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Abstract

Multi-layer film packaging (MLF) revolutionized food preservation by combining diverse material
layers to optimize barrier properties, mechanical strength, and shelf-life. These materials are
essential for transporting perishables across various climates and allow for access to fresh goods
in “food deserts”, but they pose significant recycling challenges due to their structural complexity.
This perspective examines key structure-property relationships governing barrier performance and
highlights innovations in material design. We explore how machine learning can predict
performance metrics and propose recyclable alternatives, integrating data-driven approaches with
material science insights. By challenging the status quo of MLF design, we advocate for circularity
in food packaging, inspiring innovation at the intersection of sustainability, material science, and
artificial intelligence.

Introduction

Multi-layer films (MLFs) have become a cornerstone form factor for a diverse range of consumer
products. In 2018, the world produced more than 100 million tonnes of MLFs, anticipated to reach
140 million tonnes by 2025, Food preservation in particular has been revolutionized by MLFs,
extending shelf life and substantially reducing global food waste?3, By combining materials with
complementary strengths, the multi-layer structure unites individual advantages into a balanced,



high-performance film. Such films, often composites of polymers and metalized species, integrate
barrier layers for low oxygen and moisture permeation, structural layers for mechanical robustness,
and tie layers that serve as the adhesive during lamination. The complex engineering that has
yielded such technological significance is ultimately becoming overshadowed by incompatibility
with recycling pathways and damaging environmental persistence at end-of-life, both of which
demand urgent attention.

A staggering proportion of MLFs, often designed for single-use applications, escape proper waste
management systems and accumulate in the environment, contributing to the growing crisis of
plastic pollution®. Flexible packaging like MLFs, characterized by low bulk density and light
weight, is particularly problematic. While advantageous for reducing material use and
transportation costs, the low density of these materials makes them easily transported by wind and
water, resulting in widespread distribution in marine and terrestrial ecosystems®. Estimates suggest
that millions of tons of plastic waste enter the environment annually, a significant portion
originating from single-use MLFs®. This is particularly problematic in developing countries where
a majority of daily-use products are sold in single-use MLFs’.

A key obstacle in mitigating the environmental impact of MLFs lies in the incompatibility with
existing recycling systems. Conventional mechanical recycling infrastructure is largely optimized
for rigid plastics, such as bottles and containers, which are easier to collect, sort, and process®. In
contrast, MLFs are difficult to collect and transport due to their low bulk density. Furthermore, the
multi-material nature of many MLFs impedes sortation*®. To achieve the performance attributes
necessary for packaging applications, MLFs generally feature several different polymers laminated
together, including polyethylene (PE), polyvinylidene dichloride (PVDC), polyethylene
terephthalate (PET), polyamides (PAs), and ethylene vinyl alcohol (EVOH). These polymers are
frequently incompatible when melt blended by mechanical recycling, and the physical separation
of discrete layers remains functionally impractical. Chemical processing technologies like
selective dissolution and precipitation have demonstrated the effective separation and recovery of
discrete polymer components of MLFs®. However, these processes frequently yield polymers with
diminished thermal properties and remain economically and energetically intensive, therefore
limiting adoption at scale!®!!,

Among the many challenges associated with MLF recycling, barrier layers, most notably PVDC
and EVOH, remain the most pressing. Halogenated polymers such as PVDC are particularly
problematic in recycling processes because they can generate harmful and damaging byproducts
at high temperatures, while EVOH can render otherwise recyclable polyolefin mono-layer films
unrecyclable. When EVOH is melt-blended with a non-polar polyolefin such as PE during
mechanical recycling, the two polymers are inherently immiscible and phase-separate. This phase
separation leads to weak interfacial adhesion and, consequently, poor mechanical properties in the
recycled material unless an appropriate compatibilizer is introduced to promote interfacial bonding
between the two phases. Progress has been made in creating new polymeric materials with
comparable barrier properties to incumbent technologies while offering avenues for recyclability



and reduced environmental persistence!?13141516.17.18.19.20 Researchers have explored synthetic
strategies to tune the density, crystallinity, hydrophobicity, and chemistry of more “sustainable”
polymers in pursuit of replacing PVDC and EVOH barrier layers. Designing polymers that deliver
layer-specific performance while maintaining the same chemistry (i.e. mono-material design) is
also a major area of interest?’. Yet, there are often trade-offs between recyclability and
performance, trade-offs that must not only be carefully managed but strategically overcome if truly
circular, high-performance packaging is to be realized.

Computer-aided synthesis planning (CASP), machine learning (ML), and artificial intelligence
(Al), offer transformative potential in tackling the challenge of redesigning MLF packaging. These
tools can accelerate the discovery of polymers with enhanced barrier properties, mechanical
strength, and recyclability and/or biodegradability/compostability built into the design. By
leveraging existing datasets of polymer structures and properties, Al can predict optimal
formulations and guide material design, reducing reliance on iterative experimentation??.
Moreover, Al-driven insights can optimize recycling processes, from improving sortation
efficiency to enhancing the economic feasibility of chemical recycling methods?3. Furthermore,
emerging ML databases can also narrow down design scopes, for example, to identify alternatives
to particularly problematic polymers like PVDC and even focus on biologically derived building
blocks allowing for the utilization of biogenic carbon in the production of future packaging
materials.

The utilization of MLFs exemplifies the complex trade-offs between functionality and
sustainability. While their role in modern food systems is indispensable, the environmental impacts
associated with their disposal is unsustainable. Addressing these challenges requires a multifaceted
approach, integrating advances in material science, recycling technologies, and waste collection
frameworks. By leveraging emerging ML tools like PolylD?* and fostering a culture of innovation
and collaboration, industry can pave the way for a more sustainable future. This perspective
explores opportunities to advance MLF sustainability, emphasizing the need for systemic solutions
to ensure their environmental and economic viability. We examine the key structure-property
relationships that dictate barrier performance in MLF design, analyze the current and future
landscape of MLF packaging and recycling, and highlight how PolyID, and other ML tools, can
predict and accelerate recyclable-by-design alternatives (Figure 1).
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Figure 1. A proposed ML-guided approach to designing recyclable and/or compostable multi-layer films
(MLFs) that match the food preservation metrics and target performance of today’s conventional materials.



(A) Key structure-property relationships of current MLF polymers are studied; (B) Properties of known polymers
are fed into an ML model (PolyID) to predict polymers (in this case study we targeted polyesters) with similar
properties; (C) Using the output from PolyID, a new portfolio of polyesters for MLF applications is generated; (D)
Examples of the types of MLF packaging targeted in this perspective.

Legacy Multi-Layer Films Packaging

Flexible packaging, like typical MLFs, represent a significant advancement in materials
engineering, aimed at addressing the diverse and often competing physical requirements of
polymers used in packaging applications. Packaging materials have long needed to balance
mechanical integrity, barrier properties, thermal stability, shelf-life, and ease of processing.
Flexible packaging materials date back to the early 20th century, with the introduction of
cellophane?®, but it’s barrier performance was limited, making it insufficient for applications
requiring long-term preservation?’. To address these shortcomings, nitrocellulose lacquer coatings
were applied to cellophane, significantly improving its moisture resistance and marking one of the
first examples of layered film packaging designed to enhance functionality allowing them to be
used in household products?2°,

Synthetic polymers drastically increased the efficacy of packaging technologies. PE,
polypropylene (PP), and PET are widely used in flexible packaging due to their mechanical
strength, heat sealability, clarity, and moisture resistance?”*, Biaxial orientation®! of PP (BOPP)
and PET (BOPET) greatly improve the tensile strength, puncture resistance, and gas and moisture
permeability, enabling thinner films and reduced material usage without sacrificing performance.
PVDC, commercialized under the trade name Saran by Dow Chemical®, is the gold standard for
barrier films, achieving extraordinarily low permeability to both oxygen (oxygen permeation
coefficient, PO2< 0.005 Barrer) and water vapor (water vapor permeation coefficient, PH20 < 50
Barrer), enabling prolonged shelf lives and improved food preservation compared to prior flexible
packaging®. The superior gas and water vapor barrier properties of PVDC arise from a
combination of several structural features that limit permeation through the material. The polar
nature of the chlorinated backbone results in strong polymer-polymer and polymer-permeant
interactions that provide hydrophobicity and minimizes gas solubility within the polymer.
Moreover, the crystalline morphology and high density (~1.7 g/cm®) cooperatively result in low
fractional free volume, effectively impeding permeant diffusion343°.

Despite the barrier benefits of PVDC, challenges associated with narrow processing windows
(difference between melting and degradation temperature), high cost of manufacturing, and
hazards posed by its halogenated nature, prompted the development of alternative barrier
polymers®:3738 EVVOH copolymers are a promising class of extrudable high barrier polymers with
exceptionally low oxygen permeation that surpassed even PVDC, owing to the high polymer-
permeant interaction of the polar -OH functionality and Oz gas®. However, EVOH exhibits
increased sensitivity to moisture due to its hydrophilic nature, resulting in high water vapor
absorption, plasticization, and increased oxygen permeability over time. For example, the oxygen
permeability of EVOH is approximately 300 times higher when measured at 100% relative



humidity compared to 0% relative humidity3*, highlighting the challenges associated with
designing materials that possess both good oxygen and water vapor permeability across diverse
environmental conditions.

Even with the substantial advancements in polymer chemistry and processing, currently there is
no single polymer that can deliver all the necessary properties for the evolving demands of
packaging applications and growing food scarcity. Thus, MLF packaging, where different polymer
layers are combined through extrusion and adhesive lamination to create composite films that
strategically balance multiple performance properties in a single film, is needed*!.

Recently, MLF packaging has evolved into highly engineered, complex systems, often comprising
ten or more discrete layers?2?®. These films integrate combinations of distinct barrier and support
polymers in conjunction with sealant layers, adhesion-promoting tie layers, organic and inorganic
processing additives, and even metalized films. Each layer is optimized to deliver specific
performance attributes, such as puncture resistance, aroma retention, light obstruction, and
hermetic sealing. Figure 2 displays the key properties and performance metrics for the most
common polymer materials used in MLF layers.

Despite their functional benefits, MLFs present significant challenges for researchers and
sustainability efforts. While similar polymers are used across MLFs, the proprietary nature of their
formulations often hinder in-depth analysis. Furthermore, the heterogeneous composition of MLFs
complicates recycling and end-of-life management. Conventional recycling systems are typically
unable to separate and process the multiple, often incompatible, polymers used in these films,
frequently resulting in landfilling, incineration, or loss to the environment.
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Figure 2. Property comparison of conventional polymers used in MLFs. Summary of reported oxygen barrier
(presented as oxygen permeability coefficient, PO,), water vapor barrier (presented as water vapor permeability
coefficient, PH,0), melting temperature (Tm), modulus, density, and average cost (based on 2024 market reports) for
incumbent polymer materials commonly used in multi-layer film layers. Barrier measurements and modulus are
presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales. Barrer is
equivalent to 101%((cmstp®*cm)/(cm?*s*cmHg)). LDPE: low-density polyethylene, PP: polypropylene, PET:
polyethylene terephthalate, PVVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol.

Current End-of-Life Approaches for Multilayer Films

Efforts to address the end-of-life challenges of MLFs have led to the exploration of several
recycling strategies, including mechanical recycling, pyrolysis, and dissolution*?. Each of these
approaches offers distinct advantages and limitations when applied to existing MLF packaging.
Our primary focus in this section is on the opportunities and challenges associated with specific
recycling technologies. We first include a brief discussion of some advancements in waste
management of MLFs.

Many recent advances in the management of plastic waste (e.g. sorting, marking, or identification)
utilize Al and ML coupled with imaging and spectroscopy approaches for rapid, nondestructive
characterization®®, including in detection of microplastics**. MLFs have two main challenges in
identification: weak signal reflection due to thin profiles, and transparency, where the film and
underlying materials both reflect into the sensor. Koinig et. al., demonstrated successfully a
method to classify mono- from multi-layer films inline using near-infrared spectroscopy in
transflectance mode*. However, automated separation of different types of multi-layer films
remains an open challenge.

Once materials have been collected and sorted, the next major hurdle is recycling. Mechanical
recycling is the most established method and involves the collection, sorting, cleaning, and
remelting (via extrusion) of plastic waste into recycled materials. While this process works well
for single-material streams, it is impeded by MLFs composed of incompatible polymers (e.g. PE
and PET) or structures containing barrier layers like aluminum, PVDC, and EVOH. The
incompatibility between layers can result in poor melt quality, discoloration, and degraded
mechanical properties in the recycled material. Efforts have been made to compatibilize
immiscible polymers found in MLFs, thereby mitigating property degradation. The most common
is an addition of a reactive polymer that can graft to both phases, reinforcing interfaces to prevent
stress concentration*®474849 However, these additives simultaneously reduce aesthetics, and the
process is not universal for the range of compositions that may be found in mixed MLF waste®°.

Pyrolysis thermally decomposes plastic waste in the absence of oxygen, breaking it down into oils,
gases, waxes, and char®®. This process can recover valuable hydrocarbons and generate virgin-like
naphtha feedstocks for new polymer production. However, pyrolysis typically requires high energy
input and elevated operating temperatures, which can lead to significant emissions and generate
byproducts that require additional treatment. While often marketed as a solution for mixed plastic
waste, pyrolysis is largely limited to polyolefins such as PE, PP, or polystyrene (PS); polymers



containing heteroatoms such as PET, EVOH, and PAs (i.e. nylons) are generally incompatible,
depending on the level at which they are present. Halogenated polymers like PVDC also pose
challenges, producing corrosive and toxic chlorinated byproducts that necessitate complex gas-
cleaning systems.

Solvent-targeted recovery and precipitation (STRAP) is an emerging approach that selectively
dissolves and separates individual polymer layers using tailored solvents'. STRAP offers the
potential to recover high-purity polymers from MLFs, enabling true material circularity and
preserving the quality of the separated components. Unlike pyrolysis, STRAP operates at lower
temperatures and avoids bond breaking, instead focusing on the physical separation of intact
polymer chains. However, the process depends on the careful selection of solvents, which can be
costly, and may raise concerns regarding solvent recovery, toxicity, and energy use for solvent
evaporation and recycling. Furthermore, highly complex multilayer structures, especially those
containing insoluble crosslinked or highly engineered tie layers, can still pose challenges for
efficient separation.

Collectively, these end-of-life strategies (summarized in Figure 3) represent important steps
towards MLF packaging waste. However, each faces significant technical and economic
challenges when applied to today’s highly engineered multi-layer structures. Advancing packaging
design through design-for-recyclability and the development of mono-material MLFs will be
critical to improving compatibility with recycling systems and enabling a more circular packaging
economy. A key research focus is the identification of non-halogenated barrier layers capable of
replacing PVDC while maintaining essential oxygen and moisture barrier performance. These
emerging technologies offer the potential to fundamentally reshape the future of MLF packaging
by balancing high performance with environmental sustainability.
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Figure 3. Generalized legacy MLF structure ¢ and current end-of-life recycling strategies. Legacy MLF
packaging configurations and existing MLF recycling strategies including mechanical recycling, pyrolysis, and
STRAP. LDPE: low-density polyethylene, LLDPE: linear low-density polyethylene, PP: polypropylene, PA:
polyamide, PVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol, HDPE: high-density polyethylene,
OPP: oriented polypropylene, PS: polystyrene, PET: polyethylene terephthalate.

Future Multi-Layer Film Packaging

As researchers advance robust recycling platforms capable of handling complex, heterogeneous
plastic waste streams, parallel efforts are focusing on the development of more sustainable and
recyclable packaging designs. When considering redesigning MLFs, the primary challenge is
meeting the exceptional barrier performance provided by aluminum, PVDC, and EVOH
(respectively and in combination). Here, we will highlight efforts made towards designs for
mechanical recycling, chemical recycling, and composting end-of-life systems.

For mechanical recycling, efforts have focused on lowering material variability to a single polymer
or compatible polymers. A theoretical basis for redesign choices is that selected polymers show
superior compatibility with other polyolefins®2. In previous work, recyclability has been improved



using a mono-material approach primarily through polyolefins®. One notable example is an all-
PE film manufactured via biaxial orientation (BOPE), which can achieve higher crystallinity and
reduced polymer chain mobility. This results in enhanced mechanical properties at thinner gauges
and offers moderate improvements in oxygen barrier performance®. Another promising design-
for-recycling strategy involves the incorporation of specialized tie or adhesive layers that can be
selectively activated by chemical or thermal triggers to release at end-of-life, enabling separation
and recovery of the individual layers for mechanical recycling®.

Solvolysis-based chemical recycling targets depolymerization in polymer backbones containing
heteroatoms (e.g. ester bonds in polyester) and can produce near quantitative yields of parent
monomers at relatively mild conditions when compared to pyrolysis. The high carbon efficiency
of solvolysis has prompted discussions on whether a transition to an “all-polyester” approach to
redesigning complex plastic materials could improve recycling rates and carbon circularity®’.
However, it remains challenging to develop heteroatom-backbone polymers that offer strong
barrier performance against both water vapor and gases. As a result, achieving the desired barrier
performance often requires combining multiple polymers within a single structure, an approach
that inherently increases MLF complexity and hinders recyclability.

Currently, there is no single polymer that has all the properties necessary for typical food
packaging applications, necessitating multi-layered architectures. As we consider redesign, recent
life cycle assessments (LCAs) and planetary boundary analyses have made it clear that improving
recycling rates alone will not bring the plastics supply chain within a sustainable operating space®®.
To meet climate and sustainability goals, we must simultaneously increase recycling rates and shift
towards materials derived from biogenic carbon. Select polyolefin producers are investing in
bioethanol to produce bio-PE. However, the recycling challenges remain. Commercially available
bio-based polyesters such as polylactic acid (PLA) and polyhydroxyalkanoates (PHAS) are
currently marketed as compostable and/or biodegradable but are typically rejected from
mechanical recycling streams. However, recently reported tecno-economic assessment (TEA) and
LCA studies on mixed polyester recycling reveal the economic and environmental benefits of
transitioning plastics to an all-polyester based platform coupled with chemical recycling®°’. These
studies suggest that multiple polyesters can be combined in a multi-layer structure while still being
recyclable by solvolysis-based platforms.

Polyesters are historically not known for their barrier properties. Thus, redesign efforts in polyester
chemistry for packaging materials have focused on improving the barrier performance against
moisture and gases'?'>16:8 In the pursuit of new high-barrier polyesters, it is important to
understand the chemical and physical factors that govern gas permeation. In bulk polymer films,
several key characteristics including morphology, chain mobility, polarity, and intermolecular
interactions contribute to mass transport through the material®®®. Permeation of non-interacting
gases (i.e. Oz, CO2, N2, etc.) occurs through a combination of solution-diffusion mechanisms,
where the permeant initially dissolves into the polymer, before diffusing to the opposing
interface®’. Polar and apolar functional groups can attract or repel permeants, which alter the



solubility of the gas within the polymer. The intermolecular forces that determine polymer-
polymer and polymer-permeant interactions can be captured in the cohesive energy density, which
has proven to be an effective method for correlating barrier performance with polymer structure®®.

The diffusion of gases through films is primarily governed by the polymer’s fractional free
volume®?. The free volume, or the interstitial space between polymer chains, is influenced by
physical parameters such as glass transition, crystallinity, and processing-induced chain alignment.
In semi-crystalline polymers, crystallites function as impermeable domains, forcing permeants into
tortuous pathways through amorphous regions that imped diffusion®. In contrast, fully amorphous
polymers typically exhibit high gas permeability due to larger free volume, making them less
suitable as barrier layers in MLFs.

Unlike non-interacting gases like Oz and CO2, water vapor permeation is comparatively more
complex due to its small kinetic diameter and strong hydrogen-bonding capacity3*. Hydrophilic
polymers with high hydrogen-bonding capabilities result in high rates of water vapor sorption,
resulting in high permeability. Permeation is further complicated as polymers can often be swelled
and plasticized upon the solubilization of water molecules, resulting in increased free volume, and
non-linear diffusion Kinetics upon exposure to varying humidity’. Interactions between water
molecules and the polymer substrate can therefore change polymer physical characteristics and
alter the permeation of other gases, a phenomenon observed in current EVOH barrier materials®®.

Following these guidelines, it is intuitive that polymers with high self-association (high cohesive
energy density), low free volume, and high crystallinity will possess the best barrier resistance to
permeation®®. The polar nature and moderate crystallinity of current commercial polyesters such
as PET, PLA, or polybutylene succinate (PBS) results in reduced oxygen permeation compared to
polyolefins, but increased water vapor permeation due to reduced hydrophobicity®3. Surprisingly,
polyglycolic acid (PGA), the simplest linear aliphatic polyester, exhibits exceptional water and
oxygen barrier properties (PO2< 0.005 Barrer, PH20 < 150 Barrer) that rival PVDC, despite being
a non-halogenated biodegradable polymer®®°, The barrier performance of PGA stems from to its
high crystallinity and high concentration of permeant-interacting ester groups; however, the high
crystallinity of PGA yields a highly brittle polymer and an elevated melting temperature that poses
challenges for MLF processing and application®®¢7,

It is therefore critical to identify new, redesigned polyesters that achieve balanced barrier
properties, mechanical performance, and manufacturability to realize an all-polyester MLF
packaging platform. A recent example from Chen and coworkers disclosed a series of spiro-
valerolactone-based polyesters that yielded reduced water vapor permeation compared to low-
density polyethylene (LDPE; PH20 < 200 Barrer) and oxygen permeation lower than PET (PO:
< 0.05 Barrer)%®. These materials also had tunable ductility and excellent adhesive properties,
making them promising candidates for mono-material design. Other advancements in sustainable
barrier materials have typically employed sugar-based polymers like polysaccharides,



nanocellulose, cellulose, and chitin and also include the use of dynamic chemistries while still
enabling compostable packaging material®6970.71.72

As our modeling efforts are primarily based around polyesters this perspective looks at developing
new polyester-based chemistry with ML. As mentioned, there are a multitude of other methods to
create sustainable packaging that would benefit from the usage of ML. The computational methods
discussed (vide infra) can, and should, be extended to modeling these other material types and we
encourage the use of this platform to explore varying chemistries.

Computationally-Driven Discovery of Polymers

A comprehensive pursuit of MLFs with improved end-of-life outcomes must include consideration
of a wide range of polymer building blocks, particularly those derivable from natural and
biological sources. Given the vast design space for bio-derivable building blocks, high-fidelity
computational screening procedures are essential to narrow the possibilities to the most promising
formulations for synthesis and characterization. Al is a broad field of computer science focused
on creating systems that can perform tasks typically requiring human intelligence, such as
reasoning, problem solving, and decision-making. ML is a subfield of Al that uses data and
algorithms to learn patterns and relationships, enabling systems to improve their performance on
tasks over time without being explicitly programmed. In the context of materials and specifically
polymers discovery, Al/ML can be coupled with databases to enable property predictions and even
de novo design of materials. New approaches to map molecular features to polymer performance
are being pursued via the development and application of increasingly advanced high-throughput
ML tools for polymer property prediction’747576.77.7879 - A very comprehensive introduction to
data-driven approaches for polymer design was reported by McDonald et. al.®, and Tran et. al.8%.

ML approaches broadly fall into two categories: inverse design and forward design. Inverse design
first specifies desired properties and then predicts chemistries likely to have those properties, e.g.
via generative ML models. Using generative models thus broadens the discovery space beyond
existing materials and chemical motifs and has produced some promising results for a variety of
properties and applications®283848586.87 On the other hand, these approaches can also generate
polymeric materials wherein the building blocks are difficult to synthesize and/or polymerize. In
general, molecular simulations have been deployed as a part of inverse design approaches for data
generation and model validation, but experimental synthesis and characterization to validate
polymer chemistries and properties has been limited. Conversely, forward design approaches start
from a list of potential molecules (monomers and/or their polymer formulations) and aim to
identify which are the most promising for a target application based on predicted polymer
properties. Examples of forward design approaches include RadonPy®, PolyGNN?®, and PolyID?.
PolylD is a multioutput, message passing neural network (MPNN) designed to facilitate
quantitative structure—property relationship (QSPR) analysis for polymers?*. PolyID takes as input
a representation of a polymer chain by performing in silico polymerization, with degree of
polymerization 18, of monomers specified using the simplified molecular-input line-entry system



(SMILES) strings to encode chemical structures. This allows for specification of comonomer ratio
(if applicable) and random regio-orientations. Atom and bond feature vectors are built from the
molecular structure using basic descriptors from the RDKit Python package. These vectors are
then updated during message passing, where vectors of neighboring atoms and bonds are
concatenated and passed through two feed forward layers, reducing the vector size to the original
length. Finally, the bond vectors are averaged, and passed through separate feed forward layers,
one for each target property. The PolylD MPNN, originally trained on ~1,800 experimental data
points mined from literature and existing polymer databases, predicts polymer performance
attributes, including thermal (glass transition and melting temperatures), density, mechanical
(elastic modulus, tensile strength, and elongation at break), and barrier properties (permeability of
oxygen, nitrogen, carbon dioxide, and water vapor). Typical accuracies, measured using the mean
absolute error (MAE) from 10-fold cross validation, fall around 20 °C for Tg, 25-30 °C for Tm,
0.05 g/cm?® for density, 104 (2.5) Barrer for permeabilities, and approximately 300 MPa for elastic
modulus.

Certain features that are essential to the design of circular MLFs are particularly ill-captured by
current computational approaches, including water vapor permeability and end-of-life outcomes.
Regarding the former, there is currently no publicly available database of water vapor permeability
for common polymers. In addition, the interactions of water vapor with polymer films tend to differ
widely from that of other gases due to the formation of hydrogen bonds, often leading to high
solubility and subsequent swelling in polymers®. Temperature, relative humidity, polymer
density, crystallinity, and measurement approach can also have a large effect on the measured and
reported permeability. These factors and the resulting scarcity of accessible and standardized data
can make modeling films with ML challenging and resulting predictions unreliable. Augmentation
of experimental datasets with -molecular modeling outputs for training ML models has been
demonstrated®, including for gas barrier properties® but not yet for water vapor permeability. As
far as we are aware, currently only PolyID includes water vapor permeability as a prediction target.
In the original PolyID publication, just 27 data points were included for water vapor permeability
to train PolyID, all of which came from non-public databases. We have recently expanded that
number to 55 by including more publicly available literature data and in-house experimental
measurements (reducing the mean absolute error from 10%° to 10%° Barrer for PH20 predictions).

The ability to design polymers with targeted properties for MLFs primarily depends on 1) the pool
of candidate materials, 2) the ability to make accurate predictions, and 3) the synthesizability of
the monomers and polymers. As discussed above, inverse design approaches can expand the
possibilities for molecular generation beyond known materials. A more direct approach to expand
the candidate pool is to apply chemical transformations to source molecules to create new
monomers, somewhat analogically to the experimental chemist’s approach. Applying this set of
chemical reactions to the initial pool would expand the material discovery space while leaving a
direct recipe for creating desired monomers. DORAnNet (previously Pickaxe)®!, an open-source
python package, chemically transforms an initial set of molecules according to well-defined



reaction rules and is well-suited for such a purpose. DORAnet has two main types of reactions: 1)
synthetic, which transforms molecules according to a 1,224 set of industrially utilized chemical
reactions, and 2) enzymatic, which employs 22,803 reactions accessible by biological enzymes.
DORARnet also has built-in tools to filter out reactions or molecules that do not meet certain criteria,
including filters based on monomer attributes such as halogen moieties or high molecular weight,
reaction thermodynamics (e.g. using the tool eQuilibrator), and monomer properties critical for
polymerization such as boiling point or solubility. Integrating a monomer generation scheme (e.g.
DORAnNet) with a polymer property prediction tool (e.g. PolylD) allows for strategic expansion of
the initial materials discovery space, feeding realistic possibilities to ML models to target the most
promising candidate materials for synthesis.

To demonstrate the possibilities of such an integrated computational workflow for polymer
discovery for MLF applications, we apply DORAnRet and PolyID to a large pool of bio-derivable
and purchasable monomers from KEGG and Sigma data sources, respectively. In this example, we
target homopolyesters (ring opened structures) and diol + diacid polyesters, as they have an
increased likelihood of biodegradability and recyclability via hydrolysis®2. KEGG contains 290
diols, 115 diacids, and 146 multi-functional monomers which containing both an alcohol and an
acid group while Sigma contains 537, 166, and 285 of the same groups, respectively, with 84 diols
and 40 diacids overlapping between the two. These monomers can be combined into 82,612
polyesters. We sought to restrict the polyester combinations to those for which PolyID is most
likely to make accurate predictions. Thus, we applied a domain of validity filter (DoV) of 10,
wherein polymers that contain 10 or more chemical substructures not seen in training are removed,
reducing the number of polyesters to 21,779. To cast as wide a net as possible, we also applied all
DORARnet synthetic and enzymatic reactions to the molecules in KEGG and Sigma, resulting in
14,703 diols and 9,851 diacids with a molecular weight less than 250 g/mol, which can be
combined to form over 144 million polyesters. Targeting polycondensation reactions, we exclude
diols with a boiling point over 250 °C as excess diol needs to be distilled off during polymerization,
with diacid as a limiting reagent. Thus, we applied a recently developed MPNN-based tool,
Chemperium®, to predict the boiling point of each diol, and filtered those over 250 °C, leaving
1,791 diols. This reduced the number of polyester combinations to 17.6 million. A DoV filter of
10 brought the total to 2.3 million polyesters. A graphical representation of this example ML
workflow to design an all-polyester MLF is presented in Figure 4.
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Figure 4. Integrated PolylD-DORAnNet workflow for polymer discovery and property prediction. DORAnet
applies in situ chemical reactions to potential source materials to naturally expand the monomer discover space.
PolyID, trained on experimental and/or molecular simulation data, is then used to identify candidate polymer
formulations with desired properties. While this work does not perform molecular simulations, active learning, or
repeated DORAnNet-PolyID loops to optimize target properties, we include those steps in the figure to illustrate a
holistic approach to continually improve the model predictions and target candidates. BP: boiling point, DoV: domain
of validity, MLF: multi-layer film.

The PolylD pipeline, including in silico polymerization and prediction of ten properties, was
applied to each of the candidate polyesters from before and after applying DORAnet. We focus on
the results with DORAnet-generated monomers (Figure 5), with pre-DORAnNet results presented
in the supplementary information (Figure S1). Figure 5 shows an overview of the predicted
properties, highlighting relationships between barrier, density, and elastic modulus (with an
expanded dataset in Figure S2). In the context of polyesters for MLF applications, each layer
requires different property requirements (as shown by the incumbent materials in Figure 2),
including layer-specific melting temperature for heat sealing, adhesive characteristics, and various
mechanical properties. Our preliminary focus is on the most important properties for MLFs for
food packaging, namely oxygen and water vapor permeability, assuming application-relevant
thermal and mechanical properties. We note that barrier properties can also vary greatly depending
on the use temperature, relative humidity, and polymer crystallinity, e.g. enhanced barrier
performance is often noted at temperatures below the polymer’s Tg, which are not directly modeled
by PolyID. The ability to integrate crystallinity into PolylD, either by including it as an input to
the model, updating the model architecture (see below), or as a prediction target based on
processing conditions, would likely greatly improve prediction accuracy, although significantly
expanded datasets are needed.

Navigating the large, multidimensional space of the property predictions can be challenging, and
thus we created interactive versions of Figure 5 to enable real-time exploration of the property
space. Using these interactive plots, we highlight a few examples in Figure 5 of polyester systems
with under-explored structural features that may be well suited for MLFs, including those with



metabolites, naphthalenes, phosphates, as well as a polyester with a strong monomer candidate for
bio-production at scale, 2-pyrone-4,6-dicarboxylic acid (PDC)%. Figure S3 presents all the
predicted properties for select polyesters from PolyID.
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Figure 5. PolylD-generated predictions of polymer properties for polyesters produced from monomers derived
from KEGG and Sigma databases and one round of DORAnet transformations. See Figure S2 for more
predicted property comparisons. Highlighted monomers are examples of under-explored chemistries for MLFs with
relatively strong predicted barrier properties. PVDC: polyvinylidene dichloride, PLGA: poly(lactic-co-glycolic acid),
PET: polyethylene terephthalate, PLA: polylactic acid, HDPE: high-density polyethylene, PP: polypropylene, P3HB:
poly(3-hydroxybutyrate), EVOH: ethylene vinyl alcohol, PESt: poly(ethylene stearate).

In Figure 6 we highlight the key properties of select commercially available bio-based polyesters
as well as a new polyester predicted by PolylD (PolylD P1). While several of the polyesters are
predicted to achieve relatively robust oxygen or water vapor barrier performance, none of the
predictions reach the combined barrier performance of PVDC. It may be difficult for polyesters,
and other heteroatom containing polymers, to reach the barrier performance of the heavily
halogenated carbon backbone of PVDC that produces a tightly packed, highly crystalline, and
hydrophobic polymer film. While PolyID does not explicitly include crystallinity information in
the model training, optimizing these polyesters for increased crystallinity could lead to improved
barrier performance. Another important consideration is compliance with food packaging
regulations. PolyID, like most ML tools for polymer design, does not predict toxicity or health and
safety concerns for specific molecules. Therefore, these analyses should also be performed on
predicted molecules using tools such as the Environmental Protection Agency’s (EPA) Toxicity



Estimation Software Tool (TEST) before down-selecting target polymers for food-contact
packaging®.

Commercial Bio-Based PolyID Predicted
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Figure 6. Property comparison of emerging biopolymers and predicted polyester structure for potential use in
future MLFs. Summary of oxygen barrier (presented as oxygen permeability coefficient, PO,), water vapor barrier
(presented as water vapor permeability coefficient, PH,O), melting temperature (Tm), modulus, density, and average
cost (based on 2024 market reports for polyglycolide (PGA), polylactic acid (PLA), and poly(3-hydroxybutyrate)
(P3HB) for existing and a new polyester predicted by PolylD (PolyIlD P1). Barrier measurements and modulus are
presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales.

Machine Learning-Guided Polymer Processing

While ML and Al-based tools can effectively predict polymers with target properties, polymer
processing itself plays a critical role in determining the final film performance. MLFs are typically
produced using one of three primary methods: co-extrusion, lamination, or coating. The co-
extrusion process (illustrated in Figure 7) involves melting two or more polymeric materials via
extrusion, joining them together while in the molten state, and then cooling the resulting multilayer
structure®®. Common co-extrusion techniques include flat die (cast) extrusion, blown film
extrusion, and sheet extrusion. In lamination, pre-formed layers, often produced by extrusion or
coating, are bonded using either adhesives or heat®”. These laminates may include a variety of
materials such as polymeric films, metallic foils, and paper, each selected for specific barrier or
mechanical properties. Lamination methods include adhesive lamination, extrusion lamination, hot
melt lamination, and wax lamination?. The coating method, while like extrusion lamination, differs
in that it does not involve a secondary substrate or web. Instead, a functional coating is directly
applied onto a base film, resulting in a two-layer structure. Common coating techniques include
aqueous dispersion, solvent-based, vacuum, and hot melt coating.



Barrier properties, mechanical strength, aesthetic appeal, and cost-effectiveness of the final MLF
all depend on the type of processing applied. The method is selected depending on the desired
specific properties and appearance of the packaging structure. Predicting the processability of
polymeric systems and how processing parameters influence material properties is an emerging
and impactful application for ML and Al. Researchers can contribute by updating databases on
polymer properties to include viscoelastic behavior, the effects of processing conditions on
crystallinity, and critical parameters for producing high-barrier films, such as residence time,
processing temperature, crystallinity, and orientation. Sharing this data openly can strengthen ML
predictions for more processable materials.

Another challenge when attempting to prototype and validate new polymer systems in applications
such as MLFs if that polymer processing trials typically require tens of kilograms of material,
much of which is discarded as waste during process optimization. This presents another key
opportunity for ML and Al integration. Embedding in-line characterization tools within polymer
processing workflows and feeding real-time data back into ML algorithms could enable better
prediction of optimal processing windows for new polymers, reducing experimental iteration and
material waste (Figure 7). However, in-line characterization tools remain limited. Today, they can
reliably measure only a few properties such as melt flow, which provides insight into polymer
degradation and thermal stability during processing, and infrared signatures, which indicate
potential chemical changes. As a result, most critical film characterization still occurs manually
after processing using separate, stand-alone analytical tools. While this approach remains time
limited, it is still possible to integrate these characterization tools to ML. For example, Python
codes could be designed to automatically collect data from key polymer characterization tools such
as differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), rheometers, and
thermogravimetric analyzers (TGAs) to feed back into ML algorithms®e.

Within the materials community, autonomous experimentation platforms, referred to as self-
driving laboratories, are being developed to perform experiments with little to no intervention from
human scientists by leveraging active learning algorithms. These automated and autonomous
experiments promise to help scientists discover materials with optimized properties more quickly,
map phase spaces more accurately, and use less material in the pursuit of these goals. Several in-
line analysis tools are already available, including spectroscopic, rheologic, and process state
measurements®®. Furthermore, automated systems can naturally integrate databases and materials
ML platforms as the metadata for each sample is likely already digitized as part of the preparation
process. One example of this approach was outlined by Wang et al. where they presented an Al
driven automated material laboratory (Polybot) designed to autonomously explore processing
pathways for achieving high-conductivity, low-defect electronic polymers filmsi®. Polybot
demonstrates a successful autonomous experimental campaign and designed recipes for scaled-up
fabrication of transparent conductive thin films with target conductivity. A similar Polybot
approach could be applied to processing trials for new MLF materials, adapting in-line
measurement tools to align with polymer properties specific to MLFs. The challenge is not merely



to build smarter tools, but to create smarter systems that amplify human insight rather than replace
it and that push the frontiers of knowledge forward while remaining firmly grounded in the values
that define scientific progress.

Several barriers must be addressed before research laboratories can fully leverage automated
experimental platforms. Bringing all relevant tools and instrumentation online and making them
controllable through software is often nontrivial, particularly for older equipment that lacks
modern interfaces. In addition, robust safety protocols must be developed to protect both valuable
instruments and personnel operating near robotic systems. Because robotics, sensors, and
supporting infrastructure require substantial financial investment, automation platforms must be
sufficiently flexible to accommodate variation in workflows, sample types, and operating
conditions. Large language models (LLMs) such as ChatGPT can help lower these integration
barriers by translating well-structured documentation of instrument capabilities and control
interfaces into executable scripts, command sequences, and workflow logic, thereby streamlining
the process of bringing heterogeneous laboratory instruments under unified automated control%,

ML can help predict new polymers
for use in multi-layer films
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Figure 7. Self-driving laboratories. Proposed schematic for combining in-line characterization to multi-layer film
processing coupled with ML to better inform redesign efforts, reduce iteration cycles, and accelerate scale-
up/commercialization.

Conclusion and Future Outlook

The redesign of MLFs encompasses a multi-objective optimization problem for polymer
performance (barrier, thermal, and mechanical), processability requirements, as well as



environmental and economic viability. Going forward, there is significant opportunity for
computational tools to guide the development of next-generation MLFs, but several challenges
must be addressed. The relative dearth of publicly available data that links polymer structure to
performance attributes, particularly gas and vapor barrier properties, is a significant hindrance to
model prediction accuracy. In addition, the lack of standardization for reporting permeability and
transmission rates (e.g. units, normalization by film thickness, polymer processing conditions, and
explicitly reported experimental conditions such as relative humidity and temperature) adds
another layer of complexity. The success of modern deep learning tools for protein structure
prediction®®? and protein design®*1% have been enabled by the existence and curation of the open-
source Protein Data Bank®. Polymers certainly present unique challenges, yet the development
of a central repository for polymer properties, within a polymer-appropriate data model (e.g. the
Community Resource for Innovation in Polymer Technology, CRIPT%), could similarly facilitate
innovation in the application of AI/ML tools to solve polymer design challenges. Another
promising avenue could be high-throughput data generation via molecular modeling approaches
through density functional theory (DFT), molecular dynamics (MD), and COSMO-RS, producing
data that can then be utilized to train predictive neural networks®17,

Alternative approaches to getting more out of less data can also be done at the ML stage with
techniques such as transfer learning wherein abundant data collected on more easily
measured/estimated properties can pre-train ML models to be further refined with less abundant,
experimentally-measured properties'®®,

Current ML models for polymers primarily focus on the atomistic-level and struggle to capture
and design for higher-order effects at the polymer chain level such as crystallization, molecular
weight, level of entanglement, viscosity, and in the case of thermosets such as covalent adaptable
networks, features such as cross-link density and distance between cross-links. Challenges in
designing for these topological features are due partially to the scarcity of high-fidelity data for
these properties, and partially to the limitations of current model architectures. Hierarchical®® or
topological neural networks!'® for example, that incorporate interactions across multiple scales,
would likely have more success in capturing and designing for effects from atomistic- and chain-
level differences. In addition, correlation-based ML models (as utilized in this work) inherently
interpolate within the domain of the training data. To extrapolate to new chemistries and designs
that fall outside the known distribution, ML approaches that enforce physics!!! and/or analogical
reasoning!!? are needed.

Rational design of MLFs is also hindered by a limited understanding about basic mechanisms by
which small molecules (e.g. Oz, H20, CO2, N2) traverse polymer films. Beyond general trends
with respect to crystallinity, density, and other basic physical properties, little is known about the
molecular level permeation mechanisms of these small molecules. Both simulation and
experimentation are needed to investigate these mechanisms. MD simulations can provide
detailed, quantitative insights at spatiotemporal scales not readily available experimentally and are
well-suited to describe the complex polymer-fluid and polymer-gas interactions critical for



characterizing barrier properties. Advanced X-ray and neutron scattering experiments can
complement atomistic simulations to probe specific structure-property relationships that govern
barrier performance in polymer systems. Also lacking are robust models to predict the processing
conditions that would yield optimized morphologies to achieve barrier and other properties. These
would require in silico predictions of material rheology and crystallization kinetics to feed to
computational fluid dynamics simulations of melt processing behavior. The elucidation of detailed
gas permeation mechanisms through polymer films via integration of molecular modeling, ML,
and advanced material characterization via scattering could spur the development of design
principles for packaging materials.

Methods to directly predict biodegradability or recyclability of a polymer are challenging due to
the lack of amount and standardization of data, although some approaches are being developed?.
Lin and Zhang demonstrated the potential of ML to predict aerobic biodegradation using a dataset
of 74 polymers (R?=0.66)'3. Kern et al. performed a large-scale search for sustainable, chemically
recyclable ring-opening polymerization (ROP) polymers using ML to optimize for specific
properties'!4. The development of an ML model to accurately predict ceiling temperature (T¢) as a
thermodynamic measure of the conditions favoring recyclability would be particularly valuable
towards narrowing the search space for circular MLFs. We are currently developing ML models
that can predict enthalpy and entropy of polymerization, which determine Tc, for systems that
undergo chain-growth polymerization. For the candidates in this study that are formed via
polycondensation, the degree of polymerization for step-growth polymers based on equilibrium
conversion can be used to guide selection of polymerization conditions, albeit not a proper T, to
define the potential for recyclability at a given set of conditions. Kinetic modeling as demonstrated
by Coile et al. can be used to quantitatively assess this metric as a function of diverse backbone
compositions*'®. As soon as these environmental and processing factors can be modeled and
predicted, they can be included in a multi-objective design space!!® to ensure candidates meet these
stringent requirements.

Despite significant advancements, the path to achieving circularity in MLFs remains fraught with
challenges. A systemic shift in how packaging is designed, produced, used, and disposed of is
essential. Collaboration across stakeholders including manufacturers, policymakers, researchers,
and consumers will be critical to driving this transformation. At the same time, public awareness
campaigns and readjusted consumer expectations can foster demand for sustainable alternatives.
Regardless, innovations in recycling, polymer design, polymer processing, and Al/ML will
continue to drive progress in the space of waste management and reduction.

Data Availability

The data that supports the findings presented in this perspective are available in the Supplementary
Information. Polymer water vapor permeability data used to train the PolylD model are available
at doi.org/10.5281/zen0do.18262440. All data are available from the corresponding author upon
request.




Code Availability

The code to run and train the PolylD model and to run DORAnet are available at
github.com/NREL/polyid and github.com/wsprague-nu/doranet, respectively. An updated web-
based interface that serves the models and makes predictions is available at https://polyid.nrel.gov
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Figure Legends/Captions (for main text figures)

Figure 1. A proposed ML-guided approach to designing recyclable and/or compostable multi-layer films
(MLFs) that match the food preservation metrics and target performance of today’s conventional materials.
(A) Key structure-property relationships of current MLF polymers are studied; (B) Properties of known polymers
are fed into an ML model (PolyID) to predict polymers (in this case study we targeted polyesters) with similar
properties; (C) Using the output from PolyID, a new portfolio of polyesters for MLF applications is generated; (D)
Examples of the types of MLF packaging targeted in this perspective.

Figure 2. Property comparison of conventional polymers used in MLFs. Summary of reported oxygen barrier
(presented as oxygen permeability coefficient, PO,), water vapor barrier (presented as water vapor permeability
coefficient, PH,0), melting temperature (Tm), modulus, density, and average cost (based on 2024 market reports) for
incumbent polymer materials commonly used in multi-layer film layers. Barrier measurements and modulus are
presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales. Barrer is



equivalent to 10°°((cmstp®*cm)/(cm?*s*cmHg)). LDPE: low-density polyethylene, PP: polypropylene, PET:
polyethylene terephthalate, PVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol.

Figure 3. Generalized legacy MLF structure ¢ and current end-of-life recycling strategies. Legacy MLF
packaging configurations and existing MLF recycling strategies including mechanical recycling, pyrolysis, and
STRAP. LDPE: low-density polyethylene, LLDPE: linear low-density polyethylene, PP: polypropylene, PA:
polyamide, PVDC: polyvinylidene dichloride, EVOH: ethylene vinyl alcohol, HDPE: high-density polyethylene,
OPP: oriented polypropylene, PS: polystyrene, PET: polyethylene terephthalate.

Figure 4. Integrated PolylD-DORAnNet workflow for polymer discovery and property prediction. DORAnet
applies in situ chemical reactions to potential source materials to naturally expand the monomer discover space.
PolyID, trained on experimental and/or molecular simulation data, is then used to identify candidate polymer
formulations with desired properties. While this work does not perform molecular simulations, active learning, or
repeated DORAnRet-PolyID loops to optimize target properties, we include those steps in the figure to illustrate a
holistic approach to continually improve the model predictions and target candidates. BP: boiling point, DoV: domain
of validity, MLF: multi-layer film.

Figure 5. PolylD-generated predictions of polymer properties for polyesters produced from monomers derived
from KEGG and Sigma databases and one round of DORAnet transformations. See Figure S2 for more
predicted property comparisons. Highlighted monomers are examples of under-explored chemistries for MLFs with
relatively strong predicted barrier properties. PVDC: polyvinylidene dichloride, PLGA: poly(lactic-co-glycolic acid),
PET: polyethylene terephthalate, PLA: polylactic acid, HDPE: high-density polyethylene, PP: polypropylene, P3HB:
poly(3-hydroxybutyrate), EVOH: ethylene vinyl alcohol, PESt: poly(ethylene stearate).

Figure 6. Property comparison of emerging biopolymers and predicted polyester structure for potential use in
future MLFs. Summary of oxygen barrier (presented as oxygen permeability coefficient, PO,), water vapor barrier
(presented as water vapor permeability coefficient, PH,O), melting temperature (Tm), modulus, density, and average
cost (based on 2024 market reports for polyglycolide (PGA), polylactic acid (PLA), and poly(3-hydroxybutyrate)
(P3HB) for existing and a new polyester predicted by PolylD (PolylD P1). Barrier measurements and modulus are
presented on logarithmic scales. Cost, density, and barrier measurements are presented on inverted scales.

Figure 7. Self-driving laboratories. Proposed schematic for combining in-line characterization to multi-layer film
processing coupled with ML to better inform redesign efforts, reduce iteration cycles, and accelerate scale-
up/commercialization.

Editorial Summary

Multi-layer film packaging revolutionized food preservation by combining diverse material
layers to optimize barrier properties, mechanical strength, and shelf-life but they pose
significant recycling challenges due to their structural complexity. This perspective
examines key structure-property relationships governing barrier performance and
highlights innovations in material design.
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