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ABSTRACT 

The low quantitative accuracy of conventional small noncoding RNA sequencing (sncRNA-seq) 

methods due to extensive ligation bias commonly limits functional investigation of microRNAs 

(miRNAs) and PIWI-interacting RNAs (piRNAs). Here, we develop 4NBoost, a single-tube 

sncRNA-seq protocol designed to minimize bias in the estimated absolute quantification of miRNA 

and piRNA transcripts through the incorporation of quantitative exogenous RNA spike-ins. With 

4NBoost, we profile sncRNA expression across 20 murine tissues, 18 macaque tissues, and 24 

widely used cell lines, as well as 4 Arabidopsis tissues, to establish a comprehensive quantitative 

reference atlas. Compared with existing small RNA databases, our data reveal substantial biases 

in miRNA abundance, strand selection, and tissue-specific expression at both individual and 

family levels. To further extend its utility, we employ machine learning to model and correct biases 

in conventional datasets, effectively recovering ground truth transcript abundances. All 4NBoost 

data and the accompanying bias-correction model are freely available via SmRNAQuant 

(http://wulg-lab.sibcb.ac.cn/SmRNAQuant/), a web-based repository for exploring sncRNA 

expression. Together, the 4NBoost, bias-correction model, and SmRNAQuant provide powerful 

resources to advance sncRNA research.  
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INTRODUCTION 

Small non-coding RNAs (sncRNAs), including microRNAs (miRNAs), small interfering RNAs 

(siRNAs), and piwi-interacting RNAs (piRNAs), are key regulators in a variety of biological and 

pathological processes such as organ development, epigenetic modification, and tumorigenesis 

[1-8]. Numerous recent studies have greatly expanded our understanding of the diversity, 

complexity, and function of these sncRNAs [9-19]. Given their critical regulatory roles, a robust 

and comprehensive understanding of their biological functions requires accuracy in sncRNA 

profiling and quantification [20]. Despite the power and versatility of next-generation sequencing 

tools for studying sncRNA expression [21, 22], conventional sncRNA library construction typically 

relies on T4 RNA ligase for adapter ligation prior to reverse transcription and amplification, which 

are prone to introducing biases in quantification [23-26]. These biases primarily arise from the 

structure-dependent mechanism of T4-mediated ligation of adapters to sncRNAs, causing certain 

sncRNAs to be over- or under-represented, which can ultimately skew conclusions about their 

biological functions [27-31].  

Several methods have been developed to reduce or minimize these biases, including the use 

of terminal randomized adapter sequences and/or high polyethylene glycol (PEG) concentrations, 

as reported in methods such as 4N-seq, AQ-seq, IsoSeek, and NEXTflex [9, 15, 29-35]. Despite 

these advances, the large majority of sequencing approaches primarily target miRNAs with a 2’-

hydroxyl group (2’-OH) at the 3’ end, which neglects optimization of ligation efficiency for piRNAs 

and plant miRNAs, which instead harbor 3’ 2’-O-methyl modifications (2’-Ome) that hinder ligation 

[15, 36-39]. Furthermore, many of these methods do not incorporate unique molecular identifiers 

(UMIs) to correct for PCR bias by eliminating duplicate sequences. Additionally, few of these 

sequencing approaches has been adopted to determine estimated absolute quantification of 

sncRNAs, which is essential for addressing crucial fundamental research questions related to 

sncRNA stoichiometry. For example, miRNA activity has been shown to depend on a threshold 

level of expression, with only the most abundant miRNAs capable of effectively mediating target 

suppression [40-44]. This indicates that intracellular concentration is tightly coupled to functional 
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activity. However, absolute expression levels have been measured for only a limited subset of 

miRNAs in specific cell or tissue types [43-47]. Additionally, understanding the precise miRNA 

concentrations required for regulatory function can be vital to identifying differences between 

physiological and pathological processes [48, 49]. Moreover, existing miRNA databases—such 

as miRbase [50], MirGeneDB [51], miRmine [52], and DIANA-miTED [53]—as well as 

tissue atlas of sncRNAs [54, 55], were constructed using such biased sncRNA sequencing data, 

and therefore lack the capacity for accurate absolute quantification. Consequently, a 

comprehensive, bias-minimized, and quantitatively accurate reference for sncRNAs has yet to be 

established. 

To overcome these challenges, in the current study, we developed 4NBoost, a quantitative 

miRNA and piRNA sequencing technique that minimizes bias in small RNA sequencing through 

the incorporation of exogenous ratiometric RNA spike-ins. We applied 4NBoost to generate a 

comprehensive reference atlas of sncRNA expression by profiling 259 samples, including 20 

tissues from mice, 18 tissues from crab-eating macaques, 24 commonly used cell lines, and 4 

tissues from Arabidopsis. To the best of our knowledge, this is the most systematic estimated 

absolute quantification of sncRNAs across mammalian tissues and cell lines. To further expand 

its utility, we developed an XGBoost-based framework to correct biases in conventional datasets, 

enabling accurate reconstruction of ground truth transcript abundances. Additionally, we 

developed a web-based database to facilitate access to 4NBoost data, allowing researchers to 

retrieve and analyze small RNA expression profiles. Together, the 4NBoost method, correction 

model, and online resource constitute a robust platform for advancing both fundamental and 

clinical research in small noncoding RNAs. 
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RESULTS 

Construction of 4NBoost with greatly reduced ligation bias for high accuracy sncRNA 

quantification 

To construct 4NBoost, we modified the 4N-Xu method [35, 56] by first increasing the size of 

random nucleotides (NTs) in 5’ adapter from 4 to 7 NTs, while retaining a 3’ adapter of 4 random 

NTs that ensures a total of 11 random bases to reduce ligation bias and expand the number of 

unique molecular identifiers (UMIs) essential for removing duplicate reads. Based on AmpUMI 

model predictions [57] and previous studies [34], we determined that UMIs with 11 random bases 

could effectively capture the most abundant molecules with a low probability of UMI collision (1.4%, 

Supplementary Figure 1A). To limit the likelihood of generating excessive byproducts associated 

with long consecutive random sequences, we also introduced 3 fixed nucleotides into the 7 

random nucleotides of the 5’ adapter [58].  

We then designed and synthesized 30 spike-ins, including 7 with 2’-O-methyl modifications 

at the 3’ end, which enabled the evaluation of the quantitative accuracy of 2’-O-methyl-modified 

sncRNAs in addition to miRNAs. We prepared two spike-in pools, including an equimolar pool 

(EM) and a ratiometric pool (RM), to test the accuracy and uniformity of the library (Supplementary 

Figure 1B). In the ratiometric pool, the concentrations of 30 spike-ins spanned an approximate 2 

x 105-fold concentration range, with 3 oligos per concentration. 

Optimization of reaction conditions showed that, in addition to high PEG8000 concentration 

[32], the coefficient of variation (CV) of equimolar spike-ins gradually decreased with increasing 

concentration of adapters, suggesting that the higher concentration of adapters could further 

minimize potential library biases (Supplementary Figure 1C). However, higher adapter 

concentrations led to a significant increase in self-ligation byproducts, with up to 90% of raw data 

comprising such artifactual sequences that had to be discarded (Supplementary Figure 1D). To 

balance library uniformity and data quality, we determined that 0.55 µM was the optimal 

concentration of 3’ and 5’ adapters (Supplementary Figure 1E). Additionally, we found that 

Lambda exonuclease was more efficient than RecJ exonuclease in depleting excess 3’ adapters 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

[59, 60] (Supplementary Figure 1F-G).  

We then evaluated the accuracy of 4NBoost by adding the EM or RM pools to the total cellular 

RNAs and calculating the relative amounts of spike-ins based on the sequencing results. 

Compared to TruSeq and AQ-seq, 4NBoost demonstrated the lowest average CV (1.73, 0.56, 

and 0.51, respectively, for TruSeq, AQ-seq, and 4NBoost), indicating a marked reduction in library 

ligation biases and resulting in more uniform representation of equimolar spike-ins (Figure 1A-B 

and Supplementary Figure 1H). Correlation analysis between the expected and observed 

abundance of ratiometric spike-ins yielded Pearson’s coefficients > 0.94, indicating that 4NBoost 

could accurately reflect small RNA expression levels across varying abundances (Figure 1C). 

Notably, in 4NBoost libraries, spike-ins with 3’ end methylation showed similar ligation efficiency 

to non-methylated spike-ins (Supplementary Figure 1I), in sharp contrast to the TruSeq libraries, 

where spike-ins with terminal methylation were detected at over 10-fold lower efficiency compared 

to their non-methylated counterparts. This finding was further validated by the 4NBoost library 

from mouse testis, which displayed a stronger 1U signal for piRNAs compared to the TruSeq 

library (Supplementary Figure 1J). 

To assess the sensitivity of 4NBoost, we performed sequencing on serial dilutions of input 

RNA, ranging from microgram (µg) to nanogram (ng) and picogram (pg) amounts. As a 

benchmark, miRNA expression profiles generated from 1 µg of input RNA were compared with 

those from lower input amounts (Supplementary Figure 1K–L). The number of detected miRNA 

species remained relatively constant down to 10 ng of input RNA. At 1 ng, reproducibility in miRNA 

detection declined moderately, but Spearman correlation coefficients remained high (> 0.7). 

Below 1 ng, both the number of detected miRNA species and robustness decreased sharply. 

These results indicate that 4NBoost can faithfully profile sncRNA expression from as little as 1 ng 

of total RNA without substantial loss of performance. 

Finally, we applied 4NBoost to quantify each small RNA by generating standard curves using 

the ratiometric spike-ins with known absolute molecule numbers. To validate its accuracy, we 

incorporated four additional external spike-ins and found that 4NBoost could predict the molar 
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quantities of all spike-ins, except the lowest abundance one, with high precision (Pearson’s 

coefficient = 0.93; predicted vs ground truth values; Figure 1D). Additionally, a comparison 

between miR-221-3p abundance in ten cell lines predicted by 4NBoost and its copy numbers 

obtained by RT-qPCR showed a high correlation (Pearson’s coefficient = 0.93) between methods 

(Figure 1E). Similarly, miR-21-5p, the most abundantly expressed miRNA across most cell lines, 

showed excellent agreement between RT-qPCR and 4NBoost measurements (Pearson’s 

coefficient = 0.99, p = 4.95×10-20; Supplementary Figure 1M). Collectively, these results further 

support the high quantitative accuracy of our method. Notably, 4NBoost could accurately quantify 

sncRNAs with abundances >10 amol per 100 ng total RNAs.  

 

Construction of a quantitative sncRNA expression atlas of mammalian tissues and cell 

lines  

Assembling a set of tissues and cell lines commonly used in miRNA studies (Supplementary 

Data 1) resulted in a panel of 24 cell lines (n = 4), 20 tissues from BALB/C mice (n = 4), and 18 

tissues from crab-eating monkeys (n = 4) (Figure 2A). Using 4NBoost, we then constructed 244 

total libraries, among which 242 passed quality control screening (Figure 2B). Each library 

contained over 1 million genome-mapped reads (Supplementary Figure 2A), which were further 

annotated into various small ncRNA species (Figure 2B). Among these ncRNAs, miRNA was the 

most well-represented species in most cell lines and tissues, except in testis samples (Figure 2C). 

Correlation analysis of miRNAs between biological replicates showed expression correlations 

exceeding 0.9 (Supplementary Figure 2B-D), indicating high reproducibility. The high correlation 

of the read counts before and after UMI deduplication for the top 100 most abundant miRNAs 

further supports that 11-nt UMIs are sufficient for accurate deduplication with negligible impact 

from potential UMI collisions (Supplementary Figure 2E). 

Subsequent validation of quantitative accuracy for sncRNAs in each sample with an 

additional four spike-ins yielded a correlation coefficient of 0.97 between predicted and ground 

truth values (Supplementary Figure 2F-G), thereby confirming the accuracy of 4NBoost. This high 
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accuracy enabled further estimation of the abundance of each miRNA and piRNA in all cell lines 

and tissues in our panel, which we used to construct a dataset of more reliable expression levels. 

We also noted that miRNA family quantifications had markedly low CV across biological replicates, 

further supporting the stability and reliability of quantification by 4NBoost (Supplementary Figure 

2H). Overall, these results indicated that 4NBoost generated robust, quantitative miRNA and 

piRNA expression datasets across a wide range of tissues and cell lines. 

 

Comparative analysis of miRNA species and expression across cell lines and tissues 

We then applied these quantitative sncRNA datasets to analyze the number of miRNA 

species expressed in each cell line and tissue, mitigating the influence of variations in sequencing 

depth by randomly selecting 1.5 million mapped molecules from each sample for analysis. In most 

cell lines, approximately 600 miRNA species were detected (Supplementary Data 2, Figure 3A), 

which was comparable to the 532 average miRNA species reported in the miRmine database [52]. 

Notably, U2OS cells had the highest number of miRNAs (715 species), while the fewest were 

detected in MDA-MB-231 cells (266 species). In tissue samples, typically more than 500 miRNA 

species were expressed, with the exception of erythrocytes and blood, which had only 328 

species (Figure 3B). Of note, some samples with lower miRNA species numbers, e.g., 

erythrocytes and blood, also had a small subset of predominant or overrepresented miRNAs, 

such as miR-451. Intriguingly, we also observed that most samples from monkeys had fewer 

miRNA species compared to the corresponding tissues from mice, likely due to the less 

comprehensive miRNA annotation in monkeys. However, detected miRNA numbers may be 

influenced by factors such as sncRNA composition or incomplete annotation, and should be 

interpreted with caution. 

We then compared miRNA concentrations quantified by 4NBoost (Figure 3C-E). Similar to 

the distribution of miRNA species across samples, total miRNA contents were comparable among 

most cells, with an average of ~2200 amol per 100 ng of total RNAs (Supplementary Data 2, 

Figure 3C), or approximately 15 pg (~0.015% of total RNAs), which was consistent with previous 
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reports [61]. Across cell lines, SH-SY5Y cells had the highest miRNA expression level, ~4000 

amol per 100 ng total RNA. Across tissues, for example, in monkeys, we found that brain samples 

had the lowest average miRNA levels, while heart and lung samples had the highest. By contrast, 

in mice, pancreas and testis tissues had the lowest average miRNA levels, whereas lung and skin 

samples had the highest miRNA contents (Supplementary Data 2, Figure 3D). As a result of this 

variability, Spearman analysis of miRNA concentrations between monkey and mouse tissues 

showed low correlation (R = 0.48; Figure 3D), potentially reflecting big differences in miRNA 

expression among species. Additionally, due to the overrepresentation of miR-451 in blood and 

erythrocyte samples, miRNA quantities were much higher in these samples compared to solid 

tissues (Figure 3E).  

Notably, although pancreas samples had a higher relative proportion of miRNAs than testis 

in mice (Figure 2C), their quantities were not significantly different (Figure 3D). These findings 

highlighted the importance of absolute quantification for comparing miRNA expression levels 

across different tissues or cell lines. 

 

Improved miRNA expression accuracy with 4NBoost 

Previous studies have shown that miRNA dosage influences the strength of downstream 

gene regulation, with highly expressed miRNAs commonly selected as key targets for further 

investigation [48, 49]. In our study, we focused on these highly expressed miRNAs across various 

cell lines and tissues, identifying notable discrepancies between 4NBoost datasets and the 

DIANA-miTED database, which shares the greatest overlap in cell lines with our study, as well as 

MirGeneDB, a well-established source for miRNA expression data in tissues. Estimated absolute 

quantification with 4NBoost suggested that the expression levels of numerous miRNA species, 

including pre-mir-19, pre-mir-29, pre-mir-23a, pre-mir-24, pre-mir-126a, pre-mir-143, pre-mir-26a, 

and pre-mir-30c were likely underestimated in DIANA-miTED and MirGeneDB, while pre-let-7a, 

pre-let-7b, pre-let-7c, pre-mir-10a, pre-mir-22, and pre-mir-191 were overestimated in samples 

from the same tissues or cell lines (Supplementary Data 3). 
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To test whether these discrepancies arose through differences among library construction 

methods, we analyzed heterodimer structures for both over- and underestimated miRNAs, as the 

influence of heterodimer structures formed between RNA and adapters has been widely reported 

to influence T4 RNA ligase (Rnl) activity, wherein 5’ adapter ligation by Rnl1 favoring RNAs with 

an unpaired 5’ end [29, 30, 62-64]. This analysis of heterodimer structures in over- and 

underestimated miRNAs with 5’ RNA adapters revealed that over 85% of the overestimated 

miRNAs had unpaired 5’ ends, while around 70% of underestimated miRNAs had paired 5' ends 

(Supplementary Figure 3A-B), which was consistent with Rnl1 bias for unpaired 5’ ends. By 

contrast, for 4NBoost data, generated with random adapters, over 90% of these underestimated 

miRNAs formed secondary structures more favorable for Rnl1 ligation (Supplementary Figure 3C). 

These findings suggested that 4NBoost consequently improved the accuracy of miRNA 

expression quantitation, compared to that in DIANA-miTED or MirGeneDB. 

 

Analysis of miRNA strand preference by 4NBoost 

In addition to the above problem of over- or underrepresentation, ligation bias has also been 

identified as a potential source of mis-annotation in miRNA strand preference for certain miRNAs, 

such as pre-mir-423, pre-mir-17, pre-mir-106b, and pre-mir-151a. As bias-reducing methods have 

been shown to help mitigate this issue [29, 32], we next examined strand preference in 4NBoost 

data. This analysis showed that miRNA strand preferences were consistent with previously 

validated results for pre-mir-324 [65], pre-mir-423 [32], pre-mir-223 [66], and pre-mir-133a [67] 

(Figure 4A, Supplementary Table 1). Moreover, strand preferences measured by 4NBoost also 

correlated closely with those obtained by AQ-seq in the HCT116 and HEK293T cell lines 

(Pearson’s coefficient = 0.94 and 0.91, respectively), whereas moderate differences were noted 

when compared to TruSeq (Pearson’s coefficient = 0.79 for the HCT116 cell line and 0.82 for the 

HEK293T cell line; Figure 4B). Subsequent application of a strand selection model to all miRNA, 

as previously described [68], and compared with the strand ratio data obtained by 4NBoost and 

TruSeq showed that 4NBoost data shared a stronger correlation with model predictions 
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(Pearson’s coefficient = 0.67) than TruSeq (Pearson’s coefficient = 0.59; Figure 4C), further 

emphasizing higher accuracy of 4NBoost in strand ratio measurements. 

Examination of strand preference for all detected miRNAs across cell lines and tissues in our 

4NBoost data (Supplementary data 4) indicated that >50% of miRNAs preferentially expressed 

the 5p strand, whereas >30% preferentially expressed the 3p strand, regardless of species 

(Figure 4D). Additionally, although most miRNAs exhibited consistent strand preferences, a small 

subset switched the preferred strand depending on the cell type or tissue (Figure 4A). For example, 

pre-mir-142a produced markedly more 3p than 5p miRNA in mouse blood; but the 5p and 3p 

strands are present at similar levels in other tissues. Likewise, pre-mir-324 and pre-mir-339 in 

monkeys, as well as pre-mir-126a and pre-mir-144 in mice, also showed variable strand 

preferences. Notably, 4NBoost identified several miRNAs with opposite strand selection 

compared to TruSeq or miRBase annotations, including pre-mir-500a, pre-mir-582, pre-mir-671, 

and pre-mir-362 (Figure 4E), as well as 15 previously reported miRNAs, such as pre-mir-193a, 

pre-mir-374a, and pre-mir-454 [29]. Among these, pre-mir-423 and pre-mir-362 were selected, 

and their strand preference was validated by RT-qPCR. The strand ratios estimated by RT-qPCR 

were consistent with our dataset but differed from the TruSeq data or miRBase annotations 

(Figure 4F-G). Taken together, these results indicated that 4NBoost could provide more reliable 

and accurate miRNA strand preference data than other current methods. 

 

Re-evaluation of the expression and tissue specificity of miRNA families 

miRNA families, which share a common seed sequence and exhibit high sequence similarity, 

often exert cumulative effects on gene expression [69-73]. However, the extent to which previous 

biased sequencing approaches affect the accurate measurement of miRNA family expression has 

not yet been evaluated. We therefore assessed miRNA family-level expression patterns across 

various cell lines and tissues for comparison with other current miRNA databases. 

We observed that miRNA families such as let-7, miR-10, and miR-21 were broadly expressed 

across human cell lines in 4NBoost data (Figure 5A), which agreed well with previous reports [1, 
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52, 74, 75]. However, comparison with DIANA-miTED revealed significant discrepancies in certain 

miRNA family expression patterns compared with 4NBoost data. For example, miR-15, miR-17, 

miR-19, and miR-29 family expression levels were generally underestimated in DIANA-miTED, 

while the let-7, miR-10, miR-191, and miR-92 families were overrepresented compared to 

4NBoost data (Figure 5B). Further, even more pronounced discrepancies emerged through 

comparisons of tissue level data between 4NBoost and MirGeneDB (Supplementary Figure 4A-

B), which indicated that the miR-126, miR-143, miR-19, miR-23, miR-24, miR-26, and miR-29 

families were generally underestimated, whereas let-7, miR-1, miR-103, miR-199, miR-10, miR-

181, miR-191 and miR-22 families were overrepresented in MirGeneDB (Supplementary Figure 

4C-D). Closer scrutiny of these datasets suggested that these discrepancies likely arose through 

inaccurate quantification of specific miRNAs, such as miR-19a and miR-19b in the miR-19 family, 

as well as miR-29a, miR-29b, and miR-29c in the miR-29 family, which led to underestimation of 

these miRNA families by conventional small RNA sequencing analytical methods (Supplementary 

Data 3). Consistent with this, previous studies have also shown that miR-29b ranked only 29th in 

the fixed adapter library derived from DLD-1 cells, whereas it was the most abundant miRNA in 

the random adapter library [29]. This discrepancy illustrates how miR-29b might be overlooked in 

colorectal cancer studies. These cumulative results suggested that 4NBoost data could provide a 

more accurate reference for miRNA family expression, which is essential for elucidating their 

biological functions and roles in disease processes. 

We then focused on identifying ubiquitously expressed or tissue-specific miRNA families, 

which revealed that the let-7, miR-10, miR-23, miR-24, miR-26, miR-27, miR-29, and miR-30 

families were highly expressed across all solid tissues, and showed remarkably similar expression 

levels between mice and monkeys (Figure 5C). These results were in line with the well-

documented roles of these miRNA families in various developmental, cellular, and physiological 

processes essential for most tissues [1]. In contrast with the above broadly expressed miRNAs, 

we next searched for tissue-specific miRNA families, which are particularly intriguing due to their 

potential for specialized functions within specific tissues [52, 76]. To assess tissue specificity, we 
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calculated the tissue specificity index (TSI) for miRNA families using a well-established method 

[77], wherein higher TSI values indicated greater tissue specificity. This analysis uncovered 23 

and 30 total tissue-specific miRNA families in 4NBoost data from monkey and mouse tissues, 

respectively (TSI ≥ 0.85, Table 1). Among these tissue-specific miRNA families, more than 80% 

were consistent with those identified by MirGeneDB (Figure 5D, Table 2-3), which may be 

attributable to the high accuracy of relative expression analysis available through all current small 

RNA sequencing methods [35]. 

However, we also found some noteworthy differences with 4NBoost results. First, the tissue-

specific miRNA families identified using 4NBoost data were largely subsets of those identified 

using MirGeneDB (12 out of 17). For example, 6 of 11 brain-specific miRNA families identified by 

MirGeneDB in monkeys were also detected using 4NBoost. Further analysis revealed that the 

miRNA families missed by 4NBoost were predominantly expressed at low levels (Figure 5E), and 

were likely filtered out due to the expression cut-off we applied during the analysis process. 

Alternatively, 4NBoost analysis identified five tissue-specific miRNA families that were overlooked 

by MirGeneDB, such as the kidney-specific miR-204 family, heart-specific miR-135 family, and 

spleen-specific miR-335 family in monkey (Table 2), as well as the ovary-specific miR-135 and 

miR-202 families in mouse (Table 3). The expression levels of these miRNA families may have 

been underestimated by conventional sequencing data compared to 4NBoost (Figure 5F), 

potentially leading to their omission from MirGeneDB. Taken together, the capacity for precise 

miRNA quantification by 4NBoost facilitates more reliable identification of tissue-specific miRNA 

families. 

 

Tissue-specific miRNA families are conserved between mice and monkeys 

Since tissue-specific miRNAs have been previously shown to exhibit high conservation 

between mice and humans [77, 78], we next applied 4NBoost to explore the conservation of 

tissue-specific miRNA families between mice and monkeys. Our results showed that TSI values 

were quite similar between species for these miRNA families (Pearson’s coefficient = 0.77, 
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Supplementary Figure 5A), which was consistent with their comparable expression profiles. This 

analysis also showed a high degree of overlap in the tissue-specific expression of miRNA families 

between the two species (Supplementary Figure 5B, Table 1). For example, we identified several 

well-documented tissue-specific miRNA families, such as the miR-122 family in liver; miR-9, miR-

137, and miR-124 families in brain; miR-133 and miR-1 families in muscle and heart; miR-499 

family in heart; miR-144 and miR-451 families in blood; miR-205 family in skin; and miR-216 family 

in the pancreas [54, 77, 79-82]. Additionally, we identified some previously unreported tissue-

specific miRNA families in mice and monkeys, including the miR-203 family in the skin, miR-459 

and miR-217 families in the pancreas, as well as miR-19 and miR-142 families in the blood. These 

findings suggested that tissue-specific miRNA families are conserved across mouse and monkey 

tissues.  

 

Re-evaluation of Plant sncRNA abundance 

Plant miRNAs and most siRNAs are characterized by 3’-terminal 2’-O-methylation, which 

substantially impedes adapter ligation and introduces biases in library construction using 

conventional small RNA sequencing methods. To overcome this limitation, we re-evaluated 

sncRNA abundance in root, stem, leaf, and flower tissues of the model plant Arabidopsis thaliana 

using 4NBoost. Consistent with the well-established features of plant small RNAs, the 4NBoost 

profiles were dominated by 21-24 nt sncRNAs, with 21-nt species strongly enriched for 5’ uridine 

while 24-nt species preferentially carrying adenine (Supplementary Fig. 6A). Compared with the 

conventional TruSeq method, 4NBoost markedly improved the recovery of 24-nt sncRNAs with a 

stronger 5’ adenine bias, and significantly enhanced miRNA detection, identifying on average 244 

unique miRNAs, nearly 50% more than the 163 miRNAs captured by TruSeq (Supplementary Fig. 

6B-D). In addition, TruSeq introduced substantial inaccuracies in miRNA quantification. For 

instance, miR165a-3p, miR166a-3p, miR168a-3p, miR168a-5p, and miR166e-5p were 

consistently overestimated, whereas miR161.2, miR172a, miR173-5p, and miR167a-5p were 

underestimated across all four tissues (Supplementary Fig. 6E). Collectively, these results 
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demonstrate that 4NBoost provides a more accurate and comprehensive representation of plant 

small RNA abundances, overcoming the limitations of conventional sequencing methods. 

 

Machine learning-based correction of sequencing bias in sncRNA expression profiles 

To enhance the utility of existing sncRNA sequencing datasets affected by library preparation 

bias, we developed a computational framework that corrects biases in conventional expression 

profiles, generating quantitatively accurate datasets. We analyzed matched samples processed 

using two protocols: the widely adopted NEBNext small RNA library preparation and our optimized 

4NBoost method. Using these paired datasets, we trained XGBoost regression models to learn 

and correct library-specific artifacts present in conventional sequencing data (Figure 6A). The 

correction model exhibited strong performance in reconstructing accurate expression profiles 

from biased datasets. For NEBNext-prepared libraries, the predicted expression levels showed 

high concordance with those obtained from 4NBoost, with Pearson correlation coefficients of r = 

0.87 in the test set and r = 0.86 in the validation set (Figure 6B). Importantly, the model also 

improved the ranking accuracy of transcript abundances: the correlation with 4NBoost data 

increased from r = 0.51 (uncorrected) to r = 0.85 (corrected) in the test set (Figure 6C). Internal 

validation further confirmed the robustness of the model, yielding similarly high correlations 

(Pearson’s r = 0.83; Figure 6D). In summary, this regression-based correction framework enables 

accurate reinterpretation of existing sncRNA-seq datasets by mitigating protocol-induced biases.  

 

SmRNAQuant: an integrated 4NBoost database 

To facilitate access to our 4NBoost data from various cell lines and tissues, we developed 

SmRNAQuant (Figure 7), an interactive analytical and visualization platform incorporating Django 

(v4.2.1), Bootstrap (v3.3.7), jQuery (v3.2.1), Python 3.8, and Echarts. This platform enables 

detailed quantification of small RNAs across different cell lines and tissues, facilitating deeper 

insights into expression patterns and biological roles. Users can download the complete dataset 

or generate customized subsets by selecting specific tissues or cell lines of interest. 
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SmRNAQuant also features a “miRNA view” function, which allows users to query individual 

miRNAs and visualize their expression profiles through bar charts across various tissues and cell 

types, providing a comprehensive overview of miRNA expression. Additionally, the platform 

integrates our regression-based correction algorithm, enabling users to calibrate NEBNext-

derived datasets and obtain expression values comparable to those generated by 4NBoost. 

Collectively, SmRNAQuant improves the accessibility and usability of small RNA sequencing data 

for a broad range of research applications. 
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DISCUSSION 

 In this study, we introduce 4NBoost, a bias-minimized and quantitatively calibrated method 

for estimating absolute sncRNA profiling. We also introduce SmRNAQuant, a web-based 

database designed to host quantification datasets of sncRNAs. To further enhance the usability 

of 4NBoost and SmRNAQuant, we developed a machine learning-based correction model to 

adjust for biases inherent in conventional sncRNA sequencing data. Together, our work provides 

a large-scale and systematic atlas of quantification of sncRNAs across a diverse range of 

mammalian tissues and widely used cell lines. 

Compared with external databases, our datasets provide more accurate small RNA 

information. First, it offers a more precise ranking of miRNAs in tissues and cell lines, which is 

crucial for researchers to select research targets. For example, our results indicate that, compared 

to existing databases, the expression levels of the miR-29 and miR-19 families are significantly 

higher, whereas those of the miR-10 and let-7 families are significantly lower. These differences 

are mainly attributed to the structural preferences of the T4 ligation enzyme. Second, our datasets 

provide more reliable information on miRNA strand preference, which is consistent with both 

experimental and model-based findings reported in the literature. Moreover, in comparison to 

TruSeq sequencing data and miRBase, we identified strand annotation deviations in certain 

miRNAs, such as pre-mir-500a and pre-mir-362, which could greatly affect the prediction of their 

target genes. Third, our datasets provide a higher signal-to-noise ratio for tissue-specific miRNAs, 

making it a more reliable dataset for studying miRNA conservation across species. 

Previous studies demonstrated that miRNA activity depends on reaching a threshold level of 

expression [44], with only the most abundant miRNAs in a cell capable of mediating effective 

target suppression [43]. A recent study further showed that mRNA stability begins to decrease 

when miRNA abundance reaches approximately 1,000 miRNA transcripts per million (TPM) [40]. 

In mouse oocytes, rapid growth and dilution of miRNAs during development were found to lower 

their effective concentrations, producing a knockdown-like effect insufficient for robust repression 

[42]. Consistently, silencing activity of miRNAs was maintained at 1.5 nM but lost at 0.3 nM. 
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Collectively, these findings highlight the tight coupling between intracellular miRNA concentration 

and functional activity. However, absolute expression levels have so far been determined for only 

a subset of miRNAs in limited cell and tissue types [43, 45-47]. In this context, our datasets 

provide a more comprehensive and systematic reference, enabling the prediction of which 

miRNAs are likely to be functionally active and guiding the selection of the most relevant 

candidates for downstream studies. 

In addition, we developed an XGBoost-based correction framework that converts 

conventional small RNA-seq data into quantitatively accurate expression profiles. By eliminating 

the need for re-sequencing, it substantially expands the value of existing data and facilitates more 

reliable downstream analyses. Leveraging the unbiased quantification provided by 4NBoost, 

SmRNAQuant integrates this correction model to serve as a more reliable and precise reference 

resource for small RNA research. 

Despite its strengths, this study has several limitations. First, the effectiveness of 4NBoost 

for constructing sncRNA libraries depends on a minimum input of 1 ng of total RNA. Below this 

threshold, data quality declines markedly, primarily due to incomplete removal of excess 3' 

adapters, which leads to the accumulation of adapter–adapter PCR artifacts [56]. Future 

optimization efforts may focus on enhancing 3' adapter removal efficiency or exploring alternative 

strategies, such as using a cocktail of RNA ligases to reduce ligation bias and potentially eliminate 

the need for terminal degenerate sequences. It should also be noted that although 4NBoost 

reduces ligation bias and improves quantification accuracy, the method still exhibits some bias 

and therefore cannot guarantee fully precise absolute quantification. Second, 4NBoost is 

specifically designed for quantifying sncRNAs that share compatible chemical termini (5' 

monophosphate and 3'-OH or 3'-O-methyl ends), such as miRNAs, siRNAs, and piRNAs. 

However, other classes of sncRNAs, including small nucleolar RNAs (snoRNAs), small nuclear 

RNAs (snRNAs), tRNA-derived small RNAs (tsRNAs), and rRNA-derived small RNAs (rsRNAs), 

often contain noncanonical 5' or 3' ends or internal modifications that interfere with ligation and 

reverse transcription in the current 4NBoost protocol. Several specialized methods have been 
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developed to address these challenges [83-86], and integrating such techniques with 4NBoost 

may broaden its scope. Finally, the limited diversity of samples included in our current database 

may restrict the generalizability of our findings and reduce the applicability of the data across 

broader biological contexts. To overcome this limitation, future studies should apply 4NBoost to a 

wider range of tissues, developmental stages, and disease states. In parallel, our machine 

learning–based correction framework offers a complementary solution by enabling integration and 

bias correction of existing sncRNA-seq datasets. Together, these efforts will expand sample 

representation and enhance the robustness and translational potential of the resulting small RNA 

expression database.  
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METHODS 

Cell culture and RNA extraction 

All cell lines used in this study were purchased from the American Type Culture Collection 

(ATCC), National Collection of Authenticated Cell Cultures (NCACC), or Shanghai Chuanqiu 

Biological Technology Co., Ltd (SCBT) (Supplementary Data 1) and were authenticated by the 

respective providers. Cell lines were revived and cultured in a 6 cm dish at 37°C with 5% CO2. 

Once the cells reached 90% confluence, they were collected with 1 mL of TRIzol reagent 

(Invitrogen). Next, 200 µL of trichloromethane was added and mixed thoroughly. The solution was 

then centrifuged at 12,000 g for 15 minutes at 4°C. The upper aqueous phase (~450 µL) was 

transferred into a new 1.5 mL EP tube, followed by the addition of 900 µL of ethanol. The solution 

was mixed by inversion, left at -30°C for 30 minutes, and then centrifuged again at 12,000 g for 

15 minutes at 4°C. After removing the supernatant, the pellet was washed twice with 80% ethanol, 

air-dried for 2-3 minutes at room temperature, and dissolved in DEPC-treated water. RNA 

concentration was measured using a Nanodrop spectrophotometer, and RNA quality was 

assessed using the Agilent Bioanalyzer 2200. Each RNA sample was diluted to a final 

concentration of 100 ng/µL and stored at -80°C until use. 

 

Tissue collection and RNA extraction 

This study was conducted using both male and female mice and Crab-eating monkeys. 4 

weeks old male and female BALB/c mice were purchased from Shanghai Lingchang 

Biotechnology Co., Ltd, and animal protocol was approved by the Center for Excellence in 

Molecular Cell Science, Chinese Academy of Sciences (SIBCBS2182005007). 4 years old male 

and female Crab-eating monkey tissues were generously provided by the Jinyi Chen’ lab at 

Shanghai Institute of Materia Medica, Chinese Academy of Sciences. 

Fresh blood samples were collected into EDTA anticoagulant tubes and diluted with PBS at 

a 1:1 ratio. 3mL of separation solution (Solarbio) and 3 mL of the diluted blood were added to a 

15 mL centrifuge tube and centrifuged at 800 g for 30 minutes at room temperature, resulting in 
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distinct layers containing plasma, white blood cells, separation solution, and red blood cells. The 

red blood cell layer was carefully transferred into a new 1.5 mL EP tube, mixed with 1 mL of Trizol, 

and stored at -20°C until RNA extraction. The white blood cell layer was transferred into a new 15 

mL centrifuge tube, washed with 10 mL of PBS, and centrifuged at 250 g for 10 minutes at room 

temperature. After centrifugation, the supernatant was removed, and the precipitate was 

resuspended with red blood cell lysis buffer, then centrifuged at 250 g for another 10 minutes. The 

supernatant was discarded, and the precipitate was resuspended with 1 mL Trizol. After thorough 

mixing, the sample was stored at -20°C until RNA extraction.  

Mouse and monkey lung, breast, stomach, colon, rectum, kidney, brain, skin, liver, ovary, 

testis, fat, pancreas, heart, thymus, muscle, and spleen tissues were collected, cut into small 

pieces, and submerged in an appropriate amount of RNAlater (Thermo). After being stored 

overnight at 4°C, the samples were transferred to -20°C. For RNA extraction, 50-100 mg of tissue 

was ground using a cryogenic grinder or a mortar (see Supplementary Table 2 for the specific 

grinding method for each tissue), and RNA was purified as described above. 

 

Small RNA spike-in design 

We randomly generated 1,000 sequences with lengths ranging from 20 to 30 nt and predicted 

their secondary structures using RNAfold. Sequences were selected based on the following 

criteria: GC content between 40% and 60%, a predicted secondary structure with a ΔG greater 

than -3, and no alignment with common model organism genomes. Finally, 23 sequences were 

chosen as spike-in candidates. To evaluate the ligation efficiency of RNAs with 2’-Ome at the 3’ 

ends, seven of these candidates were randomly selected. The 2’-OH at their 3’ end was replaced 

by 2’-Ome, and one of their bases was altered to distinguish them from their 2’-OH counterparts. 

All spike-ins were synthesized by Suzhou Olipharma Co., Ltd. 

 

Small RNA library preparation 

One hundred nanograms of total RNA with 0.05 µL of 20 nM EM or RM spike-in control oligos 
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was ligated to a 0.55 µM 3’ randomized adapter using 25 U/µL T4 RNA ligase 2 truncated KQ 

(NEB) in 0.83X T4 RNA ligase reaction buffer (NEB), supplemented with 20% PEG 8000 (NEB) 

at 25°C overnight. The ligated RNA was then annealed with 1.28 µM RTP. To remove excess 3’ 

adapters, 3.33 U/µL 5’ deadenylase (NEB) and 0.2 U/µL lambda exonuclease (NEB) were added, 

followed by incubation at 30°C for 1 hour and 37°C for 2 hours, respectively. Subsequently, the 

product was ligated to a 0.55 µM 5’ randomized adapter using 0.4 U/µL of T4 RNA ligase 1 (NEB) 

in 0.74X T4 RNA ligase reaction buffer, supplemented with 0.7 mM ATP and 17.3% PEG 8000 

(NEB) at 25°C for 1 hour. Reverse transcription was carried out using 5 U/µL of ProtoScriptII 

reverse transcriptase (NEB) in 1X ProtoScriptII RT reaction buffer (NEB), containing 0.5 mM 

dNTPs (Promega) and 10 mM DTT (NEB), at 50°C for 1 hour. The resulting cDNA was then 

amplified using 0.02 U/µL of KOD-Plus-Neo (TOYOBO) in 1X PCR Buffer, along with 0.5 µM of 

both forward and reverse primers, 1.5 mM MgSO4 (TOYOBO), and 0.2 mM dNTPs (TOYOBO). 

After PCR amplification, the cDNA was gel-purified on a 6% polyacrylamide gel to remove adapter 

dimers and sequenced using the Illumina NovaSeq6000 sequencing system. The sequences of 

adapters, along with the sequences and specific mixing ratios of EM or RM spike-ins, are provided 

in Supplementary Table 3. Mouse tissue miRNA libraries (excluding blood, erythrocytes, and 

leukocytes) were also prepared using the NEBNext® Multiplex Small RNA Library Prep Set for 

Illumina®, with 100 ng of total RNA as input. 

 

Quantitative real-time PCR  

We selected miR-221-3p (whose abundance spanned the entire linear range of our spike-in 

standard curve) and miR-21-5p (the most abundant in nearly all cell lines) for evaluation of 

quantification accuracy at different concentrations. The reverse transcriptase reactions consisted 

of 100 ng of purified total RNA, 50 nM stem-loop RT primer, 1X reverse transcriptase M-MLV 

buffer (TAKARA), 0.25 mM of each dNTP (Promega), 10 U/µL of reverse transcriptase M-MLV 

RNase H- (TAKARA), and 1.07 U/µL of RNase inhibitor (Thermo). The total volume of the 

reactions was 7.5 µl, and they were incubated in a Bio-Rad T100 Thermal Cycler under the 
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following conditions: 30 minutes at 25°C, 1 hour at 42°C, and 15 minutes at 75°C, before being 

held at 4°C. RT products were diluted five times with deionized water. Each real-time PCR assay 

for the microRNA (10 µL volume) contains 2 µL of diluted RT product, 5 µL of 2X Taq Pro Universal 

SYBR qPCR Master Mix (Vazyme), and 1.5 µM of both forward and reverse primers. The 

reactions were carried out in an Applied Biosystems® QuantStudio™ 6 Flex Real-Time PCR 

System in 384-well plates, with the following cycling conditions: an initial denaturation at 95°C for 

30 seconds, followed by 40 cycles of denaturation at 95°C for 10 seconds and 

annealing/extension at 60°C for 30 seconds. The sequences of RT and PCR primers are listed in 

Supplementary Table 4. 

To validate the ratio of miRNA-5p and -3p strands, hsa-mir-326 and hsa-mir-423 were 

selected. Reverse transcription (RT) and dilution steps were performed as described previously. 

Each real-time PCR reaction was carried out in a 10 µL volume containing 2 µL of diluted RT 

product, 5 µL of 2× Taq Pro HS U+ Probe Master Mix (Vazyme), 1× ROX Reference Dye2 

(Vazyme), 0.1 µM TaqMan probe, and 0.2 µM each of the forward and reverse primers. 

Amplifications were performed on an Applied Biosystems® QuantStudio™ 6 Flex Real-Time PCR 

System using 384-well plates under the following cycling conditions: 37 °C for 2 minutes and 95 °C 

for 10 seconds, followed by 45 cycles of 95 °C for 10 seconds and 60 °C for 30 seconds. The 

sequences of the RT and PCR primers are provided in Supplementary Table 4.  

 

Analysis of small RNA sequencing 

Raw data (read1) were pre-processed using the FASTX Toolkit (v0.0.14). The first 70 bp of 

each read were retained, and low-quality sequences were filtered out (-q 20, -p 90). After quality 

filtering, adapter sequences were trimmed, requiring a minimum 10-nucleotide match at the 3' 

end. Reads without a detected adapter or shorter than 32 bp were discarded. Only reads with 

"CGA" at positions 4-6 were retained, corresponding to the 5' random adapter. UMI extraction 

was performed with UMI_tools (v0.5.1) using the following parameters: extract --extract-method 

regex --bc-
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pattern="^(?P<umi_1>.[3])(?P<cell_1>.[3])(?P<umi_2>.[4])([A,T,C,G][5,100])(?P<umi_3>.[4])$". 

Processed reads were aligned to the target genome using Bowtie (v1.2.1.1) with parameters --

best -v 0. Duplicate reads were removed with UMI_tools using the following parameters: dedup -

-edit-distance-threshold 1 --soft-clip-threshold 0 --method adjacency. Unaligned reads were 

mapped to the spike-in reference sequences using Bowtie with parameters --best -v 1 --norc and 

de-duplicated in the same manner. The remaining unmapped reads were aligned to the isomiR 

reference library with the same parameters and de-duplicated. Molecules aligned to the genome 

were merged with isomiR molecules for downstream analysis. Molecules were annotated based 

on the following priority: mature miRNA > isomiR > tRNA > rRNA > snoRNA > snRNA > scRNA > 

scaRNA > YRNA > lncRNA > mRNA > piRNA > novel miRNA. Mature miRNA, isomiR, piRNA, 

and novel miRNA were annotated based on exact sequence and length matches, while other 

small RNA categories were aligned to known sequences using Bowtie with parameters -k=100 -

v=0 -norc. Reads that aligned to the genome but lacked known annotations were classified as 

"others". The expression of molecules in each library was normalized using the standard curve 

generated from the external spike-ins. 

 

Prediction of novel miRNAs 

To identify potential novel miRNAs in our library, we applied miRDeep2 (v0.1.2) to reads that 

did not align to known annotations. Novel miRNAs predicted by miRDeep2 were further filtered 

based on the following criteria: (1) no match to any known sequences in the Rfam database; (2) 

a total of at least 10 reads supporting the miRNA in the library; and (3) the mature miRNA 

sequence must have a corresponding star sequence. Only miRNAs that satisfied all three 

conditions were deemed reliable, and their precursor miRNA, mature miRNA, and star sequences 

were extracted. Additionally, if miRge3.0 predicted pre-miRNA sequences with expression from 

both strands, and the 3p or 5p strand had more than 10 reads and was not identified by miRDeep2, 

those sequences were incorporated into the miRDeep2 prediction results. Together, these 

sequences constituted the reference set for novel miRNAs. 
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Expression of miRNA families 

To assess the expression patterns of miRNA families, we extracted all miRNA family 

annotations from the latest version of MirGeneDB (v2.1). For each miRNA precursor, all mature 

forms have been considered as family members. To reduce potential bias from multiple precursors, 

duplicated mature miRNAs (e.g., those derived from different precursors within the same family) 

were counted only once. 

 

Prediction of miRNA arm ratio 

We analyzed the miRNA arm ratio as previously described [68] with the following model: 

𝐼𝑛 (
5𝑝

3𝑝
) = 𝑘∆∆𝐺5𝑝−3𝑝 + (𝑁5𝑝 − 𝑁3𝑝)       (1) 

Where k and N5p(3p) represent the constant for the relative thermodynamic stability and the 

constant corresponding to the 5′ end identity, respectively. 

 

Tissue specificity index 

To compute the tissue specificity index, we used the formula described previously [77]. The 

same formula was applied to cells to provide a cell specificity index. Specifically, the TSI for a 

miRNA j is calculated as 

𝑇𝑆𝐼𝑗 =
∑  (1 − 𝑥𝑗,𝑖)𝑁

𝑖=1

𝑁 − 1
        (2) 

Where N is the total number of tissues measured and 𝑥𝑗,𝑖 is the expression score of tissue i 

normalized by the maximal expression of any tissue for miRNA j. 

 

Model development and validation 

To enhance model compatibility, we integrated both in-house data generated using NEB kits 

and an external raw dataset prepared with the same kits. After preprocessing, the datasets were 

merged. To minimize background noise, miRNAs with expression levels below 5 amol in the 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

4NBoost data were excluded. The filtered dataset was split into three subsets: 72% for training, 

20% for testing, and 8% as an independent validation set not involved in model training. In addition 

to NEB-biased expression levels as core input features, we extracted several parameters as 

auxiliary features, including (i) Sequence features: RNA length, nucleotide composition (A/T/C/G 

ratio), and GC content; (ii) Thermodynamic parameters: minimum free energy, free energy 

difference between 5’ and 3’ termini, and total duplex free energy; (iii) Terminal motifs: the first 1, 

3, 4, and 6 nucleotides at both 5’ and 3’ ends; (iv) miRNA structural features: paired ratio, bulge 

density, internal loop density, hairpin density, and pairing continuity. Feature correlation analysis 

showed that NEB-biased expression contributed most significantly to the prediction performance 

(R = 0.614). Terminal sequence features and some thermodynamic parameters (delta_G_sum 

and MFE) showed moderate correlation (R > 0.14), whereas structure-related features 

contributed minimally (R < 0.05). Therefore, the five miRNA-structure-related features were 

excluded from the final feature set. 

Using default hyperparameters, we benchmarked four tree-based algorithms: Random 

Forest (RF), Gradient Boosting Decision Tree (GBDT), LightGBM, and XGBoost. Comparative 

performance analysis identified XGBoost as the best-performing framework for our dataset, a 

robust machine learning method known for its robustness and high predictive accuracy. Model 

training was conducted on the designated training dataset, with hyperparameter optimization 

performed using the Hyperopt package in Python.  

The final model architecture incorporated the following optimized parameters: a learning rate 

(eta) of 0.4, num_boost_round of 10, max_depth of 8, min_child_weight of 14, subsample of 0.75, 

colsample_bynode of 0.5, colsample_bytree of 1.0, and reg_lambda of 4.0. Model performance 

was evaluated on both a test set and an independent external validation dataset. Two primary 

evaluation metrics were used: the coefficient of determination (R²) to quantify the variance 

explained by the model in predicting absolute expression values, and Spearman's rank correlation 

coefficient to measure the concordance between predicted and actual expression rankings. 
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Download of the genome sequence and small RNA annotation 

The reference genomes for mouse (mm10), human (hg38), and crab-eating monkey 

(macFas5) were downloaded from the UCSC Genome Browser 

(https://hgdownload.soe.ucsc.edu/). Genome annotations for crab-eating monkeys were obtained 

from UCSC, while annotations for the mouse and human genomes were downloaded from 

Gencode (https://www.gencodegenes.org/). Small RNA annotations for humans and mice were 

sourced as follows: miRNA annotations were downloaded from miRBase (release 22, 

https://mirbase.org/download/) and retained only unique sequences. tRNA annotations were 

obtained from Ensembl (release 110, https://www.ensembl.org/biomart/martview/) and GtRNAdb 

(release 21, http://gtrnadb.ucsc.edu/index.html), with duplicate entries removed. rRNA 

annotations were retrieved from Ensembl and NCBI (https://www.ncbi.nlm.nih.gov/nucleotide/), 

and duplicates were similarly removed. piRNA annotations were sourced from the piRBase gold 

standard set (release v3.0, http://bigdata.ibp.ac.cn/piRBase/). Annotations for snRNA, scRNA, 

snoRNA, scaRNA, YRNA, mRNA, and lincRNA were downloaded from Ensembl. Small RNA 

annotations for crab-eating monkeys were sourced as follows: miRNA annotations from miRBase 

for rhesus macaques, with unique sequences retained. Annotations for rRNA, tRNA, snRNA, and 

scRNA from UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/macFas5/database/rmsk.txt). 

Additionally, to comprehensively classify small RNAs derived from functional RNAs, we combined 

the annotated functional RNA sequences from the rhesus macaque genome with corresponding 

annotations from the crab-eating monkey genome. Annotations for rhesus macaques were 

retrieved from NCBI (https://www.ncbi.nlm.nih.gov/). 

 

Web server and database implementation 

To create an efficient and engaging web interface for the SmRNAQuant database, we 

employed the following tools: Django (v4.2.1) for web development, Bootstrap (v3.3.7) for 

responsive design, jQuery (v3.2.1) for dynamic interactions, Python 3.8 for backend processing, 

and ECharts for interactive data visualization. Data management and retrieval were conducted 
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using MySQL (v8.0.35). 
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DATA AVAILABILITY 

The deep-sequencing data have been deposited at the National Center for Biotechnology 

Information NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) database under 

accession number GSE279145. The following publicly available datasets were used: K562 AQ-

seq data from GSE158025; K562 Truseq data from GSE102497; HCT116 AQ-seq data from 

GSE230544; HCT116 Truseq data from GSE180613 and GSE189908; HEK293T and Hela AQ-

seq data from GSE123627; HEK293T and Hela Truseq data from GSE57295; HEK293T IsoSeek 

data from PRJNA867189; mouse liver and brain Truseq data from GSE227578; Mouse kidney 

NEBNext data from PRJNA759746; Mouse liver NEBNet data from GSE123346. Source Data are 

provided with this paper. 
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TABLES 

Table 1. Tissue-specific miRNA families identified in monkey and mouse tissues using 

SmRNAQuant datasets. 

Tissues Monkey Mouse Overlap 

Blood miR-144, miR-451, miR-19, miR-142 miR-144, miR-451, miR-142, miR-19, 

miR-15, miR-17 

4 

Brain miR-124, miR-9, miR-137, miR-132 miR-124, miR-9, miR-132, miR-137, 

miR-128, miR-218, miR-154, miR-127 

4 

Erythrocyte miR-486, miR-92, miR-191, miR-17, miR-

15 

miR-486, miR-92 2 

Heart miR-499, miR-133, miR-1 miR-499, miR-133, miR-1 3 

Leukocyte miR-150 miR-150 1 

Liver miR-122 miR-122 1 

Muscle miR-133, miR-1 miR-133, miR-1 2 

Pancreas miR-217, miR-216, miR-375 miR-216, miR-217, miR-459 2 

Skin miR-203, miR-205 miR-203, miR-205 2 

Colon - miR-192, miR-375, miR-194 0 

Thymus - miR-181 0 

 

 

Table 2. Tissue-specific miRNA families identified in monkey tissues using SmRNAQuant and 

MirGeneDB. 

Tissues SmRNAQuant MirGeneDB Overlap 

Brain miR-124, miR-129, miR-132, 

miR-137, miR-149, miR-9 

miR-124, miR-129, miR-132, miR-137, miR-

149, miR-9, miR-127, miR-128, miR-135, 

miR-138, miR-7，miR-218 

6 

Heart miR-1, miR-499, miR-135 miR-1, miR-499 2 

Kidney miR-190, miR-204 miR-190 1 

Liver miR-122, miR-192, miR-194 miR-122, miR-192, miR-194, miR-148 3 

Muscle miR-1, miR-133 miR-1, miR-133, miR-378 2 

Spleen miR-150, miR-223, miR-335 miR-150, miR-223, miR-142 2 

Thymus miR-205 miR-205, miR-155 1 
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Table 3. Tissue-specific miRNA families identified in mouse tissues using SmRNAQuant and 

MirGeneDB. 

Tissues SmRNAQuant MirGeneDB Overlap 

Brain miR-124, miR-127, miR-128, 

miR-132, miR-9 

miR-124, miR-127, miR-128, miR-132, miR-9, miR-

126, miR-135, miR-15, miR-23 
5 

Heart miR-1, miR-499, miR-133 miR-1, miR-499 2 

Intestine miR-192, miR-194, miR-8, miR-

375 
miR-192, miR-194, miR-8, miR-145, miR-459 3 

Liver miR-122 miR-122 1 

Muscle miR-1, miR-133 miR-1, miR-133, miR-22 2 

Pancreas miR-216, miR-375, miR-459 miR-216, miR-375, miR-148, miR-459 3 

Skin miR-203, miR-205 miR-203, miR-205 2 

Spleen 
miR-142, miR-150 

miR-142, miR-150, miR-19, miR-21, miR-451, miR-

143, miR-146 
2 

Testis miR-202, miR-34, miR-506 miR-202, miR-34, miR-506 3 

Ovary miR-135, miR-202  0 
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FIGURE LEGENDS 

Figure 1: 4NBoost significantly reduces ligation bias and achieves accurate quantification.  

(A) The CV of the distribution of 30 (sequences with 2’-OH or 2’-Ome at the 3’ ends) or 7 

(sequences with 2’-Ome at the 3’ ends) equimolar spike-ins, using total HEK293 cellular RNA as 

background, is shown in the box plots. In these plots, the center line represents the median, while 

the box edges correspond to the 25th and 75th percentiles. The whiskers extend to the minimum 

and maximum values. The biological replicates for these experiments were n = 2 for TruSeq and 

n = 4 for 4NBoost.  

(B) Pie charts illustrating the proportion of 30 equimolar spike-ins detected by TruSeq and 

4NBoost in representative samples.  

(C) The correlations between the ground truth and predicted abundances of ratiometric spike-ins 

in various samples are illustrated, with blue points representing unmodified sequences and red 

points indicating sequences with 2'-Ome at the 3' ends.  

(D) Scatter plots illustrating the correlation between the ground truth and predicted abundances 

of additional external spike-ins.  

(E) Scatter plot illustrating the correlation between the predicted abundances of the selected 

miRNA as measured by 4NBoost and RT-qPCR, with different colors representing distinct cell 

lines. The number of biological replicates per cell line was three for Caco2 and four for all other 

cell lines. 

All p-values were calculated using two-tailed Student’s t-tests. Source data are provided as a 

Source Data file. 

 

Figure 2: Overview of miRNA expression across various tissues and cell lines. 

(A) Tissues and cell lines collected for this study. Created in BioRender. Xiao, W. (2026) 

https://BioRender.com/pb7rbk0 (B) Data analysis workflow for this study.  

(C) Proportions of various small RNA types within all small RNA libraries. Biological replicates: n 

= 2 (for mouse ovary and testis), n = 3 (for Caco2, mouse-breast, monkey-rectum, and monkey-
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stomach), or n = 4 (for remaining samples). 

 

Figure 3: Species and quantification of miRNAs across cell lines and tissues.  

(A-B) Box plots showing the number of detected miRNA species across various cell lines (A) and 

tissues (B), with 1.5 million mapped molecules from each sample used for analysis.  

(C-E) Box plots illustrating the quantification of miRNA in various cell lines (C) and tissues (D-E). 

In these plots, the center line represents the median value, the box borders represent the upper 

and lower quartiles (25th and 75th percentiles, respectively), and the ends of the top and bottom 

whiskers represent maximum and minimum values, respectively.  

Biological replicates for (A-E): n = 2 (for mouse ovary and testis), n = 3 (for Caco2, mouse-breast, 

monkey-rectum, and monkey-stomach), or n = 4 (for the remaining samples). 

 

Figure 4: Re-assessment of miRNA strand preference.  

(A) Proportions of the 5' and 3' arms of representative miRNAs in various tissues and cell lines, 

as measured by 4NBoost. miRNAs in red bold indicate that their strand preferences have been 

previously validated.  

(B) Comparison of 5p/3p ratios for the top 100 miRNAs identified by our datasets, AQ-seq and 

TruSeq in HCT116 or HEK293T cell lines. Statistical significance was assessed using two-tailed 

Student’s t-tests.  

(C) Comparison of miRNA strand ratios predicted by the model with those obtained from our 

datasets (left), AQ-seq (middle), and TruSeq (right) in HEK293T, HCT116, and K562 cells.  

(D) Strand preference of expressed miRNAs across species. miRNAs with over 75% expression 

from the 5p arm are classified as 5p, those with less than 25% from the 5p arm as 3p, and those 

in between are categorized as no preference.  

(E) 5p/3p ratios of representative miRNAs across various cell lines measured by our datasets and 

TruSeq. Annotated strand preferences from miRBase are displayed below, with bold text 

highlighting annotations that are inconsistent with our datasets. In these plots, the center line 
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represents the median value, the box borders represent the upper and lower quartiles (25th and 

75th percentiles, respectively), and the ends of the top and bottom whiskers represent maximum 

and minimum values, respectively. Biological replicates were as follows: for TruSeq, n = 2 (for 

HCT116, HEK293T, Hela) and n = 4 (for K562); for 4NBoost, n = 4 (for HCT116, HEK293T, Hela, 

and K562). 

(F-G) Log2-transformed strand ratio of pre-mir-362 (F) and pre-mir-423 (G) obtained from RT-

qPCR-based absolute quantification across various cell lines. Each cell line is represented by 

three biological replicates. Data represent mean ± s.e.m. 

Source data are provided as a Source Data file. 

 

Figure 5: The expression of miRNA families across cell lines and tissues.  

(A) Expression patterns of the top 30 miRNA families in cell lines based on our datasets and the 

DIANA-miTED database. Circle size represents the proportion of miRNA family expression 

relative to total miRNA families.  

(B) The representative miRNA families whose expression was underestimated (up) or 

overrepresented (bottom) in the DIANA-miTED database compared to our datasets. Each box 

plot summarizes data from the 17 shared cell lines common to both datasets. 

(C) Expression patterns of the top 30 miRNA families in mouse and monkey tissues. Circle size 

represents the quantification of each miRNA family. Data in (A) and (C) are presented as mean 

values and their biological replicates: n = 2 (for mouse ovary and testis) or n = 3 (for Caco2, 

mouse-breast, monkey-rectum, and monkey-stomach) or n = 4 (for the remaining samples). 

(D) Confusion matrix of miRNA families with a tissue-specificity index (TSI) greater than 0.85. 

Numbers within the bubbles indicate the number of overlapping tissue-specific miRNA families 

between our datasets and MirGeneDB across various species. Numbers in parentheses on the 

axes denote the total number of tissue-specific miRNA families identified in each tissue using our 

datasets (x-axis) and MirGeneDB (y-axis).  

(E) The quantification of tissue-specific miRNA families uniquely identified by MirGeneDB 
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(MirGeneDB unique) or common by MirGeneDB and our datasets (Shared). Each box plot 

summarizes data from the 10 shared tissues common to both datasets. 

(F) Expression levels of tissue-specific miRNA families uniquely identified by our datasets in the 

MirGeneDB and our datasets. Each box plot summarizes data from the 10 shared tissues 

common to both datasets. 

Statistical significance was assessed using two-tailed Student’s t-tests. Box plots in (B), (E), and 

(F) depict the median (center line), interquartile range (box), and min-max range (whiskers). 

Source data are provided as a Source Data file. 

 

Figure 6: Machine learning-based correction of sequencing bias.  

(A) Schematic workflow of the predictive model, trained on paired datasets generated using 

NEBNext Small RNA Library Prep (NEBNext) and 4NBoost. Created in BioRender. Xiao, W. (2026) 

https://BioRender.com/cn4i15g  (B) Concordance between 4NBoost measured and model-

predicted miRNA expression values.  

(C-D) Comparison of miRNA expression rankings before (left) and after (right) bias correction, 

relative to 4NBoost measurements in both test (C) and validation sets (D). 

 

Figure 7: Snapshot depicting the SmRNAQuant interface.  

Users can view an overview of database statistics from the home interface. The Database 

interface offers a range of filtering options to refine quantitative information or rankings for 

sncRNAs of interest, including species, tissue or cell types, and small RNA types. The miRNA 

search interface provides access to quantitative data and strand preference information for 

specified miRNAs across various tissues or cell lines. Additionally, the sncRNA profile interface 

displays the proportions of different sncRNAs expressed in various tissues and cell lines, along 

with quantitative information for total miRNA. 
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Editorial Summary: 

A comprehensive and quantitatively accurate reference for small noncoding RNAs is lacking. Here, the 

authors present 4NBoost and create an absolute quantification atlas of sncRNA expression across tissues 

and cell lines, along with a bias-correction model and the SmRNAQuant web resource 

 

Peer review information: Nature Communications thanks the anonymous reviewers for their contribution 

to the peer review of this work. A peer review file is available. 
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