facilitate access to our 4NBoost data from various cell lines and tissues, we developed
SmRNAQuant (Figure 7), an interactive analytical and visualization platform incorporating Django
(v4.2.1), Bootstrap (v3.3.7), jQuery (v3.2.1), Python 3.8, and Echarts. This platform enables
detailed quantification of small RNAs across different cell lines and tissues, facilitating deeper
insights into expression patterns and biological roles. Users can download the complete dataset

or generate customized subsets by selecting specific tissues or cell lines of interest.



SmRNAQuant also features a “miRNA view” function, which allows users to query individual
miRNAs and visualize their expression profiles through bar charts across various tissues and cell
types, providing a comprehensive overview of miRNA expression. Additionally, the platform
integrates our regression-based correction algorithm, enabling users to calibrate NEBNext-
derived datasets and obtain expression values comparable to those generated by 4NBoost.
Collectively, SmMRNAQuant improves the accessibility and usability of small RNA sequencing data

for a broad range of research applications.



DISCUSSION

In this study, we introduce 4NBoost, a bias-minimized and quantitatively calibrated method
for estimating absolute sncRNA profiling. We also introduce SmRNAQuant, a web-based
database designed to host quantification datasets of sncRNAs. To further enhance the usability
of 4NBoost and SmRNAQuant, we developed a machine learning-based correction model to
adjust for biases inherent in conventional sncRNA sequencing data. Together, our work provides
a large-scale and systematic atlas of quantification of sncRNAs across a diverse range of
mammalian tissues and widely used cell lines.

Compared with external databases, our datasets provide more accurate small RNA
information. First, it offers a more precise ranking of miRNAs in tissues and cell lines, which is
crucial for researchers to select research targets. For example, our results indicate that, compared
to existing databases, the expression levels of the miR-29 and miR-19 families are significantly
higher, whereas those of the miR-10 and let-7 families are significantly lower. These differences
are mainly attributed to the structural preferences of the T4 ligation enzyme. Second, our datasets
provide more reliable information on miRNA strand preference, which is consistent with both
experimental and model-based findings reported in the literature. Moreover, in comparison to
TruSeq sequencing data and miRBase, we identified strand annotation deviations in certain
miRNAs, such as pre-mir-500a and pre-mir-362, which could greatly affect the prediction of their
target genes. Third, our datasets provide a higher signal-to-noise ratio for tissue-specific miRNAs,
making it a more reliable dataset for studying miRNA conservation across species.

Previous studies demonstrated that miRNA activity depends on reaching a threshold level of
expression [44], with only the most abundant miRNAs in a cell capable of mediating effective
target suppression [43]. A recent study further showed that mRNA stability begins to decrease
when miRNA abundance reaches approximately 1,000 miRNA transcripts per million (TPM) [40].
In mouse oocytes, rapid growth and dilution of miRNAs during development were found to lower
their effective concentrations, producing a knockdown-like effect insufficient for robust repression

[42]. Consistently, silencing activity of miRNAs was maintained at 1.5 nM but lost at 0.3 nM.



Collectively, these findings highlight the tight coupling between intracellular miRNA concentration
and functional activity. However, absolute expression levels have so far been determined for only
a subset of miRNAs in limited cell and tissue types [43, 45-47]. In this context, our datasets
provide a more comprehensive and systematic reference, enabling the prediction of which
miRNAs are likely to be functionally active and guiding the selection of the most relevant
candidates for downstream studies.

In addition, we developed an XGBoost-based correction framework that converts
conventional small RNA-seq data into quantitatively accurate expression profiles. By eliminating
the need for re-sequencing, it substantially expands the value of existing data and facilitates more
reliable downstream analyses. Leveraging the unbiased quantification provided by 4NBoost,
SmRNAQuant integrates this correction model to serve as a more reliable and precise reference
resource for small RNA research.

Despite its strengths, this study has several limitations. First, the effectiveness of 4NBoost
for constructing sncRNA libraries depends on a minimum input of 1 ng of total RNA. Below this
threshold, data quality declines markedly, primarily due to incomplete removal of excess 3'
adapters, which leads to the accumulation of adapter—adapter PCR artifacts [56]. Future
optimization efforts may focus on enhancing 3' adapter removal efficiency or exploring alternative
strategies, such as using a cocktail of RNA ligases to reduce ligation bias and potentially eliminate
the need for terminal degenerate sequences. It should also be noted that although 4NBoost
reduces ligation bias and improves quantification accuracy, the method still exhibits some bias
and therefore cannot guarantee fully precise absolute quantification. Second, 4NBoost is
specifically designed for quantifying sncRNAs that share compatible chemical termini (5'
monophosphate and 3'-OH or 3'-O-methyl ends), such as miRNAs, siRNAs, and piRNAs.
However, other classes of sncRNAs, including small nucleolar RNAs (snoRNAs), small nuclear
RNAs (snRNAs), tRNA-derived small RNAs (tsRNAs), and rRNA-derived small RNAs (rsRNAs),
often contain noncanonical %' or 3' ends or internal modifications that interfere with ligation and

reverse transcription in the current 4NBoost protocol. Several specialized methods have been



developed to address these challenges [83-86], and integrating such techniques with 4NBoost
may broaden its scope. Finally, the limited diversity of samples included in our current database
may restrict the generalizability of our findings and reduce the applicability of the data across
broader biological contexts. To overcome this limitation, future studies should apply 4NBoost to a
wider range of tissues, developmental stages, and disease states. In parallel, our machine
learning—based correction framework offers a complementary solution by enabling integration and
bias correction of existing sncRNA-seq datasets. Together, these efforts will expand sample
representation and enhance the robustness and translational potential of the resulting small RNA

expression database.



METHODS
Cell culture and RNA extraction

All cell lines used in this study were purchased from the American Type Culture Collection
(ATCC), National Collection of Authenticated Cell Cultures (NCACC), or Shanghai Chuangqiu
Biological Technology Co., Ltd (SCBT) (Supplementary Data 1) and were authenticated by the
respective providers. Cell lines were revived and cultured in a 6 cm dish at 37°C with 5% CO..
Once the cells reached 90% confluence, they were collected with 1 mL of TRIzol reagent
(Invitrogen). Next, 200 uL of trichloromethane was added and mixed thoroughly. The solution was
then centrifuged at 12,000 g for 15 minutes at 4°C. The upper aqueous phase (~450 uL) was
transferred into a new 1.5 mL EP tube, followed by the addition of 900 pL of ethanol. The solution
was mixed by inversion, left at -30°C for 30 minutes, and then centrifuged again at 12,000 g for
15 minutes at 4°C. After removing the supernatant, the pellet was washed twice with 80% ethanol,
air-dried for 2-3 minutes at room temperature, and dissolved in DEPC-treated water. RNA
concentration was measured using a Nanodrop spectrophotometer, and RNA quality was
assessed using the Agilent Bioanalyzer 2200. Each RNA sample was diluted to a final

concentration of 100 ng/pL and stored at -80°C until use.

Tissue collection and RNA extraction

This study was conducted using both male and female mice and Crab-eating monkeys. 4
weeks old male and female BALB/c mice were purchased from Shanghai Lingchang
Biotechnology Co., Ltd, and animal protocol was approved by the Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences (SIBCBS2182005007). 4 years old male
and female Crab-eating monkey tissues were generously provided by the Jinyi Chen’ lab at
Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

Fresh blood samples were collected into EDTA anticoagulant tubes and diluted with PBS at
a 1:1 ratio. 3mL of separation solution (Solarbio) and 3 mL of the diluted blood were added to a

15 mL centrifuge tube and centrifuged at 800 g for 30 minutes at room temperature, resulting in



distinct layers containing plasma, white blood cells, separation solution, and red blood cells. The
red blood cell layer was carefully transferred into a new 1.5 mL EP tube, mixed with 1 mL of Trizol,
and stored at -20°C until RNA extraction. The white blood cell layer was transferred into a new 15
mL centrifuge tube, washed with 10 mL of PBS, and centrifuged at 250 g for 10 minutes at room
temperature. After centrifugation, the supernatant was removed, and the precipitate was
resuspended with red blood cell lysis buffer, then centrifuged at 250 g for another 10 minutes. The
supernatant was discarded, and the precipitate was resuspended with 1 mL Trizol. After thorough
mixing, the sample was stored at -20°C until RNA extraction.

Mouse and monkey lung, breast, stomach, colon, rectum, kidney, brain, skin, liver, ovary,
testis, fat, pancreas, heart, thymus, muscle, and spleen tissues were collected, cut into small
pieces, and submerged in an appropriate amount of RNAlater (Thermo). After being stored
overnight at 4°C, the samples were transferred to -20°C. For RNA extraction, 50-100 mg of tissue
was ground using a cryogenic grinder or a mortar (see Supplementary Table 2 for the specific

grinding method for each tissue), and RNA was purified as described above.

Small RNA spike-in design

We randomly generated 1,000 sequences with lengths ranging from 20 to 30 nt and predicted
their secondary structures using RNAfold. Sequences were selected based on the following
criteria: GC content between 40% and 60%, a predicted secondary structure with a AG greater
than -3, and no alignment with common model organism genomes. Finally, 23 sequences were
chosen as spike-in candidates. To evaluate the ligation efficiency of RNAs with 2’-Ome at the 3’
ends, seven of these candidates were randomly selected. The 2’-OH at their 3’ end was replaced
by 2’-Ome, and one of their bases was altered to distinguish them from their 2’-OH counterparts.

All spike-ins were synthesized by Suzhou Olipharma Co., Ltd.

Small RNA library preparation
One hundred nanograms of total RNA with 0.05 uL of 20 nM EM or RM spike-in control oligos



was ligated to a 0.55 yM 3’ randomized adapter using 25 U/uL T4 RNA ligase 2 truncated KQ
(NEB) in 0.83X T4 RNA ligase reaction buffer (NEB), supplemented with 20% PEG 8000 (NEB)
at 25°C overnight. The ligated RNA was then annealed with 1.28 yM RTP. To remove excess 3’
adapters, 3.33 U/uL 5’ deadenylase (NEB) and 0.2 U/uL lambda exonuclease (NEB) were added,
followed by incubation at 30°C for 1 hour and 37°C for 2 hours, respectively. Subsequently, the
product was ligated to a 0.55 yM 5’ randomized adapter using 0.4 U/uL of T4 RNA ligase 1 (NEB)
in 0.74X T4 RNA ligase reaction buffer, supplemented with 0.7 mM ATP and 17.3% PEG 8000
(NEB) at 25°C for 1 hour. Reverse transcription was carried out using 5 U/uL of ProtoScriptll
reverse transcriptase (NEB) in 1X ProtoScriptll RT reaction buffer (NEB), containing 0.5 mM
dNTPs (Promega) and 10 mM DTT (NEB), at 50°C for 1 hour. The resulting cDNA was then
amplified using 0.02 U/uL of KOD-Plus-Neo (TOYOBO) in 1X PCR Buffer, along with 0.5 uyM of
both forward and reverse primers, 1.5 mM MgSO, (TOYOBO), and 0.2 mM dNTPs (TOYOBO).
After PCR amplification, the cDNA was gel-purified on a 6% polyacrylamide gel to remove adapter
dimers and sequenced using the lllumina NovaSeq6000 sequencing system. The sequences of
adapters, along with the sequences and specific mixing ratios of EM or RM spike-ins, are provided
in Supplementary Table 3. Mouse tissue miRNA libraries (excluding blood, erythrocytes, and
leukocytes) were also prepared using the NEBNext® Multiplex Small RNA Library Prep Set for

lllumina®, with 100 ng of total RNA as input.

Quantitative real-time PCR

We selected miR-221-3p (whose abundance spanned the entire linear range of our spike-in
standard curve) and miR-21-5p (the most abundant in nearly all cell lines) for evaluation of
quantification accuracy at different concentrations. The reverse transcriptase reactions consisted
of 100 ng of purified total RNA, 50 nM stem-loop RT primer, 1X reverse transcriptase M-MLV
buffer (TAKARA), 0.25 mM of each dNTP (Promega), 10 U/uL of reverse transcriptase M-MLV
RNase H- (TAKARA), and 1.07 U/uL of RNase inhibitor (Thermo). The total volume of the

reactions was 7.5 pl, and they were incubated in a Bio-Rad T100 Thermal Cycler under the



following conditions: 30 minutes at 25°C, 1 hour at 42°C, and 15 minutes at 75°C, before being
held at 4°C. RT products were diluted five times with deionized water. Each real-time PCR assay
for the microRNA (10 uL volume) contains 2 uL of diluted RT product, 5 uL of 2X Taq Pro Universal
SYBR gPCR Master Mix (Vazyme), and 1.5 uyM of both forward and reverse primers. The
reactions were carried out in an Applied Biosystems® QuantStudio™ 6 Flex Real-Time PCR
System in 384-well plates, with the following cycling conditions: an initial denaturation at 95°C for
30 seconds, followed by 40 cycles of denaturation at 95°C for 10 seconds and
annealing/extension at 60°C for 30 seconds. The sequences of RT and PCR primers are listed in
Supplementary Table 4.

To validate the ratio of miRNA-5p and -3p strands, hsa-mir-326 and hsa-mir-423 were
selected. Reverse transcription (RT) and dilution steps were performed as described previously.
Each real-time PCR reaction was carried out in a 10 yL volume containing 2 pL of diluted RT
product, 5 pL of 2x Taq Pro HS U+ Probe Master Mix (Vazyme), 1x ROX Reference Dye2
(Vazyme), 0.1 uyM TagMan probe, and 0.2 yM each of the forward and reverse primers.
Amplifications were performed on an Applied Biosystems® QuantStudio™ 6 Flex Real-Time PCR
System using 384-well plates under the following cycling conditions: 37 °C for 2 minutes and 95 °C
for 10 seconds, followed by 45 cycles of 95 °C for 10 seconds and 60 °C for 30 seconds. The

sequences of the RT and PCR primers are provided in Supplementary Table 4.

Analysis of small RNA sequencing

Raw data (read1) were pre-processed using the FASTX Toolkit (v0.0.14). The first 70 bp of
each read were retained, and low-quality sequences were filtered out (-q 20, -p 90). After quality
filtering, adapter sequences were trimmed, requiring a minimum 10-nucleotide match at the 3'
end. Reads without a detected adapter or shorter than 32 bp were discarded. Only reads with
"CGA" at positions 4-6 were retained, corresponding to the 5' random adapter. UMI extraction
was performed with UMI_tools (v0.5.1) using the following parameters: extract --extract-method

regex —be-



pattern="~(?P<umi_1>.[3])(?P<cell_1>.[3])(?P<umi_2>.[4])([A,T,C,G][5,100])(?P<umi_3>.[4])$".

Processed reads were aligned to the target genome using Bowtie (v1.2.1.1) with parameters --
best -v 0. Duplicate reads were removed with UMI_tools using the following parameters: dedup -
-edit-distance-threshold 1 --soft-clip-threshold 0 --method adjacency. Unaligned reads were
mapped to the spike-in reference sequences using Bowtie with parameters --best -v 1 --norc and
de-duplicated in the same manner. The remaining unmapped reads were aligned to the isomiR
reference library with the same parameters and de-duplicated. Molecules aligned to the genome
were merged with isomiR molecules for downstream analysis. Molecules were annotated based
on the following priority: mature miRNA > isomiR > tRNA > rRNA > snoRNA > snRNA > scRNA >
scaRNA > YRNA > IncRNA > mRNA > piRNA > novel miRNA. Mature miRNA, isomiR, piRNA,
and novel miRNA were annotated based on exact sequence and length matches, while other
small RNA categories were aligned to known sequences using Bowtie with parameters -k=100 -
v=0 -norc. Reads that aligned to the genome but lacked known annotations were classified as
"others". The expression of molecules in each library was normalized using the standard curve

generated from the external spike-ins.

Prediction of novel miRNAs

To identify potential novel miRNAs in our library, we applied miRDeep2 (v0.1.2) to reads that
did not align to known annotations. Novel miRNAs predicted by miRDeep2 were further filtered
based on the following criteria: (1) no match to any known sequences in the Rfam database; (2)
a total of at least 10 reads supporting the miRNA in the library; and (3) the mature miRNA
sequence must have a corresponding star sequence. Only miRNAs that satisfied all three
conditions were deemed reliable, and their precursor miRNA, mature miRNA, and star sequences
were extracted. Additionally, if miRge3.0 predicted pre-miRNA sequences with expression from
both strands, and the 3p or 5p strand had more than 10 reads and was not identified by miRDeep2,
those sequences were incorporated into the miRDeep2 prediction results. Together, these

sequences constituted the reference set for novel miRNAs.



Expression of miRNA families

To assess the expression patterns of miRNA families, we extracted all miRNA family
annotations from the latest version of MirGeneDB (v2.1). For each miRNA precursor, all mature
forms have been considered as family members. To reduce potential bias from multiple precursors,
duplicated mature miRNAs (e.g., those derived from different precursors within the same family)

were counted only once.

Prediction of miRNA arm ratio

We analyzed the miRNA arm ratio as previously described [68] with the following model:

Sp
In (5) = kAAGsp_3, + (Nsp — N3p) (1)

Where k and Nsyap) represent the constant for the relative thermodynamic stability and the

constant corresponding to the 5’ end identity, respectively.

Tissue specificity index
To compute the tissue specificity index, we used the formula described previously [77]. The
same formula was applied to cells to provide a cell specificity index. Specifically, the TSI for a

miRNA j is calculated as

TSI

_ ?]=1 (1 - xj,i)
s )

1

Where N is the total number of tissues measured and x;; is the expression score of tissue /

normalized by the maximal expression of any tissue for miRNA j.

Model development and validation
To enhance model compatibility, we integrated both in-house data generated using NEB kits
and an external raw dataset prepared with the same kits. After preprocessing, the datasets were

merged. To minimize background noise, miRNAs with expression levels below 5 amol in the



4NBoost data were excluded. The filtered dataset was split into three subsets: 72% for training,
20% for testing, and 8% as an independent validation set not involved in model training. In addition
to NEB-biased expression levels as core input features, we extracted several parameters as
auxiliary features, including (i) Sequence features: RNA length, nucleotide composition (A/T/C/G
ratio), and GC content; (ii) Thermodynamic parameters: minimum free energy, free energy
difference between 5’ and 3’ termini, and total duplex free energy; (iii) Terminal motifs: the first 1,
3, 4, and 6 nucleotides at both 5’ and 3’ ends; (iv) miRNA structural features: paired ratio, bulge
density, internal loop density, hairpin density, and pairing continuity. Feature correlation analysis
showed that NEB-biased expression contributed most significantly to the prediction performance
(R = 0.614). Terminal sequence features and some thermodynamic parameters (delta_G_sum
and MFE) showed moderate correlation (R > 0.14), whereas structure-related features
contributed minimally (R < 0.05). Therefore, the five miRNA-structure-related features were
excluded from the final feature set.

Using default hyperparameters, we benchmarked four tree-based algorithms: Random
Forest (RF), Gradient Boosting Decision Tree (GBDT), LightGBM, and XGBoost. Comparative
performance analysis identified XGBoost as the best-performing framework for our dataset, a
robust machine learning method known for its robustness and high predictive accuracy. Model
training was conducted on the designated training dataset, with hyperparameter optimization
performed using the Hyperopt package in Python.

The final model architecture incorporated the following optimized parameters: a learning rate
(eta) of 0.4, num_boost_round of 10, max_depth of 8, min_child_weight of 14, subsample of 0.75,
colsample_bynode of 0.5, colsample_bytree of 1.0, and reg_lambda of 4.0. Model performance
was evaluated on both a test set and an independent external validation dataset. Two primary
evaluation metrics were used: the coefficient of determination (R?) to quantify the variance
explained by the model in predicting absolute expression values, and Spearman's rank correlation

coefficient to measure the concordance between predicted and actual expression rankings.



Download of the genome sequence and small RNA annotation

The reference genomes for mouse (mm10), human (hg38), and crab-eating monkey
(macFas5) were downloaded from the UCSC Genome Browser
(https://hgdownload.soe.ucsc.edu/). Genome annotations for crab-eating monkeys were obtained
from UCSC, while annotations for the mouse and human genomes were downloaded from
Gencode (https://www.gencodegenes.org/). Small RNA annotations for humans and mice were
sourced as follows: miRNA annotations were downloaded from miRBase (release 22,
https://mirbase.org/download/) and retained only unique sequences. tRNA annotations were
obtained from Ensembl (release 110, https://www.ensembl.org/biomart/martview/) and GtRNAdb
(release 21, http://gtrnadb.ucsc.edu/index.html), with duplicate entries removed. rRNA
annotations were retrieved from Ensembl and NCBI (https://www.ncbi.nlm.nih.gov/nucleotide/),
and duplicates were similarly removed. piRNA annotations were sourced from the piRBase gold
standard set (release v3.0, http://bigdata.ibp.ac.cn/piRBase/). Annotations for snRNA, scRNA,
snoRNA, scaRNA, YRNA, mRNA, and lincRNA were downloaded from Ensembl. Small RNA
annotations for crab-eating monkeys were sourced as follows: miRNA annotations from miRBase
for rhesus macaques, with unique sequences retained. Annotations for rRNA, tRNA, snRNA, and
scRNA from UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/macFas5/database/rmsk.ixt).
Additionally, to comprehensively classify small RNAs derived from functional RNAs, we combined
the annotated functional RNA sequences from the rhesus macaque genome with corresponding
annotations from the crab-eating monkey genome. Annotations for rhesus macaques were

retrieved from NCBI (https://www.ncbi.nlm.nih.gov/).

Web server and database implementation

To create an efficient and engaging web interface for the SmRNAQuant database, we
employed the following tools: Django (v4.2.1) for web development, Bootstrap (v3.3.7) for
responsive design, jQuery (v3.2.1) for dynamic interactions, Python 3.8 for backend processing,

and ECharts for interactive data visualization. Data management and retrieval were conducted
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using MySQL (v8.0.35).



DATA AVAILABILITY

The deep-sequencing data have been deposited at the National Center for Biotechnology
Information NCBI Gene Expression Omnibus (http://www.ncbi.nim.nih.gov/geo/) database under
accession number GSE279145. The following publicly available datasets were used: K562 AQ-
seq data from GSE158025; K562 Truseq data from GSE102497; HCT116 AQ-seq data from
GSE230544; HCT116 Truseq data from GSE180613 and GSE189908; HEK293T and Hela AQ-
seq data from GSE123627; HEK293T and Hela Truseq data from GSE57295; HEK293T IsoSeek
data from PRJNA867189; mouse liver and brain Truseq data from GSE227578; Mouse kidney
NEBNext data from PRJNA759746; Mouse liver NEBNet data from GSE123346. Source Data are

provided with this paper.
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TABLES

Table 1. Tissue-specific miRNA families identified in monkey and mouse tissues using
SmRNAQuant datasets.

Tissues Monkey Mouse Overlap
Blood miR-144, miR-451, miR-19, miR-142 miR-144, miR-451, miR-142, miR-19, 4
miR-15, miR-17
Brain miR-124, miR-9, miR-137, miR-132 miR-124, miR-9, miR-132, miR-137, 4
miR-128, miR-218, miR-154, miR-127
Erythrocyte miR-486, miR-92, miR-191, miR-17, miR- miR-486, miR-92 2
15
Heart miR-499, miR-133, miR-1 miR-499, miR-133, miR-1 3
Leukocyte  miR-150 miR-150 1
Liver miR-122 miR-122 1
Muscle miR-133, miR-1 miR-133, miR-1 2
Pancreas miR-217, miR-216, miR-375 miR-216, miR-217, miR-459 2
Skin miR-203, miR-205 miR-203, miR-205 2
Colon - miR-192, miR-375, miR-194 0
Thymus - miR-181 0

Table 2. Tissue-specific miRNA families identified in monkey tissues using SmMRNAQuant and
MirGeneDB.

Tissues SmRNAQuant MirGeneDB Overlap
Brain miR-124, miR-129, miR-132, miR-124, miR-129, miR-132, miR-137, miR-

miR-137, miR-149, miR-9 149, miR-9, miR-127, miR-128, miR-135, 6

miR-138, miR-7, miR-218

Heart miR-1, miR-499, miR-135 miR-1, miR-499 2
Kidney miR-190, miR-204 miR-190 1
Liver miR-122, miR-192, miR-194 miR-122, miR-192, miR-194, miR-148 3
Muscle miR-1, miR-133 miR-1, miR-133, miR-378 2
Spleen miR-150, miR-223, miR-335 miR-150, miR-223, miR-142 2
Thymus  miR-205 miR-205, miR-155 1




Table 3. Tissue-specific miRNA families identified in mouse tissues using SmRNAQuant and
MirGeneDB.

Tissues SmRNAQuant MirGeneDB Overlap
Brain miR-124, miR-127, miR-128, miR-124, miR-127, miR-128, miR-132, miR-9, miR- .
miR-132, miR-9 126, miR-135, miR-15, miR-23
Heart miR-1, miR-499, miR-133 miR-1, miR-499 2
Intestine  miR-192, miR-194, miR-8, miR- ] ) ] ] ]
miR-192, miR-194, miR-8, miR-145, miR-459 3
375
Liver miR-122 miR-122 1
Muscle miR-1, miR-133 miR-1, miR-133, miR-22 2
Pancreas miR-216, miR-375, miR-459 miR-216, miR-375, miR-148, miR-459 3
Skin miR-203, miR-205 miR-203, miR-205 2
Spleen ) ) miR-142, miR-150, miR-19, miR-21, miR-451, miR-
miR-142, miR-150
143, miR-146
Testis miR-202, miR-34, miR-506 miR-202, miR-34, miR-506 3

Ovary miR-135, miR-202 0




FIGURE LEGENDS

Figure 1: 4NBoost significantly reduces ligation bias and achieves accurate quantification.
(A) The CV of the distribution of 30 (sequences with 2’-OH or 2’-Ome at the 3’ ends) or 7
(sequences with 2’-Ome at the 3’ ends) equimolar spike-ins, using total HEK293 cellular RNA as
background, is shown in the box plots. In these plots, the center line represents the median, while
the box edges correspond to the 25th and 75th percentiles. The whiskers extend to the minimum
and maximum values. The biological replicates for these experiments were n = 2 for TruSeq and
n = 4 for 4ANBoost.

(B) Pie charts illustrating the proportion of 30 equimolar spike-ins detected by TruSeq and
4NBoost in representative samples.

(C) The correlations between the ground truth and predicted abundances of ratiometric spike-ins
in various samples are illustrated, with blue points representing unmodified sequences and red
points indicating sequences with 2'-Ome at the 3' ends.

(D) Scatter plots illustrating the correlation between the ground truth and predicted abundances
of additional external spike-ins.

(E) Scatter plot illustrating the correlation between the predicted abundances of the selected
miRNA as measured by 4NBoost and RT-qPCR, with different colors representing distinct cell
lines. The number of biological replicates per cell line was three for Caco2 and four for all other
cell lines.

All p-values were calculated using two-tailed Student’s t-tests. Source data are provided as a

Source Data file.

Figure 2: Overview of miRNA expression across various tissues and cell lines.

(A) Tissues and cell lines collected for this study. Created in BioRender. Xiao, W. (2026)
https://BioRender.com/pb7rbk0 (B) Data analysis workflow for this study.

(C) Proportions of various small RNA types within all small RNA libraries. Biological replicates: n

= 2 (for mouse ovary and testis), n = 3 (for Caco2, mouse-breast, monkey-rectum, and monkey-



stomach), or n = 4 (for remaining samples).

Figure 3: Species and quantification of miRNAs across cell lines and tissues.

(A-B) Box plots showing the number of detected miRNA species across various cell lines (A) and
tissues (B), with 1.5 million mapped molecules from each sample used for analysis.

(C-E) Box plots illustrating the quantification of miRNA in various cell lines (C) and tissues (D-E).
In these plots, the center line represents the median value, the box borders represent the upper
and lower quartiles (25th and 75th percentiles, respectively), and the ends of the top and bottom
whiskers represent maximum and minimum values, respectively.

Biological replicates for (A-E): n = 2 (for mouse ovary and testis), n = 3 (for Caco2, mouse-breast,

monkey-rectum, and monkey-stomach), or n = 4 (for the remaining samples).

Figure 4: Re-assessment of miRNA strand preference.

(A) Proportions of the 5' and 3' arms of representative miRNAs in various tissues and cell lines,
as measured by 4NBoost. miRNAs in red bold indicate that their strand preferences have been
previously validated.

(B) Comparison of 5p/3p ratios for the top 100 miRNAs identified by our datasets, AQ-seq and
TruSeq in HCT116 or HEK293T cell lines. Statistical significance was assessed using two-tailed
Student’s t-tests.

(C) Comparison of miRNA strand ratios predicted by the model with those obtained from our
datasets (left), AQ-seq (middle), and TruSeq (right) in HEK293T, HCT116, and K562 cells.

(D) Strand preference of expressed miRNAs across species. miRNAs with over 75% expression
from the 5p arm are classified as 5p, those with less than 25% from the 5p arm as 3p, and those
in between are categorized as no preference.

(E) 5p/3p ratios of representative miRNAs across various cell lines measured by our datasets and
TruSeq. Annotated strand preferences from miRBase are displayed below, with bold text

highlighting annotations that are inconsistent with our datasets. In these plots, the center line



represents the median value, the box borders represent the upper and lower quartiles (25th and
75th percentiles, respectively), and the ends of the top and bottom whiskers represent maximum
and minimum values, respectively. Biological replicates were as follows: for TruSeq, n = 2 (for
HCT116, HEK293T, Hela) and n = 4 (for K562); for 4ANBoost, n = 4 (for HCT116, HEK293T, Hela,
and K562).

(F-G) Logz-transformed strand ratio of pre-mir-362 (F) and pre-mir-423 (G) obtained from RT-
gPCR-based absolute quantification across various cell lines. Each cell line is represented by
three biological replicates. Data represent mean £ s.e.m.

Source data are provided as a Source Data file.

Figure 5: The expression of miRNA families across cell lines and tissues.

(A) Expression patterns of the top 30 miRNA families in cell lines based on our datasets and the
DIANA-mIiTED database. Circle size represents the proportion of miRNA family expression
relative to total miRNA families.

(B) The representative miRNA families whose expression was underestimated (up) or
overrepresented (bottom) in the DIANA-mIiTED database compared to our datasets. Each box
plot summarizes data from the 17 shared cell lines common to both datasets.

(C) Expression patterns of the top 30 miRNA families in mouse and monkey tissues. Circle size
represents the quantification of each miRNA family. Data in (A) and (C) are presented as mean
values and their biological replicates: n = 2 (for mouse ovary and testis) or n = 3 (for Caco2,
mouse-breast, monkey-rectum, and monkey-stomach) or n = 4 (for the remaining samples).

(D) Confusion matrix of miRNA families with a tissue-specificity index (TSI) greater than 0.85.
Numbers within the bubbles indicate the number of overlapping tissue-specific miRNA families
between our datasets and MirGeneDB across various species. Numbers in parentheses on the
axes denote the total number of tissue-specific mMiRNA families identified in each tissue using our
datasets (x-axis) and MirGeneDB (y-axis).

(E) The quantification of tissue-specific miRNA families uniquely identified by MirGeneDB



(MirGeneDB unique) or common by MirGeneDB and our datasets (Shared). Each box plot
summarizes data from the 10 shared tissues common to both datasets.

(F) Expression levels of tissue-specific miRNA families uniquely identified by our datasets in the
MirGeneDB and our datasets. Each box plot summarizes data from the 10 shared tissues
common to both datasets.

Statistical significance was assessed using two-tailed Student’s t-tests. Box plots in (B), (E), and
(F) depict the median (center line), interquartile range (box), and min-max range (whiskers).

Source data are provided as a Source Data file.

Figure 6: Machine learning-based correction of sequencing bias.

(A) Schematic workflow of the predictive model, trained on paired datasets generated using
NEBNext Small RNA Library Prep (NEBNext) and 4NBoost. Created in BioRender. Xiao, W. (2026)
https://BioRender.com/cn4i15g (B) Concordance between 4NBoost measured and model-
predicted miRNA expression values.

(C-D) Comparison of miRNA expression rankings before (left) and after (right) bias correction,

relative to 4NBoost measurements in both test (C) and validation sets (D).

Figure 7: Snapshot depicting the SmMRNAQuant interface.

Users can view an overview of database statistics from the home interface. The Database
interface offers a range of filtering options to refine quantitative information or rankings for
sncRNAs of interest, including species, tissue or cell types, and small RNA types. The miRNA
search interface provides access to quantitative data and strand preference information for
specified miRNAs across various tissues or cell lines. Additionally, the sncRNA profile interface
displays the proportions of different sncRNAs expressed in various tissues and cell lines, along

with quantitative information for total miRNA.



Editorial Summary:

A comprehensive and quantitatively accurate reference for small noncoding RNAs is lacking. Here, the
authors present 4NBoost and create an absolute quantification atlas of sncRNA expression across tissues
and cell lines, along with a bias-correction model and the SmMRNAQuant web resource

Peer review information: Nature Communications thanks the anonymous reviewers for their contribution
to the peer review of this work. A peer review file is available.
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