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Abstract

Helminth infections are consistently associated with reduced cardiovascular disease (CVD)
risk, yet the biological mechanisms underlying this relationship remain unclear. The gut
microbiome and metabolome are key regulators of cardiometabolic health and may mediate
infection-associated effects on host physiology. Here we show that Schistosoma

mansoni infection associates with distinct gut microbial and metabolic profiles linked to CVD
risk in people living in Uganda. In a cross-sectional study of 209 individuals living in
communities with contrasting S. mansoni endemicity, we profile the gut microbiome using
16S rRNA gene sequencing and the faecal metabolome using liquid chromatography—mass
spectrometry. S. mansoni infection associates with increased gut microbial diversity and
distinct taxonomic signatures, including enrichment of taxa such as Treponema and
depletion of Prevotella and Streptococcus. Several infection-associated microbial taxa
statistically mediate the relationships between S. mansoni infection and cardiovascular
disease risk. Faecal metabolomic profiling identifies infection-associated metabolites, and
integrative analyses showed linked microbe—metabolite networks associated with
cardiovascular risk.These findings identify gut microbiome and metabolome signatures
associated with S. mansoni infection and cardiovascular disease risk in Uganda. Although
causality cannot be inferred, this work provides insight into host—parasite—microbiome
interactions and highlights microbial and metabolic pathways relevant to cardiometabolic
health.



Introduction

Globally, cardiovascular diseases (CVDs) pose a significant threat to public health,
consistently ranking as the primary cause of mortality over the last thirty years'. For
example, CVDs accounted for approximately 20.5 million deaths (over 31% of global deaths)
in 2021 alone?. More than 75% of CVD related deaths have been reported to occur in low
and middle income countries, demonstrating a critical need for intensified research to
address the risk factors for CVD that can be modulated to reduce the incidence of disease?®.
These risk factors include dietary risks, high systolic blood pressure, dyslipidaemia

(particularly high low-density lipoprotein (LDL) cholesterol) and high fasting plasma glucose".

Several studies have linked cardiovascular risk factors with the immune system response,
both in humans and animal models*. Particularly, chronic inflammation has been highlighted
as the main immunological feature characterizing cardiovascular or metabolic risk>®. For
example, increased circulating tumour necrosis factor (TNF)-a is associated with glucose
intolerance, and inhibiting its expression in adipose tissues affects sensitivity to insulin, and

tolerance for glucose, in obese individuals®.

Additionally, inflammatory pathways involving the activation of macrophages, dendritic cells,
and mast cells have been shown to rely on the availability of dietary lipids such as saturated
fats and cholesterol’. Dietary lipids such as omega-3 fatty acids have been linked to
production of inflammatory cytokines such as TNF-a and interleukin (IL)-28. As such, this
lipid-inflammation interplay suggests that inflammation alters lipid profiles and metabolism in
hosts. Multiple lines of evidence show that cytokines such as IL-6, IL-1 and TNF-a are
associated with increased production of triglycerides and LDL cholesterol levels in serum®®
", Atherosclerosis, a chronic inflammatory condition typified by thickening of arterial walls,
mediated by accumulation of lipids and cells such as macrophages in the vascular intima, is
central in cardiovascular disease prognosis'. Given the centrality of inflammation in
cardiovascular risk, it has been hypothesized that infections that induce immunomodulatory

responses protect hosts against metabolic disorders.

One such class of infections with immunomodulatory effects are chronic helminth
infections'. These are characterized by a polarized T-helper 2 cell response, important in
resisting or eliminating helminth infections in the host'. However, helminths can modulate
the host’'s immune response to prolong their own survival'*'’. For example, helminths
induce production of IL-10, a cytokine known to be pivotal in suppressing inflammation, to
enhance their survival'®'82°, Therefore, owing to their ability to downregulate inflammation in

the host, the hypothesis that helminths may be protective against CVD risk is plausible.



Several epidemiological studies have shown an inverse association between chronic
helminth infection and metabolic risk factors such as LDL cholesterol and high blood
pressure. For example, Wiria et al., reported reduced total cholesterol, LDL cholesterol, body
mass index (BMI) and waist-to-hip ratio in people infected with soil transmitted helminth
(STH) compared to those without STH infection among Indonesian subjects living in
helminth endemic region?'. In another study by Magen et al, individuals with chronic
Opisthorchis felineus infection had significantly reduced total cholesterol compared to those
without the infection??. Furthermore, Shen et al found an inverse association between
previous schistosomiasis infection and triglyceride levels, waist-to-hip ratio and BMI%. In the
same study, diastolic blood pressure was significantly lower in subjects with previous
schistosomiasis than those without infection??. Moreover, in separate cross-sectional studies
investigating whether previous schistosome infection protects against development of
diabetes and metabolic syndrome, Chen et al found lowered systolic blood pressure (SBP)
and diastolic blood pressure (DBP) in people with schistosomiasis infection compared to

those without?*.

The aforementioned evidence is further supported by meta-analyses that have begun to
show the importance of the inverse association of helminths with CVD risk. Tracey et al
reported an association of lower glucose levels, insulin resistance, metabolic syndrome, and
a 50% reduced likelihood of susceptibility to CVD risk factors such as type 2 diabetes (T2D),
with helminth infection?®. This was reaffirmed by Rennie et al who found reduced fasting
glucose, glycated hemoglobin (HbA1c) levels, prevalence of T2D and metabolic syndrome in

people with helminth infections compared to those without?®.

Given that much of the existing evidence linking helminth infections to cardiometabolic
protection is informed by studies focusing on STH, it would be informative to investigate how
helminths acquired through alternative routes, such as S. mansoni, might affect one’s
cardiovascular risk, in a population with a high prevalence of S. mansoni infection, and in
case of a protective effect, study the mechanisms by which these parasites bring about this
benefit to the host?”. Despite the well-reviewed importance of the anti-inflammatory effect of
helminths such as S. mansoni in protecting the host against CVD, other possible pathways

have been suggested?.

Schistosomiasis, caused by parasitic trematodes of the genus Schistosoma, remains one of
the most prevalent neglected tropical diseases worldwide?®, affecting millions of individuals,
primarily in low-resource regions. Beyond its direct pathological effects, emerging evidence
suggests a complex interplay between schistosomiasis infection and the modulation of host
immune responses, metabolic pathways, and disease susceptibility, and more recently the

potential of infection to have immune-mediated protective effect against cardiovascular



disease risk®-32, However, the mechanisms underlying these potential benefits remain poorly

understood.

One promising area of investigation is the gut microbiota, a complex ecosystem of trillions of
microorganisms that profoundly shape host immunity, metabolism, and overall health3334,
Dysbiosis, characterized by abnormal changes in the composition and function of gut
microbiota, has been implicated in various pathological conditions, including CVDs3+3%.
Helminth infections are known to modulate the gut microbiome, but it remains unclear
whether such changes play a mediating role in the relationship between S. mansoni infection

and cardiovascular risk.

There is growing evidence suggesting that the gut microbiota and the metabolites they
produce serve as critical mediators of host-parasite interactions. In the context of
schistosomiasis, the parasite-host interaction within the gut environment can influence
microbial composition and metabolic activity, leading to systemic effects on host physiology
and immune responses®’. Moreover, specific microbial metabolites, such as short-chain fatty
acids (SCFAs), and trimethylamine N-oxide (TMAO), have been implicated in modulating
CVD risk factors such as blood pressure and cholesterol®®, and may contribute to the

observed protective effect of schistosomiasis against CVD risk.

Despite the emerging evidence separately implicating the gut microbiome and its
metabolites, and S. mansoni, the precise mechanisms underlying this complex helminth-
microbiome interplay in driving cardiovascular risk modulation remain poorly understood.
Our previous findings from a cluster-randomised trial involving 1,898 participants (the Lake
Victoria Island Intervention Trial on Worms and Allergy-related Diseases [LaVIISWA], which
was extended to investigate metabolic outcomes) showed that Schistosoma mansoni
infection was associated with lower levels of total and LDL cholesterol, while intensive
anthelmintic treatment led to an increase in LDL cholesterol ?7. Further, heavy and moderate
S. mansoni infection intensities were associated with lower diastolic blood pressure,

triglycerides and LDL cholesterol?’.

In pursuit of a deeper understanding of how S. mansoni infection could lead to these
changes in CVD risk, the current work therefore used samples from our LaVIISWA trial and.
Urban survey study, aiming at deciphering S. mansoni-associated alterations in gut microbial
composition and diversity, the potential contribution of gut microbiome the observed
associations with CVD risk factors, and the gut-microbiome and metabolome interaction in

the context of chronic schistosomiasis infection and its impact on cardiovascular risk.

By using an integrative, multi-omics approach including microbiome and metabolomics, we

unravel the molecular pathways and microbial signatures associated with the protective



effect of schistosomiasis on CVD risk. Ultimately, this research provides novel insights into
host-parasite interactions, microbial dysbiosis, and metabolic influence, with implications for

the development of targeted interventions to mitigate cardiovascular disease risk in humans.



Results

Figure 1 provides an overview of the study design, participant selection, and analytical

workflow, and downstream multi-omics and cardiovascular risk analyses.

As summarised in Table 1, this study included 209 participants selected based on the
availability of lipid profiles (LDL, HDL, total cholesterol, triglycerides) and blood pressure
data. Of these, 128 patrticipants (61.2%) were classified as Schistosoma mansoni positive,
defined by positive results on both Kato-Katz microscopy and PCR, while 81 participants

(38.8%) were negative on both tests.

The cohort comprised 108 males and 101 females. Among females, 43 were S.
mansoni positive and 60 were negative. Participants were distributed across age groups:

10-19 years, 20-29 years, 30-39 years, and 40 years and above.

From the rural survey (LaVIISWA trial), 84 S. mansoni infected participants were included,
with 43 of these from the intensive treatment arm. Among the negative individuals, 43 were
from the rural setting and 38 from the urban setting. This distribution provides a balanced
comparison across infection status, sex, age, and environmental exposure. A diet distribution
analysis of the participants in rural communities showed that the majority (63%) were
predominantly fish eaters, while 27.7% consumed a mixed diet. The other diet types were
vegetarians and meat eaters that accounted for 5.9% and 3.4%, respectively, of the rural
participants. The algorithm used for the diet distribution analysis is shown in Supplementary
Fig 1.

S. mansoni infection is associated with altered gut microbial diversity and

composition

We first performed 716S rRNA amplicon sequencing on faecal samples from all the
individuals used in this study. We found that sample gut microbial diversity (alpha diversity)
was significantly higher in S. m+ compared to S. m- (p = 0.048 and p = 0.008, for Shannon
index and observed richness, respectively; Fig. 2A). On the other hand, Bray-Curtis-based
beta diversity analysis did not show significant separation (PERMANOVA p = 0.175; Fig. 2B)
between S. m+ and S. m- individuals living in the rural setting, although a difference in the
overall microbial community structure was observed between the S. m+ and S. m-
individuals living in the urban setting (PERMANOVA p = 0.011; Fig. 2C). In addition, we
compared the beta diversity of participants that were under intensive anthelminthic treatment
to those under standard treatment and we observed no difference in clustering (see
Supplementary Fig. 2), suggesting that anthelminthic treatment was unlikely to meaningfully
affect the microbiome—metabolome analyses or introduce bias when comparing rural and

urban participants.



We next asked if there were specific bacteria genera that could be used to discriminate
between S. m+ and S. m- individuals. Linear discriminant analysis (LDA) using LEfSe
identified bacterial genera that best discriminated between S. m+ and S. m- individuals
based on relative abundance patterns (Fig. 2D-E). Genera with LDA scores > 2 were
considered to have a meaningful effect size in separating the groups. Among rural
participants, taxa such as Acinetobacter, Methanosphaera, Jeotgalibaca,

and Ruminococcus were enriched in S. m+ individuals, while Streptococcus,

Prevotella, and Roseburia were enriched in the S. m- group. In the urban cohort, LDA
highlighted Romboutsia, Succinivibrio, Clostridium_sensu_stricto_1, Treponema,
Pseudomonas, Butyrivibrio, and Gastranaerophilales as enriched in S. m+,

whereas Prevotella, Streptococcus, Dialister, Facalibacterium, and Agathobacter were
enriched in S. m— individuals. Notably, Prevotella and Streptococcus were consistently
enriched in the S. m— group across both settings.

To further investigate the impact of S. mansoni infection on the gut microbiome, we
compared microbial taxonomic abundance profiles between S. m+ and S. m-individuals.
Differential abundance analysis revealed a set of taxa significantly enriched in S. m+
individuals (FDR adjusted p <0.05), including Altererythrobacter, Arthrobacter Devosia,
Domibacillus, and Lysobacter (Fig. 3 and Supplementary Fig. 3). Listeria, Enterobacter and

Cetobacterium were significantly depleted in the S. m+ individuals.

Specific microbial taxa mediate the relationship between S. mansoni infection and

cardiovascular risk

Regression analyses revealed distinct microbe—CVD risk factor associations present in rural
(Fig. 4A) and urban (Fig. 4B) sample populations after adjusting for confounding factors

including age, sex, BMI, and diet (in the rural population).

In both figures, the microbes shown are the fifty most abundant. Notably, taxa such as
Treponema were consistently associated with LDL cholesterol in both rural and urban

participants.

To further illustrate the degree of overlap and uniqueness of these microbial associations
across cardiovascular outcomes, we generated a Venn diagram (Fig. 4C) using a previously
published tool 3, which highlights shared and distinct taxa linked to multiple CVD risk

factors.

To investigate the functional relevance of the microbial differences reported here, we
conducted a mediation analysis to identify taxa that may mediate the impact of S. mansoni
infection on cardiovascular disease risk factors. Several taxa significantly mediated the
relationship between S. mansoni infection and reduced cardiovascular risk, with all the



microbiota shown in Fig. 4D showing negative effects (p < 0.05) on CVD risk. Among
these, Treponema mediated reductions in both insulin and glucose levels; Tabrizicola
contributed to lower systolic blood pressure, LDL cholesterol, total cholesterol, and

insulin; Promicromonospora mediated reductions in LDL cholesterol; Papillibacter mediated
lower insulin; Pedomicrobium mediated reduced LDL cholesterol; Catenisphaera mediated
lower total cholesterol; and CCD24 mediated reductions in LDL cholesterol. Additional
infected-enriched taxa, including Methanobrevibacter, Phoenicibacter, UTCFX1,

and Roseomonas mediated decreases in glucose, glucose, systolic blood pressure, and
systolic blood pressure respectively. Two taxa were more abundant in uninfected
individuals: Lachnospiraceae_UCG.001 and Lachnospiraceae_UCG.004, both of which
mediated reductions in systolic blood pressure. Together, these patterns indicate that
although most mediating taxa were enriched in infected participants, both infected- and
uninfected-abundant microbes exhibited negative mediation effects. Additionally,
Enterobacter and Klebsiella had positive mediation effects on total cholesterol and insulin

sensitivity respectively, among infected individuals (Supplementary Fig. 4).

S. mansoni infection is associated with metabolome differences

To dissect whether the effect of S. mansoni infection on the gut microbiome can translate
into differences in microbial-related metabolism, we compared faecal metabolomic profiles
between S. m+ and S. m- individuals. A volcano plot shows the differentially abundant
(p<0.05) metabolites in both groups, highlighting metabolic alterations associated with S.
mansoni infection (Fig. 5A). The 10 most enriched metabolites in the infected group include
HMDB36635, HMDB39448, HMDB10385, HMDB14867, HMDB08887, HMDB30053,
HMDB31040, HMDB60963, HMDB11158 and metabolite with mass to charge ratio
6.26_1326581m/z. The 10 most enriched metabolites in the uninfected group include
HMDB46827, HMDB29485, HMDB14388, HMDB36122, HMDB31828, HMDB14377,
HMDB10261, HMDB14585, HMDB11367, HMDB11895. Further, partial least squares
discriminant analysis (PLS-DA) suggested some degree of separation between the faecal
metabolomic profiles of S. m+ and S. m- individuals (Fig. 5B); however, this clustering did
not reach statistical significance based on PERMANOVA (p = 0.48). While these
observations provide important insights into potential microbiome-mediated pathways, the
metabolomic differences should be interpreted as hypothesis-generating rather than
constituting a definitive infection-related metabolic signature, particularly given the modest
global separation in untargeted metabolomics. To evaluate the discriminative capacity of
metabolomic features, we trained a PLS-DA-based classification model (Supplementary Fig.
5). The model exhibited limited predictive performance, with an overall accuracy of 53.8%,

specificity of 54.8%, and sensitivity of 53.2%, indicating poor ability to discriminate between



S. m+ and S. m- individuals. Further, in Supplementary Fig. 2 we compared metabolomes of
participants in the rural setting that were in the intensive anthelminthic treatment arm to

those in the standard anthelminthic treatment and we found no difference.

Enrichment of lipid-related pathways among metabolites elevated in S. mansoni-

infected individuals

Comparative analysis revealed a distinct metabolic signature in infected individuals, with a
subset of metabolites significantly more abundant compared to uninfected controls. Pathway
enrichment analysis of these elevated metabolites was performed using the Integrated
Molecular Pathway Level Analysis (IMPaLA) platform and results shown in table 2, and Fig.
5C.

This analysis identified an overrepresentation of pathways regulated by the nuclear
receptors NR1H2 (LXRB) and NR1H3 (LXRa), which are central to lipid homeostasis and
metabolic regulation. Specifically, six Reactome pathways driven by NR1H2/NR1H3 activity
were significantly enriched (all p = 0.0003), including those regulating cholesterol uptake,
bile acid homeostasis, gluconeogenesis, lipogenesis, triglyceride lipolysis in adipose tissue,
and cholesterol transport and efflux. These findings suggest coordinated transcriptional
regulation of lipid metabolic processes in S. mansoni-infected individuals. In addition, a
Wikipathways entry linked to cholesterol biosynthesis in the context of skeletal dysplasias
was significantly enriched (p = 0.0011). Collectively, these data indicate that S. mansoni
infection is associated with a specific faecal metabolic profile marked by enhanced

abundance of metabolites involved in lipid signalling and transport.

Integrated microbiome—metabolome interactions link to total and LDL cholesterol

levels

To examine how microbial and metabolic alterations interact to influence lipid metabolism,
we conducted integrative correlation analyses, combining microbes and metabolites that
were significantly associated with total and LDL cholesterol. Among those microbes and
metabolites significantly associated with total cholesterol, a circos plot highlighted robust
correlations (r =2 0.7) between specific genera and metabolites (Fig. 6A), which were
visualized in detail in a corresponding heatmap (Fig. 6B). Metabolite classification using
ClassyFire revealed enrichment of glycerolipids, steroids and steroid derivatives, and
glycerolphospholipids among total cholesterol-associated compounds that are linked to the

microbes associated with total cholesterol (Fig. 6C).

A similar analysis was done for microbes and metabolites significantly associated with LDL

cholesterol and uncovered a distinct but overlapping set of microbe—metabolite correlations



(r 2 0.65; Fig. 6D-E), again featuring key taxa and metabolite classes previously implicated

in lipid homeostasis (Fig. 6F).

Metabolite annotation revealed that several cholesterol-associated compounds belonged to
key chemical classes, including Glycerol lipids, fatty acyls carboxylic acids and derivatives,
steroids and steroid derivatives, and glycerolphospholipids (Fig. 6F). There is an overlap in

the classes of metabolites linked to total and LDL cholesterol.
Microbiome—metabolome interactions also relate to blood pressure regulation

We extended our integrative approach to blood pressure phenotypes. Diastolic blood
pressure was associated with a network of microbiota—metabolite interactions (r = 0.7; Fig.
7A), and a heatmap visualization confirming the several strong correlations, both positive
and negative as shown in Fig. 7B. Metabolite classification highlighted compounds linked to
classes such as glycerolipids, prenol lipids, organooxygen, fatty acyls and steroid and
steroid derivatives (Fig. 7C). Microbiome-metabolome associations were found for systolic
blood pressure (Fig. 7D-F) and similar classes including prenol lipids, gycerolipids, fatty
acyls characterised most of the metabolites involved, emphasizing the role of gut microbial
metabolites as potential regulators of blood pressure. Similar analysis was done for insulin
associated microbes and metabolites and fewer microbe-metabolite associations were seen,

as shown in supplementary Fig. 6.
S. mansoni-induced microbial changes alter host CVD risk through metabolites

To explore potential mechanistic links between schistosomiasis-associated gut microbiota
and risk for CVD, we constructed a directed network integrating differentially abundant
microbial taxa, correlated faecal metabolites, and associated CVD risk factors. Among the
taxa enriched in schistosomiasis-positive individuals (log, fold change > 1, FDR-adjusted p <
0.05), we identified several genera—including Lysobacter, Arthrobacter,

and Vicinamibacteraceae—that were strongly inversely correlated with specific metabolites,
such as HMDB31050 and HMDB32627 (|p| = 0.65, FDR-adjusted p < 0.05), shown in
supplementary table 4. These metabolites, in turn, were significantly associated with CVD
risk factors, most notably diastolic blood pressure and LDL cholesterol. Visualization of the
network (Fig. 8) revealed a coherent directional path from microbial taxa to metabolite
changes and CVD risk, suggesting a putative microbiome—metabolite—CVD axis modulated
by S. mansoni. These findings support the hypothesis that helminth infection may influence
CVD risk through metabolic changes mediated by the gut microbiome. Our findings also
showed that S. mansoni infection was associated with an enrichment of specific bacterial
taxa, including Domibacillus and Gaiella. Notably, these taxa exhibited correlations with

metabolites and cardiometabolic risk, detailed in Figure 8.



Discussion

Our study shows that S. mansoni infection is associated with distinct changes in gut
microbial diversity, metabolomic profiles, and microbe—metabolic interactions. We can show
that these alterations appear to influence cardiovascular risk through multiple, interlinked
pathways, implicating the gut ecosystem as a mediator of S. mansoni-driven cardiometabolic

risk modulation in humans.

The observed differences in alpha diversity between S. m+ and S. m- individuals suggest
that parasitic infection significantly alters one’s gut microbial profile. Several studies have
reported reduced alpha diversity, typically associated with a less resilient and less
functionally diverse microbiome, to be linked to CVD risk. For example, Kelly and colleagues
showed an association between increased observed richness and reduced lifetime CVD
risk3°. Similarly, Fu et al, reported a positive association between bacterial richness and HDL
cholesterol*® in individuals living in the Netherlands. With such evidence showing that more
bacterial diversity and richness is associated reduced CVD risk and improved lipid profiles,
therefore we postulated that one way through which S. mansoni infection may improve lipid

profiles in the host is by increasing bacterial richness and diversity.

In addition to alpha diversity differences, we also observed beta diversity differences in the
microbiome profiles between S. mansoni-infected and uninfected individuals, further
indicating that infection not only increases microbial richness, but it can also shift the overall
composition of the microbial community, leading to distinct clustering of infected and
uninfected individuals as seen in participants living in urban settings. We did not observe
similar differences in clustering of overall microbial structure (beta diversity) between S.
mansoni infected and uninfected living in the rural setting. This could be because, as shown
in previous studies, the rural dwellers tend to have higher gut microbiome diversity and
stability due to continuous exposure to a wide range of environmental microbes, diverse
diets rich in unprocessed fibre-rich foods, and frequent exposure to infections that may
buffer the microbiome against significant changes that may be caused by S.

mansoni infection**4, Specifically, given the high exposure to S. mansoni in our rural
population, a typical island community, it is possible that the individuals that were uninfected
at the time of sample collection, might have had longstanding effects of S. mansoni infection
from previous exposure that may modify gut microbiome differences observed in our beta

diversity analysis.

Next, we applied linear discriminant analysis (LDA) to identify microbial taxa that best
discriminate between individuals with and without S. mansoni infection, across both rural and

urban settings. Unlike statistical tests of differential abundance, which identify taxa that vary



significantly in abundance between groups, LDA ranks features based on their ability to

separate predefined classes. Notably, microbes such as Prevotella and Streptococcus were
found to be consistently more abundant in S. mansoni infected individuals and are known to
play pivotal roles in modulating immune responses and inflammation thereby bringing about

protection against CVD risk.

These findings align with the hypothesis that parasitic infections such as S. mansoni may
exert long-term effects on host health by reshaping the microbiome. Importantly, the altered
microbial profiles we observed may not only reflect the host’s immune response to infection
but could also be directly involved in mediating disease risk through metabolic and
inflammatory pathways. We therefore needed to investigate the mediatory role that helminth-

induced gut microbiota changes could play in altering one’s CVD risk.

As such, we performed mediation analysis to show that indeed S. mansoni infection may
influence cardiovascular risk indirectly through its effects on the gut microbiome. Specifically,
we observed that variation in microbial composition was statistically associated with both
higher and lower levels of key cardiovascular risk factors, including LDL cholesterol and
blood pressure. Several taxa enriched in infected individuals exhibited negative indirect
effects, consistent with a pattern that could contribute to the more favourable lipid and blood
pressure profiles observed in infected participants. However, these mediation findings reflect
associations rather than demonstrated causal pathways. Although higher microbial richness
and infection-related shifts in community structure have been linked to improved metabolic
outcomes in prior studies, our data cannot establish that these microbial differences explain
or drive the cardiometabolic phenotype. Instead, our findings should be interpreted as
identifying plausible microbiome-related pathways that warrant further mechanistic and

longitudinal investigation.

Most mediating taxa were more abundant in infected individuals, and several of these
contributed to reduced CVD risk through negative indirect effects. These

included Treponema, Tabrizicola, Promicromonospora, Pedomicrobium, Papillibacter, Cateni
sphaera, which variously mediated improvements in LDL cholesterol, systolic blood
pressure, glucose, or insulin levels. These findings underscore the complexity of microbiota—
host interactions, indicating that the health impact of a given microbe is not solely
determined by its presence or absence, but by its context within the broader microbial
community and host environment. This functional diversity reinforces the idea that S.
mansoni-associated shifts in microbiome composition may tip the balance of microbial
activity toward either protective or deleterious effects, depending on the taxa involved and
the pathways engaged. Importantly, these mediation patterns do not indicate that S.

mansoni infection confers a uniformly protective metabolic profile; rather, they reveal a



mixture of positive and inverse microbial associations that Households were excluded only if
all members were absent or declined participation are highly context dependent and should
be interpreted cautiously given the cross-sectional design. Several human and animal
studies show that chronic infection can contribute to CVD and hypertension, driven by
inflammation around parasite eggs and longer-term changes in vascular structure*-*’, These
observations highlight that helminth infections can exert harmful cardiovascular effects, even

as they may show more favourable metabolic associations in some contexts.

Additionally, positive mediation of microbiota on CVD risk factors such as total cholesterol in
uninfected individuals shown in Supplementary Fig. 4 could imply that S. mansoni infected
individuals have less total cholesterol because they lack microbial populations that have

been shown to lead to increases in these CVD risk factors.

For example, Enterobacter mediated increased total cholesterol in-individuals without S.
mansoni infection. Enterobacter is linked with systemic inflammation through
lipopolysaccharide (LPS)-mediated activation of host immune pathways*-%°, hence altering
lipid metabolism. These findings point to divergent microbial contributions to metabolic and
cardiovascular phenotypes depending on infection status. The dual nature of microbial
associations emphasizes the need to consider ecological context and host-microbe
interactions in interpreting microbiome-mediated health outcomes. Overall, these results
suggest that S. mansoni-associated shifts in the gut microbiome may actively contribute to
the modulation of cardiovascular risk factors and offer candidate microbial targets for further

mechanistic and translational investigation.

To complement this analysis, we further employed linear regression to investigate the
relationship between microbes and CVD risk factors. By adjusting for key confounders such
as age, sex, BMI, and diet, we aimed to isolate the unique contribution of the microbes to
CVD risk. The findings revealed significant associations between specific microbial taxa and
distinct CVD risk factors, suggesting that these microbes may play a mechanistic role in
CVD risk.

These results agree with the mediation analysis findings, where the role of S. mansoni
infection in modulating CVD risk factors was partially explained by its influence on the
microbiome. This suggests a pathway wherein microbes, through their microbial
composition, may mediate the relationship between S. mansoni and CVD outcomes. The
robustness of these associations, even after adjusting for confounders, underscores the
potential of these microbial markers as indicators or contributors to CVD disease pathways.
These findings support the notion that S. mansoni infection and the gut microbiota can

influence cardiovascular disease (CVD) risk both independently and concertedly. The



identification of taxa that significantly mediate the relationship between S. mansoni infection
and reduced CVD risk suggests that part of the protective effect of infection may be exerted
through infection-induced remodelling of the microbiota—metabolome axis. However, not all
associations between S. mansoni and cardiovascular risk were microbiota-mediated,
indicating the presence of parallel, microbiota-independent pathways such as immune

modulation through which helminth infection may confer CVD risk protection.

We observed more significant associations of microbes with CVD risk among S. mansoni
infected individuals in the urban compared to those in rural populations. The observed
stronger associations in the urban population can be attributed to S. mansoni infection
having a greater influence on microbial diversity in this population compared to the rural.
Having shown that even from the top 50 abundant microbes, we have evidence of some
microbes being associated with CVD risk, we then extracted all the significantly associated
microbes from the entire dataset (beyond 50 most abundant microbes) and investigated if
there was any relationship (overlap) between microbes that are significantly associated with
the different CVD risk factors. Indeed, we can show there are several microbes that are

associated with more than one cardiovascular risk.

Triangulating evidence from association and mediation analysis supports the hypothesis that
the gut microbiome could play a central role in the regulation of metabolic pathways that are
critical to cardiovascular health. For instance, certain microbial taxa produce metabolites
such as SCFAs and secondary bile acids that can influence lipid metabolism®.
Dysregulation of these pathways may therefore contribute to an increased risk of
cardiovascular events. These insights highlight the importance of considering infectious
diseases like S. mansoni not only in terms of acute morbidity but also in their potential to

influence long-term health outcomes through microbiome-mediated mechanisms.

We therefore set out to investigate the metabolome profiles of our participants as a way of
assessing if, similar to the microbiome changes observed here, there could be differences in
the faecal metabolites between individuals that were infected with S. mansoni infection and
those that are not infected. This would enable us to infer functionality of the gut microbiota

and how they act to alter one’s cardiovascular risk.

Despite no statistically significant global separation of metabolomic profiles between S.
mansoni—infected and uninfected individuals as assessed by PLS-DA, univariate linear
regression analysis identified several metabolites that were differentially abundant between
the two groups, with multiple features reaching nominal significance thresholds. This
suggests that S. mansoni infection is associated with specific metabolic alterations rather

than broad-scale shifts in the overall metabolome. The lack of clear clustering in multivariate



space may reflect substantial inter-individual heterogeneity, or localized metabolic effects of
infection, or the multifactorial nature of host metabolic responses. Although we identified
differentially abundant metabolites between S. mansoni—infected and uninfected individuals,
our PLS-DA classification model demonstrated limited predictive performance, likely
reflecting the biology of S. mansoni transmission. Unlike enteric pathogens whose
acquisition may be modulated by gut microbial or metabolic environments, S. mansoni is
acquired via percutaneous exposure to cercariae-contaminated freshwater. As such,
microbiome and metabolome features are unlikely to serve as determinants of infection
status. Instead, the observed metabolic shifts are more plausibly consequences of infection,

supporting our interpretation that S. mansoni may exert causal effects on host physiology.

Our findings from the pathway enrichment analysis revealed that S. mansoni infection is
associated with distinct alterations in host lipid metabolism, as evidenced by significant
enrichment of NR1H2/NR1H3-regulated pathways among the differentially abundant
metabolites. These nuclear receptors (LXRa and LXRp) are key transcriptional regulators of
lipid homeostasis, and their coordinated activation suggests a host response aimed at
modulating cholesterol uptake, bile acid turnover, and lipid mobilization during infection. The
parallel enrichment of pathways linked to gluconeogenesis and lipogenesis further supports
a broader metabolic reprogramming, potentially reflecting shifts in host energy utilization and

storage under chronic parasitic infection.

These findings align with emerging evidence that helminth infections exert broad systemic
effects on host physiology, including lipid and glucose metabolism, and may influence
susceptibility to non-communicable diseases such as diabetes and cardiovascular disease
27, Future work should investigate whether modulation of LXR signalling contributes to
immune tolerance, pathogen persistence, or protection from metabolic disease in endemic

populations.

Beyond pathways, we performed linear regression analysis to identify the metabolites that
were significantly associated with the different CVD risk factors and whether there was
overlap between these metabolites. We indeed show here that there are metabolites
associated with CVD risk and that there is overlap between metabolites that are associated

with various CVD risk factors.

With a possibility that the microbes found to be associated with the particular risk factors

could correlate with metabolites that are similarly associated with the same CVD risk, we

integrated these two data modalities- microbiome and metabolome. We identified specific
microbiome-metabolome signatures that are associated with cardiovascular risk factors

including total- and LDL-cholesterol, DBP and SBP. This integrative approach allows us to



capture the complex interactions between the gut microbiome and metabolome, revealing,
for each CVD risk factor, how shifts in microbial composition may drive changes in

metabolite levels.

After identifying the significantly CVD associated microbes and the metabolites that interact
together, we further complemented this data with the differential abundance analysis to
highlight whether some these CVD-associated microbes interacting with CVD-associated
metabolites were enriched in S. mansoni infected individuals. By doing so, this allowed us to
generate a Schistosomiasis-microbe-metabolite-CVD risk mechanistic network. Our
integrative network analysis reveals that several bacterial taxa enriched in S. mansoni
individuals were strongly correlated with faecal metabolites. These metabolites were, in turn,

associated with key CVD risk factors, including diastolic blood pressure and LDL cholesterol.

This directional pattern supports the hypothesis that helminth-induced alterations in the gut
microbiota may influence host cardiovascular risk through downstream effects on the
metabolome. The inverse associations between these microbes and adverse CVD
phenotypes align with emerging evidence suggesting that certain helminth-driven microbial
shifts may exert systemic immunometabolic benefits. Notably, taxa such

as Lysobacter and Devosia have been implicated in anti-inflammatory metabolic pathways
5182 providing a plausible biological basis for these associations. While causality cannot be
inferred from this cross-sectional design, these findings raise the possibility that S. mansoni,
or its microbiome-mediated effects, may modulate cardiometabolic outcomes in endemic
settings. Further longitudinal and interventional studies are warranted to validate these
interactions and assess their relevance for biomarker development or CVD therapeutic

modulation.

In as much as this study provides important insights into the gut microbiome-metabolome-
CVD risk interaction in a typical setting with high S. mansoni infestation, there are potential
limitations. Firstly, we did not comprehensively profile participants’ dietary habits, which are
known to have profound effects on both the microbiome and metabolome and are likely to
represent an unmeasured confounder. Given the variability in diet across different regions
and individuals, future studies should incorporate detailed dietary assessments such as next
generation sequencing methodologies to disentangle the effects of infection from those of
diet.

Secondly, antibiotic exposure represents an important but incompletely measured source of
potential variability in microbiome studies. In these Ugandan settings, antibiotics are
generally accessible without prescription and can be obtained through informal outlets,

making accurate self-report challenging and frequently unreliable. In the rural cohort, limited



self-reported medication data were collected as part of the survey. Within these constraints,
reported antibiotic use was uncommon, with only six participants reporting use, and other
medication categories similarly rare (Supplementary Table 1). Comparable medication data

were not available for the urban cohort, precluding meaningful statistical adjustment.

Our analytical strategy was guided by a directed acyclic graph, which identified age, sex,
and setting as the minimal sufficient adjustment set required to block backdoor paths
between S. mansoni infection, the gut microbiome, and cardiometabolic risk factors. While
antibiotic exposure is conceptually important, it could not be empirically incorporated into the
adjustment set given the absence of systematic and harmonised data, and exclusion or
adjustment based on incomplete or asymmetrically measured information would introduce
bias without improving causal interpretability. We therefore acknowledge the absence of
detailed antibiotic-use data as a limitation and highlight prospective, systematic assessment
of antibiotic exposure as a priority for future studies. Furthermore, given the cross-sectional
design of our study, we cannot establish causality in the observed associations between S.
mansoni infection, microbiome composition, metabolite profiles, and cardiovascular risk.
Temporal dynamics of microbial and metabolic alterations following infection remain
unexplored, limiting our ability to infer directionality. As such, longitudinal studies, ideally
spanning pre-infection, active infection, and post-treatment phases, would be essential to
disentangle cause-effect relationships and capture the evolving host—microbiome—
metabolome interactions over time. Incorporating repeated sampling, coupled with temporal
metadata such as infection history and treatment timing, would provide a more robust
framework for understanding how S. mansoni shapes cardiometabolic risk through microbial

and metabolic pathways.



Our findings provide evidence that S. mansoni infection is associated with significant
alterations in the gut microbiome and metabolome profiles, with important implications for
cardiovascular risk. These microbiome-mediated effects may represent a novel pathway
through which parasitic infections influence CVD risk. Future studies should focus on refining
our understanding of these interactions, with an emphasis on diet, antibiotic use, and
circadian regulation of microbial activity. Our study paves the way for developing
microbiome-targeted interventions that that may mimic helminth infections to reduce
cardiovascular risk in humans, but such approaches will require rigorous mechanistic and

interventional validation.



Methods

This research was conducted in accordance with all relevant ethical regulations. Ethical
approval for the parent studies and for the present secondary analyses was obtained from
the Uganda Virus Research Institute Research Ethics Committee (UVRI-REC), the London
School of Hygiene and Tropical Medicine (LSHTM) Ethics Committee, the Uganda National
Council for Science and Technology (UNCST), and the Higher Degrees Research and Ethics
Committee of the School of Medicine, College of Health Sciences, Makerere University.
Written informed consent was obtained from all participants prior to enrolment in the parent
studies, including explicit consent for the storage and future use of biological samples and

associated data in secondary analyses such as the present work.

Study design and sample size considerations

This study is an observational, cross-sectional secondary analysis nested within two
previously established cohort studies. No formal statistical power calculation was performed

to predetermine sample size for the present analyses.

Instead, sample size considerations were informed by prior microbiome literature indicating
that fewer than 50% of operational taxonomic units (OTUs) are typically detectable across
faecal samples®. Under this conservative assumption, anticipated rural (approximately 120
participants) and urban (approximately 80 participants) sample sizes were expected to yield
sufficient samples with detectable microbial features to support multivariable regression

modelling and rural-urban comparisons.

This sample size was considered sufficient to support linear regression models including
approximately six covariates relevant to cardiometabolic outcomes (for example, age, sex,
body mass index, dietary factors, and infection status), while maintaining stable regression

coefficients and minimising the risk of model overfitting.

Microbiome sequencing was attempted for all eligible stool samples. Following laboratory
and bioinformatic quality control, samples meeting predefined criteria were retained for
analysis. The final analytic sample (N = 209) exceeded anticipated minimum thresholds and

is reported in the Abstract and Results.

Firstly, we established a comprehensive framework to investigate how Schistosoma mansoni
infection influences cardiovascular disease risk through alterations in the gut microbiome

and metabolome (Fig. 1).



We used samples from rural participants in the LaVIISWA trial?”%3, and a second, well-

characterized survey in a nearby urban setting in Uganda®*.

LaVIISWA was a cluster-randomised trial conducted among Lake Victoria Island fishing
communities in Mukono district, Uganda. The study was conducted in 27 fishing villages:
one was selected for piloting the study and the remaining 26 were randomised in a 1:1 ratio
to standard deworming (single dose praziquantel given once a year and single dose
albendazole twice a year) or intensive deworming (single dose praziquantel and triple dose
albendazole four times a year). The samples we used were collected during the metabolic
survey undertaken after 4 years of intervention. Contemporaneously, the rest of the samples
for our study were collected from participants of an Urban Survey that was conducted in
Entebbe municipality (an urban setting) found on shores north of Lake Victoria. Entebbe is in
Wakiso district approximately 40km southwest of Kampala, the Ugandan capital city. In the
urban survey, no community-wide anthelminthic treatment programme was implemented,
and participants therefore had no treatment assignment. We have previously reported that
the rural population showed a markedly higher burden of helminth infections,

with Schistosoma mansoni detected significantly more frequently than in the urban group, as
illustrated by both stool Kato-Katz microscopy (31.7% vs 9.9%, p<0.001) and stool PCR
analysis (47.6% vs 22.2%, p<0.001)%.

In both studies, following overnight fasting, stool and blood samples were collected from the
participants. Metabolic outcomes measured are: fasting blood sugar, insulin levels, serum
lipid levels, body mass index (BMI), waist and hip circumference and blood pressure

(systolic and diastolic).
Exposure and Outcome Assessment
Sociodemographic and Anthropometric Data

Age and sex were documented using a structured survey tool. Body weight was recorded to
the nearest 0.1 kg using a digital scale (SECA model 875), with participants lightly clothed
and barefoot. Standing height was measured to the nearest 0.1 cm using a portable
stadiometer (SECA model 213). Waist circumference was measured midway between the
lower rib and iliac crest, while hip circumference was taken at the level of the greater
trochanters, both using a non-elastic measuring tape. Body mass index (BMI) was calculated

as weight (kg) divided by height (m2), and waist-to-hip ratio was derived accordingly.
Parasitological Assessment

Stool samples were analysed for helminth infections using both microscopy and molecular
techniques. The Kato-Katz method was used to quantify S. mansoni and T. trichiura eggs as



described by Sanya et al 2’ . Real-time PCR assays were employed to detect DNA of S.
mansoni, hookworm (N. americanus), and S. stercoralis, the latter being exclusively detected
by PCR. PCR data were prioritized for diagnostic confirmation of hookworm due to slide

timing variability.
Dietary Intake

Dietary patterns were evaluated using a semi-quantitative food frequency questionnaire
(FFQ) tailored to reflect local Ugandan food consumption habits. The FFQ assessed usual
intake in a typical week, covering major food categories such as cereals, legumes, animal
proteins, dairy, fruits, vegetables, oils, and sugary drinks. Responses were used to compute
dietary diversity scores to adjust for potential confounding in downstream microbiome and

metabolome analyses.
Blood Pressure

Blood pressure was measured three times at five-minute intervals in a seated, rested
position using a validated automatic sphygmomanometer (OMRON M2, HEM-7121-E), with
the average of the last two readings used for analysis. Blood pressure monitors were

routinely calibrated through the Uganda National Bureau of Standards to ensure accuracy.
Cardiometabolic Biomarkers

Fasting venous blood samples were collected into EDTA, fluoride oxalate, and serum
separator tubes following an overnight fast (=8 hours). Participants were advised to avoid
physical exertion and tobacco use prior to sampling. Plasma and serum were separated
within one hour of collection and cryopreserved in liquid nitrogen.

All biochemical analyses were performed at the MRC/UVRI & LSHTM Uganda Research
Unit laboratory (Entebbe) using a Roche Cobas 6000 platform (c 501 module). Fasting
plasma glucose and serum lipids—total cholesterol, triglycerides, HDL-c, and LDL-c were
guantified using enzymatic colorimetric methods. HbAlc was assessed in whole blood using
a turbidimetric inhibition immunoassay, and fasting insulin via electrochemiluminescence
immunoassay (ECLIA). Insulin resistance was calculated using the Homeostasis Model
Assessment (HOMA-IR)®.

Eligibility Criteria

Participants included in this study were drawn from two established cohort studies in
Uganda: the LaVIISWA trial (rural) and the Entebbe Urban Survey (urban). Full recruitment
procedures for these parent cohorts have been described previously. Briefly, both studies

conducted household-based sampling, with households eligible if at least one adult resident



provided consent. Households were excluded only if all members were absent or declined

participation.

For the present study, we applied additional individual-level inclusion and exclusion criteria
to ensure harmonised infection, microbiome, and cardiometabolic datasets across the rural
and urban sites. Individuals were included if Schistosoma mansoni infection status could be
determined using our harmonised diagnostic panel comprising Kato—Katz microscopy and
PCR assays. Eligible participants were also required to have complete cardiovascular risk
factor data, including systolic and diastolic blood pressure, fasting glucose and insulin, and
both total and LDL cholesterol. A further requirement was the availability of a stored stool
sample of adequate quality for 16S rRNA gene sequencing, along with complete information
for core covariates—age, sex, body mass index, and residential setting. Only individuals who
had provided informed consent within the parent studies that included permission for
secondary analyses of biological samples were eligible. No additional exclusions were

applied beyond the criteria described above.

Stool sample collection and processing

Stool samples were collected under standardized conditions to ensure preservation of
microbial community composition and DNA integrity. In the rural setting, stool samples were
obtained during the metabolic outcomes survey of the LaVIISWA, conducted between April
and November 2017. In the urban setting, samples were collected in Entebbe municipality,
Wakiso district, as part of a deliberately parallel survey conducted between September 2016
and September 2017, designed to enable direct rural-urban comparison of metabolic and
immunological outcomes. Each participant was provided with a sterile, screw-capped stool
collection container and instructed on hygienic self-collection on the morning of the
scheduled visit. Upon arrival at the field site, a portion of each sample was immediately
processed for Schistosoma mansoni detection using the Kato—Katz method. The remaining
stool was transferred using asterile wooden spatulas into pre-labelled cryovials containing
95% molecular-grade ethanol to stabilize microbial DNA and minimize compositional

changes during handling.

All ethanol-fixed samples were promptly placed in liquid-nitrogen charged dry shipper in the
field (typically within one hour of collection) and maintained at cryogenic temperatures
throughout transport to the central laboratory. On arrival, samples were transferred to —80 °C
freezers for long-term storage until DNA extraction. All field and laboratory personnel were
trained in biospecimen handling, and procedures were performed under aseptic conditions

according to harmonized quality control protocols. This workflow ensured uniformity of pre-



analytical processing and high confidence in the validity of downstream microbiome
measurements. All samples were processed and stored following identical protocols across

sites; no batch-specific storage procedures were used.

Microbiome profiling

Selected samples were prepared from MRC/UVRI and LSHTM-Uganda Research Unit and
shipped to Novogene for 16S rRNA sequencing. From stool samples collected from these
participants at the time the CVD measurements were done, we profiled gut microbial
diversity and performed untargeted metabolomics. Genomic microbial DNA was extracted
from 150 mg of faecal sample of every selected individual, using the QlAamp DNA Stool kits
(Qiagen, Hilden, Germany) according to the manufacturer's instructions. Amplicon-based
16S rRNA gene sequencing targeting the V3-V4 hypervariable regions was performed using

a paired-end lllumina sequencing platform.

Following extraction, DNA concentration and purity were assessed using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific), and integrity was evaluated via 2% agarose
gel electrophoresis. DNA samples (5 uL) were mixed with 1 uL of 6x loading dye and loaded
alongside a 1 kb DNA ladder (Thermo Scientific) into a 2% agarose gel prepared with Tris-
Acetate-EDTA (1 xTAE) buffer and stained with ethidium bromide (0.5 pg/mL).
Electrophoresis was performed at 100 volts for approximately 45 minutes. Gels were
visualized using a UV transilluminator, and high molecular weight DNA was confirmed by the
presence of a distinct, unsmeared band above 10 kb. Only samples with high-quality, intact

DNA were retained for downstream amplification and sequencing.

The 168 library preparation protocol (Reference No: GHFS-LH-039) from Institute of Food
Research was used to amplify the V3-V4 hypervariable regions of the bacterial 16S rRNA
genes to profile the gut microbiota. The same amount of PCR products from each sample
was pooled, end-repaired, A-tailed and further ligated with lllumina adapters. Libraries were

sequenced on a paired-end lllumina platform to generate 250bp paired-end raw reads.

The library was checked with Qubit and real-time PCR for quantification and bioanalyzer for
size distribution detection. Quantified libraries were pooled and sequenced on lllumina
platforms, according to effective library concentration and data amount required. Paired-end
reads were assigned to samples based on their unique barcodes and were truncated by
cutting off the barcodes and primer sequences. Paired-end reads were merged using
FLASH (Version 1.2.11)%, a fast and accurate analysis tool designed to merge paired-end
reads when at least some of the reads overlap with the reads generated from the opposite
end of the same DNA fragment, and the splicing sequences were called Raw Tags. Quality

filtering on the raw tags was performed using the fastp (Version 0.20.0) software to obtain



high-quality Clean Tags. The Clean Tags were compared with the reference database (Silva
database https://www.arb-silva.de) using Vsearch (Version 2.15.0) to detect the chimera

sequences, and then the chimera sequences were removed to obtain the EffectiveTags®’.

For the Effective Tags obtained previously, denoise was performed with DADA2 to obtain
initial Amplicon Sequence Variants (ASVs) and then ASVs with abundance less than 5 were
filtered out®®*°. Species annotation was performed using QIIME2 (v2023.2) software®®. The
annotation database used was Silva Database. To study phylogenetic relationship of each
ASV and the differences of the dominant species among different samples(groups), multiple
sequence alignment was performed using QIIMEZ2 software. The absolute abundance of
ASVs was normalized using a standard of sequence number corresponding to the sample
with the least sequences. Subsequent analyses of alpha diversity and beta diversity were

performed based on the output normalized data.

The rarefaction curves (cutoff = 82,695 reads) for all samples rapidly approached a plateau,
indicating that the captured sequencing depth was adequate and that additional reads would
not meaningfully increase observed alpha diversity (Supplementary Fig. 7). Likewise,

the species accumulation analysis, based on >10 samples as recommended, showed stable
asymptotes in species richness, confirming that both sequencing depth and sample size

were sufficient to characterise microbial community structure.

Controls, contamination mitigation, and replication

No mock community (positive control) samples were included. Negative extraction controls
and PCR controls were processed alongside biological samples to monitor for reagent and
laboratory contamination. Stool samples represent a high-biomass specimen type;
nevertheless, potential low-biomass contamination was mitigated through the inclusion of
negative controls and downstream computational filtering during bioinformatic processing.

No systematic contamination was detected in negative controls.

No biological or technical replicates were sequenced. Each participant contributed a single
stool sample that was processed once through DNA extraction, amplification, and

sequencing.

Metabolite extraction and profiling from stool samples

Metabolites were extracted from stool samples using a solid-phase extraction (SPE)
approach. Briefly, 1.25 mL of 80:20 methanol:water solution was added to each fecal
sample, followed by vortexing and addition of 1 mL of the resulting mixture to 9 mL of

molecular-grade water in a 15 mL conical tube. The mixture was centrifuged at 1735g for 1



minute, and 5 mL of the resulting supernatant was loaded onto SPE cartridges via a syringe.
The cartridges were dried by pushing air through them twice using the same syringe and
then sealed for shipment to the analytical laboratory in Manchester. A blank control sample

without faecal material was prepared alongside the experimental samples.

Upon receipt, metabolite elution was performed using 1.5 mL of 85:15 acetonitrile:methanol,
drawn into a 2 mL luer-lock syringe and passed through the cartridge into a sterile 1.5 mL
microcentrifuge tube. After allowing 1 minute of solvent equilibration to re-solvate the
stationary phase, the eluate was collected at a rate of approximately one drop per second.
Samples were then subjected to nitrogen blowdown drying in batches of up to 50, using a

60-position dryer platform.

Dried samples as provided were resuspended in 100 ul 5:95 acetonitrile/water and
centrifuged at 20,000 x g for 3 min. The top 80 ul supernatant was transferred to a glass
autosampler vial with 300 pl insert and capped. Quality control samples were made by

pooling 5 pl from each sample.

Liquid chromatography-mass spectrometry analysis was performed using a Thermo-Fisher
Ultimate 3000 HPLC system consisting of an HPG-3400RS high pressure gradient pump,
TCC 3000SD column compartment and WPS 3000 Autosampler, coupled to a SCIEX 6600
TripleTOF Q-TOF mass spectrometer with TurboV ion source. The system was controlled by
SCIEX Analyst 1.7.1, DCMS Link and Chromeleon Xpress software.

A sample volume of 5 uL was injected by pulled loop onto a 5 uL sample loop with 150 pl
post-injection needle wash with 5:95 acetonitrile and water. Injection cycle time was 1 minute
per sample. Separations were performed using a Thermo Accucore C18 column with
dimensions of 150 mm length, 2.1 mm diameter and 2.6 ym particle size equipped with a
guard column of the same phase. Mobile phase A was water with 0.1 % formic acid; mobile
phase B was acetonitrile with 0.1 % formic acid. Separation was performed by gradient
chromatography at a flow rate of 0.3 ml/min, starting at 5 % B for 1 minute, ramping to 100
% B over 7 minutes, hold at 100 % B for 2 minutes, then back to 5 % B. Re-equilibration time

was 4 min. Total run time including 1 minute injection cycle was 15 minutes.

The mass spectrometer was run in positive mode under the following source conditions:
curtain gas pressure, 50 psi; ionspray voltage, 5500 V; temperature, 400 °C; ESI nebulizer

gas pressure, 50 psi; heater gas pressure, -70 psi; declustering potential, -80 V.

Data were acquired in an information dependent manner across 10 high sensitivity product
ion scans, each with an accumulation time of 100 ms and a TOF survey scan with

accumulation time of 250 ms. Total cycle time was 1.3 s. Collision energy was determined



using the formula CE (V) = 0.084 x m/z +12 up to a maximum of 55 V. Isotopes within 4 Da

were excluded from the scan.

Acquired data were checked in PeakView 2.2 and imported into Progenesis Qi 2.4 for
metabolomics, where they were aligned, peaks were picked, normalised to all compounds
and deconvoluted according to standard Progenesis workflows. Signal normalisation was
performed using Progenesis QI’s default global scaling approach, whereby feature
intensities were normalised to the total abundance of all detected compounds per
sample.

Blank controls were used to assess background contamination introduced during
extraction and analysis, while pooled quality control samples were used to monitor

retention time alignment, signal reproducibility and analytical stability across the run.

Annotations were made by searching the accurate mass, MS/MS spectrum and isotope
distribution ratios of acquired data against the NIST MS/MS metabolite library. Metabolites
were identified by searching retention times and accurate masses against an in-house
chemical standard library. A validated identification is only given if identical hits are made

against both the NIST MS/MS and in-house chemical standard libraries.
Statistical and Computational Analysis
Microbiome data analysis

To analyze the diversity, richness and uniformity of the communities in the sample, alpha
diversity was calculated from indices, including Shannon, observed richness and Pielou_e.
Statistical comparisons between infected and uninfected groups were performed using the

Krusal-Wallis test (two sided).

Beta diversity was evaluated using Bray—Curtis dissimilarity to compare community structure
between samples. Principal coordinates analysis (PCoA) was used to visualize ordination,
and PERMANOVA (Adonis) implemented in the “vegan™ R package, with 999 permutations,

was used to assess statistical differences in beta diversity across infection groups.

Differential abundance analysis

To identify microbial taxa differentially abundant between Schistosoma mansoni—infected
and uninfected individuals, we performed differential abundance (DA) testing using the
DESeq2 method implemented within the phyloseq R package®!. A Wald test was applied to
estimate log, fold changes in microbial abundance between the two groups. Resulting p-
values were adjusted for multiple testing using the Benjamini—Hochberg false discovery rate

(FDR) procedure. Taxa with an FDR-adjusted p < 0.05 were considered statistically



significant. A volcano plot was generated to visualize the results, displaying the log, fold

change on the x-axis and the —log,, FDR-adjusted p-value on the y-axis.

Linear discriminant analysis (LDA) effect size (LEfSe)

To complement DESeq2-based DA testing, we additionally applied linear discriminant
analysis (LDA) using the LEfSe algorithm to identify microbial features that consistently
discriminate between S. mansoni—infected and uninfected individuals®?. While DESeq2
provides robust statistical inference and effect size estimates for individual taxa across
groups, LDA ranks taxa based on their ability to explain group differences by combining
statistical significance with biological consistency and effect relevance. This approach helps

prioritize taxa most likely to contribute to distinguishing phenotypic states.

Taxa with a logarithmic LDA score > 2.0 and p < 0.05 were considered significantly enriched.
Analyses were stratified by community type (rural vs. urban) to account for environmental
and lifestyle heterogeneity. Visualization of LEfSe results was done via bar plots showing

LDA scores.

By integrating both DA and LDA approaches, we capture a broader perspective on
microbiome differences—identifying statistically robust changes (via DESeq2) while also
highlighting microbial signatures with high discriminatory power (via LEfSe) that may serve

as candidate biomarkers.
Microbiome—CVD risk associations

To evaluate the direct associations between microbial taxa and specific CVD risk factors
(e.g., blood pressure, total cholesterol, LDL cholesterol), multivariate linear regression
models were fitted separately for infected and uninfected groups within rural and urban
settings. Models were adjusted for age, sex, BMI, and diet (in the rural population). Full
model outputs (effect sizes, SEs, 95% Cls, p-values) are provided (supplementary table 2
and 3). Significance was set at p < 0.05, and false discovery rate (FDR) correction was
applied. The top 50 most abundant taxa were prioritized for analysis. Results were visualized

with heatmaps and annotated by significance level (p < 0.05, p< 0.01).
Mediation analysis

To investigate potential microbial mediation of the relationship between S. mansoni infection
and CVD risk, non-parametric bootstrap-based mediation analysis was conducted using the
mediation analysis function in pingouin python library®3. This approach estimated the indirect
effect of differentially abundant taxa (from differential abundance analysis (FDR-adjusted p <
0.05)) on CVD risk scores, with 5,000 bootstrap iterations and 97.5% confidence intervals.

Microbes demonstrating significant negative or positive mediation effects (p < 0.05) were



visualized using alluvial plots to capture the pathway from infection status to cardiovascular

outcome through the microbiome.

We applied a prespecified causal-inference framework to estimate the extent to which gut
microbiome features mediated the association between Schistosoma mansoni infection and
cardiometabolic risk traits. We constructed a directed acyclic graph (DAG; Supplementary
Fig. 8) to formalise prior biological and epidemiological knowledge and to determine the
minimally sufficient adjustment set required to block back-door confounding paths. Running
the adjustmentSets()function on this DAG identified age, sex, and setting as the minimal
confounder set for estimating both total effects and microbiome-mediated effects.

Accordingly, all mediation analyses adjusted exclusively for these variables.

For each cardiometabolic outcome, we fitted counterfactual-based causal mediation models
that partitioned the total effect of S. mansoni infection into natural direct effects and natural

indirect effects operating through individual microbial taxa, analysed one mediator at a time.

Metabolite—CVD risk associations

To investigate links between circulating metabolites and cardiometabolic traits, we fitted
linear regression models for each metabolite using the combined dataset of rural and urban
participants. Each model included the metabolite as the exposure and the cardiovascular
risk factor of interest (systolic blood pressure, diastolic blood pressure, total cholesterol, or
LDL cholesterol) as the outcome. The models were adjusted for age, sex, BMI, and S.
mansoni infection status. Because rural and urban environments differ markedly in lifestyle
and ecological exposures, we additionally included a setting-by-metabolite interaction term

to assess whether metabolite—CVD associations differed across environments.

For each metabolite, we extracted the effect estimate, standard error, 95% confidence
intervals, and p-value for the association with the cardiovascular risk factor. Metabolites
demonstrating statistical evidence of association at p < 0.01 were taken forward to multi-

omics integration alongside CVD-associated microbes.

Metabolomic Profiling and Pathway Enrichment Analysis

Untargeted metabolomics was conducted using liquid chromatography—mass spectrometry
(LC-MS) on faecal samples. Differential metabolite abundance between S. m+ and S. m-

individuals was assessed using volcano plots with thresholds set at p < 0.05 and log 2-fold
change (FC) = 1.0 (for upregulation in infected) or FC < 1.0 (for upregulation in uninfected).

To evaluate whether the metabolomic profiles could discriminate between groups, we



employed Partial Least Squares Discriminant Analysis (PLS-DA) using the caret package in
R. The dataset was split into training and test sets using stratified sampling to maintain class
balance. Model training was performed using 5-fold cross-validation, repeated three times, to
optimize model parameters and assess classification performance. Model accuracy,
sensitivity, and specificity were calculated on the test set, and the discriminative capacity
was further evaluated by constructing Receiver Operating Characteristic (ROC) curves and
calculating the area under the curve (AUC) with 95% confidence intervals using

the pROC package®*. We assessed group-level differences in metabolomic profiles using
PERMANOVA on scaled Euclidean distances. Feature importance was derived to identify

the most discriminative metabolites.

Pathway enrichment analysis was conducted using Integrated Molecular Pathway Level
Analysis (IMPaLA)®, incorporating Kyoto Encyclopedia of Genes and Genomes (KEGG),
Reactome, and other curated databases. Samples were grouped according to specified
criteria provided. For statistical analysis, a minimum fold change between sample groups of
at least 1.5-fold, ANOVA p values of <0.05 were used in IMPaLA.

Metabolite annotation and functional classification

Detected features were matched against reference libraries using mass-to-charge ratio (m/z)
and retention time (RT) as primary identifiers. To improve matching precision, m/z values
were rounded to five decimal places and RTs to one decimal place, generating a unique
combined feature ID for each metabolite. These IDs were used to merge the detected
features with annotation outputs from the xMSannotator platform, which provides multi-
parameter chemical identification including adduct patterns, isotope distributions, and
pathway associations. Annotation confidence was further refined by cross-referencing
putative matches with the Human Metabolome Database. When available, we prioritized
annotations with the highest confidence scores as assigned by the xMSannotator workflow.
Significantly altered metabolites associated with insulin resistance and other cardiometabolic
risk factors were annotated into functional classes using LIPID MAPS and CLASSYFIRE
The annotated metabolites were grouped by chemical class and displayed via bar plots (for
CLASSYFIRE categories) and pathway clusters (via RaMP-DB)®. The significance of
pathway enrichment was determined using Fisher’s exact test with multiple testing
correction. Results were visualized via bar plots and redundancy-aware “lollipop” plots
generated using RaMP-DB, clustering functionally overlapping pathways shown in

Supplementary Figs. 9-13.



Multimodal integration

Where relevant, co-association networks and integrative heatmaps were generated to
explore relationships between S. mansoni infection, microbial taxa, metabolites, and CVD
phenotypes. Correlation networks were built using the Spearman’s rank correlation in the

mixOmics package in R%.
Reproducibility

All microbiome and metabolomics analysis pipelines, including quality control thresholds,
normalization procedures, and statistical parameters, are described in sufficient detail to
enable reproduction of the analyses. All analyses were performed in R (version 4.1.3)°%,
Complete R session information, including software versions, package dependencies, and

computational environment details, is provided in Supplementary File.

Data availability

The raw microbiome sequencing data generated in this study have been deposited in the
NCBI BioProject database under accession code PRINA1405921. The raw mass
spectrometry—based faecal metabolomics data, together with relevant experimental
metadata, have been deposited in the Metabolomics Workbench repository under Study
ID ST004547 (Data track ID: 6961 and are assigned the digital object

identifier https://doi.org/10.21228/M82255. The processed microbiome and metabolomics

data generated in this study have been deposited in the Zenodo repository under the
DOI 10.5281/zen0do.18186512 (https://doi.org/10.5281/zenodo.18186512). This DOI

represents all versions of the dataset and will always resolve to the most recent version. The

repository includes raw 16S rRNA gene sequencing data, processed microbiome data
(including taxonomy assignments and abundance tables), and processed faecal
metabolomics data. The raw sequencing data are provided in accordance with participant
consent and applicable data protection regulations. The de-identified individual participant
data that underlie the results reported in this article, including demographic information and
other covariates, together with a data dictionary are stored in the LSHTM Data Compass
repository under DOI https://doi.org/10.17037/DATA.00004919 . Researchers who wish to

access these data may submit a request through LSHTM Data Compass, detailing the data

requested, the intended use, and evidence of relevant experience. Requests will be
reviewed by the corresponding author(s) in consultation with the MRC/UVRI and LSHTM

Uganda Research Unit Data Management Committee, with oversight from the UVRI and



LSHTM ethics committees. Approved datasets will be provided with pseudonymised
participant identifiers, enabling linkage to the microbiome and metabolomics datasets while
maintaining participant confidentiality. Access is subject to execution of an appropriate data
sharing agreement. A reporting summary for this article is available as a Supplementary

Information file.

Code availability

All scripts used for data processing, statistical analysis, and figure generation are available
via Zenodo under the
DOI 10.5281/zen0do0.18186513 (https://doi.org/10.5281/zenodo.18186513).The analyses

were performed using a combination of R and Python scripts together with established

bioinformatics software for microbiome, metabolomics, and multi-omics integration analyses.
A full list of all software packages used, including version numbers and their analytical

purpose, is provided in the Supplementary Information.
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2
3

Tables

Characteristics Infected Uninfected Total
n=128 n=81 n=209
Females/ Males 42/86 59/22 101/108
Age group (years)
e 10-19 37 23 60
e 20-29 30 25 55
e 30-39 29 17 46
e 40+ years 32 16 48
Setting
e Rural 84 43 127
I.  Intensive treatment 43 32 75
.  Standard treatment 41 11 52
e Urban 44 38 82

Table 1. Characteristics of the study participants from rural and urban communities.



Biological pathway enriched by metabolites Pathway Number of | P-
source metabolites|value

NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake | Reactome 3 0.0003

NR1H2 & NR1H3 regulate gene expression to control bile acid Reactome 3 0.0003

homeostasis

NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis |Reactome 3 0.0003

NR1H2 & NR1H3 regulate gene expression linked to lipogenesis Reactome 3 0.0003

NR1H2 & NR1H3 regulate gene expression linked to triglyceride Reactome 3 0.0003

lipolysis in adipose

NR1H3 & NR1H2 regulate gene expression linked to cholesterol Reactome 3 0.0003

transport and efflux

Cholesterol biosynthesis with skeletal dysplasias Wikipathways 4 0.0011

Table 2. Biological pathways enriched by metabolites that were more abundant in S. mansoni infected
individuals than uninfected participants. Metabolites were extracted from faecal samples of 209
participants and profiled using liquid chromatography-mass spectrometry. Metabolites with a maximum fold
change = 1.5 between S. mansoni—-infected (128) and uninfected (81) individuals and two-sided ANOVA P <
0.05 were retained for downstream analysis. Pathway analysis was performed using Integrated Molecular
Pathway Level Analysis (IMPaLA) with a one-sided hypergeometric test. P-values indicate pathway level
enrichment significance and are reported as exact values without multiple testing correction. Pathways
related to lipid metabolism and cholesterol regulation were among the most significantly enriched.



Legends

Fig. 1 Experimental and analytical flowchart. Created in BioRender. Walusimbi, B. (2026)
https://BioRender.com/a407009

Fig. 2 Microbial diversity comparison of S. mansoni infected (S. m+) and uninfected individuals (S.
m-). A Box plots comparing gut microbial alpha diversity between S. mansoni-infected (S. m+, n =
128) and uninfected (S. m—, n = 81) individuals (total n = 209), assessed using observed richness
and the Shannon diversity index. For observed richness, S. m+ individuals had a higher median
richness (median = 632.5; interquartile range [IQR]: 537.0—-718.0) compared with S. m- individuals
(median = 579; IQR: 477-670). For the Shannon index, diversity was also higher in S. m+
individuals (median = 6.751; IQR: 6.36—7.27) than in S. m— individuals (median = 6.548; |IQR:
5.98-7.06). Box plots display the median (centre line), the interquartile range (bounds of the box;
25th—75th percentiles), and whiskers extending to the values within 1.5X IQR from the 25th—75th
percentiles and points outside the range are plotted as outliers. Group differences were assessed
using the Kruskal-Wallis test (observed richness: x? (df = 1) = 7.12, P = 0.00763; Shannon index:
¥? (df = 1) = 3.90, P = 0.048). B Comparison of Beta diversity (using Bray-Curtis distance) in S. m+
and S. m- individuals living in rural Uganda. These were similar (PERMANOVA p=0.175, R?=
0.00923, F= 1.1646, Number of permutations= 999). C S. m+ showing an overall microbiome
structure that is different from the S. m- individuals (PERMANOVA, p=0.011, R? =0.02207 F=
1.8055, Number of permutations= 999). D and E Linear Discriminant Analysis (LDA) scores of
bacteria that are differentially abundant between (S. m+) and (S. m-). LDA scores show the
measure of effect of each genus. Bacteria with LDA score > 2 were differentially enriched in a
particular group. D shows LDA results for S. m+ and S. m- living in the rural setting while E shows
LDA results for S. m+ and S. m- living in the urban setting. The red bars represent microbes that
are more abundant in the S. m- individuals while the green bars show those that are more
abundant in the S. m+ individuals.

Fig. 3 Differential abundance of gut microbial taxa by S. mansoni-infection status.

Volcano plot showing the log, fold change in abundance (x-axis) versus the —log,, adjusted p-value
(y-axis) for microbial taxa differentially abundant between S. mansoni-infected and -uninfected
individuals. Each point represents a microbial taxon. Taxa to the right of the vertical dashed line are
enriched in S. mansoni-infected individuals, while those to the left are depleted. Points are
coloured by their log, fold change, with red indicating higher abundance and blue indicating lower
abundance in S. mansoni-infected. Labels highlight taxa with statistically significant differences
(FDR-adjusted p < 0.05). Also, coloured taxa denoted by triangular dots are both significantly
enriched in S. mansoni participants and associated with CVD risk. Those taxa shown by circular
dots are significantly impacted by S. mansoni infection but are not associated with CVD risk.

Fig. 4 The link between S. mansoni infection, microbiota and CVD. A Association of microbes
and CVD risk in S. m+ and S. m- individuals living in rural setting: The asterisks (*) show the
significant association between microbes and the different CVD risk factors in the rural population,
following linear regression analysis where potential confounders including age, sex, body mass index
(BMI) and diet were adjusted for. These are results from the top 50 abundant microbes. ** indicative
of p <0.01, while * indicative of a p-value <0.05. BP is blood pressure, Total Chol is total cholesterol
while LDL Chol is low density lipoprotein cholesterol. Taxa such as Treponema were consistently
associated with LDL cholesterol in both rural and urban populations in B. B Linear regression
analysis like what is shown in B but for S. m+ and S. m- individuals living in urban setting. Potential
confounders including age, sex and body mass index (BMI) were adjusted for. *** show p. value
<0.001, ** indicative of p <0.01, while * shows p-value <0.05. C. Venn diagram showing overlap
among microbial taxa that are significantly associated with different cardiovascular risk factors.
Associations were identified using multivariable linear regression models (adjusting for age, sex,
BMI, diet). All hypothesis tests were two-sided, and microbial taxa were considered significant at P <
0.05 without adjustment for multiple comparisons. D. Mediation analysis (adjusted for age, sex and
residential setting) illustrating the mediatory role of microbes in S. mansoni-associated modulation
of CVD risk. An alluvial plot showing microbes through which helminths may alter one’s CVD risk.
Mediation analysis was performed using non-parametric bootstrap resampling with two-sided



hypothesis testing as implemented in the Pingouin Python library. Microbial taxa were first identified
as differentially abundant between the S. m+ and S. m- groups, following multiple-testing correction
(false discovery rate—adjusted P < 0.05), and subsequently showed significant negative mediation
effects on the CVD risk factors shown, defined by 95% bootstrap confidence intervals not crossing
zero. No additional adjustment for multiple comparisons was applied to the mediation analyses.

Fig. 5 Differential abundance of metabolites by S. mansoni-infection status. (A) Volcano plot
showing metabolites that are differentially abundant between the S. m-infected (n=128) and
uninfected groups (n=81). Metabolite-level comparison was performed using two-sided
independent-samples t-tests with mean differences and 95% confidence intervals for derived for
each metabolite. No adjustment for multiple comparisons was applied. Metabolites with p < 0.05
and log2 fold change =1.0 were significantly more abundant in infected, while metabolites with p <
0.05 and log2 fold change < 1.0 were considered more abundant in S. m-uninfected group. Red
dots at the upper left area are significantly upregulated in the uninfected group, blue dots located at
the upper right area are significantly upregulated in S. m -infected individuals. The top 10 most
differentially abundant metabolites from either group were labelled. (B) Partial least squares-
discriminant analysis (PLS-DA) score plot showing differences in clustering of metabolites in S. m+
and S. m- individuals. The blue represents S. m- while yellow represents the S. m+ individuals. We
assessed group-level differences in metabolomic profiles using PERMANOVA on scaled Euclidean
distances. S. m+ vs S. m- profiles were not significantly different (p = 0.48, R2= 0.00452, F=
0.9301, Number of permutations= 999) (C) Biological pathways enriched among metabolites that
were more abundant in S. m+ compared to S. m-individuals. Metabolites were profiled from faecal
samples using liquid chromatography—mass spectrometry and identified using Progenesis Ql
software. Metabolites with a maximum fold change = 1.5 between groups and two-sided

ANOVA P< 0.05 were retained for downstream analysis. Pathway enrichment analysis was
performed using Integrated Molecular Pathway Level Analysis (IMPaLA). The bar plot shows the
-logie-transformed P-values for the top enriched biological pathways, with bar colour intensity
reflecting the strength of statistical significance. Higher —log,o(P-value) indicates stronger
enrichment. No adjustment for multiple comparisons was applied at the pathway level.

Notably, pathways linked to lipid metabolism and cholesterol regulation were significantly enriched.

Fig 6. Correlation between cholesterol-associated microbiota and metabolites. (A) Circos
plot illustrating the strongest correlations (Spearman’s r 2 0.7) between microbiome (blue blocks)
and metabolome (green blocks) features significantly associated with total cholesterol.
Associations were identified using models adjusted for age, sex, BMI, and setting as an interaction
term (see Fig. 3). Purple lines indicate positive correlations; red lines indicate negative
correlations. (B)Heatmap showing the correlation strength between microbial genera and
metabolites extracted from panel A. Red intensity reflects positive correlation strength; blue
indicates negative correlations. (C) Classification of total cholesterol-associated metabolites using
CLASSYFIRE. Horizontal bars represent the number of metabolites per chemical class (y-

axis). (D) Circos plot showing top correlations (r = 0.65) between microbiome and metabolome
features significantly associated with LDL-cholesterol, using the same model adjustments as in
panel A. Green lines indicate positive correlations; red lines indicate negative

correlations. (E) Heatmap of LDL-cholesterol-associated microbial genera and metabolites,
following the same format and colour scale as panel B. (F) Classification of LDL-cholesterol-
associated metabolites using CLASSYFIRE, as in C.

Fig 7. Correlation between blood pressure-associated microbiota and metabolites. (A) Circos
plot illustrating the strongest correlations (Spearman’s r=0.7) between microbiome (blue blocks)
and metabolome (green blocks) features significantly associated with diastolic blood pressure.
Associations were identified using models adjusted for age, sex, BMI, and setting as an interaction
term (see Fig. 3). Purple lines indicate positive correlations; red lines indicate negative correlations.
(B) Heatmap showing correlation strength between microbial genera and metabolites extracted
from panel A. Red intensity reflects positive correlation strength; blue indicates negative
correlations. (C) Classification of diastolic blood pressure-associated metabolites using
CLASSYFIRE. Horizontal bars represent the number of metabolites per chemical class (y-

axis). (D) Circos plot showing the strongest correlations (r=0.70) between microbiome and



metabolome features significantly associated with systolic blood pressure, using the same model
adjustments as in panel A. Green lines indicate positive correlations; red lines indicate negative
correlations. (E) Heatmap of systolic blood pressure-associated microbial genera and metabolites,
following the same format and colour scale as panel B. (F) Classification of systolic blood pressure-
associated metabolites using CLASSYFIRE, as in panel C.

Fig. 8: Network representation of microbiome-metabolome—cardiovascular risk in
individuals with S. mansoni. (A) Network showing directional associations between S. mansoni—
associated gut microbial taxa (dark blue nodes), faecal metabolites (orange nodes), and LDL
cholesterol (green node). (B) This network shows directional associations between gut microbial
taxa (dark blue nodes), faecal metabolites (orange nodes), and cardiovascular disease Diastolic
blood pressure (red node). Arrows indicate significant correlations between nodes, derived from
Spearman’s correlation analysis. Microbial taxa included in the networks were identified as
significantly enriched in S. mansoni—infected compared with uninfected individuals using differential
abundance analysis, with log, fold change > 1 and false discovery rate (FDR)—adjusted P < 0.05
(two-sided testing). Associations between microbial taxa and metabolites, and between metabolites
and CVD risk factors, were identified Spearman’s rank correlation analysis; correlation coefficients
(r) and exact two-sided P values were calculated for each pairwise association. No additional
adjustment for multiple comparisons was applied at the correlation stage. Cardiovascular risk
factors are represented by green (LDL cholesterol) and red (diastolic blood pressure) nodes,
denoting the specific clinical trait associated with the metabolite and microbe. Edge directionality
flows from microbe — metabolite — CVD risk factor, showing a hypothesized mediation path
through which S. mansoni-associated microbial changes may influence metabolic and
cardiovascular profiles.

Editor’s Summary

Here, in a cross-sectional study of 209 individuals living in communities with contrasting
Schistosoma mansoni endemicity in Uganda, the authors identify gut microbiome and metabolome
signatures associated with S. mansoni infection and cardiovascular disease risk.

Peer Review Information: Nature Communications thanks Philip Afful, Kwame Kumi Asare and
Thomas Sharp for their contribution to the peer review of this work. A peer review file is available.
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