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ABSTRACT 

Selective neuronal vulnerability is a hallmark of Alzheimer’s disease (AD), yet the molecular 

basis of resilience remains poorly understood. Using single-nucleus and spatial 

transcriptomics to compare neocortical regions affected early (prefrontal cortex, precuneus) 

or late (primary visual cortex) in AD, we identified a resilient excitatory population in layer 4 of 

the primary visual cortex expressing RORB, CUX2, and EYA4. Layer 4 neurons in association 

neocortex shared molecular signatures of resilience. Early-stage resilient neurons 

upregulated genes associated with synapse maintenance, synaptic plasticity, calcium 

homeostasis, and neuroprotection (GRIN2A, RORA, NRXN1, NLGN1, NCAM2, FGF14, 

NRG3, NEGR1, CSMD1). We identified KCNIP4, which encodes a voltage-gated potassium 

channel-interacting protein, as a key resilience factor consistently upregulated during early 

stages of AD pathology. AAV-mediated overexpression of Kcnip4 in male AppSAA mice 

reduced the expression of activity-dependent genes Arc and c-Fos, suggesting compensatory 

mechanisms against neuronal hyperexcitability. Our dataset provides a resource for 

investigating mechanisms underlying resilience to neurodegeneration. 

 

INTRODUCTION 

Advancements in single-cell omics have been pivotal in characterizing the transcriptomic 

diversity of the human neocortex and elucidating selective cell vulnerability in 

neurodegenerative dementias such as AD1-6. Single-nucleus profiling of the neocortex in AD 

has identified neuronal populations that are vulnerable and depleted early in the disease, such 

as layer 1 inhibitory interneurons expressing NDNF/RELN and layer 2/3 excitatory neurons 

expressing CUX2/COL5A22, 7, 8. In contrast, few studies have focused on neuronal subtypes 

that, despite residing in similar microenvironments, remain preserved even in advanced 

stages of AD. Identifying these resilient subtypes and the mechanisms underlying their 

preservation could provide valuable insights for therapeutic strategies aimed at slowing 

disease progression. 

We leveraged the progression of AD in the human neocortex—from association cortices to 

primary cortices9-12— to compare early-affected regions (prefrontal cortex, BA9; precuneus, 

BA7) with late-affected regions (primary visual cortex, BA17) using single-nucleus RNA 

sequencing (snRNA-seq). Although the neocortex follows a canonical 6-layer pattern, 

significant quantitative differences exist across regions13-15. For instance, layer 4 (L4) is 
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expanded in primary sensory areas, while layers 2/3 and 5 (L2/3, L5) are relatively more 

prominent in association cortices3, 6, 16-19. Comparing early- and late-affected areas thus 

provides a robust framework for examining cell-intrinsic and microenvironmental factors 

influencing selective vulnerability. 

Neocortical L4, or the internal granular cell layer, is densely packed with small, granular 

neurons that serve as major postsynaptic targets of thalamic sensory nuclei and project locally 

or to nearby cortical regions. Its thickness varies considerably across different cortical areas, 

comprising 38% of the cortical ribbon in BA17 and 8.6% in BA9. In BA17, also known as the 

striate cortex, layer 4 contains a distinct band of myelinated fibers called the line of Gennari17, 

19. L4 has long been considered a resilient area in AD due to its lower burden of tau in 

neurofibrillary tangles (NFTs), although it exhibits amyloid plaques9, 20-22. However, the 

composition of L4 at the single-cell level in AD progression remains poorly understood. In an 

unbiased manner, our study identified a resilient population of L4 neurons in the BA17 

characterized by the co-expression of RORB, CUX2, and EYA4. Whether the resilience of 

these neurons is due to their specific connectivity, molecular properties, or interactions within 

the microenvironment remains unresolved, underscoring the importance of single-cell 

approaches in dissecting these complex factors and advancing research into neuronal 

resilience. 

Our dataset comprises snRNA-seq from three neocortical regions (BA9, BA7, BA17) collected 

from 46 donors representing all stages of disease progression (Braak stages 0–VI). To enrich 

for neurons, we performed fluorescence-activated nuclear sorting (FANS) for NeuN, resulting 

in 424,528 nuclei after quality control (QC), of which 362,224 were neuronal. Additionally, we 

generated single-cell spatial transcriptomics data from 16 tissue sections of BA9 and BA17 

obtained from 4 AD and 4 control donors (765,992 cells, after QC). By integrating single-

nucleus and spatial transcriptomics, we validated the layer-specific expression of 18 excitatory 

neuronal subtypes and identified resilient L4 neurons. We employed machine learning 

methods to validate neuronal subtype annotations across large-scale publicly available AD 

datasets5, 8, 23. Robust differential gene expression (DGE) analysis, utilizing linear mixed 

models, bootstrap resampling, and DESeq2 on pseudobulk aggregated counts, identified 

candidate genes associated with resilience. As proof of principle, we focused on KCNIP4, a 

gene encoding a voltage-gated potassium channel-interacting protein that regulates neuronal 

excitability in response to changes in intracellular calcium. We found that KCNIP4 was 

upregulated in resilient L4 neurons during early disease stages. Furthermore, AAV-mediated 
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delivery of KCNIP4 in a humanized App knock-in AD mouse model (AppSAA)24 reduced Arc 

and c-Fos expression, suggesting potential roles in regulating hyperexcitability. Our dataset 

is a valuable resource for investigating mechanisms of resilience in neurodegeneration.  

 

RESULTS 

Neuronal cell type composition during the spatiotemporal progression of AD in the 

neocortex  

In the AD neocortex, neurodegeneration and tau pathology progress from association to 

primary cortices9-12. We profiled nuclear transcriptomes from 243 samples obtained from two 

association cortices (BA9, BA7) and one primary cortex (BA17) from 46 donors who died at 

various stages of disease progression and age-matched healthy controls (Braak stages 0–

VI). Donor cohorts contributing to each region do not fully overlap, potentially introducing 

residual confounding in region–pathology associations. Donors were categorized into three 

pathology groups—low, intermediate, and high (18, 10, and 18 donors, respectively)—based 

on neuropathological diagnoses using current consensus criteria10 (Fig. 1a; Supplementary 

Data 1). For each tissue sample, we collected two single-nucleus suspensions using FANS: 

one containing all nuclei and one enriched for neurons (NeuN+). In total, we profiled 655,407 

nuclei. After rigorous QC to remove nuclei with low gene counts, high mitochondrial content, 

and doublets, we retained 424,528 high-quality nuclei for downstream analysis (Fig. 1b; 

Supplementary Fig. 1; Supplementary Data 2). The major cell types included 362,224 neurons 

(282,930 excitatory and 79,294 inhibitory), astrocytes (14,691), microglia (5,071), 

oligodendrocyte precursor cells (OPCs; 5,770), oligodendrocytes (36,589), and vascular cells 

(183) (Fig. 1c-f). 

We identified 18 excitatory (Ex) and 19 inhibitory (In) clusters, corresponding to neocortical 

neuronal subtypes, using stringent criteria. Our clustering strategy employed unsupervised 

Leiden clustering, combined with strict thresholds based on silhouette scores and Within 

Cluster Sum of Squares (WCSS), to enhance clustering reliability and ensure reproducibility. 

Clusters were named according to canonical markers for major subclasses (CUX2, RORB, 

THEMIS, and FEZF2 for excitatory; LHX6, ADARB2, PVALB, SST, VIP, and LAMP5 for 

inhibitory) along with 1−3 top marker genes for each cluster (Fig. 1f,g; Supplementary Data 

3). Additionally, we selected gene sets (7−10 genes per subtype) whose combined expression 

precisely labeled each neuronal subtype across neocortical regions (Supplementary Fig. 2, 
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Supplementary Fig. 3, Supplementary Data 3). The clusters and their marker genes showed 

consistent expression across BA9, BA7, and BA17. As expected, we observed significant 

differences in the abundance of neurons in specific excitatory clusters between association 

cortices and the primary visual cortex, reflecting their different cytoarchitecture3, 13. For 

instance, Ex5, characterized by the expression of CUX2, RORB, and EYA4, was 

overrepresented in BA17 (Fig. 1h). In contrast, all inhibitory clusters were well represented 

across the three regions (Fig. 1i).  

We further assessed cluster reliability by comparing them with those from an AD reference 

dataset (Seattle Alzheimer's Disease Brain Cell Atlas [SEA-AD]), which includes nearly 1.4 

million nuclei from the dorsolateral prefrontal cortex (DLPFC) and uses reference annotations 

for cell subclasses and supertypes from BICCN (Brain Research through Advancing 

Innovative Neurotechnologies)3, 23. We constructed a cosine distance matrix to assess the 

similarity between the gene expression profiles of both datasets (Fig. 1j). Our annotations 

closely matched the reference dataset. Additionally, we used the semi-supervised single-cell 

ANnotation using Variational Inference (scANVI) model to annotate two AD reference 

datasets (SEA-AD DLPFC23 and Green and colleagues5), based on predictions from our 18 

excitatory and 19 inhibitory neuron clusters. Our gene sets consistently labeled the clusters 

across datasets (Supplementary Fig. 2 and Supplementary Fig. 3). 

Glial cell states closely matched those from previous studies2, 5, 23, 25 and included four 

astrocyte states, labeled by: SLC1A2/WIF1 (homeostatic), SLC1A2/SMTN, 

GFAP/CHI3L1/OSMR (reactive)  and GFAP/AQP1/VCAN (reactive); four microglia states: 

CX3CR1 (homeostatic), AIF1 (reactive), CACNA1B (reactive), and CD163 (reactive); and two 

oligodendrocyte states: OPALIN (myelinating) and COL18A1 (Fig. 1k). 

Spatial distribution of neuronal cell types in association (BA9) vs primary (BA17) 

cortices 

To spatially map the cortical layer distribution of the 18 excitatory and 17 inhibitory clusters in 

the neocortex of AD and control donors, we performed spatial transcriptomics using the 10x 

Genomics Xenium platform. We processed four slides containing a total of 16 human brain 

sections, eight from BA9 and eight from BA17, including samples from four donors with high 

AD pathology and four age-matched healthy controls (Fig. 2a). All sections comprised the 

entire neocortical thickness and adjacent white matter. We used the predesigned 266-gene 

Xenium Human Brain Gene Expression panel, along with a custom 100-gene panel designed 
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to enhance granularity for detecting cortical neuronal subtypes, which included cluster-specific 

marker genes identified from our snRNA-seq data and public repositories. Additionally, the 

slides were stained with the 10x Genomics cell segmentation add-on kit to enhance transcript-

to-cell assignments. 

Our pipeline for cell subtype annotation included two steps. First, we annotated major cell 

types while simultaneously accounting for transcript signal overlap among closely located 

cells. To achieve this, we employed four approaches: (1) manual annotation based on k-

nearest neighbor graphs, Leiden clustering, and canonical marker genes; (2) heuristic 

classification with a custom Python script to assign cell types based on the highest expressed 

transcripts; (3) deep neural network classification via spatialID, trained on the SEA-AD DLPFC 

dataset; and (4) ingest-based label transfer projecting SEA-AD DLPFC annotations onto the 

spatial data. We used an ensemble voting strategy to combine predictions from these 

methods, creating consensus annotations for major cell types and confidence scores. Next, 

we performed neuronal cell subtype annotation using ingest-based label transfer with our 

snRNA-seq dataset as a reference.  

Our annotated Xenium dataset combining all slides contains 765,992 cells across brain 

regions and donors (Fig. 2b). Visualization of the 18 excitatory neuronal subtypes in each 

individual section revealed regional differences between BA9 and BA17, with an overall 

similar distribution in AD and controls (Fig. 2c). As expected, there was a higher neuronal 

density in BA17. The distribution of these subtypes across layers corresponded with their pre-

assigned labels and aligned with the layer boundaries indicated by the stains (i.e., DAPI, 

ribosomal RNA, and αSMA/Vimentin) (Fig. 2d-f). The thickness of L4 varied significantly, 

comprising over one-third of the cortex in BA17 while accounting for less than 10% of the 

cortex in BA9, consistent with reference neuroanatomical studies17. The composition of L4 

also varied significantly, with Ex5 overrepresented in BA17, while Ex6 and Ex7 were 

overrepresented in BA9, aligning with our snRNA-seq data (Fig. 2f). 

These patterns were also observed in an independent spatial dataset generated using 10x 

Genomics Visium with a different gene panel (Human Neuroscience gene expression panel, 

with 1,186 genes, along with a custom 197-gene panel) (Supplementary Fig. 4). Thus, our 

integrated single-nucleus and spatial transcriptomics data identified robust clusters 

characterized by specific marker genes and gene sets, and mapped their spatial laminar 

distribution across neocortical brain regions. 
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Identification of layer 4 excitatory neurons across BA9 and BA17 in AD 

Primary cortices, such as BA17, are affected in the latest stage of AD (Braak VI). L4 in BA17 

at Braak VI shows amyloid plaques but minimal tau pathology9, 20-22. Thus, BA17 as a region, 

and L4 in particular, are considered resilient in AD. However, it remains unclear whether L4 

is resilient across neocortical regions. To investigate this, we first identified marker genes for 

L4 excitatory neuronal subtypes (Ex5, Ex6, and Ex7; L4 IT). Consistent with previous studies, 

many genes expressed in L4 exhibited spatial gradients extending into layers 3 and 53, 16, 26, 

27. L4 was characterized by co-expression of CUX2 (labeling L2−4) and RORB (labeling L3−5), 

with high expression of CUX1. The top cluster-specific markers for Ex5 included EYA4, 

KCNH8, LAMA3, VAV3, KCNIP1, and TRPC3 (Fig. 3a). While these genes were expressed 

in BA17, most were detected in only a small subset of cells in BA9. LAMA3 was expressed in 

Ex5 neurons across neocortical regions (Fig. 3b). Notably, the Ex5 marker genes were highly 

conserved in a reference dataset from the mouse neocortex28 (Fig. 3c). Ex6 and Ex7 exhibited 

high expression of RORB and low expression CUX2, with Ex6 expressing MME and Ex7 

expressing GABRG1 (Fig. 3a,b). Double fluorescent RNAscope in situ hybridization (ISH) for 

EYA4, MME, or GABRG1, along with SLC17A7, in BA9 and BA17 control tissue sections 

confirmed their expression in L4 (Supplementary Fig. 5). The expression of a subset of L4 

markers (CUX1, RORB, CUX2, EYA4, KCNH8, TRPC3, and VAV3) in Xenium sections 

confirmed their relative specificity for labeling Ex5, Ex6, and Ex7 populations (Fig. 3d).  

Visualization of Ex5, Ex6, and Ex7 in the Xenium sections highlighted the spatial distributions 

of each cluster in L4 of BA17 and BA9 (Fig. 3e). In BA17, Ex5 exhibited a gradient in cell 

density, with higher density deeper in the layer and a sharp boundary with L5, while Ex5 cells 

mixed with L2/3 cells superficially. Ex5 cells were underrepresented in BA9, and their 

abundance varied considerably across samples in both controls and AD cases. In BA9, Ex6 

cells were located at the boundary between L4 and L3, positioned deeper than the more 

abundant Ex7 cells. Ex6 cells were rare in BA17. Notably, five sections from BA17 also 

contained adjacent BA18, an association-type cortex. In BA18, Ex5 cells were more abundant, 

while Ex6 cells were less abundant compared to BA9 (Fig. 3f). Although the relatively low 

number of cases limits robust comparisons across regions in BA9, BA17, and BA18 in AD and 

control samples, these observations suggest variations in cell composition in L4 that may 

reflect functional specializations across regions. 

ISH for EYA4 and KCNH8 in human BA17 tissue sections from the Allen Human Brain Atlas29 

also confirmed their expression in L4 granule neurons. The highest expression was observed 
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in deep layer 4c (Fig. 3g,h), while expression in layers 4a and 4b was low. Notably, the most 

commonly used laminar nomenclature distinguishes three sublayers within L4: 4a, 4b, and 4c, 

although some authors classify layers 4b and 4c as part of L3, a view supported by tract-

tracing studies in macaques30, 31. The expression of VGLUT2, which labels presynaptic 

terminals from the lateral genicular nucleus (LGN) projecting to L4 in BA17 across species32, 

33, matched the expression of EYA4 and KCNH8 (Fig. 3h). Thus, EYA4 and KCNH8 

preferentially label what is considered layer 4 proper in BA17. 

To identify our L4 clusters in external datasets, we used scANVI to predict our annotations in 

three reference datasets from the prefrontal cortex (SEA-AD DLPFC23; Green et al., 20245; 

Mathys et al., 20238) and one from the primary visual cortex (Jorstad et al., 20233) 

(Supplementary Fig. 6). We observed high similarity across datasets originating from the 

same brain region based on cosine distance scores, the expression of cluster-specific 

markers, and by plotting author-annotated and predicted clusters (Supplementary Fig. 6c-g). 

As expected, the number of Ex5 cells predicted in the BA17 reference dataset was high: 

63,870 cells (34.42%) out of 185,565 excitatory cells. In contrast, it was low in the prefrontal 

cortex reference datasets: 2,152 cells (0.33%) out of 660,751 excitatory cells in the SEA-AD 

dataset; 19,360 cells (3.03%) out of 637,968 in Green et al.; 3,361 cells (3%) out of 112,143 

in Mathys et al., compared with 7,943 cells (4.36%) out of 182,140 in our BA9 dataset. Ex5 

cells were most closely related to supertypes L4 IT_2, L4 IT_3, L4 IT_5, and L4 IT_6 from 

Jorstad et al., 20233 (WithinArea_clusters) (Fig. 3l). In contrast, Ex6 (SEA-AD supertype L4 

IT_4) and Ex7 (SEA-AD supertype L4 IT_2) were well represented in the prefrontal cortex 

across datasets and underrepresented in the BA17 dataset (Fig. 3h,k). Thus, comparisons 

across independent datasets showed consistent alignment of our L4 excitatory neuron 

annotations. Together with Xenium data showing Ex5 enrichment in BA17 and rarity in BA9, 

these cross-dataset mappings support defining Ex5 as a BA17-enriched L4 IT population 

specialized for the primary visual cortex, with a shared molecular signature and variable 

prevalence across neocortical regions. 

Relative preservation of layer 4 excitatory neurons during AD progression 

To investigate the vulnerability of L4 excitatory neurons to AD progression, we used 

scCODA34 and a generalized linear mixed model (GLMM) to model neuronal composition 

across low, intermediate, and high pathology groups in BA9 and BA17. We controlled for 

covariates such as sex, age, APOE genotype, and profiling assay (Fig. 4, Supplementary Data 

4−6). The scCODA analysis revealed a significant relative increase in the proportion of Ex5 
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neurons in high compared to low pathology cases in both BA9 (log2-fold change = 1.75) and 

BA17 (log2-fold change = 0.46) (Fig. 4a). This suggests the Ex5 population is resilient and 

becomes more prominent as other neuronal subtypes are lost. The GLMM, which modeled 

proportional abundance using a beta distribution, supported this finding, showing a significant 

increase in Ex5 neurons in BA9 (FDR = 0.008) and a similar, non-significant trend in BA17 

(Fig. 4b). Because BA17 samples were predominantly sequenced using Drop-seq, the 

observed compositional shifts in this region may reflect platform-specific biases, despite 

cross-platform integration and covariate adjustment. 

To address potential technical biases, we performed two additional analyses. First, to confirm 

that our findings were not an artifact of lower transcript counts or shifts in gene expression 

among L4 clusters, we conducted the same analyses on a filtered dataset with a minimum of 

500 genes per cell using reference annotations at the cell subclass level. The total L4 IT 

population remained relatively increased in high-pathology cases in both BA9 (log₂-fold 

change = 0.21) and BA17 (log₂-fold change = 0.33) (Supplementary Fig. 7). Second, since 

Ex5 neurons have smaller cell bodies and lower gene counts, we evaluated whether our initial 

QC filter (<300 genes) excluded a significant portion of them. We selected previously filtered 

neuronal nuclei with gene counts ranging from 200 to 300 (62,498 nuclei) and used scANVI 

to predict their identity, using our dataset as a reference. After incorporating 48,849 nuclei 

(78%) that were confidently assigned (99% probability) to annotated clusters, we found that 

the overall neuronal composition remained unchanged, and the relative preservation of Ex5 

neurons remained statistically significant (Supplementary Fig. 8). 

Our analyses also identified vulnerability in other neuronal populations, including Ex3 neurons 

in BA9 (large deep L3 neurons expressing SV2C) (Fig. 4a), L5 IT in BA9 (Supplementary Fig. 

7a), and specific interneuron clusters expressing SST (In4 in BA9; In6 in BA17; Fig. 4a). 

Although these changes were less robust and consistent across the analyses (scCODA and 

GLMM) and annotation methods, they aligned with reported findings of L2/3 IT and SST-

expressing interneurons vulnerability from high-quality association neocortex datasets2, 4, 7, 8, 

23, 35. 

In summary, our data consistently show that the L4 IT excitatory neuron population is relatively 

preserved during AD progression in BA9 and BA17. Within this population, the Ex5 subtype 

is particularly resilient, becoming increasingly prominent as neighboring neurons degenerate.  

Differential gene and pathway expression in vulnerable vs resilient neocortex in AD  
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To identify genes and pathways altered during disease progression in vulnerable and resilient 

regions, we performed DGE analysis comparing two disease stages (‘early’: low vs. 

intermediate pathology; ‘late’: intermediate vs. high pathology) and two neocortical regions 

(BA9 and BA17) for each neuronal subtype. Given AD progression, we expect that gene 

expression changes observed in late-stage BA17 will be concordant with those seen in early-

stage BA9. Statistical power to detect differentially expressed (DE) genes is influenced by 

technical and biological factors, such as the number of nuclei, sequencing depth, RNA 

integrity, and age-dependent epigenetic changes36, 37. To address the heterogeneity of the 

samples and ensure the reliability of our findings, we applied several DGE methods, including 

a linear mixed model implemented in MAST and lme4, bootstrap resampling with 100 

iterations, and DESeq2 on pseudobulk aggregated counts (Fig. 5a, Supplementary Fig. 9). 

We defined ‘high-confidence’ DE genes as those consistently identified across methods. 

The total number of DE genes was higher in BA9 compared to BA17 and in the ‘late’ disease 

groups compared to the ‘early’ groups, reflecting gene expression changes associated with 

AD progression (Fig. 5b,c, Supplementary Data 7). Subtypes previously identified as 

vulnerable, such as L2/3 IT excitatory neurons (Ex1, Ex2), exhibited more DE genes across 

both regions and disease stages. However, in BA9, some excitatory clusters, including the 

vulnerable Ex2 (L2/3 IT) and the resilient Ex5 (L4 IT), showed more significant changes in the 

‘early’ compared to ‘late’ stages. Most DE genes in BA9 were downregulated, except for Ex5, 

where over 50% were upregulated in the ‘early’ stages. In contrast, in BA17, the majority of 

DE genes were upregulated, especially in the ‘early’ stages, in both vulnerable (Ex2) and 

resilient (Ex5) subtypes (Fig. 5b). 

A total of 986 genes were categorized as ‘high-confidence’ DE genes. To distinguish between 

genes that were shared or unique across brain regions and disease stages (i.e., BA9-Early, 

BA9-Late, BA17-Early, BA17-Late), we generated UpSet plots showing intersections among 

these four conditions for each excitatory neuronal type (Fig. 5d). Although most genes were 

unique, likely due to the stringent criteria used to define ‘high-confidence’ DE genes, 15−27% 

were shared across at least two conditions within clusters with a high number of nuclei (Ex1, 

Ex2, Ex5, Ex12). The overlap of DE genes was greater within a single region across disease 

stages than it was across different brain regions. This supports that vulnerability and resilience 

factors are influenced by both region-specific cell identity and the local microenvironment. 

Nonetheless, in the Ex5 cluster, 19 DE genes were common between BA9 and BA17 at early 

disease stages, and nine were common at late disease stages. 
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We identified 54 high-confidence DE genes common across all four conditions. Heatmaps of 

their expression changes revealed a consistent pattern: greater changes in BA9 compared to 

BA17, with downregulation increasing with disease progression in BA9 and upregulation 

shifting to downregulation with disease progression in BA17 (Fig. 5e). Genes exhibiting this 

pattern included KCNH7, KCNQ5, DLG2, SNTG1, NALF1, CNTNAP2, FGF14, AUTS2, and 

MAGI2. In contrast, a few genes, such as COPG2 and SLC24A2, were upregulated at early 

stages in both BA17 and BA9. Notably, several high-confidence DE genes have previously 

been identified as genetic risk factors for AD, including CSMD1, NRG3, SYN3, NRXN1, 

SLC24A2, DLG2, and KCNIP438-43. 

In a similar DGE analysis using BINCC reference annotations for excitatory subclasses 

on a filtered dataset with a minimum of 500 genes per cell, we identified a total of 962 ‘high-

confidence’ DE genes, with 460 overlapping between both approaches. Of these 962 genes, 

35 were shared across all four conditions, including CSMD1, NRG3, SLC24A2, DLG2, and 

KCNIP4 (Supplementary Fig. 10, Supplementary Data 7). 

Pathway enrichment analysis revealed shared pathways across regions and stages, including 

those involved in regulating synaptic organization, membrane potential, neurotransmitter 

levels, ion (calcium, sodium, and potassium) transport, intracellular calcium homeostasis, 

glutamate receptor signaling, synaptic vesicle clustering, and cell-cell adhesion (Fig. 5f,g; 

Supplementary Data 8). The same pattern persisted: enrichments were more significant in 

BA9 compared to BA17, and genes within the involved pathways were generally 

downregulated, except in the resilient regions (BA17-Early) and resilient neuronal subtypes 

(Ex5) (Fig. 5g). 

Genes and pathways associated with resilience in AD neocortex 

To further define genes and pathways associated with resilience, we compared two neuronal 

subtypes: prototype vulnerable neurons (Ex2; L2/3 IT) and resilient neurons (Ex5; L4 IT) (Fig. 

6a,b, Supplementary Data 9). We hypothesized that resilience-associated genes would be 

enriched and upregulated in Ex5, particularly at early stages and in BA17, consistent with 

disease progression and the preservation of L4 in AD. ‘High-confidence’ genes upregulated 

in Ex5 neurons at early stages in both BA9 and BA17 inlcuded: CSMD1, which encodes a 

synaptic protein that protects against complement-mediated synapse elimination44; GRIN2A, 

GRM7, PTPRT, and KCNIP4, which are involved in regulating neuronal excitability, synaptic 

transmission, synaptic organization, and synaptic plasticity; SLC24A2, a member of the 
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calcium/cation antiporter superfamily involved in calcium homeostasis; UBE2E2, encoding an 

E2 ubiquitin-conjugating enzyme; LINGO2, a negative regulator of neuronal growth and 

survival; TAFA1 and TAFA2, homologous genes encoding chemokine-like proteins with roles 

in neuronal survival; and AUTS2, involved in transcriptional activation and actin cytoskeleton 

reorganization. Some of these genes, such as CSMD1, GRIN2A, and PTPRT, were also 

upregulated in Ex2 and other excitatory neuronal subtypes at early stages in BA17, suggesting 

shared neuroprotective roles across different neuronal subtypes. Other DE genes upregulated 

early in BA17 and involved in synapse organization and function included: CSMD2, NRXN1, 

NRG1, NRG3, TENM2, CACNA1B, GRID2, SLC8A1, SYN3, DLG2, DLGAP1, STXBP5L, 

NCAM2, RIMS2, and ADGRB3. Additionally, genes upregulated at early stages in Ex5 

included those encoding neurotrophic factors and proteins with neuroprotective properties, 

such as NRG3, FGF14, and NCAM2 (Fig. 6a,b, Supplementary Data 9). 

Next, we analyzed high-dimensional weighted gene co-expression network analysis 

(hdWGCNA) data to compare systems-level changes in vulnerable (Ex2; L2/3 IT) and resilient 

neurons (Ex5; L4 IT) (Fig. 6c,d, Supplementary Data 10). In Ex5 neurons from BA17, we 

identified two candidate resilient modules, M2 and M3, where network genes were 

predominantly upregulated at early disease stages. The top 10 hub genes in these modules 

are: KCNIP4, CADM2, NRG3, ADGRB3, NRXN1, NALF1, NEGR1, FGF14, TENM2, and 

CUX1 (for M2), and PTPRD, LRRC4C, CNTN5, RORA, ANKS1B, NLGN1, RALYL, 

IQCJ−SCHIP1, SNTG1, and RIMS2 (for M3). For Ex5 neurons from BA9, we identified three 

candidate resilient modules: M2, M3, and M4 (Fig. 6c). A biological function network 

representation of these hdWGCNA genes, integrating the candidate resilience modules 

BA17–M2, M3 and BA9–M2, M3, M4, underscored the potential roles of trans-synaptic 

signaling, calcium homeostasis, and neuronal excitability in resilience. Relevant genes within 

these modules include GRIN2A, GRM5, GRM7, CACNA1B, CACNA1C, CACNG5, KCNIP4, 

NALF1, NRXN1, NLGN1, NRG3, PTPRD, and FGF14 (Fig. 6d). 

Increased KCNIP4 expression is associated with resilience in AD   

We focused on KCNIP4, a gene specifically upregulated in resilient Ex5 neurons at early 

disease stages in both BA17 and BA9 (Fig. 6a), as a proof of principle to validate our approach 

for identifying genes associated with resilience. This gene encodes a voltage-gated potassium 

channel-interacting protein (KCHIP4 or KCNIP4) that regulates neuronal excitability. KCNIP4 

also interacts with Presenilins and has been previously linked to AD45, 46. Our analysis showed 

that KCNIP4 is predominately expressed in excitatory neurons (except Ex14; L5/6 NP) and 
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OPCs (Fig. 7a), as well as a microglia cluster characterized by high expression of synapse-

related genes (cluster Microglia-Reactive-CACNA1B; Supplementary Data 3). Using a linear 

mixed model (implemented using the MAST package)47, we estimated KCNIP4 expression 

across disease stage groups. After controlling for fixed covariates (assay, sex, RIN, and total 

counts) and random effects (donor), we consistently observed increased KCNIP4 expression 

in Ex5 neurons as disease progressed (Fig. 7b). 

To quantify KCNIP4 protein levels in resilient versus vulnerable neurons, we performed 

immunohistochemistry for KCNIP4, EYA4, and NeuN in sections of BA17 from low, 

intermediate, and high pathology groups (Fig. 7c). EYA4 labels L4 granule cells in the cerebral 

cortex and is also expressed by a subset of GABAergic interneurons, which are sparse and 

located predominantly in the superficial layers. The mean intensity of KCNIP4 in neuronal 

somas was significantly higher in L4 EYA4+ neurons at intermediate disease stages compared 

to controls, and lower in supragranular (L2/3) neurons at intermediate and high stages 

compared to controls (Fig. 7d). 

KCNIP4 is an integral component of Kv4 channel complexes and belongs to the EF-hand 

family of small calcium-binding proteins. Like other Kv channel-interacting proteins, it may 

control neuronal excitability by regulating A-type outward potassium currents48. Thus, we 

hypothesized that increased KCNIP4 expression may reduce neuronal hyperexcitability in AD. 

To investigate this, we used AAV to overexpress Kcnip4 in excitatory neurons. We generated 

the AAV vector PHP.eB-CaMKIIa-Kcnip4-P2A-EGFP, using the PHP.eB serotype to efficiently 

transduce neurons in the CNS, the CaMKIIa promoter to selectively target excitatory neurons, 

the mouse Kcnip4 transcript, and EGFP as a reporter. As a control, we used the same AAV 

containing only EGFP (Fig. 8a). First, we overexpressed Kcnip4 in primary mouse cortical 

neurons prepared from postnatal day 0 (P0) pups and assessed neuronal activity using 

calcium imaging. Neurons were co-transduced with either Kcnip4 AAV or control GFP AAV, 

along with PHP.eB-Syn.NES-jRGECO1a.WPRE.SV40 to enable real-time calcium imaging. 

At DIV12, neurons were treated with 200 nM amyloid-β 1–42 (Aβ1–42) oligomers to increase 

intracellular calcium levels, or vehicle as a control, for 48h (Fig. 8a). Calcium imaging at DIV14 

revealed that neurons transduced with Kcnip4 exhibited a significant reduction in spontaneous 

activity, as evidenced by decreased Ca2+ transient events frequency, both under basal 

conditions and following Aβ1–42 oligomers treatment, compared to control neurons 

expressing GFP alone (Fig. 8b-c). To confirm that the observed effects on neuronal activity 

were not due to AAV-related toxicity, we performed a TUNEL assay on the in vitro 
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preparations and found no TUNEL+ neurons in either the GFP or Kcnip4 transduced neurons 

(Supplementary Fig. 11a). These findings suggest that Kcnip4 overexpression attenuates 

neuronal hyperactivity, even in the presence of elevated Aβ1–42 oligomers.  

We then evaluated Kcnip4 overexpression in vivo using a humanized App knock-in mouse 

model of familial AD (AppSAA KI/KI)24 (Fig. 8d). To assess the ability of the Kcnip4 AAV to 

increase KCNIP4 protein levels in the mouse brain, we performed Western blotting on cortex 

tissue lysates from 12-month-old WT mice treated with 2 different doses of Kcnip4 AAV (5 × 

10^10 vg and 1 × 10^11 vg, retroorbitally). Mice treated with the higher dose showed a 

significant increase in KCNIP4 (Fig. 8e). We injected 12-month-old homozygous AppSAA, 

which exhibit amyloid plaques, microgliosis, and plaque-associated dystrophic neurites24, with 

either Kcnip4 AAV or control AAV (1 × 10^11 vg, retroorbitally). WT mice from the same 

genetic background and age also received both AAVs. Mice were sacrificed, and brain tissue 

was collected one month after injection. GFP+ neurons were detected throughout the cerebral 

cortex, and to a lesser extent in the hippocampus (Fig. 8f). To estimate transduction efficiency, 

we quantified the percentage of GFP+ neurons in cerebral cortex. In the four animal groups, 

GFP labeled approximately 10% of the total neuronal population in somatosensory cortex 

(SSC), where we focused our analysis due to lower transduction efficiency in visual cortex 

(Fig. 8f). AD pathology in the treated mice was not significantly modified by Kcnip4 

overexpression, as no significant differences were found in amyloid plaques (determined by 

an anti-human amyloid beta antibody, Fig. 8g). Reactive astrogliosis, assessed by GFAP 

staining, remained unchanged (Fig. 8h). We observed a small but significant decrease in IBA1 

staining, suggesting reduced microgliosis in AppSAA mice overexpressing Kcnip4 (Fig. 8i). 

Finally, we quantified c-Fos and Arc, two immediate-early genes widely used as markers of 

neuronal activation (Fig. 8j-u, Supplementary Fig. 11b,c). These markers increase in response 

to excessive neuronal stimulation and seizures and have been shown to be altered in AD49, 

50. When comparing all cortical neurons in AppSAA and WT mice, we found elevated levels of 

c-Fos in AppSAA mice, which were reversed by Kcnip4 AAV treatment (Fig. 8j-k). Using GFP 

as a marker for transduced neurons, we found that Kcnip4 AAV-mediated delivery in 12-

month-old AppSAA mice reduced the proportion of c-Fos+ neurons in the GFP+ compared to 

GFP- populations (Fig. 8l-o). No significant changes in c-Fos proportions were observed in 

AppSAA mice treated with control AAV or in WT mice treated with Kcnip4 AAV. We observed 

similar results for Arc expression, with reduced staining intensity in GFP+ compared to GFP- 

neurons in AppSAA mice treated with Kcnip4 AAV and a reversal in Arc expression in treated 
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AppSAA mice compared to WT controls (Fig. 8p-u). We also observed a decrease in Arc 

expression in WT mice treated with Kcnip4 AAV (Fig. 8q). Thus, increased Kcnip4 expression 

in excitatory cortical neurons in a humanized mouse model of AD reduced c-Fos and Arc, 

markers of neuronal activation and hyperexcitability, suggesting a role for Kcnip4 in promoting 

resilience against hyperexcitability in AD. 

 

DISCUSSION 

Our strategy leveraged the spatiotemporal progression of AD to explore cellular resilience. 

The primary visual cortex (BA17) exhibits only mild degeneration even in end-stage AD, yet 

it has not been a major area of study for exploring resilience factors9-11, 51. Layer 4 neurons, 

considered resilient due to low tau pathology, have not been consistently characterized in 

previous snRNA-seq studies in AD. We specifically identified Ex5, a cluster of L4 IT granular 

neurons enriched in BA17, as a resilient population that remains relatively preserved in early- 

and late-stage AD cortices. This resilience was linked to the upregulation of genes related to 

synaptic function and calcium homeostasis, including KCNIP4, suggesting compensatory 

mechanisms against hyperexcitability—an early feature in AD pathogenesis observed in 

human and animal models52-54. 

Building on foundational studies that have created comprehensive single-nucleus 

transcriptomics atlases of the human AD brain1, 2, 5, 7, 8, 23, 55, our study offers a more focused 

analysis of resilience signatures within neocortical layer 4. While previous work broadly 

defined vulnerability across multiple brain regions, our approach aimed to identify specific 

neuronal cell types and genes linked to resilience by comparing prototype vulnerable and 

resilient cortices. This strategy allowed us to prioritize high-confidence genes exhibiting robust 

and recurrent expression changes. To achieve this, we employed unsupervised Leiden 

clustering followed by manual annotation.  This method produced distinct neuronal clusters 

that are reliably distinguishable by a small, consistent set of genes (fewer than 10, and in 

many cases fewer than 4), ensuring consistent assessment across the profiled neocortical 

regions. We further validated our annotations by using reference BICNN annotations and by 

comparing our clusters to high-quality reference datasets from both the prefrontal and primary 

visual cortices3, 5, 23. Additionally, our study provides a valuable resource through high-

resolution spatial mapping of our annotated neuronal cell types on the Xenium platform. This 

dataset complements previous work, such as those from MERFISH in a larger AD cohort23, 
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and can be explored on commercial, free platforms to enable detailed analysis of specific 

neuronal populations and gene co-expression patterns. 

Despite these strengths, our datasets have limitations. Because donors contributing to each 

cortical region only partially overlap, there are inherent differences in age, sex, and 

neuropathological severity across regional subcohorts. While these variables were included 

as covariates in our models, the experimental design introduces potential for residual 

confounding. The use of multiple sequencing technologies (Drop-seq and 10x Genomics v2 

and v3) introduced technical variability. Although we addressed this through rigorous quality 

control and statistical modeling, residual effects of technical covariates may still influence our 

results, including the directionality of differentially expressed genes. BA17 nuclei were 

predominantly generated using Drop-seq, whereas BA9 and BA7 utilized 10x v3. Differences 

in sensitivity and detection efficiency between these platforms may therefore contribute to 

apparent regional differences. Although we applied computational batch correction and 

included sequencing platform as a covariate, these technical variations may still influence 

comparisons of cell-type composition and gene expression. Consequently, our region-specific 

findings should be interpreted as hypothesis-generating. Our integrated DGE analysis 

framework combining linear mixed models, bootstrap resampling, and pseudobulk-based 

DESeq2 may introduce specific selection biases. By requiring consensus across multiple 

conservative methods, our pipeline likely prioritizes 'high-confidence' genes characterized by 

higher baseline expression, larger effect sizes, and greater stability across donor subsets. 

While this approach enhances specificity and minimizes false positives, it may underrepresent 

subtler, context-dependent, or donor-restricted transcriptomic changes. Consequently, our 

findings should be viewed as a robust, conservative catalog of gene signatures rather than an 

exhaustive list of all pathological gene expression changes. While we modeled biological 

covariates like age, sex, and APOE status in our differential gene expression analyses, they 

were not explicitly included in the hdWGCNA network construction. As a correlation-based 

method, hdWGCNA does not natively support the inclusion of covariates in the way linear 

models do56. Therefore, some residual influence from these covariates may still affect module 

composition or hub gene identification. Additionally, the relatively small number of donors and 

the use of different donor subsets across regions may have limited our statistical power to 

detect subtle changes, particularly in rare cell types or in populations that exhibit gradient-like 

gene expression patterns rather than distinct, well-defined clusters. For instance, we observed 

trends but not robust changes in highly heterogeneous populations like SST-expressing 

interneurons and L2/3 IT excitatory neurons despite robust data in the literature indicating 
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their vulnerability.1, 4, 5, 23, 57 In contrast, we identified the vulnerability of Ex3 neurons, a distinct 

subtype of large pyramidal cells in deep layer 3 expressing SV2C and heavy neurofilaments, 

which shows robust NFT accumulation and has been previously described to degenerate in 

AD in immunohistochemical studies58. We anticipate that increased sample sizes in future 

studies will allow for finer-grained mapping to high-resolution neocortical taxonomies. 

Our study of L4 leverages its known cytoarchitectural variability across the neocortex. L4 is 

highly specialized in regions receiving topographic sensory input, such as BA17, which is 

characterized by a relatively thin cortical ribbon but an expanded, highly myelinated L4. This 

layer in BA17 features a high neuronal density and distinct sublayers that contain a dominant 

population of granular neurons (enriched in L4c) and smaller populations of pyramidal and 

giant stellate cells19, 59. In contrast, L4 in association cortices like BA9 is thinner and often 

appears discontinuous, blending with pyramidal neurons of layers 3 and 5. We identified three 

distinct molecular subtypes of L4 excitatory neurons across these neocortical regions: Ex5 

(CUX2/RORB/EYA4/LAMA3), Ex6 (RORB/MME), and Ex7 (RORB/GABRG1). We validated 

these subtypes by comparing them with publicly available datasets3, 5, 8, 23. We found that the 

Ex5 cluster-defining genes EYA4 and KCNH8 preferentially label granule neurons in deep 

layer 4c, the same area receiving VGLUT2+ terminals from the LGN. Previous snRNA-seq 

studies of BA17 from healthy individuals have identified specialized L4 excitatory neuron 

subtypes with greater granularity3. Our Ex5 cluster closely matches L4_IT3, a dense pan-L4 

marker, and includes L4_IT2 and L4_IT5, enriched in layers 4cβ and 4cα, respectively3. 

Although it is likely that our Ex5 cluster comprises several molecular subtypes, our approach 

validated L4 excitatory neuronal subtypes across neocortical regions and stages of AD 

progression, providing a framework for identifying gene expression changes associated with 

resilience. 

Neuronal hyperexcitability is an early and prominent feature of AD pathogenesis, manifesting 

in some patients with subclinical epileptiform activity52-54. This state can be driven by an 

imbalance in excitatory and inhibitory signaling, and the subsequent gene expression changes 

can reflect either a maladaptive response or a compensatory, neuroprotective one. For 

instance, snRNA-seq profiling of cortical biopsies from living subjects with early pathology 

revealed electrophysiological properties and molecular signature of pathological 

hyperexcitability in vulnerable L2/3 pyramidal neurons prior to their loss. That study identified 

the upregulation of APP, PRNP, ATP1A3, SNAP25, SYT1, and CDK5 as hallmarks of this 

maladaptive response57. In contrast, our study of resilient L4 IT neurons revealed a distinct 
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gene expression signature associated with neuroprotection. We observed the upregulation of 

key genes including GRIN2A, RORA, NRXN1, NLGN1, NCAM2, FGF14, NRG3, NEGR1, and 

CSMD1. These findings suggest that resilient neurons may activate compensatory 

mechanisms aimed at preventing excitotoxic damage and restoring network stability. 

Together, these observations are consistent with an early compensatory response in relatively 

resilient regions such as BA17 that becomes attenuated or fails as disease burden increases, 

whereas similar pathological changes emerge earlier in vulnerable regions such as BA9. 

Our analysis revealed an early upregulation of KCNIP4 in resilient Ex5 L4 IT neurons; in 

contrast, KCNIP4 was downregulated in vulnerable Ex2 L2/3 IT neurons during stages of cell 

death, with an overall decline observed in late-stage disease. KCNIP4 is a member of the K-

channel interacting proteins (KChIPs), which include KChIP1, KChIP2, KChIP3 

(DREAM/calsenilin), and KChIP4 (CALP), encoded by the KCNIP1-4 genes45. KCNIP4 

interacts with Kv4.2 channels, which are key regulators of neuronal excitability. KChIP4 

expression influences the subcellular localization and biophysical properties of Kv4 channels. 

Increased binding of KChIP4 enhances the recovery from inactivation of Kv4.2, thereby 

exerting an inhibitory effect on neuronal excitability60. KCNIP4 also interacts with presenilins, 

potentially modulating APP processing and A levels45, 61. Notably, KCNIP4 belongs to the 

recoverin branch of the EF-hand superfamily, characterized by four EF-hand calcium-binding 

motifs. Several members of this family have demonstrated neuroprotective properties62. Our 

results support a neuroprotective role for KCNIP4. Through AAV-mediated overexpression of 

Kcnip4 in a humanized AD mouse model (AppSAA), we demonstrate a reduction in the 

expression of activity-dependent genes Arc and c-Fos. Our in vitro calcium imaging further 

confirmed that Kcnip4 overexpression attenuated neuronal hyperexcitability, even in the 

presence of Aβ oligomers. While the broad AAV-mediated overexpression of Kcnip4 across 

excitatory neurons in the mouse cortex does not fully recapitulate the cell-type-specific 

regulation observed in human AD, our data show that elevating Kcnip4 levels is sufficient to 

impact neuronal excitability in the context of amyloid pathology. This suggests that KCNIP4's 

role in regulating neuronal excitability may confer neuroprotection against excitotoxicity, 

particularly in response to elevated intracellular calcium levels. 

Hyperexcitability has also been implicated as a pathogenic mechanism in other 

neurodegenerative diseases, such as amyotrophic lateral sclerosis and Huntington's disease, 

and is associated with aging. For example, hyperexcitability in sleep circuits can lead to sleep 

instability and fragmentation, particularly in older adults54, 63-65. Thus, hyperexcitability may 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

serve as an early biomarker of neurodegeneration and a therapeutic target. Recent 

interventions targeting neuronal hyperexcitability in AD include the antiepileptic drug 

levetiracetam and emerging non-pharmacological brain stimulation techniques66-68. Our study 

identifying neurons preserved in end-stage AD and genes associated with neuronal 

excitability in these cells, such as KCNIP4, provides insights into cellular resilience in 

neurodegeneration and may guide the development of interventions to slow disease 

progression. 

 

METHODS 

This study was conducted in accordance with all applicable ethical regulations governing the 

use of human tissue and laboratory animals. Postmortem human brain tissue was obtained 

from the UCLA Department of Pathology and Easton Center, the NIH Neurobiobank 

(Sepulveda repository, Los Angeles, CA [IRB: PCC#: 2015-060672, VA Project #0002] and 

Mt. Sinai Brain Bank, New York City, NY [IRB HAR-13-059]), and Stanford’s Department of 

Pathology and Alzheimer’s Disease Research Center (IRB IRB-33727). Informed consent for 

brain tissue donation was obtained in accordance with protocols approved by the respective 

institutions. The samples used in this study were deidentified, and the study was granted a 

regulatory determination of Not Human Subjects Research (NHSR). All animal procedures 

were performed in compliance with institutional and federal guidelines for the care and use of 

laboratory animals. The experimental protocols were reviewed and approved by the 

Administrative Panel on Laboratory Animal Care (APLAC) at Stanford University (protocol ID: 

33824). 

Postmortem brain tissue 

AD neuropathology was evaluated by a neuropathologist using the ABC score (National 

Institute on Aging and Alzheimer’s Association Research Framework criteria)10. Relevant 

information such as age, sex, ethnicity, brain weight, and postmortem interval (PMI) was 

recorded when available. APOE genotyping was performed using the SNP Genotyping 

service from Genewiz (Azenta Life Sciences) with genomic DNA isolated from fresh-frozen 

brain tissue samples. No cases with imaging or gross findings consistent with large vessel 

territorial infarction, hemorrhage, primary or metastatic neoplasms, or CNS infection were 

included. Cases with histological evidence of hypoxic-ischemic brain injury were excluded. 

Tissue blocks selected for snRNA-seq underwent immunohistochemical assessment, 
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including H&E and Nissl stains to confirm tissue integrity and the absence of microinfarcts or 

other focal pathologies. NeuN immunohistochemistry was performed to confirm the absence 

of decreased NeuN immunostaining, which could bias the sorting of NeuN+ neuronal nuclei 

by FANS. Tau and amyloid immunohistochemistry were also performed to assess the extent 

of pathology in the same blocks utilized for snRNA-seq.  

The tissue samples were collected from three regions: the prefrontal cortex (BA9), precuneus 

(BA7), and primary visual cortex (BA17), encompassing all stages of disease progression. A 

total of 46 donors contributed to the study (42 for BA9, 15 for BA7, and 24 for BA17). The 

stages of disease progression were categorized into three groups: low pathology (18 donors; 

6 females, 12 males), intermediate pathology (10 donors; 7 females, 3 males), and high 

pathology (18 donors; 12 females, 6 males). The criteria for each group were based on the 

presence and distribution of tau aggregates, according to the Braak staging system9, and of 

amyloid pathology, including diffuse and neuritic amyloid plaques. The density of neuritic 

amyloid plaques was semi-quantified using the CERAD (C) staging system69. The low 

pathology group included cases with no tau or amyloid pathology, with low AD 

neuropathologic change (ADNC), and cases of primary age-related tauopathy (PART), a 

pathology associated with aging that features NFTs with similar morphology and distribution 

as in AD in the absence of amyloid70. The PART cases in this study had a Braak stage I−III. 

The intermediate pathology group included cases with Braak stage III−IV and diffuse plaques 

or sparse (C1) neuritic plaques. The high pathology group included cases with Braak stage 

V−VI and moderate (C2) or abundant (C3) neuritic plaques. The mean age of the donors in 

the low, intermediate, and high pathology groups were 70.5  9.2, 81.9  13.6, and 82.4  

10.4 years, respectively.  

RNA integrity number (RIN) was measured in all the tissue blocks selected for snRNA-seq. 

Total RNA extraction from ~20 mg of tissue was performed using Trizol reagent followed the 

RNeasy Plus Mini kit (Qiagen cat # 74134) according to the manufacturer instructions. Purified 

RNA was quantified using the Agilent Bioanalyzer 2100 RNA Nano chips (Agilent 

Technologies cat # 5067-1511) according to the manufacturer instructions. There were no 

significant differences in the RIN (5.8  0.7, 6.2  0.7, and 6.2  0.7, respectively) and in the 

PMI (15.6  8.2, 12.8  8.2, and 13.8  9.7 hours, respectively) between the low, intermediate, 

and high pathology groups.  

Single nuclear isolation and neuronal nuclei enrichment 
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The fresh-frozen brain tissue blocks (~3  2  0.5 cm) were stored at −80°C. Adequate 

orientation of the blocks was ensured to enable full-thickness sectioning of the cortical ribbon 

with a proper representation of all layers. To that end, thick sections (~500 µm) were cut 

spanning the entire thickness of the cerebral cortex, from the leptomeninges to the underlying 

white matter. The cryostat was set at −12°C to facilitate the cutting of these thick sections 

while preserving the remaining tissue block frozen for further experiments. Under a 

stereomicroscope, the tissue slices were dissected to remove the white matter and 

leptomeninges. For each experiment, ~100 mg of cortical gray matter was utilized. To prevent 

further RNA degradation, all subsequent steps were conducted on ice under RNase-free 

conditions. The tissue was chopped into small pieces (< 1 mm3) using a chilled razor blade 

and homogenized with a Dounce tissue grinder (Kimble cat # 885300-0007). Each tissue 

sample was dissociated in 2.4 mL of homogenization buffer containing 10 mM Tris pH 8, 5 

mM MgCl2, 25 mM KCl, 250 mM sucrose, 1 μM DTT, 0.5x protease inhibitor (cOmplete, Roche 

cat # 46931590010), 0.2 U/μL RNase inhibitor, and 0.1% Triton X-100. Typically, ~30 grinder 

strokes with pestle B (0.020−0.056 mm clearance) were required. Microscopic examination 

using a hemocytometer was conducted to assess the number of nuclei and the presence of 

clumps and debris. The homogenates were subsequently filtered through a 40-μm cell strainer 

and transferred into two 1.5-mL Eppendorf tubes.  

Iodixanol gradient centrifugation was used to further clean-up the nuclei and remove myelin 

debris. The homogenate was first centrifuged at 1000 ×g for 8 min at 4°C. The supernatant 

was discarded, and the pellets were gently resuspended in 450 μL of homogenization buffer. 

An equal volume (450 μL) of 50% v/v iodixanol medium (41.25 mM sucrose, 24.75 mM KCl, 

5 mM MgCl2, 10 mM Tris [pH 8], and 50% v/v iodixanol) was added to the homogenate and 

gently mixed with a pipette. The mixture was then transferred to a new 2-mL Eppendorf tube 

containing 900 μL of 29% iodixanol medium (125 mM sucrose, 75 mM KCl, 15 mM MgCl2, 30 

mM Tris [pH 8], and 29% v/v iodixanol) by slow layering on the top. The tubes were centrifuged 

at 13,500 ×g for 20 min at 4°C, resulting in the sedimentation of nuclei. The top layer, 

containing abundant myelin, and the supernatant were removed and discarded carefully, 

avoiding contamination of the nuclei pellet. The pellets were detached by carefully pipetting 

with ~50 μL of immunostaining buffer (0.1 M phosphate-buffered saline [PBS; pH 7.4], 0.5% 

bovine serum albumin [BSA], 5 mM MgCl2, 2 U/mL DNAse I, and 0.2 U/μL RNase inhibitor), 

transferred to clean tubes, and gently resuspended in a total volume of 200 μL of 

immunostaining buffer. After a 15-min incubation with immunostaining buffer, at 4°C, with 
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gentle rocking, NeuN primary antibody was added (mouse anti-NeuN monoclonal antibody, 

1:1000, Millipore Sigma, MAB377), and incubated for 40 min at 4°C with gentle rocking. The 

samples were then washed by adding 500 μL of immunostaining buffer and centrifuging at 

500 ×g for 5 min at 4°C. Supernatant was discarded and the pellet resuspended in 

immunostaining buffer containing goat-anti-mouse antibody (Alexa Fluor 647, 1:500) and a 

nuclear stain (Hoechst 34580; 2,5 μg/ml). Aliquots of unstained, only secondary antibody-

treated, and single-stained (Hoechst, NeuN) nuclei were saved for use as controls. The 

number and integrity of the nuclei were evaluated microscopically after each critical step and 

before FANS. The typical yield for ~100 mg of cerebral cortex tissue was between 1−3 × 106 

nuclei.  

FANS was used to collect two single nuclear suspensions per sample (NeuN+ and all nuclei). 

Sorting was performed using a BD FACSAria II or a Sony SH800. The sheath fluid consisted 

of PBS with a sheath pressure of 20 psi. Sorting was performed using a 100-μm nozzle tip or 

microfluidic sorting chip (100-μm). For the excitation of forward scatter (FSC) and side scatter 

(SSC), a 488-nm laser was employed. Hoechst 34580 and Alexa Fluor 647 were excited using 

405-nm and 640-nm lasers, respectively. FANS gating was performed in the following order: 

FSC height vs. SSC height; SSC area vs. Hoechst fluorescence (bandpass filter 450/50); and 

Alexa Fluor 647 (bandpass filter 665/30) vs. Hoechst fluorescence. The FSC versus SSC 

gates were set with permissive limits to discard the smallest and largest particles. Hoechst 

fluorescence was used to distinguish single nuclei from doublets, clumps, and damaged 

nuclei. Alexa Fluor 647 was used to distinguish neuronal (NeuN+) from non-neuronal nuclei. 

Controls including unstained, only secondary antibody-treated, and only single primary 

antibody-treated cell suspensions were included to adjust gates thresholds and minimize false 

positives from nonspecific staining or autofluorescence. Two populations, all nuclei (Hoechst+) 

and neuronal nuclei (Hoechst+/NeuN+), were collected. The sorted nuclear suspensions were 

collected in 1.5-mL Eppendorf tubes containing 100–200 μL of collection buffer consisting of 

0.1 M PBS, pH 7.4, and 0.1 U/μL RNase inhibitor. After collection, BSA was added to each 

tube for a final concentration of 1%. To prevent nuclei from adhering to the tube walls, the 

collection tubes were precoated with BSA. Precoating was performed by filling the tubes with 

10% BSA in PBS for 5 min, followed by rinsing with PBS and drying overnight at 4°C. 

snRNA-seq of postmortem human brain nuclei 

We used either a modified Drop-seq method71 or the standard 10x Genomics Chromium 

Single Cell 3’ v2 or v3 assays to profile the transcriptomes of nuclei from postmortem human 
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brain tissue. For Drop-seq, the input single nuclei were diluted to a concentration of 200 

nuclei/µl. To encapsulate individual nuclei and barcoded beads (Chemgenes, cat # Makosko-

2011-10), we employed a microfluidic system (FlowJEM) and adjusted the flow parameters to 

generate ~100 µl (~0.5 nl) droplets (nuclei loading concentration: 200 nuclei/µl; bead 

concentration: 165 beads/µl; flow rate: 3 ml/h). With these parameters, both the cell 

occupancy and the expected doublet rates were ~5%. These rates were confirmed by 

observing the beads and Hoechst+ nuclei within the droplets by fluorescent microscopy. 

Standard methods proved challenging for digesting nuclear membranes from human brain 

nuclei, resulting in low transcript detection. To overcome this, we tested various lysis methods 

(sarkosyl, SDS, and triton) at different concentrations, with or without heat. Lysis buffers 

containing 1% sarkosyl yielded optimal results without disrupting droplet generation. 

Furthermore, brief heating of the droplet-encapsulated nuclei (5 min at 72°C) improved lysis 

efficiency. Reverse transcription and PCR amplification followed previously described 

protocols71. PCR reactions, each containing 4,000 beads (i.e., 200 nuclei), were individually 

run and subsequently pooled (typically 5−15 PCR tubes, i.e., 1,000−3000 nuclei) for library 

preparation and sequencing.  

For 10x Genomics, the input single nuclei were centrifuged at 400 ×g for 5 min at 4°C to 

achieve a concentration of ~350 nuclei per μL. Nuclear concentrations were determined using 

a hemocytometer. On average, ~12,500 nuclei were loaded to capture around 5,000 nuclei 

per sample (with an expected capture efficiency of ~40%). cDNA amplification and library 

construction followed the manufacturer’s instructions. 

The paired-end libraries generated by Drop-seq or 10x Genomics were sequenced on either 

Illumina NextSeq 500 or Novaseq 6000 platforms. A total of 243 samples (184 Drop-seq and 

59 10x Genomics) were sequenced in 37 sequencing batches. For each sequencing batch, 

the concentration of each sample was normalized to the total number of nuclei to ensure 

similar numbers of reads per nucleus. Nuclei were sequenced to a depth of ~75,000 reads 

per nucleus. 

Preprocessing, quality control, and integration of snRNA-seq data 

The paired-end raw sequence reads were preprocessed using the Kallisto bustools package 

(kbpython:0.26.0)72. An alignment index was constructed based on the human reference pre-

mRNA (GRCh38, Ensembl 105). Following the Lamanno workflow, we generated separate 

count matrices for spliced and unspliced transcripts. These matrices were then merged to 
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obtain the total nucleus count matrix. The quantification of total transcriptome abundance was 

performed for each of the three matrices. Downstream analysis, including QC, integration, cell 

type annotations, and differential gene expression, was performed using the unspliced 

transcript counts. 

Empty droplets were removed by comparison with ambient RNA levels using the DropletUtils 

package73. The identification of empty droplets was performed by analyzing the knee and 

inflection points on the cumulative transcript counts plots for each sample individually. Nuclei 

with an FDR <0.05 were removed, resulting in a total of 665,407 nuclei. Further filtering was 

applied to exclude nuclei with fewer than 200 genes, leaving 549,074 nuclei. 

To identify potential doublets, we used the DoubletFinder package version 4.274. Among the 

10x Genomics samples, an average doublet rate of 2.85% and 1.74% was detected in v2 and 

v3 samples, respectively, while the Dropseq samples had a doublet rate of 0.003%. The 

identified doublets were labeled and retained during batch correction and data integration. 

Following clustering and dataset annotation, the majority of labeled doublets clustered 

together. These clusters, containing doublets, were excluded from further downstream 

analysis. 

To analyze the raw count data, we used Scanpy in the python package version 3.9.175. First, 

we used a series of preprocessing steps for normalization and scaling. Highly variable genes 

were identified using default parameters and a dispersion threshold of 0.5. Principal 

Component Analysis (PCA) was applied to reduce dimensionality, generating 50 principal 

components. Subsequently, a neighborhood graph was constructed using default parameters 

with 15 neighbors, and Leiden graph-based clustering was performed using correlation 

distance metrics. To address batch effects and integrate data from different brain regions and 

disease stages, we used Harmony (v1.2.2769)76. Integration was based on silhouette score 

values of 0.8 or higher, as well as visual inspection of UMAP plots representing experimental 

assay, sequencing batch, donor, brain region, disease stage, sex, and UMI abundance. The 

selected integration variables included the experimental assay (Dropseq, 10x Genomics v2, 

and 10x Genomics v3) and brain region (BA9, BA7, and BA17). After integration, the 

neighborhood graph and Leiden graph-based clustering were generated again. Marker genes 

for each cluster were determined using the Wilcoxon rank sum test with a significance 

threshold of adjusted p-value (padj) < 0.05. 
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The integrated dataset contained 549,074 nuclei. To further optimize the lower gene cutoff, 

thresholds from 200 to 500 genes were tested, and 300 genes were chosen as the final cutoff. 

All clusters comprised nuclei from every donor, and no clusters exclusively contained nuclei 

with low UMI counts. Three small clusters containing doublets, totaling 17,442 nuclei, were 

excluded. Mitochondrial gene content was measured and annotated, but only outlier nuclei 

with higher than 5% mitochondrial genes (1,778 nuclei) were discarded, resulting in a total of 

424,528 high-quality nuclei (362,224 neuronal and 62,304 non-neuronal) for downstream 

analysis. 

Major cell type, neuronal subtype, and glial cell state annotations

  

The major neuronal and non-neuronal populations were identified based on the expression of 

known marker genes: SLC17A7 (excitatory neuron), GAD1 (inhibitory neuron), FGFR3, 

AQP4, and GFAP (astrocyte), CSF1R, CX3CR1, and CD163 (microglia), PLP1 and MOG 

(oligodendrocyte), PDGFRA and CSPG4 (OPC), CLDN5 and FLT1 (endothelial), NOTCH3 

(pericyte), and CYP1B1 and COL15A1 (VLMC). 

These major cell type clusters were subsetted and reclustered within the integrated PC space 

to identify neuronal subtypes and glial states. Clustering reliability was determined based on 

silhouette score values of 0.8 or higher and WCSS (Within Cluster Sum of Squares). The first 

30 PCs and a resolution of 1.0 were employed for both the excitatory subset (282,930 nuclei) 

and the inhibitory subset (79,294 nuclei). Marker genes for each cluster were ranked using 

the Wilcoxon rank sum test with the following criteria: minimum expression fraction (either in 

the tested cluster or in all other nuclei combined) of 0.2, log-fold change > 0.5, padj < 0.05. 

After merging two excitatory clusters that lacked marker genes to reliably distinguish between 

them and discarding two small inhibitory clusters (207 nuclei) with mixed markers, a total of 

18 excitatory (Ex) and 19 inhibitory (In) clusters were obtained. We visualized the UMAP with 

a minimum distance of 0.6 and a spread of 1.4. 

To identify the top marker genes for each cluster, the following criteria were applied: 

expression fraction within the cluster (pts) > 0.2; expression fraction within all other nuclei 

(pts_rest) < 0.1; ratio pts/pts_rest > 3; log-fold change > 1.5; and padj < 0.05. For Ex1, Ex2, 

and Ex5, the pts_rest was set at < 0.2 and the ratio pts/pts_rest was set at > 2. The clusters 

were named based on canonical markers for major subclasses (i.e., CUX2, RORB, THEMIS, 

and FEZF2 for excitatory; and LHX6 and ADARB2 for inhibitory), followed by 1−3 top marker 
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genes. Additionally, we compiled gene sets consisting of 7-10 genes for each neuronal 

subtype, selected from the top marker genes. These marker genes and gene sets precisely 

labeled each of our annotated neuronal subtypes in our dataset and a reference dataset23, 

and thus are useful to identify neuronal subtypes computationally and by histology. 

To compare our neuronal clusters and their marker genes with a reference dataset, we utilized 

a publicly available dataset containing over one million neuronal nuclei from the DLPFC of 

donors with dementia and healthy controls23. To determine the degree of similarity between 

the annotations in the two datasets, we subset both count matrices keeping only highly 

variable genes (3,000 genes), identified the top 10 markers for each cluster, and calculated 

the cosine similarity distance between the mean expression values of genes for each cluster. 

A lower distance in the similarity matrix indicates a higher level of agreement. 

The non-neuronal subset clusters included: astrocytes (14,691), microglia (5,071), 

oligodendrocytes (36,589), OPCs (5,770), and vascular cells (183). These populations were 

reclustered using the first 10 PCs, with a resolution of 0.3 for astrocytes, 0.2 for microglia and 

oligodendrocytes, and 0.1 for other types. The top marker genes for each cluster were 

identified using the same method as for the neuronal clusters, using the following thresholds: 

pts > 0.2; pts_rest < 0.1; ratio of pts/pts_rest > 2.5; log-fold change > 1.0; and padj < 0.05. 

We annotated 4 astrocyte, 4 microglia, and 2 oligodendrocyte cell states. Other non-neuronal 

types were not subclassified further due to their relatively low nucleus numbers. 

Cell identity prediction using scANVI 

We employed the scANVI77 (version 1.0) machine learning method to predict the identity of 

unannotated neuronal nuclei with relatively low UMI counts from our dataset and to predict 

the identity of neuronal populations from public datasets using the annotations from our 

dataset. For model training, we utilized our excitatory (18 neuronal clusters) and inhibitory (19 

neuronal clusters) datasets as training set. We selected 2,000 highly variable genes and the 

top 200 marker genes for each cluster (Wilcoxon rank sum test, log-fold change > 0.8, padj < 

0.05), along with our cell-type-specific gene sets. The model underwent training for a 

maximum 200 epochs with 3 layers and 50 latent spaces. To address batch effects during 

training, we introduced a combined batch effect key considering both the profiling assay 

(DropSeq, 10x v2, 10x v3) and brain region (BA9, BA7, and BA17). We monitored model 

convergence and loss for each epoch using an elbow plot to determine the optimal number of 

epochs for effective convergence. To prevent overfitting, we employed a single-layer 
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perceptron with the ‘linear_classifier’ parameter set to ‘True’, promoting model simplicity and 

reducing bias towards the training data. Additionally, we applied the var activation 

(torch.nn.functional.softplus) function to ensure stable optimization. To represent rare cell 

types adequately, we set the ‘n_samples_per_label’ to 1000. Probabilities of cell cluster 

assignments from the latent space were computed using the 'soft' function, providing a 

confidence measure for each prediction. Model accuracy was assessed by comparing true 

labels with predictions using sensitivity and specificity measures. Additionally, we conducted 

differential testing using the Wilcoxon rank sum test, employing predicted annotations to 

validate the reliability of the neuronal subtypes inferred from our predictions. We assigned 

identity to query data using a probability threshold of 0.99 to minimize false positives. We 

predicted excitatory cell identity labels for five public reference datasets (SEA-AD DLPFC and 

MTG; Mathys et al., 2023; Green et al., 2024; Jorstad et al. 2023)3, 5, 8, 23 to demonstrate that 

the pretrained model can be applied across datasets. 

Neuronal subtype proportion quantification 

To quantify the relative proportions of each neuronal subtype within each disease group (low, 

intermediate, high pathology) and region (BA9, BA17), we calculated the relative abundance 

of each subtype per donor in relation to the total number of neurons. Analyses were conducted 

separately for the BA9 and BA17 brain regions at the layer-annotated neuronal cluster level, 

restricted to cells expressing a minimum of 500 genes per nucleus. To test for significant 

differences in cell composition among disease groups, we conducted two complementary 

analyses: scCODA34, a Bayesian modeling framework tailored for compositional single-cell 

data, and a generalized linear mixed model (GLMM) for modeling variances and covariances. 

For scCODA (version 0.1.9), the model formula used was: 

Cell type counts ~ Disease group + Sex + APOE genotype + Assay + Age 

The software was run in automatic reference mode, allowing it to select a stable reference cell 

type that is assumed not to vary across conditions. Donor age was standardized and included 

as a numeric covariate. We utilized this Bayesian framework to assess changes in relative 

cell type abundances, focusing on posterior inclusion probabilities and credible intervals to 

determine statistically significant differences. To prepare the data for analysis, raw count 

matrices were constructed for each brain region, representing the number of cells per donor 

and neuronal subtype combination based on layer-specific annotations. Following this, cell 
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type proportions were computed, and the Bayesian model was fitted to assess the effects of 

disease progression while adjusting for sex, APOE genotype, assay platform, and age. 

Additionally, to evaluate the robustness of our compositional inferences, we performed a 

stress test sensitivity analysis using a modified version of scCODA restricted to neuronal 

populations only. Neuronal nuclei were filtered using a quality-control threshold of n_genes > 

500 prior to aggregation. Donor-level cell type counts were modeled using scCODA’s 

Dirichlet–multinomial framework. To take into account compositional effects and the sparsity-

inducing prior, we reparameterized the regression coefficients (β) using a HalfNormal prior 

with an explicit sign constraint, such that all coefficients were restricted to be non-positive (β 

≤ 0). Under this formulation, inferred effects represent neuronal losses only relative to the 

reference population, and apparent expansions of individual neuron types are not permitted. 

The loss-only model was fitted using the same covariate structure as the primary analysis. 

Aside from smaller HMC step sizes required for stable sampling under the constrained 

parameterization, all modeling choices were held constant. This analysis therefore represents 

a deliberately conservative stress test rather than an alternative generative model. 

We applied GLMMs to evaluate differences in neuronal subtype representation across 

disease groups, using proportional abundance as the outcome variable. The outcome variable 

was the fraction of each neuronal subtype per donor, bounded between 0 and 1, and modeled 

using a beta distribution with a logit link. Each neuronal subtype was modeled independently. 

The main effect tested was the disease group, with the low pathology group as the reference. 

Additional fixed effects in the models included assay platform (Dropseq, 10x Genomics v2, 

and 10x Genomics v3), age, sex, and APOE genotype. Donor was included as a random 

intercept to account for repeated measures and inter-individual variation. Neuronal subtypes 

represented in fewer than three unique donors were excluded to ensure robust model fitting. 

All modeling was conducted using the glmmTMB package78 (version 1.1.11) in R, with data 

preprocessing performed using dplyr and tidyr. For each model, we extracted fixed effect 

estimates, standard errors, z-statistics, and associated p-values. Results were compiled 

across neuronal subtypes and exported for interpretation. 

Spatial transcriptomics using Visium 

We used the 10x Genomics Visium platform (Spatial 3' v1 chemistry) to spatially map 37 

neuronal subtypes (18 excitatory and 19 inhibitory), astrocytes, oligodendrocytes, OPCs, and 

microglia in fresh-frozen tissue sections from the neocortex of AD and healthy control donors. 
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A total of 16 tissue sections were studied, including controls (BA9, BA7, BA17, motor cortex, 

entorhinal cortex, and hippocampus from a control donor, and two additional sections of BA9 

and BA7 from another donor) as well as AD (BA9 and BA7 from 3 donors with high AD 

pathology and BA9 from 2 donors with intermediate pathology). The sections were cut at a 

thickness of 12 µm on a cryostat and mounted on fiduciary frames of four 10x slides. H&E 

staining was performed, and the slides were temporarily coverslipped with mounting medium 

(85% glycerol containing 0.2 U/μL RNAse inhibitor) and digitally scanned at 200x 

magnification using a Zeiss Axio Imager M2 microscope equipped with a color digital camera 

(Axiocam) and MBF Stereo Investigator with a 2D slide scanning extension module. 

Permeabilization enzyme treatment was applied to the tissue for 15 minutes at 37°C, as 

determined by the Tissue Optimization protocol provided by 10x Visium. Reverse 

transcription, second strand synthesis, and cDNA amplification were carried out according to 

the manufacturer's recommendations. We utilized the targeted Human Neuroscience gene 

expression panel, which consists of 1,186 genes, and supplemented it with a custom panel 

comprising 197 cell type-specific marker genes. The marker genes were selected from our 

snRNA-seq dataset based on their specificity to label our annotated neuronal clusters and 

their expression levels. The custom hybridization capture panel oligos were obtained from IDT 

(IDT NGS Discovery Pools). Library sequencing was performed on the Illumina Novaseq 6000 

platform at a depth of 15,000 reads per spot, resulting in a sequencing saturation of 

approximately 96%. This 1,383 gene panel provides a cost-efficient tool for mapping neuronal 

vulnerability in the human AD brain while allowing to sequence at a 90% lower cost compared 

to whole transcriptome sequencing. To evaluate the quality of our spatial data, we used the 

10x Space Ranger pipeline, which maps the transcriptomic data on the high-resolution 

microscopic images. On average, we detected 1,336 out of the total 1,383 targeted genes. 

The median number of targeted genes and UMI counts detected per spot were 221 and 392, 

respectively. 

Integration of snRNA-seq and Visium spatial transcriptomics 

We used Stereoscope79 to integrate the spatial transcriptomics (ST) data generated with 10x 

Genomics Visium and the snRNA-seq data. First, we subsetted the snRNA-seq data based 

on the genes present in the Visium spatial transcriptomics dataset (1,383 genes). We trained 

variation auto encoder model using the snRNA-seq data to construct a single-cell reference 

latent variable for inferring cell type-specific gene expression patterns. For model training, we 

used the following parameters: layer = ‘unspliced’; labels_key = ‘Author_Annotation’; max 
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epochs = 200.  We checked the model convergence by elbow plot. Then, we trained the spatial 

model using the Visium data and the pre-trained snRNA-seq data for a maximum of 2000 

epochs. This allowed us to identify cell types using negative binomial latent variables. We 

performed different iterations to visualize cell populations in the Visium space considering 

different combinations of cell types (i.e., all major cell types; each of the excitatory neurons, 

inhibitory neurons, and glial populations; and each excitatory neuronal subtype). To visualize 

each of the cell subtypes in each ST tissue section slide, we utilized the matplotlib and 

seaborn plotting Python packages. 

Spatial transcriptomics using Xenium 

We used the 10x Genomics Xenium spatial platform to map our annotated neuronal cell 

subtypes at single-cell resolution. A total of 16 human brain sections were analyzed, 8 from 

BA9 and 8 from BA17, including samples from 4 donors with high AD pathology and 4 control 

donors. Fresh-frozen brain sections were cut at a thickness of 10 µm on a cryostat and 

mounted inside the fiducial frames of four Xenium slides. Tissue section fixation and 

permeabilization were performed according to the manufacturer’s protocol. We used the 

predesigned 266-gene Xenium Human Brain Gene Expression panel along with a custom 

100-gene panel. To ensure consistency across samples, probe hybridization, ligation, and 

rolling circle amplification were performed for all four slides together using a HybEZ™ II Oven 

(ACD Bio). Additionally, the Cell Segmentation Add-on Kit was employed for multimodal 

segmentation, following the manufacturer’s protocol for staining. Background fluorescence 

was chemically quenched according to manufacturer’s instructions. Imaging, signal detection, 

and spatial decoding were performed using the Xenium Analyzer (10x Genomics) under 

standard settings. 

Xenium data preprocessing and neuronal cell subtype annotation 

Spatial transcriptomic data generated with the Xenium platform were preprocessed using the 

Xenium Ranger (version 3.1) with squidpy80 (version 1.2.3) standard pipelines. Cell 

segmentation was performed using the multimodal cell segmentation algorithm, with the final 

segmentation prioritized using first the interior RNA staining (ribosomal RNA) to delineate 

cellular boundaries, followed by an isotropic nuclear (DAPI) expansion of 5 µm. The latter 

primarily identified small cells, particularly glia, that exhibited low ribosomal RNA staining. 

We first annotated major cell types using a strategy aimed at addressing transcript signal 

overlap between cells in close proximity. We implemented four independent approaches: (1) 
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manual annotation based on k-nearest neighbor graphs, Leiden clustering, and canonical 

marker genes; (2) heuristic classification using a custom Python script to assign cell types 

based on the highest-expressed transcripts; (3) deep neural network (DNN) classification via 

spatialID81 (version 1.0.0), trained on the SEA-AD DLPFC dataset23; and (4) ingest-based 

label transfer directly projecting SEA-AD DLPFC annotations onto the spatial data. Predictions 

from these methods were integrated using an ensemble voting strategy, generating 

consensus annotations and confidence scores. Cells with a consensus confidence greater 

than 0.5 were retained for downstream analyses.  

Next, we performed neuronal cell subtype annotation using ingest-based label transfer with 

our snRNA-seq dataset as a reference. Neurons with more than 50 transcripts were 

annotated. Shared genes between Xenium and snRNA-seq were identified and subsetted 

from both datasets. PCA was performed on the reference dataset (adata_nucleus) using the 

top 15 principal components to construct a k-nearest neighbors graph (k=20). The Xenium 

data (adata_xenium) were then projected into the reference PCA space, and cell labels were 

transferred using sc.tl.ingest, based on mutual nearest neighbors in the PCA embedding. The 

labels were transferred separately for each tissue. This approach enabled efficient and 

accurate label transfer while preserving fine neuronal subtype resolution. 

Co-expression network analysis 

We performed weighted gene co-expression network analysis (WGCNA) on our high-

dimensional snRNA-seq data using the hdWGCNA R package56 (version 0.2.23) to compute 

co-expression gene modules of interconnected genes within each neuronal cell subtype and 

brain region. We constructed meta-cells using the following parameters: group.by = 

"Author_Annotation", k = 25, and minimum cell threshold of 50. After constructing the meta-

cells, we normalized the object using default parameters, including the use of Harmony for 

dimensional reduction and batch correction. We then constructed co-expression networks. 

Gene correlations were transformed into a similarity matrix using the power function, which 

preserves strong correlations. Modules were identified through hierarchical clustering with 

similarity distance measures. Module reliability and robustness were estimated using 

bootstrap resampling with 5,000 iterations. We ranked the highly correlated genes, defined as 

the kME (module eigengene), by their kME values for each neuronal cell subtype within the 

modules and retained the top 50 intra-module co-expressed genes.  

Differential gene expression analysis 
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We performed differential gene expression (DGE) analysis to compare the low vs intermediate 

pathology groups (designated as ‘early’ changes) and the intermediate vs high pathology 

groups (designated as ‘late’ changes), within each neuronal subtype and brain region. To 

ensure the reliability of our analysis, we employed various methods, including a zero-inflated 

regression mixed model implemented in MAST47 (version 1.24.1) and lme482 (version 1.1-34), 

bootstrap resampling with 100 iterations, and pyDESeq283 (version 0.3.5) on pseudobulk 

aggregated counts.  

For the zero-inflated regression mixed model (MAST and lme4), we used the following model 

formula: 

Zlm(~ condition + (1 | donor) + cngeneson + Assay + Age + Sex + RIN + total_counts, sca, 

method = 'glmer') 

In this model, donor is considered a random effect. The fixed covariates include "cngeneson" 

(i.e., cellular gene detection rate), age, sex, RIN, and total raw sequencing counts. The DE 

genes were filtered using the following thresholds: percentage of expression > 20% for at 

least one condition, ∣logFC∣>0.1, and false discovery rate < 0.05.  

To ensure the robust and reproducible identification of significant DE genes, we employed 

bootstrapping followed by DGE (MAST/lme4, as detailed above). This resampling technique 

mitigates potential effects from outliers and the varying number of nuclei per cluster. We 

conducted a series of 100 iterations. In each iteration, we randomly selected 50% of nuclei 

from each neuronal cell subtype from each comparison. Subsequently, we computed the DE 

genes for each iteration and assigned confidence scores based on frequency analysis across 

all iterations. We filtered the DE genes based on their consistent identification as differentially 

expressed, retaining those genes that exhibited the same significant up or downregulation in 

at least 20 out of the 100 iterations. 

Additionally, we used a pseudobulk aggregation method with raw gene abundance counts to 

construct representative expression profiles for each neuronal subtype within each donor, 

disease group, and brain region. The data were organized with donors as rows and genes as 

columns. Next, we aggregated the data from individual donors into a single pseudobulk count 

dataset. We then performed log normalization on the raw count data and applied a gene filter, 

retaining only genes expressed in at least 20 nuclei. Subsequently, we created a DESeq2 

object using pyDESeq2. To evaluate the data’s inherent variability, we conducted PCA, a 

high-dimensional reduction technique. For DGE analysis, we established a design matrix to 
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compare disease groups. To ensure statistical significance, we applied the Benjamin-

Hochberg correction method with a threshold of padj < 0.05. 

We defined ‘high-confidence’ DE genes as those identified by at least two different methods: 

the mixed model and either one of the other DGE methods (bootstrap or pseudobulk) or 

network co-expression analysis (top 50 genes by kME values from the hdWGCNA). This 

comprehensive approach aimed to enhance the reliability of our DGE predictions by ensuring 

consistency across methods and experimental conditions.  

Functional enrichment analysis 

We used multiple methods for functional enrichment analysis, including Enrichr84 (GSEApy, 

version 1.0.6), Metascape85, and g:profiler86. The input data consisted of high-confidence DE 

genes obtained from comparing low vs. intermediate and intermediate vs. high pathology 

groups ('early' and 'late' changes) within each neuronal subtype and brain region. For 

Enrichr84, we used brain-specific gene sets from the Genotype-Tissue Expression (GTEx)87 

and Synaptic Gene Ontology (SynGO)88 databases to establish background gene expression. 

Statistical significance thresholds were determined using an adjusted p-value < 0.05 and at 

least a minimum of three genes per group. We utilized Metascape with the following custom 

parameters: a minimum overlap of 5, a p-value threshold of 0.01, and a minimum enrichment 

score of 2.5. The top 50 enriched functional modules were visualized in heatmaps using the 

Matplotlib and Seaborn Python packages.  

Additionally, we used g:profiler to perform functional enrichment analysis for Ex2 L2/3 IT and 

Ex5 L4 IT, using as input the top 50 co-expressed network genes from each module from our 

hdWGCNA analysis. We selected key driver GO terms within the Molecular Function and 

Biological Process categories, with GO terms having a size between 10 and 1000 and an 

adjusted p-value threshold of 0.05. The top enrichment terms from each module were 

visualized in a dot plot using Matplotlib and Seaborn, and the enrichment networks were 

visualized using Cytoscape89. 

Immunohistochemistry in human brain tissue 

Immunofluorescence to quantify KCNIP4 was performed on 20 µm-thick cryosections of fresh-

frozen brain tissue. Sections were fixed with 2% PFA for 20 minutes, blocked with 10% normal 

goat serum (NGS) and 2% BSA in PBS with 0.25% Triton X-100 (PBT) for 1 hour at RT, and 

then incubated overnight at 4°C with primary antibodies in PBT containing 3% NGS and 0.5% 
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BSA. The primary antibodies used were guinea pig anti-NeuN (1:50, Sigma ABN90), rabbit 

anti-EYA4 (1:50, Thermo Fisher Scientific PA552113), and mouse anti-KCNIP4 (1:50, 

Proteintech 60133-1-Ig). After three washes with PBT, sections were incubated with 

secondary antibodies for 2 hours at RT: Alexa Fluor 647 anti-guinea pig (Invitrogen, A21450; 

1:200), Alexa Fluor 488 anti-rabbit (1:200, Invitrogen A11070;), and Alexa Fluor 546 anti-

mouse (Invitrogen, A11018; 1:200). Sections were counterstained with DAPI (1:2000, 

Invitrogen) for 20 minutes, rinsed in PBS, mounted with aqueous mounting medium 

(Invitrogen P36930), and sealed. Images were acquired using a Zeiss LSM980 laser scanning 

confocal microscope with consistent parameters and processed with CellProfiler using custom 

pipelines for automatic cell segmentation based on NeuN and analysis of EYA4-positive cells 

and KCNIP4 intensity (available in the GitHub repository). We quantified one section per 

donor, with an average of approximately 250 excitatory neurons per case. Neurons were 

identified by morphology and marker expression, and quantification was restricted to well-

defined regions of interest within the cortical layers. 

Immunohistochemistry for VGLUT2 and NeuN was performed on 50 µm-thick free-floating 

fixed sections, obtained from tissue blocks fixed with 4% PFA for 3 days, cryoprotected in 

30% sucrose, and sectioned on a sliding microtome. The free-floating sections were rinsed in 

PBT and incubated in PBT containing 1% hydrogen peroxide for 30 minutes to block 

endogenous peroxidase activity. After washing with PBT, sections were incubated in a 

blocking solution containing 10% NGS and 2% BSA for 1 hour at RT. Sections were then 

incubated with mouse anti-NeuN (1:1000, Millipore Sigma MAB377) or mouse anti-VGLUT2 

(1:1000, Millipore Sigma MAB5504) diluted in PBT containing 3% NGS and 0.5% BSA 

overnight at 4°C. After washing, sections were incubated with a biotinylated goat anti-mouse 

antibody (VectorLabs BA-9200) diluted in PBT containing 3% NGS for 2 hours at RT, and 

then washed again. This was followed by incubation with ABC solution (Vectastain Elite ABC-

HRP kit, VectorLabs PK-6100) for 1 hour at RT. For the chromogenic reaction, 3,3'-

Diaminobenzidine (DAB) substrate solution (Sigma D5905) was used. Sections were air-

dried, dehydrated with ethanol followed by xylene, and coverslipped with Permount mounting 

medium. 

RNAscope ISH in human brain tissue 

Double fluorescent RNAscope ISH staining was performed on 20-μm-thick cryosections from 

fresh-frozen tissue, following the manufacturer’s protocol (Multiplex Fluorescent Reagent Kit 

v2 #323100). Human RNAscope probes were obtained from ACD Bio. to detect the following 
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genes: EYA4 (#510931), MME (#410891), GABRG1 (#485931), and SLC17A7 (#415611). 

Opal reagents from Akoya Biosciences were used for fluorescence detection: Opal 690 

(FP1497001KT; for EYA4), Opal 570 (FP1488001KT; for MME and GABRG1) and Opal 520 

(FP1487001KT; for SLC17A7). DAPI signal served as the anatomical reference to identify 

cortical layers. Images were acquired using a Zeiss LSM980 laser scanning confocal 

microscope with consistent parameters. Experiments were conducted in duplicate using 2 

sections from each of 2 healthy control donors for both BA9 and BA17. 

Experimental animals 

App knock-in mice (B6.Cg-Apptm1.1Dnli/J, strain #034711; also known as AppSAA) and WT 

controls (C57BL/6J, strain #000664) were obtained from The Jackson Laboratory (Bar Harbor, 

ME, USA). The mice were bred on a pure BL6/J background, and genotypes were confirmed 

by real time PCR (Transnetyx, Cordova, TN). All mice were housed in a barrier facility with ad 

libitum access to standard chow and water, on a 12:12-h light:dark cycle, and euthanized at 

study endpoints by transcardiac perfusion under deep anesthesia, according to the guidelines 

for animal testing and research under a protocol approved by the Stanford’s Administrative 

Panel on Laboratory Animal Care (APLAC). Previous studies have reported sex differences 

in some behavioral assays, but not in pathology24. Due to the small sample size, we used only 

male mice in this study. 

Primary mouse cortical neuron culture 

Primary cortical neurons were isolated from postnatal day 0 (P0) C57BL/6 mouse pups 

following established protocols90. Briefly, cortices from 5–8 pups were dissected and 

enzymatically dissociated using trypsin and DNase I, followed by mechanical trituration with 

fire-polished glass pipettes. The resulting cell suspension was plated at a density of 80,000 

cells/cm2 in glass bottom 24-well plates (Cellvis P24-1.5H-N) coated with poly-L-lysine and 

maintained in serum-free Neurobasal medium (Gibco) supplemented with GlutaMAX (Gibco), 

B27 (Gibco), and penicillin/streptomycin. Cultures were incubated at 37°C in a humidified 

atmosphere of 5% CO2, with half of the medium replaced every 3 days. 

Calcium imaging in primary mouse cortical neurons 

Neurons were transduced on day in vitro 7 (DIV7) with AAV-PHP.eB-CaMKIIa-Kcnip4-P2A-

EGFP or control AAV-PHP.eB-CaMKIIa-EGFP (Addgene #50469-PHPeB) at a multiplicity of 

infection (MOI) of 5,000 viral genomes (vg)/cell. Cloning and AAV production were performed 
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by Vector Biolabs (mouse Kcnip4 isoform 1; NCBI Reference Sequence: NP_001186171.1). 

To enable calcium imaging, cells were co-transduced with AAV-PHP.eB-Syn.NES-

jRGECO1a.WPRE.SV40 (Addgene #100854-PHPeB) at the same MOI. After 12 hours of 

incubation with AAVs, media was fully replaced with maintenance media mixed 1:1 with pre-

conditioned media (collected during previous media changes and stored at –20°C) to minimize 

AAV-associated toxicity while preserving growth factors. On DIV12, On DIV 12, intracellular 

calcium levels were increased by treating the cells with 200 nM amyloid-β (1–42) oligomers 

(Anaspec) or with PBS as a control. Oligomers were prepared by dissolving 0.5 mg amyloid-

β (1–42) in 1% NH4OH to yield a 1 mM stock, followed by a 1:10 dilution in PBS and incubation 

at 37 °C for 24 h in a thermocycler. 

Time-lapse imaging of jRGECO1a fluorescence was performed at DIV14 at 5 Hz for 100 

seconds per field using a Zeiss LSM980 in widefield fluorescence mode under controlled 

environmental conditions (37°C, 5% CO2). Regions of interest (ROIs) were manually drawn 

around neuronal somas using the Multi-Measure tool in ImageJ, and mean intensity values 

were extracted per frame. Traces were obtained from three GFP-positive neurons per field 

(two fields per well, four wells per condition). Fluorescence changes (ΔF/F0) were calculated 

using a rolling baseline defined as the 10th percentile over a 10-second window. Calcium 

transients were detected as events exceeding a threshold of 0.2 ΔF/F0, selected based on 

visual inspection and applied uniformly across conditions. Event frequency (events per 

minute) was averaged at the well level, with each well considered a biological replicate. Data 

analysis, including trace extraction and event detection, was performed using Python 3.11.12. 

TUNEL assay in primary mouse cortical neurons 

Immediately following calcium imaging, neurons were washed three times with PBS and fixed 

with 4% PFA/4% Sucrose in PBS for 20 min at RT. After three additional washes, cells were 

stored in PBS at 4°C for no longer than 24h. TUNEL staining was performed using the Click-

iT™ Plus TUNEL assay (Thermo Fisher Scientific, C10247 Far-Red). Briefly, cells were 

permeabilized with 0.25% Triton™ X-100 in PBS for 20 min at RT, incubated with the TdT 

reaction cocktail for 1 h at 37 °C, and subsequently with the Click-iT™ reaction cocktail for 

30 min at RT protected from light. After TUNEL labeling, cells were washed in PBS and 

blocked in 10% NGS in PBS for 30 min at RT, followed by incubation with anti-GFP antibody 

(1:1,000; Invitrogen, A11122) in 5% NGS for 1 h at RT. After three PBS washes (5 min each), 

cells were incubated with Alexa Fluor 488-conjugated anti-rabbit secondary antibody (1:1,000; 

Invitrogen, A11070) and DAPI (1:5,000) in 5% NGS for 1 h at RT. Cells were then washed 
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three times in PBS and stored at 4 °C (up to 48 h) prior to imaging. Images were acquired 

using a Zeiss LSM980 laser scanning confocal microscope with identical acquisition settings 

across conditions. TUNEL-positive, GFP-expressing neurons were manually counted using 

ImageJ (three fields per well, four wells per condition, each well was considered a biological 

replicate). 

AAV-driven KCNIP4 expression in excitatory neurons in adult mice 

Twelve-month-old AppSAA and control male mice were injected retroorbitally with 1 × 10¹¹ vg 

of AAV-PHP.eB-CaMKIIa-Kcnip4-P2A-EGFP in 100 µL of PBS or with AAV-PHP.eB-

CaMKIIa-EGFP as a control. Thirty days post-injection, mice were perfused with 0.9% saline 

for 3 minutes, and the brains were extracted. The right hemisphere was frozen in isopentane 

at -50°C, while the left hemisphere was fixed in 4% PFA for 24 hours, followed by 

cryoprotection in 30% sucrose for 24 hours. The fixed tissue was cut into 50 µm-thick free-

floating sections and stored at -20°C in a cryoprotectant solution (30% glycerol, 30% ethylene 

glycol in PBS) until further processing. 

Immunoblotting of mouse cortex tissue 

Frozen mouse brain cortex was lysed in tris/SDS/glycerol buffer, and protein concentration 

was determined using a BCA assay (Thermo Fisher Scientific). Twenty μg of protein were 

separated on 10% Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad) and transferred 

to PVDF membranes using the Trans-Blot Turbo (Bio-Rad) semi-dry transfer system. The 

membranes were blocked with 5% milk in tris-buffered saline with 0.05% Tween 20 (TBS-T) 

for 60 minutes at RT and then incubated overnight at 4°C with mouse anti-Kcnip4 antibody 

(1:1,000, Proteintech 60133-1-Ig) and anti-GAPDH antibody (1:10,000, Thermo Fisher 

Scientific MA5-15738). After three 10-minute washes with TBS-T, the membranes were 

incubated with a goat anti-mouse secondary antibody (1:1,000, Invitrogen G-21040) for 60 

minutes at RT. Following washing with TBS-T, membranes were developed using ECL 

(Thermo Fisher Scientific, 32106) and imaged on X-ray film (Thermo Fisher Scientific, 34091). 

Images were processed and quantified using ImageJ. 

Immunohistochemistry in mouse brain tissue 

Immunohistochemistry was performed on 50-µm-thick free-floating slices of mouse brain 

tissue. For immunofluorescence, slices stored in cryoprotectant solution were washed three 

times for 10 minutes each with PBS, then photobleached under full spectrum LED light for 48 
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hours in a cold chamber4. The sections were blocked with 10% NGS and 2% BSA in PBT for 

1 hour at RT and incubated overnight at 4°C with primary antibodies in PBT containing 3% 

NGS and 0.5% BSA. For c-Fos and Arc quantification, we used: guinea pig anti-c-Fos (1:200, 

Synaptic Systems 226 308), mouse anti-Arc (1:200, Synaptic Systems 156 111), rabbit anti-

GFP (1:1000, Invitrogen A11122), and anti-NeuN (1:200, Millipore Sigma ABN90P). After 

primary antibody incubation, sections were washed three times for 15 minutes each with PBT 

and then incubated with secondary antibodies (1:200, Alexa Fluor 647 anti-guinea pig, 

Invitrogen A21450; Alexa Fluor 488 anti-rabbit, Invitrogen A11070) for 2 hours at RT. 

Following three additional 15-minute washes, tissues were counterstained with DAPI (1:2000, 

Invitrogen) for 30 minutes at RT. The slices were rinsed in 0.05M TBS, mounted with aqueous 

mounting medium (P36930, Invitrogen), and sealed. Images were acquired using a Zeiss 

LSM980 laser scanning confocal microscope with consistent parameters across all samples. 

We analyzed SSC due to better transduction efficiency in this region. Image processing was 

carried out using CellProfiler with custom pipelines for automatic segmentation of GFP+ and 

GFP− neurons based on NeuN and GFP markers, and quantification of c-Fos and Arc 

(available in the GitHub repository). 

For chromogenic immunohistochemistry, free-floating sections were incubated in 0.6% 

hydrogen peroxide in PBT for 20 minutes to block endogenous peroxidase activity. The 

primary antibodies used included rabbit anti-human amyloid beta (1:500, IBL 18584), rabbit 

anti-GFAP (1:2000, Dako Z0334), and rabbit anti-Iba1 (1:500, FujiFilm 019-19741). Sections 

were then incubated with a secondary antibody, followed by an avidin/biotin-based peroxidase 

system and chromogenic detection using DAB, as previously described for human tissue. 

Brightfield images were captured with a Zeiss Axio Imager 2 and a Hamamatsu digital camera 

(C11440), and the stained cortical area was quantified using ImageJ with automated 

thresholding. 

 

Statistics & Reproducibility 

Statistical analyses were performed using Prism 10 (GraphPad Software) unless otherwise 

stated in specific Methods sections. Sample sizes were chosen based on previous 

publications in the field. Biological replicates were analyzed to assess the biological variability 

and reproducibility of data, the distinctions between technical and biological replicates are 

explained in each section of the methods. Experimental mice from all genotypes or conditions 

were processed together, mice were randomly assigned to experimental groups, using 
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littermates for different groups whenever feasible. Investigators were not blinded to 

experimental groups during data analysis. Samples were tested for normality using the 

Shapiro-Wilk normality test. Outliers were screened using the ROUT method (Q = 1%) and 

no data points were excluded from mouse and in vitro experiments. Unless otherwise stated, 

data were analyzed by t-test or ANOVA followed by post hoc Tukey’s test to compare multiple 

samples. Differences were considered significant when p values < 0.05. Statistical details of 

experiments are described in figure legends. 

 

Data availability 

The raw snRNA-seq data, associated metadata, and processed digital expression matrices 

have been deposited at the NCBI's Gene Expression Omnibus with accession number 

GSE263468. Eight of 243 samples were included in previous studies (GSE129308 and 

GSE181715). The snRNA-seq datasets are publicly available for interactive viewing and 

exploration on the Cellxgene platform at 

https://cellxgene.cziscience.com/collections/0d35c0fd-ef0b-4b70-bce6-645a4660e5fa. The 

Xenium dataset is publicly available at Zenodo: https://zenodo.org/records/16703438. Source 

data are provided with this paper. 

 

Code availability 

The scripts and the pretrained models are available at GitHub and accessible at Zenodo: 

https://doi.org/10.5281/zenodo.18113528.91 
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Figure legends 

Figure 1. Neuronal cell composition across neocortical regions and AD pathology 

stages 

a, Experimental design to study AD progression across neocortical regions and disease 

stages using snRNA-seq. b, Neuronal enrichment by FANS, snRNA-seq, and dataset 

integration yielded 424,528 nuclei (362,224 neurons, after QC). c, UMAP and bar plots 

representing the relative abundance of major cell types. d, UMAP plots splitting the datasets 

by region and disease stage group. e, Fraction of nuclei from each major cell type by region 

(top) and disease stage group (bottom). f,g, UMAP plots of the annotated excitatory and 

inhibitory clusters and heatmaps showing the normalized expression of selected subtype and 

cluster-specific marker genes. h,i UMAP plots and gene expression heatmaps for each brain 

region highlighting quantitative differences between association and primary cortices, and 
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overall preserved marker genes across regions. j, Cosine distance matrix comparing the 

proximity in gene expression between the excitatory and inhibitory clusters from the SEA-AD 

DLPFC reference dataset23 (x-axis) and our BA9 dataset (y-axis). The closer the distance 

(lower values), the greater the similarity. The top three most closely related clusters are 

depicted. k, UMAP and dot plots showing the annotated glial subtypes and states. Source 

data are provided as a Source Data file. 

Figure 2. Layer-specific localization of excitatory neuronal subtypes in BA9 and BA17 

by Xenium 

a, Experimental design for spatial single-cell analysis of neuronal subtypes in fresh-frozen 

tissue sections from BA9 and BA17 of AD and control donors using Xenium. A representative 

Xenium slide (slide 2) with four tissue sections (AD-BA17, AD-BA9, Ctrl-BA17, Ctrl-BA9; top 

to bottom) is shown. b, UMAP and bar plots depicting the relative abundance of major cell 

types in the Xenium dataset (765,992 cells, after QC), and representative spatial maps of BA9 

and BA17 (slide 2, control donor) after cell segmentation and major cell type annotation. The 

color coding for major cell types is consistent across all visualizations. c, Spatial maps of the 

annotated 18 excitatory clusters across all 16 sections, highlighting differences in neuronal 

subtype abundance between BA9 and BA17. Small areas corresponding BA18 are excluded. 

d, Representative spatial maps after segmentation and annotation based on reference 

annotations for excitatory neurons at the cell subclass level, highlighting differences in layer 

thickness and composition between BA9 and BA17. Dash lines represent boundaries between 

layers. e, Representative cortex from control BA9 and BA17 sections showing staining with 

DAPI, ribosomal RNA (interior RNA staining), and αSMA/Vimentin (interior protein staining) 

(left), and cell boundaries identified by the multimodal cell segmentation algorithm and 

annotated using ingest-based label transfer with our snRNA-seq dataset as a reference 

(right). Clusters are colored according to their identity. Dash lines delineate boundaries 

between cortical layers. f, Spatial maps for each excitatory cluster in the areas represented in 

(e), with each cluster overlaying its corresponding cells to highlight their layer distribution and 

spatial relationships with other excitatory clusters within L2/3, L4, L5, and L6. Source data are 

provided as a Source Data file. 

Figure 3. Markers of layer 4 across neocortical regions 

a,b, UMAP plots highlighting the top L4 marker genes in BA17 (a) compared to BA9 (b). The 

Ex5 cluster (blue) and its top marker genes (EYA4, KCNH8, LAMA3, VAV3, KCNIP1, TRPC3) 
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are overrepresented in BA17, whereas Ex6 (MME) and Ex7 (GABRG1) are overrepresented 

in BA9. c, UMAP plots from mouse neocortex snRNA-seq28 highlighting the conserved 

expression of top Ex5 marker genes in a cluster annotated as L4/5 intratelencephalic (IT). d, 

Representative L4 cells and their top marker genes in Xenium. Transcripts (colored dots) are 

overlaid on their corresponding cells (stained with DAPI and ribosomal RNA), with the cell 

boundaries delineated (gray lines) by the Xenium cell segmentation algorithm. e, Spatial maps 

of the annotated L4 excitatory clusters across Xenium sections, highlighting the relative 

abundance of Ex5 (blue) in BA17 and of Ex6 (orange) and Ex7 (green) in BA9. BA18 areas 

are excluded. f, KCNH8 expression map (left) and spatial maps of L4 clusters (right) in 

representative occipital cortex Xenium sections containing BA17 and adjacent BA18 (primary 

and secondary visual cortex, respectively; red arrow indicates the transition between BA17 

and BA18) highlighting differences between primary and secondary cortices. g,h, 

Identification of Ex5 neurons in L4 of BA17 histological sections. Low-magnification images of 

the occipital cortex at the transition between BA17 and BA18 (the red arrow in g indicates the 

transition between BA17 and BA18) highlight the abundance of EYA4+ cells in BA17 (Allen 

Human Brain Atlas, https://human.brain-map.org/ish/experiment/show/80510718). Higher 

magnification images of BA17 (h) show the expression of EYA4 and KCNH8 in L4 (Allen 

Human Brain Atlas, https://human.brain-map.org/ish/experiment/show/78937929). The 

boundaries of L4 are defined histologically in parallel Nissl-stained sections and by the 

expression of VGLUT2 in the terminals of thalamocortical projections from the LGN. 

 

Figure 4. Relative preservation of Ex5 neurons in advanced AD 

a, Boxplots showing neuronal cell composition estimated with scCODA across pathology 

disease groups in BA9 and BA17. Individual donor proportions are overlaid as open circles. 

Data are presented as median (center line) and interquartile range (IQR; box limits); 

whiskers extend to the most extreme values within 1.5×IQR. Circles beyond the whiskers 

represent outliers. Sample sizes for BA9: low 17, intermediate 10, high 15 donors; BA17: low 

7, intermediate 5, high 12 donors). Credible differences between high and low pathology 

groups (red asterisks) and between intermediate and low groups (black asterisks) are shown 

for clusters with a magnitude of change (log2-fold change) greater than 0.1, in either direction. 

Credible effects were defined at those with a posterior inclusion probability (PIP) > 0.95. The 

lower plots show the credible effects (highlighted in orange) along with the fold changes 

between high and low pathology groups; bars represent log2-fold change, and error bars 
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indicate the standard error of the mean. b, Differential cell proportion analysis of neuronal 

populations between low and high disease groups using GLMM in BA9 and BA17. Ex5 

neurons showed increased relative abundance in advanced AD in BA9 (FDR = 0.008). In 

BA17, Ex5 neurons showed a non-significant trend of increase (p-value = 0.06), while 

reductions were observed in deeper-layer excitatory populations, including Ex8 (L5 IT; p-value 

= 0.02), Ex11 (L5 IT; p-value = 0.01), Ex12 (L6 IT; p-value = 0.01), and Ex13 (L6 IT Car3; p-

value = 0.05), though the changes did not reach statistical significance after FDR correction. 

Source data are provided as a Source Data file. 

 

Figure 5. Transcriptome signatures of AD progression in neocortex 

a, ‘High-confidence’ DE genes were identified using a linear mixed model and either bootstrap, 

pseudobulk, or hdWGCNA. ‘Early’ and ‘late’ DE genes correspond to intermediate vs. low and 

high vs. intermediate AD pathology, respectively. b, Bar plots show total numbers of DE 

genes, upregulated genes, and downregulated genes, identified by a linear mixed model. 

Downregulation predominates, though early-stage BA17 shows high upregulation. Nuclei 

counts per cluster are provided. c, Heatmap of high-confidence DE genes in BA9 and BA17 

excitatory clusters. DE gene counts increase with pathology progression and from BA9 to 

BA17. SLC17A7 ISH staining shows layer distribution for reference. d, UpSet plots show 

intersecting high-confidence DE genes across regions and stages for six excitatory neuronal 

subtypes. Rows correspond to each of the four conditions, and columns represent the 

intersections. Genes highlighted in red are differentially expressed in all four conditions. e, 

Heatmap of 54 high-confidence DE genes shared across brain regions and disease stages in 

excitatory neuronal subtypes. Only DE genes shared in at least 5 clusters are represented. 

Colors indicate the average log-fold change obtained from the linear mixed model. f,g 

Hierarchical heatmap visualization of functional enrichment analysis (f) in excitatory neurons 

from BA9 and BA17 at early and late stages highlights the common biological pathways 

enriched across regions and disease stages. High-confidence DE genes were used as input 

for gene ontology. The top 50 enriched pathways are represented. Heatmap visualization of 

the enriched pathways within each excitatory neuronal subtype (g) shows gene 

downregulation in most subtypes from BA9 at both early and late stages and in BA17 L2-3 

excitatory IT neurons (Ex1-3) at late stages, and gene upregulation at early stages in BA17. 

Ex5 from both BA9 and BA17 at early stages share enriched pathways with upregulation in 

gene expression. Pathway level values represent the net directional bias among term-

associated high-confidence DE genes within each comparison and do not imply uniform 
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regulation of all genes within a pathway. The z-score values represent changes in gene 

expression. Source data are provided as a Source Data file. 

Figure 6. Transcriptome signatures of resilience in Ex5 L4 IT neurons 

a, Heatmaps displaying ‘high-confidence’ DE genes shared across BA9 and BA17 at early 

and late stages in prototype vulnerable excitatory (Ex2; L2/3 IT) and prototype resilient (Ex5; 

L4 IT) neuronal subtypes. Genes differentially expressed in at least two of the four 

comparisons are depicted. Heatmaps are colored based on log2 fold change values. b, 

Biological function network of the genes represented in (a). Colored nodes represent gene 

sets of biological functions contributed by the vulnerable (Ex2) and resilient (Ex5) subtypes. 

Node size reflects the number of connections between biological functions (minimum number 

= 5). c, Co-expression networks for vulnerable (Ex2; L2/3 IT) and resilient (Ex5; L4 IT) 

neuronal subtypes from BA9 and BA17, identified by hdWGCNA. The top 10 intra-module 

connected genes, ranked by Kme, for each module are represented. The enrichment dot plot 

illustrates the top functional categories of genes within each module. The color of the dots 

indicates the module, while the size of the dot reflects the significance of the enrichment. The 

gene expression dot plots represent the average logFC for each module at ‘early’ and ‘late’ 

disease stages. The size of the dot represents the number of differentially expressed genes, 

and the color indicates the magnitude of expression changes. d, Enrichment network for 

candidate resilient modules in Ex5 L4 IT neurons. The top 50 highly co-expressed genes from 

modules M2, M3, and M4 (BA9) and modules M2 and M3 (BA17), along with their enriched 

biological functions, are shown. Colors represent contributions from BA9 (moss), BA17 (teal), 

or both (red), along with their enriched biological functions.  

Figure 7. KCNIP4 upregulation in resilient L4 neurons 

a, Violin plots showing KCNIP4 gene expression across major cell types (left) and excitatory 

neuronal subtypes from BA9 and BA17 (right). b, Violin plots showing KCNIP4 expression 

across AD disease groups in Ex2 and Ex5 neurons from BA9 and BA17. Log-normalized 

expression levels of KCNIP4 are shown. c, Immunostaining for KCNIP4, EYA4, and NeuN in 

cryosections from low, intermediate, and high pathology stages illustrating increased 

expression of KCNIP4 in L4 EYA4+ neurons in BA17. d, Quantification of KCNIP4 protein 

expression levels in L4 EYA4+ neurons, L4 EYA4− neurons, and L2/3 neurons from BA17 

across disease stages (n = 6 donors per disease group). Data are shown as median ± IQR; 

whiskers represent minimum and maximum values. One-way ANOVA with two-sided Tukey’s 
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test was used for multiple comparisons (*p-value < 0.05; ***p-value < 0.001; ****p-value < 

0.0001; exact p-values are available in the Source Data file). Scale bars: 200 µm for low 

magnification images; 30 µm for high magnification images. Source data are provided as a 

Source Data file. 

Figure 8. AAV-mediated delivery of Kcnip4 in excitatory neurons reduces 

hyperexcitability in vitro and in a humanized mouse model of AD 

a, In vitro approach to evaluate AAV-mediated Kcnip4 overexpression on neural activity in 

primary excitatory cortical neurons using calcium imaging. b, Representative neuronal Ca2+ 

transients quantified as ΔF/F₀ at DIV 14 for each condition. c, Quantification of Ca2+ transient 

frequency for each condition. Event frequency (events per minute) was averaged at the well 

level, with each well considered a biological replicate (4 wells per condition, 2 fields per well, 

3 GFP-positive neurons per field). d, In vivo approach to evaluate AAV-mediated Kcnip4 

overexpression in AppSAA and WT mice, and representative coronal section (50-µm thick) of 

a treated mouse illustrating transduction of cortical neurons. e, Western blot representative 

image and quantification of KCNIP4 levels in cerebral cortex lysates following two different 

doses of Kcnip4 AAV (n = 3 per group). f, Representative images of cerebral cortex and 

hippocampus from Kcnip4 AAV-treated mice and quantification of transduction efficiency of 

the different AAVs in SSC in WT and AppSAA mice. g−i, Representative images and 

quantification of cortical amyloid beta, GFAP, and IBA1 immunostaining in AppSAA mice 

treated with Kcnip4 AAV or control AAV (6−7 mice per group). j, Representative 

immunofluorescence image through the SSC co-stained with GFP and c-Fos. k, Percentage 

of c-Fos-positive cells in all cortical neurons across study groups. l−o, Quantification of c-Fos 

in GFP+ compared to GFP− neurons from AppSAA and WT mice treated with Kcnip4 AAV or 

control AAV (5−7 mice per group). p, Representative immunofluorescence image through the 

SSC co-stained with GFP and Arc. q, Mean Arc staining intensity in all cortical neurons across 

groups; r−u, Quantification of Arc staining intensity in GFP+ compared to GFP− neurons from 

AppSAA and WT mice treated with Kcnip4 AAV or control AAV (5−7 mice per group). Data are 

shown as median ± IQR. A two-sided t-test was used for pairwise comparisons, and one-way 

ANOVA with two-sided Tukey’s test was used for multiple comparisons (*p-value < 0.05; **p-

value < 0.01, ***p-value < 0.001, ****p-value < 0.0001; exact p-values are available in the 

Source Data file). Scale bars: 200 µm (f); 50 µm (j,p). Source data are provided as a Source 

Data file. 
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Editorial Summary 

Using single-nucleus and spatial transcriptomics, the authors reveal resilience signatures in 

neocortical layer 4 neurons. They show KCNIP4 protects these cells by reducing 

hyperexcitability, a driver of neurodegeneration. 

 

Peer review information: Nature Communications thanks Shreejoy Tripathy and the other, 

anonymous, reviewers for their contribution to the peer review of this work. A peer review file 

is available. 
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