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Abstract 

Multi-layer film packaging (MLF) revolutionized food preservation by combining diverse material 

layers to optimize barrier properties, mechanical strength, and shelf-life. These materials are 

essential for transporting perishables across various climates and allow for access to fresh goods 

in “food deserts”, but they pose significant recycling challenges due to their structural complexity. 

This perspective examines key structure-property relationships governing barrier performance and 

highlights innovations in material design. We explore how machine learning can predict 

performance metrics and propose recyclable alternatives, integrating data-driven approaches with 

material science insights. By challenging the status quo of MLF design, we advocate for circularity 

in food packaging, inspiring innovation at the intersection of sustainability, material science, and 

artificial intelligence. 

Introduction 

Multi-layer films (MLFs) have become a cornerstone form factor for a diverse range of consumer 

products. In 2018, the world produced more than 100 million tonnes of MLFs, anticipated to reach 

140 million tonnes by 20251. Food preservation in particular has been revolutionized by MLFs, 

extending shelf life and substantially reducing global food waste2,3. By combining materials with 

complementary strengths, the multi-layer structure unites individual advantages into a balanced, 
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high-performance film. Such films, often composites of polymers and metalized species, integrate 

barrier layers for low oxygen and moisture permeation, structural layers for mechanical robustness, 

and tie layers that serve as the adhesive during lamination. The complex engineering that has 

yielded such technological significance is ultimately becoming overshadowed by incompatibility 

with recycling pathways and damaging environmental persistence at end-of-life, both of which 

demand urgent attention.  

A staggering proportion of MLFs, often designed for single-use applications, escape proper waste 

management systems and accumulate in the environment, contributing to the growing crisis of 

plastic pollution4. Flexible packaging like MLFs, characterized by low bulk density and light 

weight, is particularly problematic. While advantageous for reducing material use and 

transportation costs, the low density of these materials makes them easily transported by wind and 

water, resulting in widespread distribution in marine and terrestrial ecosystems5. Estimates suggest 

that millions of tons of plastic waste enter the environment annually, a significant portion 

originating from single-use MLFs6. This is particularly problematic in developing countries where 

a majority of daily-use products are sold in single-use MLFs7.  

A key obstacle in mitigating the environmental impact of MLFs lies in the incompatibility with 

existing recycling systems. Conventional mechanical recycling infrastructure is largely optimized 

for rigid plastics, such as bottles and containers, which are easier to collect, sort, and process8. In 

contrast, MLFs are difficult to collect and transport due to their low bulk density. Furthermore, the 

multi-material nature of many MLFs impedes sortation4,9. To achieve the performance attributes 

necessary for packaging applications, MLFs generally feature several different polymers laminated 

together, including polyethylene (PE), polyvinylidene dichloride (PVDC), polyethylene 

terephthalate (PET), polyamides (PAs), and ethylene vinyl alcohol (EVOH). These polymers are 

frequently incompatible when melt blended by mechanical recycling, and the physical separation 

of discrete layers remains functionally impractical. Chemical processing technologies like 

selective dissolution and precipitation have demonstrated the effective separation and recovery of 

discrete polymer components of MLFs1. However, these processes frequently yield polymers with 

diminished thermal properties and remain economically and energetically intensive, therefore 

limiting adoption at scale10,11. 

Among the many challenges associated with MLF recycling, barrier layers, most notably PVDC 

and EVOH, remain the most pressing. Halogenated polymers such as PVDC are particularly 

problematic in recycling processes because they can generate harmful and damaging byproducts 

at high temperatures, while EVOH can render otherwise recyclable polyolefin mono-layer films 

unrecyclable. When EVOH is melt-blended with a non-polar polyolefin such as PE during 

mechanical recycling, the two polymers are inherently immiscible and phase-separate. This phase 

separation leads to weak interfacial adhesion and, consequently, poor mechanical properties in the 

recycled material unless an appropriate compatibilizer is introduced to promote interfacial bonding 

between the two phases. Progress has been made in creating new polymeric materials with 

comparable barrier properties to incumbent technologies while offering avenues for recyclability 
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and reduced environmental persistence12,13,14,15,16,17,18,19,20. Researchers have explored synthetic 

strategies to tune the density, crystallinity, hydrophobicity, and chemistry of more “sustainable” 

polymers in pursuit of replacing PVDC and EVOH barrier layers. Designing polymers that deliver 

layer-specific performance while maintaining the same chemistry (i.e. mono-material design) is 

also a major area of interest21. Yet, there are often trade-offs between recyclability and 

performance, trade-offs that must not only be carefully managed but strategically overcome if truly 

circular, high-performance packaging is to be realized. 

Computer-aided synthesis planning (CASP), machine learning (ML), and artificial intelligence 

(AI), offer transformative potential in tackling the challenge of redesigning MLF packaging. These 

tools can accelerate the discovery of polymers with enhanced barrier properties, mechanical 

strength, and recyclability and/or biodegradability/compostability built into the design. By 

leveraging existing datasets of polymer structures and properties, AI can predict optimal 

formulations and guide material design, reducing reliance on iterative experimentation22. 

Moreover, AI-driven insights can optimize recycling processes, from improving sortation 

efficiency to enhancing the economic feasibility of chemical recycling methods23. Furthermore, 

emerging ML databases can also narrow down design scopes, for example, to identify alternatives 

to particularly problematic polymers like PVDC and even focus on biologically derived building 

blocks allowing for the utilization of biogenic carbon in the production of future packaging 

materials. 

The utilization of MLFs exemplifies the complex trade-offs between functionality and 

sustainability. While their role in modern food systems is indispensable, the environmental impacts 

associated with their disposal is unsustainable. Addressing these challenges requires a multifaceted 

approach, integrating advances in material science, recycling technologies, and waste collection 

frameworks. By leveraging emerging ML tools like PolyID24 and fostering a culture of innovation 

and collaboration, industry can pave the way for a more sustainable future. This perspective 

explores opportunities to advance MLF sustainability, emphasizing the need for systemic solutions 

to ensure their environmental and economic viability. We examine the key structure-property 

relationships that dictate barrier performance in MLF design, analyze the current and future 

landscape of MLF packaging and recycling, and highlight how PolyID, and other ML tools, can 

predict and accelerate recyclable-by-design alternatives (Figure 1).  
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Figure 1. A proposed ML-guided approach to designing recyclable and/or compostable multi-layer films 

(MLFs) that match the food preservation metrics and target performance of today’s conventional materials. 

(A) 

(B) 

(C) 

(D) 
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(A) Key structure-property relationships of current MLF polymers are studied; (B) Properties of known polymers 

are fed into an ML model (PolyID) to predict polymers (in this case study we targeted polyesters) with similar 

properties; (C) Using the output from PolyID, a new portfolio of polyesters for MLF applications is generated; (D) 

Examples of the types of MLF packaging targeted in this perspective.  

Legacy Multi-Layer Films Packaging  

Flexible packaging, like typical MLFs, represent a significant advancement in materials 

engineering, aimed at addressing the diverse and often competing physical requirements of 

polymers used in packaging applications. Packaging materials have long needed to balance 

mechanical integrity, barrier properties, thermal stability, shelf-life, and ease of processing.  

Flexible packaging materials date back to the early 20th century, with the introduction of 

cellophane26, but it’s barrier performance was limited, making it insufficient for applications 

requiring long-term preservation27. To address these shortcomings, nitrocellulose lacquer coatings 

were applied to cellophane, significantly improving its moisture resistance and marking one of the 

first examples of layered film packaging designed to enhance functionality allowing them to be 

used in household products28,29.  

Synthetic polymers drastically increased the efficacy of packaging technologies. PE, 

polypropylene (PP), and PET are widely used in flexible packaging due to their mechanical 

strength, heat sealability, clarity, and moisture resistance27,30. Biaxial orientation31 of PP (BOPP) 

and PET (BOPET) greatly improve the tensile strength, puncture resistance, and gas and moisture 

permeability, enabling thinner films and reduced material usage without sacrificing performance. 

PVDC, commercialized under the trade name Saran by Dow Chemical32, is the gold standard for 

barrier films, achieving extraordinarily low permeability to both oxygen (oxygen permeation 

coefficient, PO2 < 0.005 Barrer) and water vapor (water vapor permeation coefficient, PH2O < 50 

Barrer), enabling prolonged shelf lives and improved food preservation compared to prior flexible 

packaging33. The superior gas and water vapor barrier properties of PVDC arise from a 

combination of several structural features that limit permeation through the material. The polar 

nature of the chlorinated backbone results in strong polymer-polymer and polymer-permeant 

interactions that provide hydrophobicity and minimizes gas solubility within the polymer. 

Moreover, the crystalline morphology and high density (~1.7 g/cm3) cooperatively result in low 

fractional free volume, effectively impeding permeant diffusion34,35.   

Despite the barrier benefits of PVDC, challenges associated with narrow processing windows 

(difference between melting and degradation temperature), high cost of manufacturing, and 

hazards posed by its halogenated nature, prompted the development of alternative barrier 

polymers36,37,38. EVOH copolymers are a promising class of extrudable high barrier polymers with 

exceptionally low oxygen permeation that surpassed even PVDC, owing to the high polymer-

permeant interaction of the polar -OH functionality and O2 gas39. However, EVOH exhibits 

increased sensitivity to moisture due to its hydrophilic nature, resulting in high water vapor 

absorption, plasticization, and increased oxygen permeability over time. For example, the oxygen 

permeability of EVOH is approximately 300 times higher when measured at 100% relative 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

humidity compared to 0% relative humidity34, highlighting the challenges associated with 

designing materials that possess both good oxygen and water vapor permeability across diverse 

environmental conditions40.  

Even with the substantial advancements in polymer chemistry and processing, currently there is 

no single polymer that can deliver all the necessary properties for the evolving demands of 

packaging applications and growing food scarcity. Thus, MLF packaging, where different polymer 

layers are combined through extrusion and adhesive lamination to create composite films that 

strategically balance multiple performance properties in a single film, is needed41.  

Recently, MLF packaging has evolved into highly engineered, complex systems, often comprising 

ten or more discrete layers2,25. These films integrate combinations of distinct barrier and support 

polymers in conjunction with sealant layers, adhesion-promoting tie layers, organic and inorganic 

processing additives, and even metalized films. Each layer is optimized to deliver specific 

performance attributes, such as puncture resistance, aroma retention, light obstruction, and 

hermetic sealing. Figure 2 displays the key properties and performance metrics for the most 

common polymer materials used in MLF layers.  

Despite their functional benefits, MLFs present significant challenges for researchers and 

sustainability efforts. While similar polymers are used across MLFs, the proprietary nature of their 

formulations often hinder in-depth analysis. Furthermore, the heterogeneous composition of MLFs 

complicates recycling and end-of-life management. Conventional recycling systems are typically 

unable to separate and process the multiple, often incompatible, polymers used in these films, 

frequently resulting in landfilling, incineration, or loss to the environment. 
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Figure 2. Property comparison of conventional polymers used in MLFs. Summary of reported oxygen barrier 

(presented as oxygen permeability coefficient, PO2), water vapor barrier (presented as water vapor permeability 

coefficient, PH2O), melting temperature (Tm), modulus, density, and average cost (based on 2024 market reports) for 

incumbent polymer materials commonly used in multi-layer film layers. Barrier measurements and modulus are 

presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales. Barrer is 

equivalent to 10-10((cmSTP
3*cm)/(cm2*s*cmHg)). LDPE: low-density polyethylene, PP: polypropylene, PET: 

polyethylene terephthalate, PVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol. 

Current End-of-Life Approaches for Multilayer Films  

Efforts to address the end-of-life challenges of MLFs have led to the exploration of several 

recycling strategies, including mechanical recycling, pyrolysis, and dissolution42. Each of these 

approaches offers distinct advantages and limitations when applied to existing MLF packaging. 

Our primary focus in this section is on the opportunities and challenges associated with specific 

recycling technologies. We first include a brief discussion of some advancements in waste 

management of MLFs. 

Many recent advances in the management of plastic waste (e.g. sorting, marking, or identification) 

utilize AI and ML coupled with imaging and spectroscopy approaches for rapid, nondestructive 

characterization43, including in detection of microplastics44. MLFs have two main challenges in 

identification: weak signal reflection due to thin profiles, and transparency, where the film and 

underlying materials both reflect into the sensor. Koinig et. al., demonstrated successfully a 

method to classify mono- from multi-layer films inline using near-infrared spectroscopy in 

transflectance mode45. However, automated separation of different types of multi-layer films 

remains an open challenge. 

Once materials have been collected and sorted, the next major hurdle is recycling. Mechanical 

recycling is the most established method and involves the collection, sorting, cleaning, and 

remelting (via extrusion) of plastic waste into recycled materials. While this process works well 

for single-material streams, it is impeded by MLFs composed of incompatible polymers (e.g. PE 

and PET) or structures containing barrier layers like aluminum, PVDC, and EVOH. The 

incompatibility between layers can result in poor melt quality, discoloration, and degraded 

mechanical properties in the recycled material. Efforts have been made to compatibilize 

immiscible polymers found in MLFs, thereby mitigating property degradation. The most common 

is an addition of a reactive polymer that can graft to both phases, reinforcing interfaces to prevent 

stress concentration46,47,48,49. However, these additives simultaneously reduce aesthetics, and the 

process is not universal for the range of compositions that may be found in mixed MLF waste50.  

Pyrolysis thermally decomposes plastic waste in the absence of oxygen, breaking it down into oils, 

gases, waxes, and char51. This process can recover valuable hydrocarbons and generate virgin-like 

naphtha feedstocks for new polymer production. However, pyrolysis typically requires high energy 

input and elevated operating temperatures, which can lead to significant emissions and generate 

byproducts that require additional treatment. While often marketed as a solution for mixed plastic 

waste, pyrolysis is largely limited to polyolefins such as PE, PP, or polystyrene (PS); polymers 
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containing heteroatoms such as PET, EVOH, and PAs (i.e. nylons) are generally incompatible, 

depending on the level at which they are present. Halogenated polymers like PVDC also pose 

challenges, producing corrosive and toxic chlorinated byproducts that necessitate complex gas-

cleaning systems. 

Solvent-targeted recovery and precipitation (STRAP) is an emerging approach that selectively 

dissolves and separates individual polymer layers using tailored solvents1. STRAP offers the 

potential to recover high-purity polymers from MLFs, enabling true material circularity and 

preserving the quality of the separated components. Unlike pyrolysis, STRAP operates at lower 

temperatures and avoids bond breaking, instead focusing on the physical separation of intact 

polymer chains. However, the process depends on the careful selection of solvents, which can be 

costly, and may raise concerns regarding solvent recovery, toxicity, and energy use for solvent 

evaporation and recycling. Furthermore, highly complex multilayer structures, especially those 

containing insoluble crosslinked or highly engineered tie layers, can still pose challenges for 

efficient separation. 

Collectively, these end-of-life strategies (summarized in Figure 3) represent important steps 

towards MLF packaging waste. However, each faces significant technical and economic 

challenges when applied to today’s highly engineered multi-layer structures. Advancing packaging 

design through design-for-recyclability and the development of mono-material MLFs will be 

critical to improving compatibility with recycling systems and enabling a more circular packaging 

economy. A key research focus is the identification of non-halogenated barrier layers capable of 

replacing PVDC while maintaining essential oxygen and moisture barrier performance. These 

emerging technologies offer the potential to fundamentally reshape the future of MLF packaging 

by balancing high performance with environmental sustainability. 
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Figure 3. Generalized legacy MLF structure c and current end-of-life recycling strategies. Legacy MLF 

packaging configurations and existing MLF recycling strategies including mechanical recycling, pyrolysis, and 

STRAP. LDPE: low-density polyethylene, LLDPE: linear low-density polyethylene, PP: polypropylene, PA: 

polyamide, PVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol, HDPE: high-density polyethylene, 

OPP: oriented polypropylene, PS: polystyrene, PET: polyethylene terephthalate. 

Future Multi-Layer Film Packaging  

As researchers advance robust recycling platforms capable of handling complex, heterogeneous 

plastic waste streams, parallel efforts are focusing on the development of more sustainable and 

recyclable packaging designs. When considering redesigning MLFs, the primary challenge is 

meeting the exceptional barrier performance provided by aluminum, PVDC, and EVOH 

(respectively and in combination). Here, we will highlight efforts made towards designs for 

mechanical recycling, chemical recycling, and composting end-of-life systems. 

For mechanical recycling, efforts have focused on lowering material variability to a single polymer 

or compatible polymers. A theoretical basis for redesign choices is that selected polymers show 

superior compatibility with other polyolefins52. In previous work, recyclability has been improved 
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using a mono-material approach primarily through polyolefins53. One notable example is an all-

PE film manufactured via biaxial orientation (BOPE), which can achieve higher crystallinity and 

reduced polymer chain mobility. This results in enhanced mechanical properties at thinner gauges 

and offers moderate improvements in oxygen barrier performance53. Another promising design-

for-recycling strategy involves the incorporation of specialized tie or adhesive layers that can be 

selectively activated by chemical or thermal triggers to release at end-of-life, enabling separation 

and recovery of the individual layers for mechanical recycling54.  

Solvolysis-based chemical recycling targets depolymerization in polymer backbones containing 

heteroatoms (e.g. ester bonds in polyester) and can produce near quantitative yields of parent 

monomers at relatively mild conditions when compared to pyrolysis. The high carbon efficiency 

of solvolysis has prompted discussions on whether a transition to an “all-polyester” approach to 

redesigning complex plastic materials could improve recycling rates and carbon circularity57. 

However, it remains challenging to develop heteroatom-backbone polymers that offer strong 

barrier performance against both water vapor and gases. As a result, achieving the desired barrier 

performance often requires combining multiple polymers within a single structure, an approach 

that inherently increases MLF complexity and hinders recyclability.  

Currently, there is no single polymer that has all the properties necessary for typical food 

packaging applications, necessitating multi-layered architectures. As we consider redesign, recent 

life cycle assessments (LCAs) and planetary boundary analyses have made it clear that improving 

recycling rates alone will not bring the plastics supply chain within a sustainable operating space55. 

To meet climate and sustainability goals, we must simultaneously increase recycling rates and shift 

towards materials derived from biogenic carbon. Select polyolefin producers are investing in 

bioethanol to produce bio-PE. However, the recycling challenges remain. Commercially available 

bio-based polyesters such as polylactic acid (PLA) and polyhydroxyalkanoates (PHAs) are 

currently marketed as compostable and/or biodegradable but are typically rejected from 

mechanical recycling streams. However, recently reported tecno-economic assessment (TEA) and 

LCA studies on mixed polyester recycling reveal the economic and environmental benefits of 

transitioning plastics to an all-polyester based platform coupled with chemical recycling56,57. These 

studies suggest that multiple polyesters can be combined in a multi-layer structure while still being 

recyclable by solvolysis-based platforms. 

Polyesters are historically not known for their barrier properties. Thus, redesign efforts in polyester 

chemistry for packaging materials have focused on improving the barrier performance against 

moisture and gases12,15,16,58. In the pursuit of new high-barrier polyesters, it is important to 

understand the chemical and physical factors that govern gas permeation. In bulk polymer films, 

several key characteristics including morphology, chain mobility, polarity, and intermolecular 

interactions contribute to mass transport through the material59,60. Permeation of non-interacting 

gases (i.e. O2, CO2, N2, etc.) occurs through a combination of solution-diffusion mechanisms, 

where the permeant initially dissolves into the polymer, before diffusing to the opposing 

interface61. Polar and apolar functional groups can attract or repel permeants, which alter the 
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solubility of the gas within the polymer. The intermolecular forces that determine polymer-

polymer and polymer-permeant interactions can be captured in the cohesive energy density, which 

has proven to be an effective method for correlating barrier performance with polymer structure59.  

The diffusion of gases through films is primarily governed by the polymer’s fractional free 

volume62. The free volume, or the interstitial space between polymer chains, is influenced by 

physical parameters such as glass transition, crystallinity, and processing-induced chain alignment. 

In semi-crystalline polymers, crystallites function as impermeable domains, forcing permeants into 

tortuous pathways through amorphous regions that imped diffusion60. In contrast, fully amorphous 

polymers typically exhibit high gas permeability due to larger free volume, making them less 

suitable as barrier layers in MLFs.  

Unlike non-interacting gases like O2 and CO2, water vapor permeation is comparatively more 

complex due to its small kinetic diameter and strong hydrogen-bonding capacity34. Hydrophilic 

polymers with high hydrogen-bonding capabilities result in high rates of water vapor sorption, 

resulting in high permeability. Permeation is further complicated as polymers can often be swelled 

and plasticized upon the solubilization of water molecules, resulting in increased free volume, and 

non-linear diffusion kinetics upon exposure to varying humidity40. Interactions between water 

molecules and the polymer substrate can therefore change polymer physical characteristics and 

alter the permeation of other gases, a phenomenon observed in current EVOH barrier materials39.  

Following these guidelines, it is intuitive that polymers with high self-association (high cohesive 

energy density), low free volume, and high crystallinity will possess the best barrier resistance to 

permeation59. The polar nature and moderate crystallinity of current commercial polyesters such 

as PET, PLA, or polybutylene succinate (PBS) results in reduced oxygen permeation compared to 

polyolefins, but increased water vapor permeation due to reduced hydrophobicity63. Surprisingly, 

polyglycolic acid (PGA), the simplest linear aliphatic polyester, exhibits exceptional water and 

oxygen barrier properties (PO2 < 0.005 Barrer, PH2O < 150 Barrer) that rival PVDC, despite being 

a non-halogenated biodegradable polymer64,65. The barrier performance of PGA stems from to its 

high crystallinity and high concentration of permeant-interacting ester groups; however, the high 

crystallinity of PGA yields a highly brittle polymer and an elevated melting temperature that poses 

challenges for MLF processing and application66,67.  

It is therefore critical to identify new, redesigned polyesters that achieve balanced barrier 

properties, mechanical performance, and manufacturability to realize an all-polyester MLF 

packaging platform. A recent example from Chen and coworkers disclosed a series of spiro-

valerolactone-based polyesters that yielded reduced water vapor permeation compared to low-

density polyethylene (LDPE; PH2O < 200 Barrer) and oxygen permeation  lower than PET (PO2 

< 0.05 Barrer)58. These materials also had tunable ductility and excellent adhesive properties, 

making them promising candidates for mono-material design. Other advancements in sustainable 

barrier materials have typically employed sugar-based polymers like polysaccharides, 
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nanocellulose, cellulose, and chitin and also include the use of dynamic chemistries while still 

enabling compostable packaging material68,69,70,71,72.  

As our modeling efforts are primarily based around polyesters this perspective looks at developing 

new polyester-based chemistry with ML. As mentioned, there are a multitude of other methods to 

create sustainable packaging that would benefit from the usage of ML. The computational methods 

discussed (vide infra) can, and should, be extended to modeling these other material types and we 

encourage the use of this platform to explore varying chemistries. 

Computationally-Driven Discovery of Polymers  

A comprehensive pursuit of MLFs with improved end-of-life outcomes must include consideration 

of a wide range of polymer building blocks, particularly those derivable from natural and 

biological sources. Given the vast design space for bio-derivable building blocks, high-fidelity 

computational screening procedures are essential to narrow the possibilities to the most promising 

formulations for synthesis and characterization. AI is a broad field of computer science focused 

on creating systems that can perform tasks typically requiring human intelligence, such as 

reasoning, problem solving, and decision-making. ML is a subfield of AI that uses data and 

algorithms to learn patterns and relationships, enabling systems to improve their performance on 

tasks over time without being explicitly programmed. In the context of materials and specifically 

polymers discovery, AI/ML can be coupled with databases to enable property predictions and even 

de novo design of materials. New approaches to map molecular features to polymer performance 

are being pursued via the development and application of increasingly advanced high-throughput 

ML tools for polymer property prediction73,74,75,76,77,78,79. A very comprehensive introduction to 

data-driven approaches for polymer design was reported by McDonald et. al.80, and Tran et. al.81. 

ML approaches broadly fall into two categories: inverse design and forward design. Inverse design 

first specifies desired properties and then predicts chemistries likely to have those properties, e.g. 

via generative ML models. Using generative models thus broadens the discovery space beyond 

existing materials and chemical motifs and has produced some promising results for a variety of 

properties and applications82,83,84,85,86,87. On the other hand, these approaches can also generate 

polymeric materials wherein the building blocks are difficult to synthesize and/or polymerize. In 

general, molecular simulations have been deployed as a part of inverse design approaches for data 

generation and model validation, but experimental synthesis and characterization to validate 

polymer chemistries and properties has been limited. Conversely, forward design approaches start 

from a list of potential molecules (monomers and/or their polymer formulations) and aim to 

identify which are the most promising for a target application based on predicted polymer 

properties. Examples of forward design approaches include RadonPy88, PolyGNN89, and PolyID24. 

PolyID is a multioutput, message passing neural network (MPNN) designed to facilitate 

quantitative structure–property relationship (QSPR) analysis for polymers24. PolyID takes as input 

a representation of a polymer chain by performing in silico polymerization, with degree of 

polymerization 18, of monomers specified using the simplified molecular-input line-entry system 
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(SMILES) strings to encode chemical structures. This allows for specification of comonomer ratio 

(if applicable) and random regio-orientations. Atom and bond feature vectors are built from the 

molecular structure using basic descriptors from the RDKit Python package. These vectors are 

then updated during message passing, where vectors of neighboring atoms and bonds are 

concatenated and passed through two feed forward layers, reducing the vector size to the original 

length. Finally, the bond vectors are averaged, and passed through separate feed forward layers, 

one for each target property. The PolyID MPNN, originally trained on ~1,800 experimental data 

points mined from literature and existing polymer databases, predicts polymer performance 

attributes, including thermal (glass transition and melting temperatures), density, mechanical 

(elastic modulus, tensile strength, and elongation at break), and barrier properties (permeability of 

oxygen, nitrogen, carbon dioxide, and water vapor). Typical accuracies, measured using the mean 

absolute error (MAE) from 10-fold cross validation, fall around 20 °C for Tg, 25-30 °C for Tm, 

0.05 g/cm3 for density, 100.4 (2.5) Barrer for permeabilities, and approximately 300 MPa for elastic 

modulus. 

Certain features that are essential to the design of circular MLFs are particularly ill-captured by 

current computational approaches, including water vapor permeability and end-of-life outcomes. 

Regarding the former, there is currently no publicly available database of water vapor permeability 

for common polymers. In addition, the interactions of water vapor with polymer films tend to differ 

widely from that of other gases due to the formation of hydrogen bonds, often leading to high 

solubility and subsequent swelling in polymers34. Temperature, relative humidity, polymer 

density, crystallinity, and measurement approach can also have a large effect on the measured and 

reported permeability. These factors and the resulting scarcity of accessible and standardized data 

can make modeling films with ML challenging and resulting predictions unreliable. Augmentation 

of experimental datasets with molecular modeling outputs for training ML models has been 

demonstrated88, including for gas barrier properties90 but not yet for water vapor permeability. As 

far as we are aware, currently only PolyID includes water vapor permeability as a prediction target. 

In the original PolyID publication, just 27 data points were included for water vapor permeability 

to train PolyID, all of which came from non-public databases. We have recently expanded that 

number to 55 by including more publicly available literature data and in-house experimental 

measurements (reducing the mean absolute error from 102.6 to 100.6 Barrer for PH2O predictions).  

The ability to design polymers with targeted properties for MLFs primarily depends on 1) the pool 

of candidate materials, 2) the ability to make accurate predictions, and 3) the synthesizability of 

the monomers and polymers. As discussed above, inverse design approaches can expand the 

possibilities for molecular generation beyond known materials. A more direct approach to expand 

the candidate pool is to apply chemical transformations to source molecules to create new 

monomers, somewhat analogically to the experimental chemist’s approach. Applying this set of 

chemical reactions to the initial pool would expand the material discovery space while leaving a 

direct recipe for creating desired monomers. DORAnet (previously Pickaxe)91, an open-source 

python package, chemically transforms an initial set of molecules according to well-defined 
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reaction rules and is well-suited for such a purpose. DORAnet has two main types of reactions: 1) 

synthetic, which transforms molecules according to a 1,224  set of industrially utilized chemical 

reactions, and 2) enzymatic, which employs 22,803 reactions accessible by biological enzymes. 

DORAnet also has built-in tools to filter out reactions or molecules that do not meet certain criteria, 

including filters based on monomer attributes such as halogen moieties or high molecular weight, 

reaction thermodynamics (e.g. using the tool eQuilibrator), and monomer properties critical for 

polymerization such as boiling point or solubility. Integrating a monomer generation scheme (e.g. 

DORAnet) with a polymer property prediction tool (e.g. PolyID) allows for strategic expansion of 

the initial materials discovery space, feeding realistic possibilities to ML models to target the most 

promising candidate materials for synthesis. 

To demonstrate the possibilities of such an integrated computational workflow for polymer 

discovery for MLF applications, we apply DORAnet and PolyID to a large pool of bio-derivable 

and purchasable monomers from KEGG and Sigma data sources, respectively. In this example, we 

target homopolyesters (ring opened structures) and diol + diacid polyesters, as they have an 

increased likelihood of biodegradability and recyclability via hydrolysis92. KEGG contains 290 

diols, 115 diacids, and 146 multi-functional monomers which containing both an alcohol and an 

acid group while Sigma contains 537, 166, and 285 of the same groups, respectively, with 84 diols 

and 40 diacids overlapping between the two. These monomers can be combined into 82,612 

polyesters. We sought to restrict the polyester combinations to those for which PolyID is most 

likely to make accurate predictions. Thus, we applied a domain of validity filter (DoV) of 10, 

wherein polymers that contain 10 or more chemical substructures not seen in training are removed, 

reducing the number of polyesters to 21,779. To cast as wide a net as possible, we also applied all 

DORAnet synthetic and enzymatic reactions to the molecules in KEGG and Sigma, resulting in 

14,703 diols and 9,851 diacids with a molecular weight less than 250 g/mol, which can be 

combined to form over 144 million polyesters. Targeting polycondensation reactions, we exclude 

diols with a boiling point over 250 °C as excess diol needs to be distilled off during polymerization, 

with diacid as a limiting reagent. Thus, we applied a recently developed MPNN-based tool, 

Chemperium93, to predict the boiling point of each diol, and filtered those over 250 °C, leaving 

1,791 diols. This reduced the number of polyester combinations to 17.6 million. A DoV filter of 

10 brought the total to 2.3 million polyesters. A graphical representation of this example ML 

workflow to design an all-polyester MLF is presented in Figure 4. 
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Figure 4. Integrated PolyID-DORAnet workflow for polymer discovery and property prediction. DORAnet 

applies in situ chemical reactions to potential source materials to naturally expand the monomer discover space. 

PolyID, trained on experimental and/or molecular simulation data, is then used to identify candidate polymer 

formulations with desired properties.  While this work does not perform molecular simulations, active learning, or 

repeated DORAnet-PolyID loops to optimize target properties, we include those steps in the figure to illustrate a 

holistic approach to continually improve the model predictions and target candidates. BP: boiling point, DoV: domain 

of validity, MLF: multi-layer film. 

The PolyID pipeline, including in silico polymerization and prediction of ten properties, was 

applied to each of the candidate polyesters from before and after applying DORAnet. We focus on 

the results with DORAnet-generated monomers (Figure 5), with pre-DORAnet results presented 

in the supplementary information (Figure S1). Figure 5 shows an overview of the predicted 

properties, highlighting relationships between barrier, density, and elastic modulus (with an 

expanded dataset in Figure S2). In the context of polyesters for MLF applications, each layer 

requires different property requirements (as shown by the incumbent materials in Figure 2), 

including layer-specific melting temperature for heat sealing, adhesive characteristics, and various 

mechanical properties. Our preliminary focus is on the most important properties for MLFs for 

food packaging, namely oxygen and water vapor permeability, assuming application-relevant 

thermal and mechanical properties. We note that barrier properties can also vary greatly depending 

on the use temperature, relative humidity, and polymer crystallinity, e.g. enhanced barrier 

performance is often noted at temperatures below the polymer’s Tg, which are not directly modeled 

by PolyID. The ability to integrate crystallinity into PolyID, either by including it as an input to 

the model, updating the model architecture (see below), or as a prediction target based on 

processing conditions, would likely greatly improve prediction accuracy, although significantly 

expanded datasets are needed. 

Navigating the large, multidimensional space of the property predictions can be challenging, and 

thus we created interactive versions of Figure 5 to enable real-time exploration of the property 

space. Using these interactive plots, we highlight a few examples in Figure 5 of polyester systems 

with under-explored structural features that may be well suited for MLFs, including those with 
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metabolites, naphthalenes, phosphates, as well as a polyester with a strong monomer candidate for 

bio-production at scale, 2-pyrone-4,6-dicarboxylic acid (PDC)94. Figure S3 presents all the 

predicted properties for select polyesters from PolyID. 

 

Figure 5. PolyID-generated predictions of polymer properties for polyesters produced from monomers derived 

from KEGG and Sigma databases and one round of DORAnet transformations. See Figure S2 for more 

predicted property comparisons. Highlighted monomers are examples of under-explored chemistries for MLFs with 

relatively strong predicted barrier properties. PVDC: polyvinylidene dichloride, PLGA: poly(lactic-co-glycolic acid), 

PET: polyethylene terephthalate, PLA: polylactic acid, HDPE: high-density polyethylene, PP: polypropylene, P3HB: 

poly(3-hydroxybutyrate), EVOH: ethylene vinyl alcohol, PESt: poly(ethylene stearate). 

In Figure 6 we highlight the key properties of select commercially available bio-based polyesters 

as well as a new polyester predicted by PolyID (PolyID P1). While several of the polyesters are 

predicted to achieve relatively robust oxygen or water vapor barrier performance, none of the 

predictions reach the combined barrier performance of PVDC. It may be difficult for polyesters, 

and other heteroatom containing polymers, to reach the barrier performance of the heavily 

halogenated carbon backbone of PVDC that produces a tightly packed, highly crystalline, and 

hydrophobic polymer film. While PolyID does not explicitly include crystallinity information in 

the model training, optimizing these polyesters for increased crystallinity could lead to improved 

barrier performance. Another important consideration is compliance with food packaging 

regulations. PolyID, like most ML tools for polymer design, does not predict toxicity or health and 

safety concerns for specific molecules. Therefore, these analyses should also be performed on 

predicted molecules using tools such as the Environmental Protection Agency’s (EPA) Toxicity 
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Estimation Software Tool (TEST) before down-selecting target polymers for food-contact 

packaging95. 

 

Figure 6. Property comparison of emerging biopolymers and predicted polyester structure  for potential use in 

future MLFs. Summary of oxygen barrier (presented as oxygen permeability coefficient, PO2), water vapor barrier 

(presented as water vapor permeability coefficient, PH2O), melting temperature (Tm), modulus, density, and average 

cost (based on 2024 market reports for polyglycolide (PGA), polylactic acid (PLA), and poly(3-hydroxybutyrate) 

(P3HB) for existing and a new polyester predicted by PolyID (PolyID P1). Barrier measurements and modulus are 

presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales. 

Machine Learning-Guided Polymer Processing 

While ML and AI-based tools can effectively predict polymers with target properties, polymer 

processing itself plays a critical role in determining the final film performance. MLFs are typically 

produced using one of three primary methods: co-extrusion, lamination, or coating. The co-

extrusion process (illustrated in Figure 7) involves melting two or more polymeric materials via 

extrusion, joining them together while in the molten state, and then cooling the resulting multilayer 

structure96. Common co-extrusion techniques include flat die (cast) extrusion, blown film 

extrusion, and sheet extrusion. In lamination, pre-formed layers, often produced by extrusion or 

coating, are bonded using either adhesives or heat97. These laminates may include a variety of 

materials such as polymeric films, metallic foils, and paper, each selected for specific barrier or 

mechanical properties. Lamination methods include adhesive lamination, extrusion lamination, hot 

melt lamination, and wax lamination2. The coating method, while like extrusion lamination, differs 

in that it does not involve a secondary substrate or web. Instead, a functional coating is directly 

applied onto a base film, resulting in a two-layer structure. Common coating techniques include 

aqueous dispersion, solvent-based, vacuum, and hot melt coating.  
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Barrier properties, mechanical strength, aesthetic appeal, and cost-effectiveness of the final MLF 

all depend on the type of processing applied. The method is selected depending on the desired 

specific properties and appearance of the packaging structure. Predicting the processability of 

polymeric systems and how processing parameters influence material properties is an emerging 

and impactful application for ML and AI. Researchers can contribute by updating databases on 

polymer properties to include viscoelastic behavior, the effects of processing conditions on 

crystallinity, and critical parameters for producing high-barrier films, such as residence time, 

processing temperature, crystallinity, and orientation. Sharing this data openly can strengthen ML 

predictions for more processable materials.  

Another challenge when attempting to prototype and validate new polymer systems in applications 

such as MLFs if that polymer processing trials typically require tens of kilograms of material, 

much of which is discarded as waste during process optimization. This presents another key 

opportunity for ML and AI integration. Embedding in-line characterization tools within polymer 

processing workflows and feeding real-time data back into ML algorithms could enable better 

prediction of optimal processing windows for new polymers, reducing experimental iteration and 

material waste (Figure 7). However, in-line characterization tools remain limited. Today, they can 

reliably measure only a few properties such as melt flow, which provides insight into polymer 

degradation and thermal stability during processing, and infrared signatures, which indicate 

potential chemical changes. As a result, most critical film characterization still occurs manually 

after processing using separate, stand-alone analytical tools. While this approach remains time 

limited, it is still possible to integrate these characterization tools to ML. For example, Python 

codes could be designed to automatically collect data from key polymer characterization tools such 

as differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), rheometers, and 

thermogravimetric analyzers (TGAs) to feed back into ML algorithms98.  

Within the materials community, autonomous experimentation platforms, referred to as self-

driving laboratories, are being developed to perform experiments with little to no intervention from 

human scientists by leveraging active learning algorithms. These automated and autonomous 

experiments promise to help scientists discover materials with optimized properties more quickly, 

map phase spaces more accurately, and use less material in the pursuit of these goals. Several in-

line analysis tools are already available, including spectroscopic, rheologic, and process state 

measurements99. Furthermore, automated systems can naturally integrate databases and materials 

ML platforms as the metadata for each sample is likely already digitized as part of the preparation 

process. One example of this approach was outlined by Wang et al. where they presented an AI 

driven automated material laboratory (Polybot) designed to autonomously explore processing 

pathways for achieving high-conductivity, low-defect electronic polymers films100. Polybot 

demonstrates a successful autonomous experimental campaign and designed recipes for scaled-up 

fabrication of transparent conductive thin films with target conductivity. A similar Polybot 

approach could be applied to processing trials for new MLF materials, adapting in-line 

measurement tools to align with polymer properties specific to MLFs. The challenge is not merely 
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to build smarter tools, but to create smarter systems that amplify human insight rather than replace 

it and that push the frontiers of knowledge forward while remaining firmly grounded in the values 

that define scientific progress. 

Several barriers must be addressed before research laboratories can fully leverage automated 

experimental platforms. Bringing all relevant tools and instrumentation online and making them 

controllable through software is often nontrivial, particularly for older equipment that lacks 

modern interfaces. In addition, robust safety protocols must be developed to protect both valuable 

instruments and personnel operating near robotic systems. Because robotics, sensors, and 

supporting infrastructure require substantial financial investment, automation platforms must be 

sufficiently flexible to accommodate variation in workflows, sample types, and operating 

conditions. Large language models (LLMs) such as ChatGPT can help lower these integration 

barriers by translating well-structured documentation of instrument capabilities and control 

interfaces into executable scripts, command sequences, and workflow logic, thereby streamlining 

the process of bringing heterogeneous laboratory instruments under unified automated control101.  

 

 

Figure 7. Self-driving laboratories. Proposed schematic for combining in-line characterization to multi-layer film 

processing coupled with ML to better inform redesign efforts, reduce iteration cycles, and accelerate scale-

up/commercialization. 

Conclusion and Future Outlook 

The redesign of MLFs encompasses a multi-objective optimization problem for polymer 

performance (barrier, thermal, and mechanical), processability requirements, as well as 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

environmental and economic viability. Going forward, there is significant opportunity for 

computational tools to guide the development of next-generation MLFs, but several challenges 

must be addressed. The relative dearth of publicly available data that links polymer structure to 

performance attributes, particularly gas and vapor barrier properties, is a significant hindrance to 

model prediction accuracy. In addition, the lack of standardization for reporting permeability and 

transmission rates (e.g. units, normalization by film thickness, polymer processing conditions, and 

explicitly reported experimental conditions such as relative humidity and temperature) adds 

another layer of complexity. The success of modern deep learning tools for protein structure 

prediction102 and protein design103,104 have been enabled by the existence and curation of the open-

source Protein Data Bank105. Polymers certainly present unique challenges, yet the development 

of a central repository for polymer properties, within a polymer-appropriate data model (e.g. the 

Community Resource for Innovation in Polymer Technology, CRIPT106), could similarly facilitate 

innovation in the application of AI/ML tools to solve polymer design challenges. Another 

promising avenue could be high-throughput data generation via molecular modeling approaches 

through density functional theory (DFT), molecular dynamics (MD), and COSMO-RS, producing 

data that can then be utilized to train predictive neural networks90,107.  

Alternative approaches to getting more out of less data can also be done at the ML stage with 

techniques such as transfer learning wherein abundant data collected on more easily 

measured/estimated properties can pre-train ML models to be further refined with less abundant, 

experimentally-measured properties108.  

Current ML models for polymers primarily focus on the atomistic-level and struggle to capture 

and design for higher-order effects at the polymer chain level such as crystallization, molecular 

weight, level of entanglement, viscosity, and in the case of thermosets such as covalent adaptable 

networks, features such as cross-link density and distance between cross-links. Challenges in 

designing for these topological features are due partially to the scarcity of high-fidelity data for 

these properties, and partially to the limitations of current model architectures. Hierarchical109 or 

topological neural networks110 for example, that incorporate interactions across multiple scales, 

would likely have more success in capturing and designing for effects from atomistic- and chain-

level differences. In addition, correlation-based ML models (as utilized in this work) inherently 

interpolate within the domain of the training data. To extrapolate to new chemistries and designs 

that fall outside the known distribution, ML approaches that enforce physics111 and/or analogical 

reasoning112 are needed.  

Rational design of MLFs is also hindered by a limited understanding about basic mechanisms by 

which small molecules (e.g. O2, H2O, CO2, N2) traverse polymer films. Beyond general trends 

with respect to crystallinity, density, and other basic physical properties, little is known about the 

molecular level permeation mechanisms of these small molecules. Both simulation and 

experimentation are needed to investigate these mechanisms. MD simulations can provide 

detailed, quantitative insights at spatiotemporal scales not readily available experimentally and are 

well-suited to describe the complex polymer-fluid and polymer-gas interactions critical for 
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characterizing barrier properties. Advanced X-ray and neutron scattering experiments can 

complement atomistic simulations to probe specific structure-property relationships that govern 

barrier performance in polymer systems. Also lacking are robust models to predict the processing 

conditions that would yield optimized morphologies to achieve barrier and other properties. These 

would require in silico predictions of material rheology and crystallization kinetics to feed to 

computational fluid dynamics simulations of melt processing behavior. The elucidation of detailed 

gas permeation mechanisms through polymer films via integration of molecular modeling, ML, 

and advanced material characterization via scattering could spur the development of design 

principles for packaging materials. 

Methods to directly predict biodegradability or recyclability of a polymer are challenging due to 

the lack of amount and standardization of data, although some approaches are being developed22. 

Lin and Zhang demonstrated the potential of ML to predict aerobic biodegradation using a dataset 

of 74 polymers (R2=0.66)113. Kern et al. performed a large-scale search for sustainable, chemically 

recyclable ring-opening polymerization (ROP) polymers using ML to optimize for specific 

properties114. The development of an ML model to accurately predict ceiling temperature (Tc) as a 

thermodynamic measure of the conditions favoring recyclability would be particularly valuable 

towards narrowing the search space for circular MLFs. We are currently developing ML models 

that can predict enthalpy and entropy of polymerization, which determine Tc, for systems that 

undergo chain-growth polymerization. For the candidates in this study that are formed via 

polycondensation, the degree of polymerization for step-growth polymers based on equilibrium 

conversion can be used to guide selection of polymerization conditions, albeit not a proper Tc, to 

define the potential for recyclability at a given set of conditions. Kinetic modeling as demonstrated 

by Coile et al. can be used to quantitatively assess this metric as a function of diverse backbone 

compositions115. As soon as these environmental and processing factors can be modeled and 

predicted, they can be included in a multi-objective design space116 to ensure candidates meet these 

stringent requirements. 

Despite significant advancements, the path to achieving circularity in MLFs remains fraught with 

challenges. A systemic shift in how packaging is designed, produced, used, and disposed of is 

essential. Collaboration across stakeholders including manufacturers, policymakers, researchers, 

and consumers will be critical to driving this transformation. At the same time, public awareness 

campaigns and readjusted consumer expectations can foster demand for sustainable alternatives. 

Regardless, innovations in recycling, polymer design, polymer processing, and AI/ML will 

continue to drive progress in the space of waste management and reduction.  

Data Availability 

The data that supports the findings presented in this perspective are available in the Supplementary 

Information. Polymer water vapor permeability data used to train the PolyID model are available 

at doi.org/10.5281/zenodo.18262440. All data are available from the corresponding author upon 

request.  
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Code Availability 

The code to run and train the PolyID model and to run DORAnet are available at 

github.com/NREL/polyid and github.com/wsprague-nu/doranet, respectively. An updated web-

based interface that serves the models and makes predictions is available at https://polyid.nrel.gov 
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Figure Legends/Captions (for main text figures) 

Figure 1. A proposed ML-guided approach to designing recyclable and/or compostable multi-layer films 

(MLFs) that match the food preservation metrics and target performance of today’s conventional materials. 

(A) Key structure-property relationships of current MLF polymers are studied; (B) Properties of known polymers 

are fed into an ML model (PolyID) to predict polymers (in this case study we targeted polyesters) with similar 

properties; (C) Using the output from PolyID, a new portfolio of polyesters for MLF applications is generated; (D) 

Examples of the types of MLF packaging targeted in this perspective.  

Figure 2. Property comparison of conventional polymers used in MLFs. Summary of reported oxygen barrier 

(presented as oxygen permeability coefficient, PO2), water vapor barrier (presented as water vapor permeability 

coefficient, PH2O), melting temperature (Tm), modulus, density, and average cost (based on 2024 market reports) for 

incumbent polymer materials commonly used in multi-layer film layers. Barrier measurements and modulus are 

presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales. Barrer is 
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equivalent to 10-10((cmSTP
3*cm)/(cm2*s*cmHg)). LDPE: low-density polyethylene, PP: polypropylene, PET: 

polyethylene terephthalate, PVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol. 

Figure 3. Generalized legacy MLF structure c and current end-of-life recycling strategies. Legacy MLF 

packaging configurations and existing MLF recycling strategies including mechanical recycling, pyrolysis, and 

STRAP. LDPE: low-density polyethylene, LLDPE: linear low-density polyethylene, PP: polypropylene, PA: 

polyamide, PVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol, HDPE: high-density polyethylene, 

OPP: oriented polypropylene, PS: polystyrene, PET: polyethylene terephthalate. 

Figure 4. Integrated PolyID-DORAnet workflow for polymer discovery and property prediction. DORAnet 

applies in situ chemical reactions to potential source materials to naturally expand the monomer discover space. 

PolyID, trained on experimental and/or molecular simulation data, is then used to identify candidate polymer 

formulations with desired properties.  While this work does not perform molecular simulations, active learning, or 

repeated DORAnet-PolyID loops to optimize target properties, we include those steps in the figure to illustrate a 

holistic approach to continually improve the model predictions and target candidates. BP: boiling point, DoV: domain 

of validity, MLF: multi-layer film. 

Figure 5. PolyID-generated predictions of polymer properties for polyesters produced from monomers derived 

from KEGG and Sigma databases and one round of DORAnet transformations. See Figure S2 for more 

predicted property comparisons. Highlighted monomers are examples of under-explored chemistries for MLFs with 

relatively strong predicted barrier properties. PVDC: polyvinylidene dichloride, PLGA: poly(lactic-co-glycolic acid), 

PET: polyethylene terephthalate, PLA: polylactic acid, HDPE: high-density polyethylene, PP: polypropylene, P3HB: 

poly(3-hydroxybutyrate), EVOH: ethylene vinyl alcohol, PESt: poly(ethylene stearate). 

Figure 6. Property comparison of emerging biopolymers and predicted polyester structure  for potential use in 

future MLFs. Summary of oxygen barrier (presented as oxygen permeability coefficient, PO2), water vapor barrier 

(presented as water vapor permeability coefficient, PH2O), melting temperature (Tm), modulus, density, and average 

cost (based on 2024 market reports for polyglycolide (PGA), polylactic acid (PLA), and poly(3-hydroxybutyrate) 

(P3HB) for existing and a new polyester predicted by PolyID (PolyID P1). Barrier measurements and modulus are 

presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales. 

Figure 7. Self-driving laboratories. Proposed schematic for combining in-line characterization to multi-layer film 

processing coupled with ML to better inform redesign efforts, reduce iteration cycles, and accelerate scale-

up/commercialization. 

 

Editorial Summary 

Multi-layer film packaging revolutionized food preservation by combining diverse material 
layers to optimize barrier properties, mechanical strength, and shelf-life but they pose 
significant recycling challenges due to their structural complexity. This perspective 
examines key structure-property relationships governing barrier performance and 
highlights innovations in material design. 
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