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Abstract 

Helminth infections are consistently associated with reduced cardiovascular disease (CVD) 

risk, yet the biological mechanisms underlying this relationship remain unclear. The gut 

microbiome and metabolome are key regulators of cardiometabolic health and may mediate 

infection-associated effects on host physiology. Here we show that Schistosoma 

mansoni infection associates with distinct gut microbial and metabolic profiles linked to CVD 

risk in people living in Uganda. In a cross-sectional study of 209 individuals living in 

communities with contrasting S. mansoni endemicity, we profile the gut microbiome using 

16S rRNA gene sequencing and the faecal metabolome using liquid chromatography–mass 

spectrometry. S. mansoni infection associates with increased gut microbial diversity and 

distinct taxonomic signatures, including enrichment of taxa such as Treponema and 

depletion of Prevotella and Streptococcus. Several infection-associated microbial taxa 

statistically mediate the relationships between S. mansoni infection and cardiovascular 

disease risk. Faecal metabolomic profiling identifies infection-associated metabolites, and 

integrative analyses showed linked microbe–metabolite networks associated with 

cardiovascular risk.These findings identify gut microbiome and metabolome signatures 

associated with S. mansoni infection and cardiovascular disease risk in Uganda. Although 

causality cannot be inferred, this work provides insight into host–parasite–microbiome 

interactions and highlights microbial and metabolic pathways relevant to cardiometabolic 

health. 
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Introduction 

Globally, cardiovascular diseases (CVDs) pose a significant threat to public health, 

consistently ranking as the primary cause of mortality over the last thirty years1. For 

example, CVDs accounted for approximately 20.5 million deaths (over 31% of global deaths) 

in 2021 alone2. More than 75% of CVD related deaths have been reported to occur in low 

and middle income countries, demonstrating a critical need for intensified research to 

address the risk factors for CVD that can be modulated to reduce the incidence of disease3. 

These risk factors include dietary risks, high systolic blood pressure, dyslipidaemia 

(particularly high low-density lipoprotein (LDL) cholesterol) and high fasting plasma glucose1. 

Several studies have linked cardiovascular risk factors with the immune system response, 

both in humans and animal models4. Particularly, chronic inflammation has been highlighted 

as the main immunological feature characterizing cardiovascular or metabolic risk5,6. For 

example, increased circulating tumour necrosis factor (TNF)-⍺ is associated with glucose 

intolerance, and inhibiting its expression in adipose tissues affects sensitivity to insulin, and 

tolerance for glucose, in obese individuals6. 

Additionally, inflammatory pathways involving the activation of macrophages, dendritic cells, 

and mast cells have been shown to rely on the availability of dietary lipids such as saturated 

fats and cholesterol7. Dietary lipids such as omega-3 fatty acids have been linked to 

production of inflammatory cytokines such as TNF-⍺ and interleukin (IL)-28. As such, this 

lipid-inflammation interplay suggests that inflammation alters lipid profiles and metabolism in 

hosts. Multiple lines of evidence show that cytokines such as IL-6, IL-1 and TNF-⍺ are 

associated with increased production of triglycerides and LDL cholesterol levels in serum6,9-

11. Atherosclerosis, a chronic inflammatory condition typified by thickening of arterial walls, 

mediated by accumulation of lipids and cells such as macrophages in the vascular intima, is 

central in cardiovascular disease prognosis12. Given the centrality of inflammation in 

cardiovascular risk, it has been hypothesized that infections that induce immunomodulatory 

responses protect hosts against metabolic disorders. 

One such class of infections with immunomodulatory effects are chronic helminth 

infections13. These are characterized by a polarized T-helper 2 cell response, important in 

resisting or eliminating helminth infections in the host14. However, helminths can modulate 

the host’s immune response to prolong their own survival14-17. For example, helminths 

induce production of IL-10, a cytokine known to be pivotal in suppressing inflammation, to 

enhance their survival16,18-20. Therefore, owing to their ability to downregulate inflammation in 

the host, the hypothesis that helminths may be protective against CVD risk is plausible. 
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Several epidemiological studies have shown an inverse association between chronic 

helminth infection and metabolic risk factors such as LDL cholesterol and high blood 

pressure. For example, Wiria et al., reported reduced total cholesterol, LDL cholesterol, body 

mass index (BMI) and waist-to-hip ratio in people infected with soil transmitted helminth 

(STH) compared to those without STH infection among Indonesian subjects living in 

helminth endemic region21. In another study by Magen et al, individuals with chronic 

Opisthorchis felineus infection had significantly reduced total cholesterol compared to those 

without the infection22. Furthermore, Shen et al found an inverse association between 

previous schistosomiasis infection and triglyceride levels, waist-to-hip ratio and BMI23. In the 

same study, diastolic blood pressure was significantly lower in subjects with previous 

schistosomiasis than those without infection23. Moreover, in separate cross-sectional studies 

investigating whether previous schistosome infection protects against development of 

diabetes and metabolic syndrome, Chen et al found lowered systolic blood pressure (SBP) 

and diastolic blood pressure (DBP) in people with schistosomiasis infection compared to 

those without24. 

The aforementioned evidence is further supported by meta-analyses that have begun to 

show the importance of the inverse association of helminths with CVD risk. Tracey et al 

reported an association of lower glucose levels, insulin resistance, metabolic syndrome, and 

a 50% reduced likelihood of susceptibility to CVD risk factors such as type 2 diabetes (T2D), 

with helminth infection25. This was reaffirmed by Rennie et al who found reduced fasting 

glucose, glycated hemoglobin (HbA1c) levels, prevalence of T2D and metabolic syndrome in 

people with helminth infections compared to those without26. 

Given that much of the existing evidence linking helminth infections to cardiometabolic 

protection is informed by studies focusing on STH, it would be informative to investigate how 

helminths acquired through alternative routes, such as S. mansoni, might affect one’s 

cardiovascular risk, in a population with a high prevalence of S. mansoni infection, and in 

case of a protective effect, study the mechanisms by which these parasites bring about this 

benefit to the host27.  Despite the well-reviewed importance of the anti-inflammatory effect of 

helminths such as S. mansoni in protecting the host against CVD, other possible pathways 

have been suggested28.  

Schistosomiasis, caused by parasitic trematodes of the genus Schistosoma, remains one of 

the most prevalent neglected tropical diseases worldwide29, affecting millions of individuals, 

primarily in low-resource regions. Beyond its direct pathological effects, emerging evidence 

suggests a complex interplay between schistosomiasis infection and the modulation of host 

immune responses, metabolic pathways, and disease susceptibility, and more recently the 

potential of infection to have immune-mediated protective effect against cardiovascular 
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disease risk30-32. However, the mechanisms underlying these potential benefits remain poorly 

understood. 

One promising area of investigation is the gut microbiota, a complex ecosystem of trillions of 

microorganisms that profoundly shape host immunity, metabolism, and overall health33,34. 

Dysbiosis, characterized by abnormal changes in the composition and function of gut 

microbiota, has been implicated in various pathological conditions, including CVDs34-36. 

Helminth infections are known to modulate the gut microbiome, but it remains unclear 

whether such changes play a mediating role in the relationship between S. mansoni infection 

and cardiovascular risk. 

There is growing evidence suggesting that the gut microbiota and the metabolites they 

produce serve as critical mediators of host-parasite interactions. In the context of 

schistosomiasis, the parasite-host interaction within the gut environment can influence 

microbial composition and metabolic activity, leading to systemic effects on host physiology 

and immune responses37. Moreover, specific microbial metabolites, such as short-chain fatty 

acids (SCFAs), and trimethylamine N-oxide (TMAO), have been implicated in modulating 

CVD risk factors such as blood pressure and cholesterol33, and may contribute to the 

observed protective effect of schistosomiasis against CVD risk. 

Despite the emerging evidence separately implicating the gut microbiome and its 

metabolites, and S. mansoni, the precise mechanisms underlying this complex helminth-

microbiome interplay in driving cardiovascular risk modulation remain poorly understood. 

Our previous findings from a cluster-randomised trial involving 1,898 participants (the Lake 

Victoria Island Intervention Trial on Worms and Allergy-related Diseases [LaVIISWA], which 

was extended to investigate metabolic outcomes) showed that Schistosoma mansoni 

infection was associated with lower levels of total and LDL cholesterol, while intensive 

anthelmintic treatment led to an increase in LDL cholesterol 27. Further, heavy and moderate 

S. mansoni infection intensities were associated with lower diastolic blood pressure, 

triglycerides and LDL cholesterol27.  

In pursuit of a deeper understanding of how S. mansoni infection could lead to these 

changes in CVD risk, the current work therefore used samples from our LaVIISWA trial and. 

Urban survey study, aiming at deciphering S. mansoni-associated alterations in gut microbial 

composition and diversity, the potential contribution of gut microbiome the observed 

associations with CVD risk factors, and the gut-microbiome and metabolome interaction in 

the context of chronic schistosomiasis infection and its impact on cardiovascular risk. 

By using an integrative, multi-omics approach including microbiome and metabolomics, we 

unravel the molecular pathways and microbial signatures associated with the protective 
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effect of schistosomiasis on CVD risk. Ultimately, this research provides novel insights into 

host-parasite interactions, microbial dysbiosis, and metabolic influence, with implications for 

the development of targeted interventions to mitigate cardiovascular disease risk in humans.
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Results 

Figure 1 provides an overview of the study design, participant selection, and analytical 

workflow, and downstream multi-omics and cardiovascular risk analyses. 

As summarised in Table 1, this study included 209 participants selected based on the 

availability of lipid profiles (LDL, HDL, total cholesterol, triglycerides) and blood pressure 

data. Of these, 128 participants (61.2%) were classified as Schistosoma mansoni positive, 

defined by positive results on both Kato-Katz microscopy and PCR, while 81 participants 

(38.8%) were negative on both tests. 

The cohort comprised 108 males and 101 females. Among females, 43 were S. 

mansoni positive and 60 were negative. Participants were distributed across age groups: 

10–19 years, 20–29 years, 30–39 years, and 40 years and above. 

From the rural survey (LaVIISWA trial), 84 S. mansoni infected participants were included, 

with 43 of these from the intensive treatment arm. Among the negative individuals, 43 were 

from the rural setting and 38 from the urban setting. This distribution provides a balanced 

comparison across infection status, sex, age, and environmental exposure. A diet distribution 

analysis of the participants in rural communities showed that the majority (63%) were 

predominantly fish eaters, while 27.7% consumed a mixed diet. The other diet types were 

vegetarians and meat eaters that accounted for 5.9% and 3.4%, respectively, of the rural 

participants. The algorithm used for the diet distribution analysis is shown in Supplementary 

Fig 1.   

S. mansoni infection is associated with altered gut microbial diversity and 

composition 

We first performed 16S rRNA amplicon sequencing on faecal samples from all the 

individuals used in this study. We found that sample gut microbial diversity (alpha diversity) 

was significantly higher in S. m+ compared to S. m- (p = 0.048 and p = 0.008, for Shannon 

index and observed richness, respectively; Fig. 2A). On the other hand, Bray-Curtis-based 

beta diversity analysis did not show significant separation (PERMANOVA p = 0.175; Fig. 2B) 

between S. m+ and S. m- individuals living in the rural setting, although a difference in the 

overall microbial community structure was observed between the S. m+ and S. m-  

individuals living in the urban setting (PERMANOVA p = 0.011; Fig. 2C). In addition, we 

compared the beta diversity of participants that were under intensive anthelminthic treatment 

to those under standard treatment and we observed no difference in clustering (see 

Supplementary Fig. 2), suggesting that anthelminthic treatment was unlikely to meaningfully 

affect the microbiome–metabolome analyses or introduce bias when comparing rural and 

urban participants. 
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We next asked if there were specific bacteria genera that could be used to discriminate 

between S. m+ and S. m− individuals. Linear discriminant analysis (LDA) using LEfSe 

identified bacterial genera that best discriminated between S. m+ and S. m− individuals 

based on relative abundance patterns (Fig. 2D–E). Genera with LDA scores > 2 were 

considered to have a meaningful effect size in separating the groups. Among rural 

participants, taxa such as Acinetobacter, Methanosphaera, Jeotgalibaca, 

and Ruminococcus were enriched in S. m+ individuals, while Streptococcus, 

Prevotella, and Roseburia were enriched in the S. m− group. In the urban cohort, LDA 

highlighted Romboutsia, Succinivibrio, Clostridium_sensu_stricto_1, Treponema, 

Pseudomonas, Butyrivibrio, and Gastranaerophilales as enriched in S. m+, 

whereas Prevotella, Streptococcus, Dialister, Facalibacterium, and Agathobacter were 

enriched in S. m− individuals. Notably, Prevotella and Streptococcus were consistently 

enriched in the S. m− group across both settings. 

To further investigate the impact of S. mansoni infection on the gut microbiome, we 

compared microbial taxonomic abundance profiles between S. m+ and S. m-individuals. 

Differential abundance analysis revealed a set of taxa significantly enriched in S. m+ 

individuals (FDR adjusted p <0.05), including Altererythrobacter, Arthrobacter Devosia, 

Domibacillus, and Lysobacter (Fig. 3 and Supplementary Fig. 3). Listeria, Enterobacter and 

Cetobacterium were significantly depleted in the S. m+ individuals.  

Specific microbial taxa mediate the relationship between S. mansoni infection and 

cardiovascular risk 

Regression analyses revealed distinct microbe–CVD risk factor associations present in rural 

(Fig. 4A) and urban (Fig. 4B) sample populations after adjusting for confounding factors 

including age, sex, BMI, and diet (in the rural population). 

In both figures, the microbes shown are the fifty most abundant.  Notably, taxa such as 

Treponema were consistently associated with LDL cholesterol in both rural and urban 

participants. 

To further illustrate the degree of overlap and uniqueness of these microbial associations 

across cardiovascular outcomes, we generated a Venn diagram (Fig. 4C) using a previously 

published tool 38, which highlights shared and distinct taxa linked to multiple CVD risk 

factors. 

To investigate the functional relevance of the microbial differences reported here, we 

conducted a mediation analysis to identify taxa that may mediate the impact of S. mansoni 

infection on cardiovascular disease risk factors. Several taxa significantly mediated the 

relationship between S. mansoni infection and reduced cardiovascular risk, with all the 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

microbiota shown in Fig. 4D showing negative effects (p < 0.05) on CVD risk. Among 

these, Treponema mediated reductions in both insulin and glucose levels; Tabrizicola            

contributed to lower systolic blood pressure, LDL cholesterol, total cholesterol, and 

insulin; Promicromonospora mediated reductions in LDL cholesterol; Papillibacter mediated 

lower insulin; Pedomicrobium mediated reduced LDL cholesterol; Catenisphaera mediated 

lower total cholesterol; and CCD24 mediated reductions in LDL cholesterol. Additional 

infected-enriched taxa, including Methanobrevibacter, Phoenicibacter, UTCFX1, 

and Roseomonas mediated decreases in glucose, glucose, systolic blood pressure, and 

systolic blood pressure respectively. Two taxa were more abundant in uninfected 

individuals: Lachnospiraceae_UCG.001 and Lachnospiraceae_UCG.004, both of which 

mediated reductions in systolic blood pressure. Together, these patterns indicate that 

although most mediating taxa were enriched in infected participants, both infected- and 

uninfected-abundant microbes exhibited negative mediation effects. Additionally, 

Enterobacter and Klebsiella had positive mediation effects on total cholesterol and insulin 

sensitivity respectively, among infected individuals (Supplementary Fig. 4). 

 S. mansoni infection is associated with metabolome differences 

To dissect whether the effect of S. mansoni infection on the gut microbiome can translate 

into differences in microbial-related metabolism, we compared faecal metabolomic profiles 

between S. m+ and S. m- individuals. A volcano plot shows the differentially abundant 

(p<0.05) metabolites in both groups, highlighting metabolic alterations associated with S. 

mansoni infection (Fig. 5A). The 10 most enriched metabolites in the infected group include 

HMDB36635, HMDB39448, HMDB10385, HMDB14867, HMDB08887, HMDB30053, 

HMDB31040, HMDB60963, HMDB11158 and metabolite with mass to charge ratio 

6.26_1326581m/z. The 10 most enriched metabolites in the uninfected group include 

HMDB46827, HMDB29485, HMDB14388, HMDB36122, HMDB31828, HMDB14377, 

HMDB10261, HMDB14585, HMDB11367, HMDB11895. Further, partial least squares 

discriminant analysis (PLS-DA) suggested some degree of separation between the faecal 

metabolomic profiles of S. m+ and S. m- individuals (Fig. 5B); however, this clustering did 

not reach statistical significance based on PERMANOVA (p = 0.48). While these 

observations provide important insights into potential microbiome-mediated pathways, the 

metabolomic differences should be interpreted as hypothesis-generating rather than 

constituting a definitive infection-related metabolic signature, particularly given the modest 

global separation in untargeted metabolomics. To evaluate the discriminative capacity of 

metabolomic features, we trained a PLS-DA–based classification model (Supplementary Fig. 

5). The model exhibited limited predictive performance, with an overall accuracy of 53.8%, 

specificity of 54.8%, and sensitivity of 53.2%, indicating poor ability to discriminate between 
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S. m+ and S. m- individuals. Further, in Supplementary Fig. 2 we compared metabolomes of 

participants in the rural setting that were in the intensive anthelminthic treatment arm to 

those in the standard anthelminthic treatment and we found no difference. 

Enrichment of lipid-related pathways among metabolites elevated in S. mansoni-

infected individuals 

Comparative analysis revealed a distinct metabolic signature in infected individuals, with a 

subset of metabolites significantly more abundant compared to uninfected controls. Pathway 

enrichment analysis of these elevated metabolites was performed using the Integrated 

Molecular Pathway Level Analysis (IMPaLA) platform and results shown in table 2, and Fig. 

5C. 

This analysis identified an overrepresentation of pathways regulated by the nuclear 

receptors NR1H2 (LXRβ) and NR1H3 (LXRα), which are central to lipid homeostasis and 

metabolic regulation. Specifically, six Reactome pathways driven by NR1H2/NR1H3 activity 

were significantly enriched (all p = 0.0003), including those regulating cholesterol uptake, 

bile acid homeostasis, gluconeogenesis, lipogenesis, triglyceride lipolysis in adipose tissue, 

and cholesterol transport and efflux. These findings suggest coordinated transcriptional 

regulation of lipid metabolic processes in S. mansoni-infected individuals. In addition, a 

Wikipathways entry linked to cholesterol biosynthesis in the context of skeletal dysplasias 

was significantly enriched (p = 0.0011). Collectively, these data indicate that S. mansoni 

infection is associated with a specific faecal metabolic profile marked by enhanced 

abundance of metabolites involved in lipid signalling and transport.  

Integrated microbiome–metabolome interactions link to total and LDL cholesterol 

levels 

To examine how microbial and metabolic alterations interact to influence lipid metabolism, 

we conducted integrative correlation analyses, combining microbes and metabolites that 

were significantly associated with total and LDL cholesterol. Among those microbes and 

metabolites significantly associated with total cholesterol, a circos plot highlighted robust 

correlations (r ≥ 0.7) between specific genera and metabolites (Fig. 6A), which were 

visualized in detail in a corresponding heatmap (Fig. 6B). Metabolite classification using 

ClassyFire revealed enrichment of glycerolipids, steroids and steroid derivatives, and 

glycerolphospholipids among total cholesterol-associated compounds that are linked to the 

microbes associated with total cholesterol (Fig. 6C). 

A similar analysis was done for microbes and metabolites significantly associated with LDL 

cholesterol and uncovered a distinct but overlapping set of microbe–metabolite correlations 
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(r ≥ 0.65; Fig. 6D–E), again featuring key taxa and metabolite classes previously implicated 

in lipid homeostasis (Fig. 6F).  

Metabolite annotation revealed that several cholesterol-associated compounds belonged to 

key chemical classes, including Glycerol lipids, fatty acyls carboxylic acids and derivatives, 

steroids and steroid derivatives, and glycerolphospholipids (Fig. 6F). There is an overlap in 

the classes of metabolites linked to total and LDL cholesterol. 

Microbiome–metabolome interactions also relate to blood pressure regulation 

We extended our integrative approach to blood pressure phenotypes. Diastolic blood 

pressure was associated with a network of microbiota–metabolite interactions (r ≥ 0.7; Fig. 

7A), and a heatmap visualization confirming the several strong correlations, both positive 

and negative as shown in Fig. 7B. Metabolite classification highlighted compounds linked to 

classes such as glycerolipids, prenol lipids, organooxygen, fatty acyls and steroid and 

steroid derivatives (Fig. 7C). Microbiome-metabolome associations were found for systolic 

blood pressure (Fig. 7D-F) and similar classes including prenol lipids, gycerolipids, fatty 

acyls characterised most of the metabolites involved, emphasizing the role of gut microbial 

metabolites as potential regulators of blood pressure. Similar analysis was done for insulin 

associated microbes and metabolites and fewer microbe-metabolite associations were seen, 

as shown in supplementary Fig. 6. 

S. mansoni-induced microbial changes alter host CVD risk through metabolites 

To explore potential mechanistic links between schistosomiasis-associated gut microbiota 

and risk for CVD, we constructed a directed network integrating differentially abundant 

microbial taxa, correlated faecal metabolites, and associated CVD risk factors. Among the 

taxa enriched in schistosomiasis-positive individuals (log₂ fold change > 1, FDR-adjusted p < 

0.05), we identified several genera—including Lysobacter, Arthrobacter, 

and Vicinamibacteraceae—that were strongly inversely correlated with specific metabolites, 

such as HMDB31050 and HMDB32627 (|ρ| ≥ 0.65, FDR-adjusted p < 0.05), shown in 

supplementary table 4. These metabolites, in turn, were significantly associated with CVD 

risk factors, most notably diastolic blood pressure and LDL cholesterol. Visualization of the 

network (Fig. 8) revealed a coherent directional path from microbial taxa to metabolite 

changes and CVD risk, suggesting a putative microbiome–metabolite–CVD axis modulated 

by S. mansoni. These findings support the hypothesis that helminth infection may influence 

CVD risk through metabolic changes mediated by the gut microbiome. Our findings also 

showed that S. mansoni infection was associated with an enrichment of specific bacterial 

taxa, including Domibacillus and Gaiella. Notably, these taxa exhibited correlations with 

metabolites and cardiometabolic risk, detailed in Figure 8.
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Discussion 

Our study shows that S. mansoni infection is associated with distinct changes in gut 

microbial diversity, metabolomic profiles, and microbe–metabolic interactions. We can show 

that these alterations appear to influence cardiovascular risk through multiple, interlinked 

pathways, implicating the gut ecosystem as a mediator of S. mansoni-driven cardiometabolic 

risk modulation in humans. 

The observed differences in alpha diversity between S. m+ and S. m- individuals suggest 

that parasitic infection significantly alters one’s gut microbial profile. Several studies have 

reported reduced alpha diversity, typically associated with a less resilient and less 

functionally diverse microbiome, to be linked to CVD risk. For example, Kelly and colleagues 

showed an association between increased observed richness and reduced lifetime CVD 

risk39. Similarly, Fu et al, reported a positive association between bacterial richness and HDL 

cholesterol40 in individuals living in the Netherlands. With such evidence showing that more 

bacterial diversity and richness is associated reduced CVD risk and improved lipid profiles, 

therefore we postulated that one way through which S. mansoni infection may improve lipid 

profiles in the host is by increasing bacterial richness and diversity. 

In addition to alpha diversity differences, we also observed beta diversity differences in the 

microbiome profiles between S. mansoni-infected and uninfected individuals, further 

indicating that infection not only increases microbial richness, but it can also shift the overall 

composition of the microbial community, leading to distinct clustering of infected and 

uninfected individuals as seen in participants living in urban settings. We did not observe 

similar differences in clustering of overall microbial structure (beta diversity) between S. 

mansoni infected and uninfected living in the rural setting. This could be because, as shown 

in previous studies, the rural dwellers tend to have higher gut microbiome diversity and 

stability due to continuous exposure to a wide range of environmental microbes, diverse 

diets rich in unprocessed fibre-rich foods, and frequent exposure to infections that may 

buffer the microbiome against significant changes that may be caused by S. 

mansoni infection41-44. Specifically, given the high exposure to S. mansoni in our rural 

population, a typical island community, it is possible that the individuals that were uninfected 

at the time of sample collection, might have had longstanding effects of S. mansoni infection 

from previous exposure that may modify gut microbiome differences observed in our beta 

diversity analysis. 

Next, we applied linear discriminant analysis (LDA) to identify microbial taxa that best 

discriminate between individuals with and without S. mansoni infection, across both rural and 

urban settings. Unlike statistical tests of differential abundance, which identify taxa that vary 
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significantly in abundance between groups, LDA ranks features based on their ability to 

separate predefined classes. Notably, microbes such as Prevotella and Streptococcus were 

found to be consistently more abundant in S. mansoni infected individuals and are known to 

play pivotal roles in modulating immune responses and inflammation thereby bringing about 

protection against CVD risk.  

These findings align with the hypothesis that parasitic infections such as S. mansoni may 

exert long-term effects on host health by reshaping the microbiome. Importantly, the altered 

microbial profiles we observed may not only reflect the host’s immune response to infection 

but could also be directly involved in mediating disease risk through metabolic and 

inflammatory pathways. We therefore needed to investigate the mediatory role that helminth-

induced gut microbiota changes could play in altering one’s CVD risk. 

As such, we performed mediation analysis to show that indeed S. mansoni infection may 

influence cardiovascular risk indirectly through its effects on the gut microbiome. Specifically, 

we observed that variation in microbial composition was statistically associated with both 

higher and lower levels of key cardiovascular risk factors, including LDL cholesterol and 

blood pressure. Several taxa enriched in infected individuals exhibited negative indirect 

effects, consistent with a pattern that could contribute to the more favourable lipid and blood 

pressure profiles observed in infected participants. However, these mediation findings reflect 

associations rather than demonstrated causal pathways. Although higher microbial richness 

and infection-related shifts in community structure have been linked to improved metabolic 

outcomes in prior studies, our data cannot establish that these microbial differences explain 

or drive the cardiometabolic phenotype. Instead, our findings should be interpreted as 

identifying plausible microbiome-related pathways that warrant further mechanistic and 

longitudinal investigation. 

Most mediating taxa were more abundant in infected individuals, and several of these 

contributed to reduced CVD risk through negative indirect effects. These 

included Treponema, Tabrizicola, Promicromonospora, Pedomicrobium, Papillibacter, Cateni

sphaera, which variously mediated improvements in LDL cholesterol, systolic blood 

pressure, glucose, or insulin levels. These findings underscore the complexity of microbiota–

host interactions, indicating that the health impact of a given microbe is not solely 

determined by its presence or absence, but by its context within the broader microbial 

community and host environment. This functional diversity reinforces the idea that S. 

mansoni-associated shifts in microbiome composition may tip the balance of microbial 

activity toward either protective or deleterious effects, depending on the taxa involved and 

the pathways engaged. Importantly, these mediation patterns do not indicate that S. 

mansoni infection confers a uniformly protective metabolic profile; rather, they reveal a 
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mixture of positive and inverse microbial associations that Households were excluded only if 

all members were absent or declined participation are highly context dependent and should 

be interpreted cautiously given the cross-sectional design. Several human and animal 

studies show that chronic infection can contribute to CVD and hypertension, driven by 

inflammation around parasite eggs and longer-term changes in vascular structure45-47. These 

observations highlight that helminth infections can exert harmful cardiovascular effects, even 

as they may show more favourable metabolic associations in some contexts. 

Additionally, positive mediation of microbiota on CVD risk factors such as total cholesterol in 

uninfected individuals shown in Supplementary Fig. 4 could imply that S. mansoni infected 

individuals have less total cholesterol because they lack microbial populations that have 

been shown to lead to increases in these CVD risk factors. 

For example, Enterobacter mediated increased total cholesterol in individuals without S. 

mansoni infection. Enterobacter is linked with systemic inflammation through 

lipopolysaccharide (LPS)-mediated activation of host immune pathways48-50, hence altering 

lipid metabolism. These findings point to divergent microbial contributions to metabolic and 

cardiovascular phenotypes depending on infection status. The dual nature of microbial 

associations emphasizes the need to consider ecological context and host-microbe 

interactions in interpreting microbiome-mediated health outcomes. Overall, these results 

suggest that S. mansoni-associated shifts in the gut microbiome may actively contribute to 

the modulation of cardiovascular risk factors and offer candidate microbial targets for further 

mechanistic and translational investigation. 

To complement this analysis, we further employed linear regression to investigate the 

relationship between microbes and CVD risk factors. By adjusting for key confounders such 

as age, sex, BMI, and diet, we aimed to isolate the unique contribution of the microbes to 

CVD risk. The findings revealed significant associations between specific microbial taxa and 

distinct CVD risk factors, suggesting that these microbes may play a mechanistic role in 

CVD risk.  

These results agree with the mediation analysis findings, where the role of S. mansoni 

infection in modulating CVD risk factors was partially explained by its influence on the 

microbiome. This suggests a pathway wherein microbes, through their microbial 

composition, may mediate the relationship between S. mansoni and CVD outcomes. The 

robustness of these associations, even after adjusting for confounders, underscores the 

potential of these microbial markers as indicators or contributors to CVD disease pathways.  

These findings support the notion that S. mansoni infection and the gut microbiota can 

influence cardiovascular disease (CVD) risk both independently and concertedly. The 
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identification of taxa that significantly mediate the relationship between S. mansoni infection 

and reduced CVD risk suggests that part of the protective effect of infection may be exerted 

through infection-induced remodelling of the microbiota–metabolome axis. However, not all 

associations between S. mansoni and cardiovascular risk were microbiota-mediated, 

indicating the presence of parallel, microbiota-independent pathways such as immune 

modulation through which helminth infection may confer CVD risk protection. 

We observed more significant associations of microbes with CVD risk among S. mansoni 

infected individuals in the urban compared to those in rural populations. The observed 

stronger associations in the urban population can be attributed to S. mansoni infection 

having a greater influence on microbial diversity in this population compared to the rural. 

Having shown that even from the top 50 abundant microbes, we have evidence of some 

microbes being associated with CVD risk, we then extracted all the significantly associated 

microbes from the entire dataset (beyond 50 most abundant microbes) and investigated if 

there was any relationship (overlap) between microbes that are significantly associated with 

the different CVD risk factors. Indeed, we can show there are several microbes that are 

associated with more than one cardiovascular risk.  

Triangulating evidence from association and mediation analysis supports the hypothesis that 

the gut microbiome could play a central role in the regulation of metabolic pathways that are 

critical to cardiovascular health. For instance, certain microbial taxa produce metabolites 

such as SCFAs and secondary bile acids that can influence lipid metabolism33. 

Dysregulation of these pathways may therefore contribute to an increased risk of 

cardiovascular events. These insights highlight the importance of considering infectious 

diseases like S. mansoni not only in terms of acute morbidity but also in their potential to 

influence long-term health outcomes through microbiome-mediated mechanisms.  

We therefore set out to investigate the metabolome profiles of our participants as a way of 

assessing if, similar to the microbiome changes observed here, there could be differences in 

the faecal metabolites between individuals that were infected with S. mansoni infection and 

those that are not infected. This would enable us to infer functionality of the gut microbiota 

and how they act to alter one’s cardiovascular risk. 

Despite no statistically significant global separation of metabolomic profiles between S. 

mansoni–infected and uninfected individuals as assessed by PLS-DA, univariate linear 

regression analysis identified several metabolites that were differentially abundant between 

the two groups, with multiple features reaching nominal significance thresholds. This 

suggests that S. mansoni infection is associated with specific metabolic alterations rather 

than broad-scale shifts in the overall metabolome. The lack of clear clustering in multivariate 
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space may reflect substantial inter-individual heterogeneity, or localized metabolic effects of 

infection, or the multifactorial nature of host metabolic responses. Although we identified 

differentially abundant metabolites between S. mansoni–infected and uninfected individuals, 

our PLS-DA classification model demonstrated limited predictive performance, likely 

reflecting the biology of S. mansoni transmission. Unlike enteric pathogens whose 

acquisition may be modulated by gut microbial or metabolic environments, S. mansoni is 

acquired via percutaneous exposure to cercariae-contaminated freshwater. As such, 

microbiome and metabolome features are unlikely to serve as determinants of infection 

status. Instead, the observed metabolic shifts are more plausibly consequences of infection, 

supporting our interpretation that S. mansoni may exert causal effects on host physiology. 

Our findings from the pathway enrichment analysis revealed that S. mansoni infection is 

associated with distinct alterations in host lipid metabolism, as evidenced by significant 

enrichment of NR1H2/NR1H3-regulated pathways among the differentially abundant 

metabolites. These nuclear receptors (LXRα and LXRβ) are key transcriptional regulators of 

lipid homeostasis, and their coordinated activation suggests a host response aimed at 

modulating cholesterol uptake, bile acid turnover, and lipid mobilization during infection. The 

parallel enrichment of pathways linked to gluconeogenesis and lipogenesis further supports 

a broader metabolic reprogramming, potentially reflecting shifts in host energy utilization and 

storage under chronic parasitic infection. 

These findings align with emerging evidence that helminth infections exert broad systemic 

effects on host physiology, including lipid and glucose metabolism, and may influence 

susceptibility to non-communicable diseases such as diabetes and cardiovascular disease 

27. Future work should investigate whether modulation of LXR signalling contributes to 

immune tolerance, pathogen persistence, or protection from metabolic disease in endemic 

populations. 

Beyond pathways, we performed linear regression analysis to identify the metabolites that 

were significantly associated with the different CVD risk factors and whether there was 

overlap between these metabolites. We indeed show here that there are metabolites 

associated with CVD risk and that there is overlap between metabolites that are associated 

with various CVD risk factors. 

With a possibility that the microbes found to be associated with the particular risk factors 

could correlate with metabolites that are similarly associated with the same CVD risk, we 

integrated these two data modalities- microbiome and metabolome. We identified specific 

microbiome-metabolome signatures that are associated with cardiovascular risk factors 

including total- and LDL-cholesterol, DBP and SBP. This integrative approach allows us to 
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capture the complex interactions between the gut microbiome and metabolome, revealing, 

for each CVD risk factor, how shifts in microbial composition may drive changes in 

metabolite levels.  

After identifying the significantly CVD associated microbes and the metabolites that interact 

together, we further complemented this data with the differential abundance analysis to 

highlight whether some these CVD-associated microbes interacting with CVD-associated 

metabolites were enriched in S. mansoni infected individuals. By doing so, this allowed us to 

generate a Schistosomiasis-microbe-metabolite-CVD risk mechanistic network. Our 

integrative network analysis reveals that several bacterial taxa enriched in S. mansoni 

individuals were strongly correlated with faecal metabolites. These metabolites were, in turn, 

associated with key CVD risk factors, including diastolic blood pressure and LDL cholesterol.  

This directional pattern supports the hypothesis that helminth-induced alterations in the gut 

microbiota may influence host cardiovascular risk through downstream effects on the 

metabolome. The inverse associations between these microbes and adverse CVD 

phenotypes align with emerging evidence suggesting that certain helminth-driven microbial 

shifts may exert systemic immunometabolic benefits. Notably, taxa such 

as Lysobacter and Devosia  have been implicated in anti-inflammatory metabolic pathways 

51,52, providing a plausible biological basis for these associations. While causality cannot be 

inferred from this cross-sectional design, these findings raise the possibility that S. mansoni, 

or its microbiome-mediated effects, may modulate cardiometabolic outcomes in endemic 

settings. Further longitudinal and interventional studies are warranted to validate these 

interactions and assess their relevance for biomarker development or CVD therapeutic 

modulation. 

In as much as this study provides important insights into the gut microbiome-metabolome-

CVD risk interaction in a typical setting with high S. mansoni infestation, there are potential 

limitations. Firstly, we did not comprehensively profile participants’ dietary habits, which are 

known to have profound effects on both the microbiome and metabolome and are likely to 

represent an unmeasured confounder. Given the variability in diet across different regions 

and individuals, future studies should incorporate detailed dietary assessments such as next 

generation sequencing methodologies to disentangle the effects of infection from those of 

diet. 

Secondly, antibiotic exposure represents an important but incompletely measured source of 

potential variability in microbiome studies. In these Ugandan settings, antibiotics are 

generally accessible without prescription and can be obtained through informal outlets, 

making accurate self-report challenging and frequently unreliable. In the rural cohort, limited 
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self-reported medication data were collected as part of the survey. Within these constraints, 

reported antibiotic use was uncommon, with only six participants reporting use, and other 

medication categories similarly rare (Supplementary Table 1). Comparable medication data 

were not available for the urban cohort, precluding meaningful statistical adjustment. 

Our analytical strategy was guided by a directed acyclic graph, which identified age, sex, 

and setting as the minimal sufficient adjustment set required to block backdoor paths 

between S. mansoni infection, the gut microbiome, and cardiometabolic risk factors. While 

antibiotic exposure is conceptually important, it could not be empirically incorporated into the 

adjustment set given the absence of systematic and harmonised data, and exclusion or 

adjustment based on incomplete or asymmetrically measured information would introduce 

bias without improving causal interpretability. We therefore acknowledge the absence of 

detailed antibiotic-use data as a limitation and highlight prospective, systematic assessment 

of antibiotic exposure as a priority for future studies. Furthermore, given the cross-sectional 

design of our study, we cannot establish causality in the observed associations between S. 

mansoni infection, microbiome composition, metabolite profiles, and cardiovascular risk. 

Temporal dynamics of microbial and metabolic alterations following infection remain 

unexplored, limiting our ability to infer directionality.  As such, longitudinal studies, ideally 

spanning pre-infection, active infection, and post-treatment phases, would be essential to 

disentangle cause-effect relationships and capture the evolving host–microbiome–

metabolome interactions over time. Incorporating repeated sampling, coupled with temporal 

metadata such as infection history and treatment timing, would provide a more robust 

framework for understanding how S. mansoni shapes cardiometabolic risk through microbial 

and metabolic pathways.
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Our findings provide evidence that S. mansoni infection is associated with significant 

alterations in the gut microbiome and metabolome profiles, with important implications for 

cardiovascular risk. These microbiome-mediated effects may represent a novel pathway 

through which parasitic infections influence CVD risk. Future studies should focus on refining 

our understanding of these interactions, with an emphasis on diet, antibiotic use, and 

circadian regulation of microbial activity. Our study paves the way for developing 

microbiome-targeted interventions that that may mimic helminth infections to reduce 

cardiovascular risk in humans, but such approaches will require rigorous mechanistic and 

interventional validation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

Methods  

This research was conducted in accordance with all relevant ethical regulations. Ethical 

approval for the parent studies and for the present secondary analyses was obtained from 

the Uganda Virus Research Institute Research Ethics Committee (UVRI-REC), the London 

School of Hygiene and Tropical Medicine (LSHTM) Ethics Committee, the Uganda National 

Council for Science and Technology (UNCST), and the Higher Degrees Research and Ethics 

Committee of the School of Medicine, College of Health Sciences, Makerere University. 

Written informed consent was obtained from all participants prior to enrolment in the parent 

studies, including explicit consent for the storage and future use of biological samples and 

associated data in secondary analyses such as the present work. 

Study design and sample size considerations 

This study is an observational, cross-sectional secondary analysis nested within two 

previously established cohort studies. No formal statistical power calculation was performed 

to predetermine sample size for the present analyses. 

Instead, sample size considerations were informed by prior microbiome literature indicating 

that fewer than 50% of operational taxonomic units (OTUs) are typically detectable across 

faecal samples40. Under this conservative assumption, anticipated rural (approximately 120 

participants) and urban (approximately 80 participants) sample sizes were expected to yield 

sufficient samples with detectable microbial features to support multivariable regression 

modelling and rural–urban comparisons. 

This sample size was considered sufficient to support linear regression models including 

approximately six covariates relevant to cardiometabolic outcomes (for example, age, sex, 

body mass index, dietary factors, and infection status), while maintaining stable regression 

coefficients and minimising the risk of model overfitting. 

Microbiome sequencing was attempted for all eligible stool samples. Following laboratory 

and bioinformatic quality control, samples meeting predefined criteria were retained for 

analysis. The final analytic sample (N = 209) exceeded anticipated minimum thresholds and 

is reported in the Abstract and Results. 

Firstly, we established a comprehensive framework to investigate how Schistosoma mansoni 

infection influences cardiovascular disease risk through alterations in the gut microbiome 

and metabolome (Fig. 1). 
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We used samples from rural participants in the LaVIISWA trial27,53, and a second, well-

characterized survey in a nearby urban setting in Uganda54. 

LaVIISWA was a cluster-randomised trial conducted among Lake Victoria Island fishing 

communities in Mukono district, Uganda. The study was conducted in 27 fishing villages: 

one was selected for piloting the study and the remaining 26 were randomised in a 1:1 ratio 

to standard deworming (single dose praziquantel given once a year and single dose 

albendazole twice a year) or intensive deworming (single dose praziquantel and triple dose 

albendazole four times a year). The samples we used were collected during the metabolic 

survey undertaken after 4 years of intervention. Contemporaneously, the rest of the samples 

for our study were collected from participants of an Urban Survey that was conducted in 

Entebbe municipality (an urban setting) found on shores north of Lake Victoria. Entebbe is in 

Wakiso district approximately 40km southwest of Kampala, the Ugandan capital city. In the 

urban survey, no community-wide anthelminthic treatment programme was implemented, 

and participants therefore had no treatment assignment. We have previously reported that 

the rural population showed a markedly higher burden of helminth infections, 

with Schistosoma mansoni detected significantly more frequently than in the urban group, as 

illustrated by both stool Kato-Katz microscopy (31.7% vs 9.9%, p<0.001) and stool PCR 

analysis (47.6% vs 22.2%, p<0.001)54. 

In both studies, following overnight fasting, stool and blood samples were collected from the 

participants. Metabolic outcomes measured are: fasting blood sugar, insulin levels, serum 

lipid levels, body mass index (BMI), waist and hip circumference and blood pressure 

(systolic and diastolic).  

Exposure and Outcome Assessment 

Sociodemographic and Anthropometric Data 

Age and sex were documented using a structured survey tool. Body weight was recorded to 

the nearest 0.1 kg using a digital scale (SECA model 875), with participants lightly clothed 

and barefoot. Standing height was measured to the nearest 0.1 cm using a portable 

stadiometer (SECA model 213). Waist circumference was measured midway between the 

lower rib and iliac crest, while hip circumference was taken at the level of the greater 

trochanters, both using a non-elastic measuring tape. Body mass index (BMI) was calculated 

as weight (kg) divided by height (m²), and waist-to-hip ratio was derived accordingly. 

Parasitological Assessment 

Stool samples were analysed for helminth infections using both microscopy and molecular 

techniques. The Kato-Katz method was used to quantify S. mansoni and T. trichiura eggs as 
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described by Sanya et al 27 . Real-time PCR assays were employed to detect DNA of S. 

mansoni, hookworm (N. americanus), and S. stercoralis, the latter being exclusively detected 

by PCR. PCR data were prioritized for diagnostic confirmation of hookworm due to slide 

timing variability. 

Dietary Intake 

Dietary patterns were evaluated using a semi-quantitative food frequency questionnaire 

(FFQ) tailored to reflect local Ugandan food consumption habits. The FFQ assessed usual 

intake in a typical week, covering major food categories such as cereals, legumes, animal 

proteins, dairy, fruits, vegetables, oils, and sugary drinks. Responses were used to compute 

dietary diversity scores to adjust for potential confounding in downstream microbiome and 

metabolome analyses. 

Blood Pressure 

Blood pressure was measured three times at five-minute intervals in a seated, rested 

position using a validated automatic sphygmomanometer (OMRON M2, HEM-7121-E), with 

the average of the last two readings used for analysis. Blood pressure monitors were 

routinely calibrated through the Uganda National Bureau of Standards to ensure accuracy. 

Cardiometabolic Biomarkers 

Fasting venous blood samples were collected into EDTA, fluoride oxalate, and serum 

separator tubes following an overnight fast (≥8 hours). Participants were advised to avoid 

physical exertion and tobacco use prior to sampling. Plasma and serum were separated 

within one hour of collection and cryopreserved in liquid nitrogen. 

All biochemical analyses were performed at the MRC/UVRI & LSHTM Uganda Research 

Unit laboratory (Entebbe) using a Roche Cobas 6000 platform (c 501 module). Fasting 

plasma glucose and serum lipids—total cholesterol, triglycerides, HDL-c, and LDL-c were 

quantified using enzymatic colorimetric methods. HbA1c was assessed in whole blood using 

a turbidimetric inhibition immunoassay, and fasting insulin via electrochemiluminescence 

immunoassay (ECLIA). Insulin resistance was calculated using the Homeostasis Model 

Assessment (HOMA-IR)55. 

Eligibility Criteria  

Participants included in this study were drawn from two established cohort studies in 

Uganda: the LaVIISWA trial (rural) and the Entebbe Urban Survey (urban). Full recruitment 

procedures for these parent cohorts have been described previously. Briefly, both studies 

conducted household-based sampling, with households eligible if at least one adult resident 
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provided consent. Households were excluded only if all members were absent or declined 

participation. 

For the present study, we applied additional individual-level inclusion and exclusion criteria 

to ensure harmonised infection, microbiome, and cardiometabolic datasets across the rural 

and urban sites. Individuals were included if Schistosoma mansoni infection status could be 

determined using our harmonised diagnostic panel comprising Kato–Katz microscopy and 

PCR assays. Eligible participants were also required to have complete cardiovascular risk 

factor data, including systolic and diastolic blood pressure, fasting glucose and insulin, and 

both total and LDL cholesterol. A further requirement was the availability of a stored stool 

sample of adequate quality for 16S rRNA gene sequencing, along with complete information 

for core covariates—age, sex, body mass index, and residential setting. Only individuals who 

had provided informed consent within the parent studies that included permission for 

secondary analyses of biological samples were eligible. No additional exclusions were 

applied beyond the criteria described above. 

Stool sample collection and processing 

Stool samples were collected under standardized conditions to ensure preservation of 

microbial community composition and DNA integrity. In the rural setting, stool samples were 

obtained during the metabolic outcomes survey of the LaVIISWA, conducted between April 

and November 2017. In the urban setting, samples were collected in Entebbe municipality, 

Wakiso district, as part of a deliberately parallel survey conducted between September 2016 

and September 2017, designed to enable direct rural–urban comparison of metabolic and 

immunological outcomes.  Each participant was provided with a sterile, screw-capped stool 

collection container and instructed on hygienic self-collection on the morning of the 

scheduled visit. Upon arrival at the field site, a portion of each sample was immediately 

processed for Schistosoma mansoni detection using the Kato–Katz method. The remaining 

stool was transferred using asterile wooden spatulas into pre-labelled cryovials containing 

95% molecular-grade ethanol to stabilize microbial DNA and minimize compositional 

changes during handling. 

All ethanol-fixed samples were promptly placed in liquid-nitrogen charged dry shipper in the 

field (typically within one hour of collection) and maintained at cryogenic temperatures 

throughout transport to the central laboratory. On arrival, samples were transferred to –80 °C 

freezers for long-term storage until DNA extraction. All field and laboratory personnel were 

trained in biospecimen handling, and procedures were performed under aseptic conditions 

according to harmonized quality control protocols. This workflow ensured uniformity of pre-
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analytical processing and high confidence in the validity of downstream microbiome 

measurements. All samples were processed and stored following identical protocols across 

sites; no batch-specific storage procedures were used. 

Microbiome profiling 

Selected samples were prepared from MRC/UVRI and LSHTM-Uganda Research Unit and 

shipped to Novogene for 16S rRNA sequencing. From stool samples collected from these 

participants at the time the CVD measurements were done, we profiled gut microbial 

diversity and performed untargeted metabolomics. Genomic microbial DNA was extracted 

from 150 mg of faecal sample of every selected individual, using the QIAamp DNA Stool kits 

(Qiagen, Hilden, Germany) according to the manufacturer's instructions. Amplicon-based 

16S rRNA gene sequencing targeting the V3–V4 hypervariable regions was performed using 

a paired-end Illumina sequencing platform. 

Following extraction, DNA concentration and purity were assessed using a NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific), and integrity was evaluated via 2% agarose 

gel electrophoresis. DNA samples (5 µL) were mixed with 1 µL of 6× loading dye and loaded 

alongside a 1 kb DNA ladder (Thermo Scientific) into a 2% agarose gel prepared with Tris-

Acetate-EDTA (1 xTAE) buffer and stained with ethidium bromide (0.5 µg/mL). 

Electrophoresis was performed at 100 volts for approximately 45 minutes. Gels were 

visualized using a UV transilluminator, and high molecular weight DNA was confirmed by the 

presence of a distinct, unsmeared band above 10 kb. Only samples with high-quality, intact 

DNA were retained for downstream amplification and sequencing. 

The 16S library preparation protocol (Reference No: GHFS-LH-039) from Institute of Food 

Research was used to amplify the V3-V4 hypervariable regions of the bacterial 16S rRNA 

genes to profile the gut microbiota. The same amount of PCR products from each sample 

was pooled, end-repaired, A-tailed and further ligated with Illumina adapters. Libraries were 

sequenced on a paired-end Illumina platform to generate 250bp paired-end raw reads. 

The library was checked with Qubit and real-time PCR for quantification and bioanalyzer for 

size distribution detection. Quantified libraries were pooled and sequenced on Illumina 

platforms, according to effective library concentration and data amount required. Paired-end 

reads were assigned to samples based on their unique barcodes and were truncated by 

cutting off the barcodes and primer sequences. Paired-end reads were merged using 

FLASH (Version 1.2.11)56, a fast and accurate analysis tool designed to merge paired-end 

reads when at least some of the reads overlap with the reads generated from the opposite 

end of the same DNA fragment, and the splicing sequences were called Raw Tags. Quality 

filtering on the raw tags was performed using the fastp (Version 0.20.0) software to obtain 
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high-quality Clean Tags. The Clean Tags were compared with the reference database (Silva 

database https://www.arb-silva.de) using Vsearch (Version 2.15.0) to detect the chimera 

sequences, and then the chimera sequences were removed to obtain the EffectiveTags57. 

For the Effective Tags obtained previously, denoise was performed with DADA2 to obtain 

initial Amplicon Sequence Variants (ASVs) and then ASVs with abundance less than 5 were 

filtered out58,59. Species annotation was performed using QIIME2 (v2023.2) software60. The 

annotation database used was Silva Database. To study phylogenetic relationship of each 

ASV and the differences of the dominant species among different samples(groups), multiple 

sequence alignment was performed using QIIME2 software. The absolute abundance of 

ASVs was normalized using a standard of sequence number corresponding to the sample 

with the least sequences. Subsequent analyses of alpha diversity and beta diversity were 

performed based on the output normalized data. 

The rarefaction curves (cutoff = 82,695 reads) for all samples rapidly approached a plateau, 

indicating that the captured sequencing depth was adequate and that additional reads would 

not meaningfully increase observed alpha diversity (Supplementary Fig. 7). Likewise, 

the species accumulation analysis, based on >10 samples as recommended, showed stable 

asymptotes in species richness, confirming that both sequencing depth and sample size 

were sufficient to characterise microbial community structure. 

Controls, contamination mitigation, and replication 

No mock community (positive control) samples were included. Negative extraction controls 

and PCR controls were processed alongside biological samples to monitor for reagent and 

laboratory contamination. Stool samples represent a high-biomass specimen type; 

nevertheless, potential low-biomass contamination was mitigated through the inclusion of 

negative controls and downstream computational filtering during bioinformatic processing. 

No systematic contamination was detected in negative controls. 

No biological or technical replicates were sequenced. Each participant contributed a single 

stool sample that was processed once through DNA extraction, amplification, and 

sequencing. 

Metabolite extraction and profiling from stool samples 

Metabolites were extracted from stool samples using a solid-phase extraction (SPE) 

approach. Briefly, 1.25 mL of 80:20 methanol:water solution was added to each fecal 

sample, followed by vortexing and addition of 1 mL of the resulting mixture to 9 mL of 

molecular-grade water in a 15 mL conical tube. The mixture was centrifuged at 1735g for 1 
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minute, and 5 mL of the resulting supernatant was loaded onto SPE cartridges via a syringe. 

The cartridges were dried by pushing air through them twice using the same syringe and 

then sealed for shipment to the analytical laboratory in Manchester. A blank control sample 

without faecal material was prepared alongside the experimental samples. 

Upon receipt, metabolite elution was performed using 1.5 mL of 85:15 acetonitrile:methanol, 

drawn into a 2 mL luer-lock syringe and passed through the cartridge into a sterile 1.5 mL 

microcentrifuge tube. After allowing 1 minute of solvent equilibration to re-solvate the 

stationary phase, the eluate was collected at a rate of approximately one drop per second. 

Samples were then subjected to nitrogen blowdown drying in batches of up to 50, using a 

60-position dryer platform. 

Dried samples as provided were resuspended in 100 µl 5:95 acetonitrile/water and 

centrifuged at 20,000 x g for 3 min. The top 80 µl supernatant was transferred to a glass 

autosampler vial with 300 µl insert and capped. Quality control samples were made by 

pooling 5 µl from each sample. 

Liquid chromatography-mass spectrometry analysis was performed using a Thermo-Fisher 

Ultimate 3000 HPLC system consisting of an HPG-3400RS high pressure gradient pump, 

TCC 3000SD column compartment and WPS 3000 Autosampler, coupled to a SCIEX 6600 

TripleTOF Q-TOF mass spectrometer with TurboV ion source. The system was controlled by 

SCIEX Analyst 1.7.1, DCMS Link and Chromeleon Xpress software.  

A sample volume of 5 μL was injected by pulled loop onto a 5 μL sample loop with 150 μl 

post-injection needle wash with 5:95 acetonitrile and water. Injection cycle time was 1 minute 

per sample. Separations were performed using a Thermo Accucore C18 column with 

dimensions of 150 mm length, 2.1 mm diameter and 2.6 μm particle size equipped with a 

guard column of the same phase. Mobile phase A was water with 0.1 % formic acid; mobile 

phase B was acetonitrile with 0.1 % formic acid. Separation was performed by gradient 

chromatography at a flow rate of 0.3 ml/min, starting at 5 % B for 1 minute, ramping to 100 

% B over 7 minutes, hold at 100 % B for 2 minutes, then back to 5 % B. Re-equilibration time 

was 4 min. Total run time including 1 minute injection cycle was 15 minutes.  

The mass spectrometer was run in positive mode under the following source conditions: 

curtain gas pressure, 50 psi; ionspray voltage, 5500 V; temperature, 400 °C; ESI nebulizer 

gas pressure, 50 psi; heater gas pressure, -70 psi; declustering potential, -80 V.  

Data were acquired in an information dependent manner across 10 high sensitivity product 

ion scans, each with an accumulation time of 100 ms and a TOF survey scan with 

accumulation time of 250 ms. Total cycle time was 1.3 s. Collision energy was determined 
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using the formula CE (V) = 0.084 x m/z +12 up to a maximum of 55 V. Isotopes within 4 Da 

were excluded from the scan. 

Acquired data were checked in PeakView 2.2 and imported into Progenesis Qi 2.4 for 

metabolomics, where they were aligned, peaks were picked, normalised to all compounds 

and deconvoluted according to standard Progenesis workflows. Signal normalisation was 

performed using Progenesis QI’s default global scaling approach, whereby feature 

intensities were normalised to the total abundance of all detected compounds per 

sample. 

Blank controls were used to assess background contamination introduced during 

extraction and analysis, while pooled quality control samples were used to monitor 

retention time alignment, signal reproducibility and analytical stability across the run. 

Annotations were made by searching the accurate mass, MS/MS spectrum and isotope 

distribution ratios of acquired data against the NIST MS/MS metabolite library. Metabolites 

were identified by searching retention times and accurate masses against an in-house 

chemical standard library. A validated identification is only given if identical hits are made 

against both the NIST MS/MS and in-house chemical standard libraries.  

Statistical and Computational Analysis 

Microbiome data analysis   

To analyze the diversity, richness and uniformity of the communities in the sample, alpha 

diversity was calculated from indices, including Shannon, observed richness and Pielou_e. 

Statistical comparisons between infected and uninfected groups were performed using the 

Krusal-Wallis test (two sided).  

Beta diversity was evaluated using Bray–Curtis dissimilarity to compare community structure 

between samples. Principal coordinates analysis (PCoA) was used to visualize ordination, 

and PERMANOVA (Adonis) implemented in the `vegan` R package, with 999 permutations, 

was used to assess statistical differences in beta diversity across infection groups. 

Differential abundance analysis 

To identify microbial taxa differentially abundant between Schistosoma mansoni–infected 

and uninfected individuals, we performed differential abundance (DA) testing using the 

DESeq2 method implemented within the phyloseq R package61. A Wald test was applied to 

estimate log₂ fold changes in microbial abundance between the two groups. Resulting p-

values were adjusted for multiple testing using the Benjamini–Hochberg false discovery rate 

(FDR) procedure. Taxa with an FDR-adjusted p < 0.05 were considered statistically 
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significant. A volcano plot was generated to visualize the results, displaying the log₂ fold 

change on the x-axis and the –log₁₀ FDR-adjusted p-value on the y-axis. 

Linear discriminant analysis (LDA) effect size (LEfSe) 

To complement DESeq2-based DA testing, we additionally applied linear discriminant 

analysis (LDA) using the LEfSe algorithm to identify microbial features that consistently 

discriminate between S. mansoni–infected and uninfected individuals62. While DESeq2 

provides robust statistical inference and effect size estimates for individual taxa across 

groups, LDA ranks taxa based on their ability to explain group differences by combining 

statistical significance with biological consistency and effect relevance. This approach helps 

prioritize taxa most likely to contribute to distinguishing phenotypic states. 

Taxa with a logarithmic LDA score > 2.0 and p < 0.05 were considered significantly enriched. 

Analyses were stratified by community type (rural vs. urban) to account for environmental 

and lifestyle heterogeneity. Visualization of LEfSe results was done via bar plots showing 

LDA scores. 

By integrating both DA and LDA approaches, we capture a broader perspective on 

microbiome differences—identifying statistically robust changes (via DESeq2) while also 

highlighting microbial signatures with high discriminatory power (via LEfSe) that may serve 

as candidate biomarkers. 

Microbiome–CVD risk associations 

To evaluate the direct associations between microbial taxa and specific CVD risk factors 

(e.g., blood pressure, total cholesterol, LDL cholesterol), multivariate linear regression 

models were fitted separately for infected and uninfected groups within rural and urban 

settings. Models were adjusted for age, sex, BMI, and diet (in the rural population). Full 

model outputs (effect sizes, SEs, 95% CIs, p-values) are provided (supplementary table 2 

and 3). Significance was set at p < 0.05, and false discovery rate (FDR) correction was 

applied. The top 50 most abundant taxa were prioritized for analysis. Results were visualized 

with heatmaps and annotated by significance level (p < 0.05, p< 0.01). 

Mediation analysis   

To investigate potential microbial mediation of the relationship between S. mansoni infection 

and CVD risk, non-parametric bootstrap-based mediation analysis was conducted using the 

mediation analysis function in pingouin python library63. This approach estimated the indirect 

effect of differentially abundant taxa (from differential abundance analysis (FDR-adjusted p < 

0.05)) on CVD risk scores, with 5,000 bootstrap iterations and 97.5% confidence intervals. 

Microbes demonstrating significant negative or positive mediation effects (p < 0.05) were 
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visualized using alluvial plots to capture the pathway from infection status to cardiovascular 

outcome through the microbiome. 

We applied a prespecified causal-inference framework to estimate the extent to which gut 

microbiome features mediated the association between Schistosoma mansoni infection and 

cardiometabolic risk traits. We constructed a directed acyclic graph (DAG; Supplementary 

Fig. 8) to formalise prior biological and epidemiological knowledge and to determine the 

minimally sufficient adjustment set required to block back-door confounding paths. Running 

the adjustmentSets()function on this DAG identified age, sex, and setting as the minimal 

confounder set for estimating both total effects and microbiome-mediated effects. 

Accordingly, all mediation analyses adjusted exclusively for these variables. 

For each cardiometabolic outcome, we fitted counterfactual-based causal mediation models 

that partitioned the total effect of S. mansoni infection into natural direct effects and natural 

indirect effects operating through individual microbial taxa, analysed one mediator at a time.  

Metabolite–CVD risk associations 

To investigate links between circulating metabolites and cardiometabolic traits, we fitted 

linear regression models for each metabolite using the combined dataset of rural and urban 

participants. Each model included the metabolite as the exposure and the cardiovascular 

risk factor of interest (systolic blood pressure, diastolic blood pressure, total cholesterol, or 

LDL cholesterol) as the outcome. The models were adjusted for age, sex, BMI, and S. 

mansoni infection status. Because rural and urban environments differ markedly in lifestyle 

and ecological exposures, we additionally included a setting-by-metabolite interaction term 

to assess whether metabolite–CVD associations differed across environments. 

For each metabolite, we extracted the effect estimate, standard error, 95% confidence 

intervals, and p-value for the association with the cardiovascular risk factor. Metabolites 

demonstrating statistical evidence of association at p < 0.01 were taken forward to multi-

omics integration alongside CVD-associated microbes.  

Metabolomic Profiling and Pathway Enrichment Analysis   

Untargeted metabolomics was conducted using liquid chromatography–mass spectrometry 

(LC-MS) on faecal samples. Differential metabolite abundance between S. m+ and S. m- 

individuals was assessed using volcano plots with thresholds set at p ≤ 0.05 and log 2-fold 

change (FC) ≥ 1.0 (for upregulation in infected) or FC < 1.0 (for upregulation in uninfected). 

To evaluate whether the metabolomic profiles could discriminate between groups, we 
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employed Partial Least Squares Discriminant Analysis (PLS-DA) using the caret package in 

R. The dataset was split into training and test sets using stratified sampling to maintain class 

balance. Model training was performed using 5-fold cross-validation, repeated three times, to 

optimize model parameters and assess classification performance. Model accuracy, 

sensitivity, and specificity were calculated on the test set, and the discriminative capacity 

was further evaluated by constructing Receiver Operating Characteristic (ROC) curves and 

calculating the area under the curve (AUC) with 95% confidence intervals using 

the pROC package64. We assessed group-level differences in metabolomic profiles using 

PERMANOVA on scaled Euclidean distances. Feature importance was derived to identify 

the most discriminative metabolites.  

Pathway enrichment analysis was conducted using Integrated Molecular Pathway Level 

Analysis (IMPaLA)65, incorporating Kyoto Encyclopedia of Genes and Genomes (KEGG), 

Reactome, and other curated databases. Samples were grouped according to specified 

criteria provided. For statistical analysis, a minimum fold change between sample groups of 

at least 1.5-fold, ANOVA p values of <0.05 were used in IMPaLA. 

Metabolite annotation and functional classification  

Detected features were matched against reference libraries using mass-to-charge ratio (m/z) 

and retention time (RT) as primary identifiers. To improve matching precision, m/z values 

were rounded to five decimal places and RTs to one decimal place, generating a unique 

combined feature ID for each metabolite. These IDs were used to merge the detected 

features with annotation outputs from the xMSannotator platform, which provides multi-

parameter chemical identification including adduct patterns, isotope distributions, and 

pathway associations. Annotation confidence was further refined by cross-referencing 

putative matches with the Human Metabolome Database. When available, we prioritized 

annotations with the highest confidence scores as assigned by the xMSannotator workflow. 

Significantly altered metabolites associated with insulin resistance and other cardiometabolic 

risk factors were annotated into functional classes using LIPID MAPS and CLASSYFIRE 

The annotated metabolites were grouped by chemical class and displayed via bar plots (for 

CLASSYFIRE categories) and pathway clusters (via RaMP-DB)66. The significance of 

pathway enrichment was determined using Fisher’s exact test with multiple testing 

correction. Results were visualized via bar plots and redundancy-aware “lollipop” plots 

generated using RaMP-DB, clustering functionally overlapping pathways shown in 

Supplementary Figs. 9-13.  
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Multimodal integration   

Where relevant, co-association networks and integrative heatmaps were generated to 

explore relationships between S. mansoni infection, microbial taxa, metabolites, and CVD 

phenotypes. Correlation networks were built using the Spearman’s rank correlation in the 

mixOmics package in R67.  

Reproducibility  

All microbiome and metabolomics analysis pipelines, including quality control thresholds, 

normalization procedures, and statistical parameters, are described in sufficient detail to 

enable reproduction of the analyses. All analyses were performed in R (version 4.1.3)68. 

Complete R session information, including software versions, package dependencies, and 

computational environment details, is provided in Supplementary File. 

Data availability 

The raw microbiome sequencing data generated in this study have been deposited in the 

NCBI BioProject database under accession code PRJNA1405921. The raw mass 

spectrometry–based faecal metabolomics data, together with relevant experimental 

metadata, have been deposited in the Metabolomics Workbench repository under Study 

ID ST004547 (Data track ID: 6961 and are assigned the digital object 

identifier https://doi.org/10.21228/M8Z255. The processed microbiome and metabolomics 

data generated in this study have been deposited in the Zenodo repository under the  

DOI 10.5281/zenodo.18186512 (https://doi.org/10.5281/zenodo.18186512). This DOI 

represents all versions of the dataset and will always resolve to the most recent version. The 

repository includes raw 16S rRNA gene sequencing data, processed microbiome data 

(including taxonomy assignments and abundance tables), and processed faecal 

metabolomics data. The raw sequencing data are provided in accordance with participant 

consent and applicable data protection regulations. The de-identified individual participant 

data that underlie the results reported in this article, including demographic information and 

other covariates, together with a data dictionary are stored in the LSHTM Data Compass 

repository under DOI https://doi.org/10.17037/DATA.00004919 . Researchers who wish to 

access these data may submit a request through LSHTM Data Compass, detailing the data 

requested, the intended use, and evidence of relevant experience. Requests will be 

reviewed by the corresponding author(s) in consultation with the MRC/UVRI and LSHTM 

Uganda Research Unit Data Management Committee, with oversight from the UVRI and 
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LSHTM ethics committees. Approved datasets will be provided with pseudonymised 

participant identifiers, enabling linkage to the microbiome and metabolomics datasets while 

maintaining participant confidentiality. Access is subject to execution of an appropriate data 

sharing agreement. A reporting summary for this article is available as a Supplementary 

Information file. 

Code availability 

All scripts used for data processing, statistical analysis, and figure generation are available 

via Zenodo under the 

DOI 10.5281/zenodo.18186513 (https://doi.org/10.5281/zenodo.18186513).The analyses 

were performed using a combination of R and Python scripts together with established 

bioinformatics software for microbiome, metabolomics, and multi-omics integration analyses. 

A full list of all software packages used, including version numbers and their analytical 

purpose, is provided in the Supplementary Information. 
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Tables 1 
 2 

3 
Characteristics Infected 

n=128 
Uninfected 
n=81 

Total 
n=209 

Females/ Males  42/86 59/22 101/108 

Age group (years)    

• 10-19 37 23 60 

• 20-29 30 25 55 

• 30-39 29 17 46 

• 40+ years 32 16 48 

Setting     

• Rural 
I. Intensive treatment 
II. Standard treatment 

 

84 
43 
41 

43 
32 
11 

127 
75 
52 

• Urban  44 38 82 

Table 1. Characteristics of the study participants from rural and urban communities. 
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Biological pathway enriched by metabolites Pathway 
source 

Number of 
metabolites 

P- 
value 

 

NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake Reactome 3 0.0003 

NR1H2 & NR1H3 regulate gene expression to control bile acid 
homeostasis 

Reactome 3 0.0003 

NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis Reactome 3 0.0003 

NR1H2 & NR1H3 regulate gene expression linked to lipogenesis Reactome 3 0.0003 

NR1H2 & NR1H3 regulate gene expression linked to triglyceride 
lipolysis in adipose 

Reactome 3 0.0003 

NR1H3 & NR1H2 regulate gene expression linked to cholesterol 
transport and efflux 

Reactome 3 0.0003 

Cholesterol biosynthesis with skeletal dysplasias Wikipathways 4 0.0011 

Table 2. Biological pathways enriched by metabolites that were more abundant in S. mansoni infected 
individuals than uninfected participants. Metabolites were extracted from faecal samples of 209 
participants and profiled using liquid chromatography-mass spectrometry. Metabolites with a maximum fold 
change ≥ 1.5 between S. mansoni–infected (128) and uninfected (81) individuals and two-sided ANOVA P < 
0.05 were retained for downstream analysis. Pathway analysis was performed using Integrated Molecular 
Pathway Level Analysis (IMPaLA) with a one-sided hypergeometric test. P-values indicate pathway level 
enrichment significance and are reported as exact values without multiple testing correction. Pathways 
related to lipid metabolism and cholesterol regulation were among the most significantly enriched.  
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Legends 
 
Fig. 1 Experimental and analytical flowchart. Created in BioRender. Walusimbi, B. (2026) 
https://BioRender.com/a407o09 
 
Fig. 2 Microbial diversity comparison of S. mansoni infected (S. m+) and uninfected individuals (S. 
m-). A Box plots comparing gut microbial alpha diversity between S. mansoni–infected (S. m+, n = 
128) and uninfected (S. m–, n = 81) individuals (total n = 209), assessed using observed richness 
and the Shannon diversity index. For observed richness, S. m+ individuals had a higher median 
richness (median = 632.5; interquartile range [IQR]: 537.0–718.0) compared with S. m– individuals 
(median = 579; IQR: 477–670). For the Shannon index, diversity was also higher in S. m+ 
individuals (median = 6.751; IQR: 6.36–7.27) than in S. m– individuals (median = 6.548; IQR: 
5.98–7.06). Box plots display the median (centre line), the interquartile range (bounds of the box; 
25th–75th percentiles), and whiskers extending to the values within 1.5X IQR from the 25th–75th 
percentiles and points outside the range are plotted as outliers. Group differences were assessed 
using the Kruskal–Wallis test (observed richness: χ² (df = 1) = 7.12, P = 0.00763; Shannon index: 
χ² (df = 1) = 3.90, P = 0.048). B Comparison of Beta diversity (using Bray-Curtis distance) in S. m+ 
and S. m- individuals living in rural Uganda. These were similar (PERMANOVA p=0.175, R2 = 
0.00923, F= 1.1646, Number of permutations= 999).  C S. m+ showing an overall microbiome 
structure that is different from the S. m- individuals (PERMANOVA, p=0.011, R2  =0.02207 F= 
1.8055, Number of permutations= 999). D and E Linear Discriminant Analysis (LDA) scores of 
bacteria that are differentially abundant between (S. m+) and (S. m-). LDA scores show the 
measure of effect of each genus. Bacteria with LDA score > 2 were differentially enriched in a 
particular group. D shows LDA results for S. m+ and S. m- living in the rural setting while E shows 
LDA results for S. m+ and S. m- living in the urban setting. The red bars represent microbes that 
are more abundant in the S. m- individuals while the green bars show those that are more 
abundant in the S. m+ individuals.   
 
Fig. 3 Differential abundance of gut microbial taxa by S. mansoni-infection status. 
Volcano plot showing the log₂ fold change in abundance (x-axis) versus the –log₁₀ adjusted p-value 
(y-axis) for microbial taxa differentially abundant between S. mansoni-infected and -uninfected 
individuals. Each point represents a microbial taxon. Taxa to the right of the vertical dashed line are 
enriched in S. mansoni-infected individuals, while those to the left are depleted. Points are 
coloured by their log₂ fold change, with red indicating higher abundance and blue indicating lower 
abundance in S. mansoni-infected. Labels highlight taxa with statistically significant differences 
(FDR-adjusted p < 0.05). Also, coloured taxa denoted by triangular dots are both significantly 
enriched in S. mansoni participants and associated with CVD risk. Those taxa shown by circular 
dots are significantly impacted by S. mansoni infection but are not associated with CVD risk. 
 
Fig. 4 The link between S. mansoni infection, microbiota and CVD. A Association of microbes 
and CVD risk in S. m+ and S. m- individuals living in rural setting: The asterisks (*) show the 
significant association between microbes and the different CVD risk factors in the rural population, 
following linear regression analysis where potential confounders including age, sex, body mass index 
(BMI) and diet were adjusted for. These are results from the top 50 abundant microbes. ** indicative 
of p <0.01, while * indicative of a p-value <0.05. BP is blood pressure, Total Chol is total cholesterol 
while LDL Chol is low density lipoprotein cholesterol. Taxa such as Treponema were consistently 
associated with LDL cholesterol in both rural and urban populations in B. B Linear regression 
analysis like what is shown in B but for S. m+ and S. m- individuals living in urban setting. Potential 
confounders including age, sex and body mass index (BMI) were adjusted for. *** show p. value 
<0.001, ** indicative of p <0.01, while * shows p-value <0.05. C. Venn diagram showing overlap 
among microbial taxa that are significantly associated with different cardiovascular risk factors. 
Associations were identified using multivariable linear regression models (adjusting for age, sex, 
BMI, diet). All hypothesis tests were two-sided, and microbial taxa were considered significant at P < 
0.05 without adjustment for multiple comparisons. D. Mediation analysis (adjusted for age, sex and 
residential setting) illustrating the mediatory role of microbes in S. mansoni-associated modulation 
of CVD risk. An alluvial plot showing microbes through which helminths may alter one’s CVD risk. 
Mediation analysis was performed using non-parametric bootstrap resampling with two-sided 
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hypothesis testing as implemented in the Pingouin Python library. Microbial taxa were first identified 
as differentially abundant between the S. m+ and S. m- groups, following multiple-testing correction 
(false discovery rate–adjusted P < 0.05), and subsequently showed significant negative mediation 
effects on the CVD risk factors shown, defined by 95% bootstrap confidence intervals not crossing 
zero. No additional adjustment for multiple comparisons was applied to the mediation analyses. 
  
Fig. 5 Differential abundance of metabolites by S. mansoni-infection status. (A) Volcano plot 
showing metabolites that are differentially abundant between the S. m-infected (n=128) and 
uninfected groups (n=81). Metabolite-level comparison was performed using two-sided 
independent-samples t-tests with mean differences and 95% confidence intervals for derived for 
each metabolite. No adjustment for multiple comparisons was applied. Metabolites with p ≤ 0.05 
and log2 fold change ≥1.0 were significantly more abundant in infected, while metabolites with p ≤ 
0.05 and log2 fold change ≤ 1.0 were considered more abundant in S. m-uninfected group.  Red 
dots at the upper left area are significantly upregulated in the uninfected group, blue dots located at 
the upper right area are significantly upregulated in S. m -infected individuals. The top 10 most 
differentially abundant metabolites from either group were labelled. (B) Partial least squares-
discriminant analysis (PLS-DA) score plot showing differences in clustering of metabolites in S. m+ 
and S. m- individuals. The blue represents S. m- while yellow represents the S. m+ individuals. We 
assessed group-level differences in metabolomic profiles using PERMANOVA on scaled Euclidean 
distances. S. m+ vs S. m- profiles were not significantly different (p = 0.48, R2 = 0.00452, F= 
0.9301, Number of permutations= 999) (C) Biological pathways enriched among metabolites that 
were more abundant in S. m+ compared to S. m-individuals. Metabolites were profiled from faecal 
samples using liquid chromatography–mass spectrometry and identified using Progenesis QI 
software. Metabolites with a maximum fold change ≥ 1.5 between groups and two-sided 
ANOVA P< 0.05 were retained for downstream analysis. Pathway enrichment analysis was 
performed using Integrated Molecular Pathway Level Analysis (IMPaLA). The bar plot shows the 
−log₁₀-transformed P-values for the top enriched biological pathways, with bar colour intensity 

reflecting the strength of statistical significance. Higher −log₁₀(P-value) indicates stronger 
enrichment. No adjustment for multiple comparisons was applied at the pathway level. 
Notably, pathways linked to lipid metabolism and cholesterol regulation were significantly enriched.  

Fig 6. Correlation between cholesterol-associated microbiota and metabolites.  (A) Circos 
plot illustrating the strongest correlations (Spearman’s r ≥ 0.7) between microbiome (blue blocks) 
and metabolome (green blocks) features significantly associated with total cholesterol. 
Associations were identified using models adjusted for age, sex, BMI, and setting as an interaction 
term (see Fig. 3). Purple lines indicate positive correlations; red lines indicate negative 
correlations. (B)Heatmap showing the correlation strength between microbial genera and 
metabolites extracted from panel A. Red intensity reflects positive correlation strength; blue 
indicates negative correlations. (C) Classification of total cholesterol-associated metabolites using 
CLASSYFIRE. Horizontal bars represent the number of metabolites per chemical class (y-
axis). (D) Circos plot showing top correlations (r ≥ 0.65) between microbiome and metabolome 
features significantly associated with LDL-cholesterol, using the same model adjustments as in 
panel A. Green lines indicate positive correlations; red lines indicate negative 
correlations. (E) Heatmap of LDL-cholesterol-associated microbial genera and metabolites, 
following the same format and colour scale as panel B. (F) Classification of LDL-cholesterol-
associated metabolites using CLASSYFIRE, as in C. 

Fig 7. Correlation between blood pressure-associated microbiota and metabolites. (A) Circos 
plot illustrating the strongest correlations (Spearman’s r ≥ 0.7) between microbiome (blue blocks) 
and metabolome (green blocks) features significantly associated with diastolic blood pressure. 
Associations were identified using models adjusted for age, sex, BMI, and setting as an interaction 
term (see Fig. 3). Purple lines indicate positive correlations; red lines indicate negative correlations. 
(B) Heatmap showing correlation strength between microbial genera and metabolites extracted 
from panel A. Red intensity reflects positive correlation strength; blue indicates negative 
correlations. (C) Classification of diastolic blood pressure-associated metabolites using 
CLASSYFIRE. Horizontal bars represent the number of metabolites per chemical class (y-
axis). (D) Circos plot showing the strongest correlations (r ≥ 0.70) between microbiome and 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

metabolome features significantly associated with systolic blood pressure, using the same model 
adjustments as in panel A. Green lines indicate positive correlations; red lines indicate negative 
correlations. (E) Heatmap of systolic blood pressure-associated microbial genera and metabolites, 
following the same format and colour scale as panel B. (F) Classification of systolic blood pressure-
associated metabolites using CLASSYFIRE, as in panel C.  
 
Fig. 8:  Network representation of microbiome–metabolome–cardiovascular risk in 
individuals with S. mansoni. (A) Network showing directional associations between S. mansoni–
associated gut microbial taxa (dark blue nodes), faecal metabolites (orange nodes), and LDL 
cholesterol (green node). (B) This network shows directional associations between gut microbial 
taxa (dark blue nodes), faecal metabolites (orange nodes), and cardiovascular disease Diastolic 
blood pressure (red node). Arrows indicate significant correlations between nodes, derived from 
Spearman’s correlation analysis. Microbial taxa included in the networks were identified as 
significantly enriched in S. mansoni–infected compared with uninfected individuals using differential 
abundance analysis, with log₂ fold change > 1 and false discovery rate (FDR)–adjusted P < 0.05 
(two-sided testing). Associations between microbial taxa and metabolites, and between metabolites 
and CVD risk factors, were identified Spearman’s rank correlation analysis; correlation coefficients 
(r) and exact two-sided P values were calculated for each pairwise association. No additional 
adjustment for multiple comparisons was applied at the correlation stage. Cardiovascular risk 
factors are represented by green (LDL cholesterol) and red (diastolic blood pressure) nodes, 
denoting the specific clinical trait associated with the metabolite and microbe. Edge directionality 
flows from microbe → metabolite → CVD risk factor, showing a hypothesized mediation path 
through which S. mansoni-associated microbial changes may influence metabolic and 
cardiovascular profiles. 
 
 
 
 
 
 

Editor’s Summary 
Here, in a cross-sectional study of 209 individuals living in communities with contrasting 
Schistosoma mansoni endemicity in Uganda, the authors identify gut microbiome and metabolome 
signatures associated with S. mansoni infection and cardiovascular disease risk. 
 
 
 
Peer Review Information: Nature Communications thanks Philip Afful, Kwame Kumi Asare and 
Thomas Sharp for their contribution to the peer review of this work. A peer review file is available. 
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