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Abstract

Complex behavior entails a balance between taking in sensory information from the environment
and utilizing previously learned internal information. Studies on mice show the brain continually
alternates between outward and inward cognitive modes every few seconds, accompanied by
stereotyped cascade of neuronal spiking. Our analysis of large fMRI datasets revealed a similar
mechanism in human. Human brain activity was punctuated every several seconds by coherent,
propagating waves emerging in the exteroceptive sensorimotor regions and terminating in the
interoceptive default mode network. As in mouse, these waves in human fMRI are accompanied
by phase-specific enhancements in sensory information encoding and memory retrieval. These
findings suggest a conserved feature of mammalian brain physiology that bears directly on the
integration of sensory and mnemonic information during everyday behavior.



Introduction

The human brain undergoes slow, spontaneous fMRI fluctuations during rest, in the absence of
external stimulation and task engagement (1, 2). While this activity has been used widely to
characterize the functional connectivity between brain regions (2-5), its contribution to the normal
operation of the brain has remained elusive. Two curious features of this activity that have drawn
attention in recent years are its manifestation as discrete, quasi-periodic events and its
spatiotemporal propagation across the brain (6—9). Recent work describes such propagation as
moving from low-order sensory-motor (SM) regions to high-order default mode network (DMN)
(7, 10). This traversing of the cortical hierarchy has been compared to cross-layer error back-
propagation required for optimizing artificial neural networks (11, 12), raising the prospect that
these waves may play a physiological role in learning and memory consolidation.

Analogous global brain dynamics have been observed at the single neuron level in the mouse.
These widespread fluctuations in neuronal firing are often coupled to spontaneous behaviors such
as pupil dilation and locomotion, and show distinct delays between two major clusters of neurons
(13, 14). More recently, these dynamics were shown to manifest as massive spiking cascades
involving ~70% of recorded neurons across the forebrain and playing out over several seconds
during stationary rest (15). During both spontaneous activity and periods of visual stimulation,
spiking cascades were coordinated in time with hippocampal sharp-wave ripples (SPW-Rs), a
neurophysiological event known to be involved in memory functions (16). In the case of visual
stimulation, each cascade cycle involved a transition from a phase of high-efficiency sensory
encoding to a phase of lower encoding during heightened SPW-Rs (17). These transitions appear
to reflect switches between exteroceptive sensory sampling and internal mnemonic processes over
the timescale of seconds. This type of continuous alternations between external and internal
processing modes has been observed across various brain systems, particularly the hippocampus,
at multiple temporal scales (18, 19), and is hypothesized to play a critical role in learning (20).

One conceptually appealing possibility is that the fMRI waves in the human brain reflect the same
or homologous neurophysiological processes as the spiking cascades in the mouse brain. Indeed,
they share common features. For example, both phenomena manifest as quasi-period events that
occur over seconds time scales, affect global forebrain activity, and couple with measurable arousal
fluctuations (15, 21), as evidenced by their correlation with pupil size (10, 22—24). In the absence
of external stimulation, fMRI waves in the human brain propagate between two sets of brain
networks showing opposite responses to cognitive tasks (25-27). Similarly, the spiking cascade
sequences in mice involves the interplay between two groups of neurons with opposite activity
modulations during locomotion (15). The hippocampus appears to be central to this large-scale
coordination of activity. When hippocampal SPW-Rs were measured together with concurrent
fMRI in the monkey, they were synchronized with fMRI changes across the brain (28, 29).
Analysis of this synchronization revealed distinct delays between sensory/motor and higher-order
regions that suggest cross-hierarchy propagation (28, 29). Nevertheless, it remains unknown
whether propagating fMRI events are the macroscopic counterpart of neural firing cascades. More
importantly, it is also unclear whether fMRI waves, like neural firing cascades, continue to occur
during stimulation and relate to sensory and memory functions during wakefulness.



In the present study, we analyzed multiple human fMRI and mouse neuronal recording datasets to
address this topic. We found that, like the spiking cascades in the mouse, the propagating fMRI
waves in the human brain persisted during the performance of a visual memory task. The fMRI
wave cycle was also similarly marked by alternating phases of stronger sensory information
encoding and greater efficiency in memory retrieval. The cascades and fMRI waves were similarly
synchronized to pupil dilations in humans and mice, suggesting a shared neuromodulatory basis.
These findings thus demonstrate that similar, internally generated physiological cycles are
coordinated with switches between exteroceptive sensory sampling and internal mnemonic
processes in the human and mouse brain, suggesting an evolutionarily conserved principle of
mammalian forebrain function.

Results

Fluctuating arousal entrains brain-wide events across the mouse and human forebrain

Pupil diameter is a surrogate signal for fluctuating arousal that is readily measured in both human
and mouse subjects during rest (30, 31). In both species, we observed that the dynamic changes in
pupil diameter were matched to the occurrence of brain-wide events, thus providing a means to
compare spiking cascades and fMRI waves.

In the mouse, pupil size fluctuations, indicative of changes in arousal state, were prominent during
periods of immobility, with or without visual stimulation, as evident in data from the Allen Institute
Visual Coding project (32) (Fig. 1A and 1B). Across the brain, we found that pupil dilations
coincide with moments of widespread spiking events, in which neurons fire sequentially in
reproducible patterns (Fig. 1B, C, red arrows). The similar dynamics were derived previously
without using pupil data and described as brain-wide spiking cascades (15). We repeated the same
analysis on a two-photon calcium imaging dataset (33) and another large-scale Neuropixel dataset
with broader coverage of mouse brain (34), revealing that these pupil-associated cascades span
across widespread brain regions and involve multiple neuron subtypes (Fig. S1 and S2).

In the human, we similarly found that pupil size changes are associated with highly-structured
resting-state fMRI changes across the brain (Fig. 1D and 1E). For this analysis, we used the Human
Connectome Project (HCP) 7T dataset (35). Alignment of fMRI time courses across the cortex to
pupil dilation onset revealed a spatiotemporal sequence progressing along a principal gradient
(PG) direction (Fig. 1F and S3; Supplementary Movie 1), which approximates the cortical
hierarchy gradient (36). These events were manifest as infra-slow (multi-second) waves moving
gradually from SM to DMN regions. These SM-to-DMN waves have been derived previously
without using pupil data (7, 10). The cortical changes were accompanied by corresponding
thalamic progression from posterior/lateral sensorimotor nuclei to anterior/medial progression
limbic nuclei (Fig. 1G and S3F). Therefore, spontaneous pupil dilation events during immobile
rest are synchronized with sequential brain dynamics of global involvement, observed as spiking
cascades in mice and propagating fMRI waves in humans. Simultaneous EEG-fMRI recordings also
revealed associated changes in delta-band (1-4 Hz) activity across the fMRI wave cycle, similar to
those observed across the cascade cycle (Fig. S4). The duration of the waves appears to be constant
(~11s) and independent to the brain size (Fig. S5).



While the function of these brain-wide events is poorly understood, evidence in the mouse suggests
that the spiking cascades mediate alternation between periods of external stimulus encoding and
internal memory operation (17). Might the fMRI waves in humans likewise be linked to the switch
between exteroceptive and interoceptive modes of brain function? To address this question, we
investigated the occurrence of spontaneous propagating fMRI waves as human subjects performed
a cognitive task involving memory. Specifically, we asked whether the sensory encoding of stimuli
and successful memory retrieval performance varied as a function of these spontaneous events.

Visual stimulus encoding predicts subsequent memory function.

To systematically investigate the role of propagating SM-to-DMN waves in human cognition, we
first needed to establish a reliable method for evaluating the encoding of visual stimuli from fMRI
responses across the brain. We developed a method to do this using the Natural Scenes Dataset
(NSD) (37), in which a series of 10,000 captioned natural images were shown, in the form of 4-s
trials, to each of 8 subjects with each image being presented three times over 40 scan sessions on
different days. For each trial, the subjects needed to indicate whether they had seen the stimulus
before (Fig. 2E).

To quantify the level of sensory stimulus encoding, we developed a deep learning model to decode
semantic information of each image stimulus based on fMRI responses it evoked (Fig. 2A and
S6A). The model comprised an fMRI encoder, which extracted latent representation from the fMRI
responses, i.e., the fMRI embeddings, and a caption decoder (38), which translated the fMRI
embeddings into descriptive text captions. The fMRI encoder was trained to align the fMRI
embeddings with the contrastive language-image pre-training (CLIP) embedding space (39)
through contrastive learning (40). We then derived a composite semantic similarity (CSS) score to
quantify the semantic similarity between the fMRI-decoded caption and the original caption. An
image trial is considered correctly decoded if the generated caption shows significant (p < 0.05)
similarity compared to a null distribution created from randomly sampled captions (see Methods
for details). The performance of the decoding model thus serves as a measure of the accuracy of
brain encoding of semantic information.

Our deep learning model successfully decoded the semantic information associated with the visual
stimuli based on the fMRI responses they evoked. The representation similarity analysis confirmed
the alignment between fMRI and caption embeddings (Figs. 2B, S6B, and S6C), and the fMRI
embeddings after training are organized as distinct categories in a low-dimensional space (Fig. 2C)
(41). The trained model generated correctly decoded captions — those significantly similar to the
ground truth captions — in 33.0 = 4.2% (mean + SD) of trials (see Fig. 2D and Fig. S7A for
examples), compared to the 5% chance-level performance of the untrained model (Fig. 2F, p =
2.8x107; and Fig. S7B). In the context of the cognitive task, the semantic encoding accuracy
faithfully predicted subsequent memory performance: a higher CSS score at the first appearance
of an image stimulus led to a higher rate of correctly recalling it at its second repeat (Fig. 2G and
S8). This relationship held true across subjects, with subsequent memory performance
significantly better for trials with correct initial encoding compared to those without (Fig. 2H).
Given this trained model, it was next possible to evaluate whether the occurrence of spontaneous
propagating fMRI waves might bear on the quality of stimulus encoding, subsequent memory
recall, or both.



Alternating stimulus encoding versus memory recall during propagating fMRI waves

To explore the potential relevance of propagating fMRI waves for encoding and memory
performance, we first established their presence during the cognitive task. These waves were
identified directly from task fMRI data without using pupil data (7) (Fig. 3A). Similar to the resting
state, propagating waves remained closely tied to pupil diameter fluctuations, which were affected
to a lesser extent by task events (Fig. S9A). The duration of the SM-to-DMN waves (~10-15
seconds) is much longer than the task trials (4 seconds), and their occurrence and relationship to
pupil fluctuations are dissociated from the structure of the concurrent cognitive task (Fig. S9B).

To evaluate the potential influence of these propagating fMRI waves on sensory encoding
efficiency, we used the fMRI deep learning-based decoding method described above to assess the
quality of encoding for each stimulus presentation. We found that the accuracy of such encoding
varied systematically across the SM-to-DMN propagation cycle (Fig. 3C, red trace). Accounting
for hemodynamic delays (see Methods), the stimulus encoding was strongest at the SM-activated
phase of the propagating wave, showing a significant improvement to the DMN-activated phase
(p = 9.8x107, N = 8, two-sided pair-wise t-test). Similar results were consistently reproducible
across various semantic similarity metrics (Fig. S10A).

We also used human memory performance to assess how fMRI waves affected both stimulus
encoding and memory recall. For encoding, accurate memory of a given stimulus during its second
appearance (Repeat #2 in Fig. 3B) was taken as a measure of strong encoding during the initial
presentation (Repeat #1 in Fig. 3B), where the wave dynamics were examined. We found that the
strength of encoding (i.e. subsequent memory) was closely related to the phase of the SM-to-DMN
wave at the time of stimulus presentation. Stimuli presented during the SM-activated phase had a
higher efficacy of encoding than those presented during the DM-activated phase (p = 2.2x103, N
= 8, two-sided pair-wise t-test; Fig. 3C, purple trace), thus matching the fMRI deep learning-based
measure of stimulus encoding described just above (Fig. 3C, red trace). By contrast, evaluation of
recall performance, which was estimated at the 2" and 3™ presentations of a stimulus along with
fMRI wave dynamics, revealed a significant peak performance later in the wave cycle, when the
subject recall coincided with the DMN-activated phase (p = 1.2x103, N = 8, two-sided pair-wise
t-test; Fig 3C, green trace). These results were similar for both short-term (i.e., within the same
day) and long-term (i.e., across days) memory types (Fig. S10B and S10C).

The modulation of stimulus encoding and memory recall was further supported by subcortical
changes during propagating fMRI waves. The hippocampus was activated at the late wave phase
but its activation level was only weakly associated with memory recall performance (Fig. S11C
and S11D). Moreover, anterior and medial thalamic regions, which are associated with memory
and limbic functions (42, 43), are activated more at the late phase, whereas posterior thalamic
regions most involved in sensory processing are activated earlier in the wave cycle (Fig. S11E).

These cyclic modulations of stimulus encoding and memory recall in humans resembled analogous
observations in mice during different phases of the spiking cascades (17) (Fig. 3D). Specifically,
the SM-activated phase of the fMRI wave matched a period within the cascade cycle (0-0.5 sec)
of improved stimulus encoding, whereas the DMN-activated phase aligned with a different period
within the cascade cycle (0.5-2 seconds) of increasing hippocampal SWP-R rate, which was also
associated with pupil dilation (Fig. 3C and 3D). While the hippocampal SWP-R rate and memory



performance are clearly different measures, they may point to similar processes that transpire
during more introspective modes of brain activity, commonly associated with activity of the DMN
(44, 45).

Visual semantic information coding in multiple brain regions is similarly modulated by the SM-
to-DMN wave cycle

Repeating the semantic decoding using only regional fMRI data suggested that the semantic
information was encoded across a wide range of brain regions, with the highest encoding accuracy
observed in the visual cortex (Fig. 4A and 4B). Importantly, the fMRI encoding accuracy in all
individual regions was systematically modulated over the SM-to-DMN wave cycle (Fig. 4C and
Fig. S12) in a similar way as the whole-brain finding (Fig. 3C). Interestingly, the DMN,
particularly its C division that encompasses the hippocampal complex and adjacent to visual
association areas, exhibited its peak encoding accuracy at the SM-activated phase, while its
activation was relatively low, suggesting a dissociation between sensory encoding and regional
activation level. These region-specific results on visual semantic encoding are consistent with
those on cascade-dependent visual encoding (17), further suggesting that the spiking cascades and
cross-hierarchy waves represent the same underlying neurophysiological process present in mice
and humans, and possibly conserved across mammals more broadly.

Discussion

Here we showed that infra-slow (<0.1 Hz) fMRI waves propagating over the human cortical
surface are associated with a counter-acting modulation of encoding and retrieval of information
conferred by visual stimuli, resembling those previously tied to spiking cascades in mice. First, we
analyzed electrophysiological and fMRI measures of brain activity, demonstrating that
spontaneous pupil dilations are similarly accompanied by spiking cascade dynamics in mice and
SM-to-DMN propagating waves in humans, thereby unifying these two types of infra-slow
(<0.1Hz) global brain activity across different spatial scales and species. We then assessed the
semantic encoding of visual stimuli using a CLIP-based deep learning model, finding that the SM-
to-DMN propagating waves continued to occur during task performance and were associated with
counter-valent modulation in both encoding and retrieval of the stimulus content. The encoding of
semantic information and memory peaked at the early phase of SM-activation, whereas memory
retrieval accuracy reached the maximum at the DMN-activated phase. Together with previous
findings from mice, these results suggested that the highly structured infra-slow global brain
activity may serve as an evolutionarily conserved mechanism by which the brain orchestrates the
execution of exteroceptive sensory sampling and internal mnemonic processes on the timescale of
seconds.

The brain’s response to identical sensory stimuli is known to vary over time even on the timescale
of seconds. Previous studies have shown how pre-stimulus ongoing activity and arousal state may
contribute to this variability (13, 31, 46-52). Our findings align with and extend these previous
reports. Leveraging recent advances in deep learning techniques, our study goes beyond a simple
quantification of response amplitude (2, 49, 50) and assesses the accuracy of the brain’s encoding
of semantic information. Importantly, most previous studies have presumed that ongoing brain
activity and changes in arousal occur spontaneously and randomly. As a result, much focus has



been on the response modulation of ongoing activity that is temporally locked (prior to the
stimulus) and spatially restricted (confined to the same local brain region). In contrast, we consider
the effects of internal fluctuation in the context of highly structured brain dynamics (i.e., the
spiking cascade or propagating wave) involving the large-scale coordination of activity. The
initiation of these recurring global brain events is independent of visual stimulation and memory
tasks, and they are associated with sensory processing quasi-periodically in a continuous and
persistent way.

We further found that memory retrieval was modulated over the SM-to-DMN wave cycle in a
manner opposite to that of stimulus encoding, matching our previously observed counter-
modulation of hippocampal SPW-R rate and visual encoding (17). This previous study did not,
however, identify specific memory functions or other cognitive operations associated with SPW-
Rs during the task, since SPW-Rs are usually observed during rest and sleep and often linked to
offline memory consolidation (29, 53, 54). By comparing our human study results with these prior
findings in mice, we found a correspondence between the cascade phase of high SPW-R rate to
the wave phase of fMRI DMN activation, which is associated with a better performance in memory
retrieval. This observation largely agrees with a series of recent studies on different species that
linked SPW-Rs during tasks to memory retrieval (55-57), as well as the marked fMRI DMN
activations (44, 45, 58, 59).

Notably, we applied a global 6-sec shift to the fMRI BOLD signals to infer underlying network
activity with accounting for hemodynamic delays (Fig. 3C and 4C). A 1-2 second deviation of this
modeled delay from the true value would be minimal relative to the duration of fMRI waves and,
therefore, is not expected to affect our interpretation of their temporal relationship with
modulations in sensory and memory functions. Without this time shift, however, the periods of
stronger semantic encoding and poorer memory retrieval would correspond to the baseline
preceding the SM-to-DMN waves, rather than to the SM-activated phase.

The observed modulation of sensory and memory functions over the cascade/wave cycle may be
associated with a change in the direction of information flow, particularly between the cortex and
hippocampus. Memory retrieval during tasks and memory consolidation during rest and sleep
likely require information flow from the hippocampus to the cortex, whereas the encoding of
sensory information and memory would be facilitated by a reversed flow (29, 60, 61). Thus, the
cascade/wave phases optimized for sensory encoding and memory retrieval may be dominated by
opposite directions of information transmission, which may rely on distinct spatial gradients in
activation level. In fMRI, such activation gradients are obvious for SM-to-DMN waves with
dominant SM or DMN activation at different phases. This is less clear for cascades, since the
negative- and positive-delay neurons were found in all recorded brain regions (15). However, the
hippocampal regions, especially CA1 and the dentate gyrus (DG), contain a much higher number
of negative-delay neurons compared to any other areas, including all visual areas, whereas the
thalamus has the least. The fMRI signals may arise from the summation of activity of these two
types of neurons, and the apparent wave propagation may relate to their distinct composition across
different brain regions and across cortical hierarchies. Thus, the activation gradient between these
two neuronal groups can be translated into spatial gradients between the hippocampus, cortex, and
thalamus. We hypothesize that these gradients, alternating on the multi-second scale, determine
the dominant direction of information flow, which itself occurs on much faster (millisecond)



timescales. This hypothesis remains to be tested by future studies. It is worth noting that artificial
neural networks also feature alternating forward/backward information flows across hierarchical
layers during training (11, 12), which may thus represent a mechanism essential to the learning of
all connection-based intelligence systems.

The cascade and wave dynamics reported here might represent a fundamental mechanism by which
the brain coordinates the opposing operations of exteroceptive sensory sampling and internal
mnemonic processes. The switching between these processes over seconds may establish a
dynamic balance essential for optimizing cognitive/mental processes of the same seconds
timescale (62-65), likely achieved under states of intermediate arousal (66, 67). Highly aroused
states could break this balance by terminating this infra-slow global dynamic. Locomotion,
presumably associated with heightened arousal, has been found to replace cascade dynamics with
sustained firing of the positive-delay neurons (17) that are expected to enhance sensory and
memory encoding but impede memory retrieval (68, 69). Toward the other end of this spectrum,
during drowsiness, the infra-slow global dynamic may prolong the memory consolidation phase
whereas hinder encodings. The SM-to-DMN waves have been found to occur more frequently
during various sleep stages and be associated with learning-related features (i.e., the rapid eye
movements and possibly Ponto-Geniculo-Occipital (PGO) waves) during rapid eye movement
(REM) sleep (70). Though not directly focused on the cascade and waves, recent studies
convergingly point out an essential role of infra-slow neural dynamics in learning and memory. In
addition to hippocampal SPW-Rs, infra-slow dynamics have been found to simultaneously
coordinate the density of sleep spindles, an electrophysiological feature that has relevance for
learning and memory (71, 72). Importantly, the amplitude of infra-slow dynamics during sleep,
defined through spindle density and cardiac rate, is not only correlated with memory performance
on the subsequent day (73), but optogenetically enhancing it also leads to improved memory (74).
Similar to the modulation of brain activity during cascades and waves described here, such spindle-
based infra-slow dynamic alternates between an offline phase, characterized by higher spindle and
hippocampal SPW-Rs rates with low arousal, and an online phase, marked by lower spindle and
ripple rates with higher arousal and susceptibility to external stimulation (73).

The neural mechanisms underlying these global brain dynamics remain unclear. However, they are
unlikely to be mediated purely through corticocortical axon conduction due to the highly
mismatched speed. Instead, the neuromodulatory systems, particularly the cholinergic system, may
play a crucial role in the general of these global brain dynamics. Consistent with the associated
arousal modulation, the fMRI waves are accompanied by subcortical de-activation specifically at
the basal forebrain nucleus basalis (NB) and brainstem arousal-relating nuclei, including the locus
coeruleus (75). Pharmaceutical deactivating the NB on one side of monkey brains suppressed the
global mean BOLD (gBOLD), whose peaks the SM-to-DMN waves are manifested as, on the
ipsilateral side (76). The global brain dynamics might originate from interactions among neurons
at this subcortical region, which are then broadcasted to the cortex and other brain regions through
widespread cholinergic projections (77-79) to affect the dynamics of the two distinct groups of
neurons, i.e., the negative- and positive-delay neurons. These neuron-level dynamics, i.e., the
spiking cascades, are then translated to the apparent fMRI waves across hierarchies due to the
systematic modulation of their composition along this same direction. However, the validation of
this hypothesis would require future studies with neural recordings of distinct scales.



The SM-to-DMN propagating wave and its effect on sensory and memory functions may offer
explanations for some previous task fMRI observations. Graph-theory metrics based on fMRI
connectivity/correlations, such as cartography and network flexibility, have been used to quantify
brain dynamics and found associations with various cognitive components, particularly learning
(64, 80, 81). Most of these metrics focused on assessing the integration and segregation of the
large-scale networks, which are expected to be profoundly affected by the presence of the global
SM-to-DMN waves. Thus, the waves could be an important contributor to these metrics of network
dynamics. Another related phenomenon is the so-called encoding/retrieval flip, in which the de-
activation and activation of the posteromedial cortex, a key component of DMN, are preferentially
associated with successful memory encoding and retrieval respectively (82—-84). This phenomenon
can be explained by our finding that memory encoding and recall were oppositely modulated over
the wave cycle with distinct DMN activations. Importantly, the present study expands this early
research by incorporating the previous findings into the framework of highly structured cross-
hierarchy propagating waves, which persist under various brain conditions beyond tasks.

Finally, the SM-to-DMN waves may also relate to memory dysfunction in Alzheimer's disease
(AD). The gBOLD signal has been repeatedly linked to various AD pathologies (85-87). The
gBOLD peaks (also SM-to-DMN waves (21)) have been found to be coupled by strong
cerebrospinal fluid (CSF) movements, known to be essential for peri-vascular waste clearance (88—
90). The strength of this gBOLD-CSF coupling is indeed associated with the accumulation of
amyloid-beta and tau (86, 87). Particularly, the failure of the SM-to-DMN waves to reach the DMN
appeared to account for preferential amyloid-beta accumulation at these higher-order regions at
the early stage of AD (86). The link between the fMRI waves and waste clearance may be at least
partly attributed to associated non-neural physiological modulations, particularly infra-slow
vasomotion and CSF dynamics (21, 89, 91, 92). Besides the toxic protein accumulation, AD also
features dysfunctions in memory and subcortical neuromodulatory systems (93-96), both of which
are linked to the cascades and global waves (10, 15). Thus, changes in this infra-slow global
dynamic may also relate to the dysfunction of the memory and arousal systems in AD.

Methods

Datasets

Allen Institute Visual Coding Neuropixel Dataset: The dataset comprises high-density
extracellular neuron recordings of 58 mice (13 females) using Neuropixel probes (32). Each mouse
was implanted up to six Neuropixel probes, which targeted the primary visual cortex and five high-
order visual cortical areas. The silicon probes were inserted to a depth of up to 3.5mm into the
brain, enabling the recording of spiking activity within two visual thalamic nuclei, i.e., the lateral
posterior nucleus (LP) and the lateral geniculate nucleus (LGN), as well as other regions that the
probes traversed, such as the hippocampus.

Allen Institute Visual Coding Two-photon Calcium Imaging Dataset: The dataset comprises
single-neuron recordings from the mouse visual cortex, obtained through 2-photon fluorescence
imaging. Utilizing transgenic tools, these recordings specifically targeted the activities of distinct
populations of Cre-defined neurons. The dataset includes a total of 63,251 neurons from 14



different transgenic lines, covering 6 cortical areas and 4 cortical layers. For our study, we focused
on two Cre lines (Cux2-CreERT2 and Emx1-IRES-Cre) that had the highest number of neurons
recorded. Further details can be found in (33).

UCL Mice Neuropixel Recording Dataset: The UCL mice dataset includes recordings from
approximately 30,000 neurons across 43 brain regions in mice, utilizing Neuropixels probes to
cover the entire left hemisphere. In each mouse, two or three probes were inserted simultaneously,
allowing for the concurrent recording of hundreds of neurons during each session. The study
comprised 92 probe insertions across 39 sessions from 10 mice (6 females), with an average of
approximately 747 neurons recorded per session. Additional details are available in (34).

Human Connectome Project (HCP): We utilized the WU-UMinn HCP 7T dataset, a subset of
the HCP S1200 release (35), comprising 7T fMRI data from 184 subjects (112 females) within the
age range of 22 to 35. Our analysis focused on two 15-minute, eyes-open resting-state fMRI
sessions, with repetition time (TR) of 1s and 1.6 mm isotropic voxels. Simultaneous eye tracking
was conducted using an EyeLink device with a sampling rate of 1000 Hz. The resting-state HCP
fMRI volumetric data were preprocessed using the minimal preprocessing pipeline (97) and
artifacts were further removed with ICA-FIX denoising (98). fMRI data were then spatially
smoothed with 2mm Full Width at Half Maximum (FWHM) Gaussian kernel and temporal
filtering within a bandpass range of 0.001-0.15Hz. Finally, signal from each voxel was
standardized by subtracting the mean and dividing by the standard deviation.

Natural Scenes Dataset (NSD): The NSD includes whole-brain 7T fMRI scans with a repetition
time (TR) of 1.6s and 1.8mm isotropic voxels, conducted during a visual memory task (37). This
dataset involved eight human participants (6 females) who were shown between 9000 and 10000
natural scene images. Each image was presented three times, resulting in a total of 22000 to 30000
trials across a span of one year. For every trial, as participants viewed an image stimulus, they
were required to report whether they perceived the image as novel. The NSD fMRI data underwent
initial preprocessing to correct for head motion, EPI distortion, gradient nonlinearities, and
alignment across scan sessions. Analyses of fMRI data for each subject were performed in the
subject-native space. For the fMRI time series analysis, i.e. propagation, nuisance parameters such
as motion, white matter, and cerebrospinal fluid (CSF) signals were regressed out from the
volumetric fMRI data, which were then smoothed spatially with 2mm FWHM Gaussian kernel
and temporally with bandpass filtering of 0.001-0.15Hz. Each voxel's signal was then standardized
to have zero mean and unit standard deviation. For analyzing the hemodynamic response of single
trials (inputs of the decoding models), GLMdenoise—a generalized linear model (GLM) approach
was used to provide estimates of the BOLD amplitude while reducing noise by integrating
nuisance regressor (37, 99).

Simultaneous EEG-fMRI Resting-state Dataset: Resting-state fMRI data were collected
simultaneously with electroencephalography (EEG) for 27 subjects (14 females, average age:
22.1%3.1 years). For our analysis, we only utilized the 10-minute resting-state scan. The fMRI
imaging data were acquired using a 3T scanner, with a repetition time (TR) of 2.1s and 3mm
isotropic voxels. The EEG data were gathered using a 32-channel MR-compatible EEG system,
with a recording sampling rate of 5000Hz. Additional details can be found in (21). The resting-
state fMRI BOLD data was preprocessed using script from the 1000 Functional Connectomes



Project with slight modification (100). Nuisance parameters, including linear and quadratic trends,
motion parameters, white matter, and CSF signals, were regressed from the fMRI data. The
volumetric data then was smoothed spatially with 2mm FWHM Gaussian kernel, and temporally
filtered with a bandpass range of 0.001-0.15Hz.

For every fMRI dataset analyzed, we utilized the Schaefer 400 Parcellations (Yeo-17 Network
version)(101) to obtain cortical signals from the volumetric fMRI data. This was accomplished by
averaging the standardized voxel signals located within each parcel. Similarly, signals from
thalamic nuclei/regions were extracted utilizing the Morel Atlas (102), and signals from the
brainstem nuclei, part of the ascending arousal network, using the Harvard AAN atlas (103).

Informed written consent was obtained from all participants in the human EEG-fMRI dataset. Data
analysis adhered to usage agreements, human data collection was conducted in compliance with
protocols approved by the Institutional Review Board at Pennsylvania State University (protocol
numbers: STUDY00005969 and STUDY00015305).

Pupil Size

Pupil areas recorded for humans were obtained using the EyeLink device, with raw data sampled
at 2000Hz for the NSD dataset and 1000Hz for the HCP dataset. We converted the pupil area into
pupil diameters and then down sampled to 50Hz. Missing pupil data, resulting from false
detections or eye blinks, were interpolated using data from the nearest time points. Subsequently,
we synchronized the pupil data with each TR of the concurrent fMRI signal. The periods with
significant missing data (more than 50%) were removed from subsequent analyses.

Pupil areas recorded for mice were captured using cameras, with a sampling rate of 100Hz for the
UCL Neuropixel dataset and 30Hz for both the Allen Institute Neuropixel and two-photon datasets.
We converted the pupil area into diameters and then resampled the data to a uniform rate of 30Hz.
Missing pupil data were then interpolated using the nearest time points to ensure continuity in the
dataset.

To identify dilation events within infra-slow pupil fluctuations, we utilized a low-pass filter on the
pupil size time series, setting a cut-off frequency at 0.15Hz for human datasets and 0.3Hz for
mouse datasets. Pupil dilation events were defined as the periods where dilation lasted for at least
1 second in the filtered pupil size data.

EEG Analysis

The EEG data were preprocessed to remove the gradient and ballistocardiogram artifacts from
each channel, utilizing algorithms detailed in (104). Following this, the data were subjected to low-
pass filtering with a cut-off frequency of 125Hz. Pulse artifacts were removed through independent
component analysis (ICA), and signals were corrected for distortions to account for distortions
attributable to head motion (105). More comprehensive description of the EEG signal
preprocessing can be found in (21).



Delta-band power for each channel was computed by first applying a band-pass filter within the
1-4Hz range and then calculating the amplitude of the Hilbert-transformed signal. Then the power
for each channel is individually normalized by subtracting its mean and dividing by its standard
deviation. The averaged delta power is obtained by taking the mean across all the recording
channels.

Local Field Potentials (LFPs) Analysis

Delta-band Power: Delta power was computed for LFPs across all recorded channels. To calculate
delta power, a band-pass filter (1-4 Hz) was applied to the LFP signal of each channel, followed
by rectification and lowpass filtering (<0.72 Hz, corresponding to m cycles of the mean band-pass
frequencies).

Hippocampal Sharp Wave Ripples (SWRs): Hippocampal sharp wave ripples (SWRs) are brief,
high-frequency oscillations (110-200Hz) that can be observed in the LFP recorded from
hippocampal recording sites. For ripple detection in this study, we employed an offline method
(15, 106) utilizing the LFP signal (1250 Hz) captured from the hippocampal CA1 region. Ripple
events was detected individually for each CA1l recording site (channel), resulting in extensively
overlapping ripple detection across the channels. Detected ripple events were considered valid
only if they were identified in over 40% of the CA1 channels.

Semantic Decoding Model

The semantic decoding model is designed to evaluate the semantic information contained in the
stimuli-evoked BOLD responses, generating text captions that describe the image stimuli
presented to the subject. The decoding model consists of two main components: an fMRI encoder
and a caption decoder (Fig. 2A).

The fMRI encoder is used to extract latent representation from the BOLD response. The detailed
architecture of the fMRI encoder, as shown in Fig. S6A, utilizing convolutional layers and residual
connections, aims to transform the high-dimensional BOLD response into 512-dimensional fMRI
embeddings. To address the challenge of fMRI data scarcity, the fMRI encoder was trained to align
the fMRI embeddings with the CLIP embedding space which has been extensively pre-trained
using 400 million (image, text) pairs, thus offering a rich, 512-dimensional target. Therefore, we
trained the fMRI encoder in contrastive learning paradigm (39), aiming to maximize the alignment
between the fMRI embeddings and the corresponding CLIP text embeddings, while minimizing
the alignment with mismatched pairing. To achieve this, we use the contrastive training loss with
loss function defined for i fMRI embedding Z; and j™ CLIP text embedding T; within a batch B

as:
exp(cos(Zi, Tj)/r)
YijeB,i%] exp(cos(Zi, T}')/T)

Lcontrast (Zi' Tj) = log (1)

Here, 7 represents the temperature, a hyperparameter hyperparameter, and cos(-,-) computes
vector similarity. In addition, we also maximize the alignment between fMRI embeddings and
CLIP embeddings by incorporating the cosine loss defined as



Laiign(Zi, T;) = 2 (1 — cos(Z;, Ty)). (2)

Therefore, the total loss is defined as the summation of alignment loss and contrastive loss:

Liotar = Lalign + Mo Leontrast 3)

where A4; and A, are tuning hyperparameters. In our training regimen, we set A; = 0.35, A, =
0.65 and t = 0.45. We also incorporate dropout before the final layers, with a dropout ratio of 0.3.

We utilized a pre-trained caption decoder, DeCap (38), to generate captions from fMRI
embeddings. DeCap was initially trained to produce captions using CLIP text embeddings based
on large text corpus. Since the fMRI embeddings were aligned with the CLIP space through the
fMRI encoder, we directly employed DeCap to decode these fMRI embeddings, for the generation
of captions that describe the content of image stimuli shown to the subjects.

In our study, unless otherwise specified, we use the decoding model to decode the response of
voxels within the "nsdgeneral" ROI which includes occipital regions that are generally responsive
in the NSD experiment (37). For region-wise decoding analysis as shown in Fig. 4 and S12, we
adopted the regions of interest (ROIs) as delineated by the Yeo-17 network (101). For each specific
ROI, only the voxels that are defined by the corresponding ROI mask are considered. The
responses from these selected voxels are then utilized as inputs to the decoding model to generate
captions.

Representation Similarity Analysis (RSA)

We analyzed the alignment between CLIP text embeddings and fMRI embeddings through RAS.
For each validation fold, we constructed representation dissimilarity matrices (RDMs) for both the
fMRI and CLIP text embeddings. To facilitate visualization and interpretation of the RDMs'
structure, we employed t-SNE techniques (41) to project CLIP text embeddings into a 2-
dimensional space. Subsequently, we applied k-means clustering to group stimuli with minimal
Euclidean distance in this 2-dimensional representation into the same cluster. The RDMs for both
fMRI and CLIP text embeddings, as shown in Fig. 2A, are organized and sorted according to this
clustering scheme.

The similarity between between the fMRI and CLIP text RDMs is quantified using Pearson's
correlation coefficient. To evaluate the statistical significance of this similarity, we followed the
permutation testing approach described by Kriegeskorte et al. (107). Specifically, we generated a
null distribution by randomly permuting stimulus labels—thereby shuffling the rows and columns
of one of the RDMs—and calculating the correlation between the permuted and original matrices.
This process was repeated 500 times to approximate the null hypothesis that the two RDMs are
unrelated. The p-value was then estimated by comparing the observed correlation to this null
distribution.



Semantic Similarity Metrics

To evaluate the fidelity of generated captions to their semantic content, we computed semantic
similarity score between the predicted captions and ground truth captions labeled by human. This
evaluation employs several established metrics widely used in computer vision and natural
language processing research: Bleu 1, Bleu 2 (108), CIDEr (109), METEOR (110), and
ROUGE L (111), with each of these metrics offering a different perspective on the semantic
alignment between generated and ground truth text. Given the limitation inherent to each metric,
we additionally defined a composite semantic metric (CSS) derived by averaging the scores from
the aforementioned metrics, thereby providing a more holistic evaluation of caption fidelity.

To assess the statistical significance of the model-generated captions, for each trial/image, the
semantic similarity score, for example, CSS score, is compared against a null distribution. This
null distribution is constructed from the CSS scores between the ground truth caption and 1,000
randomly generated captions, which are generated by randomly sampling from the CLIP
embedding space (39). Notably, this null distribution exhibits variability across different trials,
reflecting the diverse complexity levels associated with the semantic content of each image
stimulus. Such approach ensures the evaluations accurately reflecting the model's performance in
generating semantically coherent captions and invariant to the varying degrees of semantic
complexity present across trials. The same evaluative framework is applied across all
aforementioned metrics to assess the accuracy of the generated captions. A trial is considered
correctly decoded if the metric score is significant compared to the null distribution, using a
significance level of 0.95; otherwise, it is considered incorrectly decoded. Encoding accuracy is
quantified as the proportion of trials that are correctly decoded.

Memory Encoding and Recall

The NSD dataset includes visual memory tasks, where each image stimulus was presented to
participants three times. During each presentation, participants are prompted to indicate whether
they have previously seen the image. By dissecting the memory task performance, we derived two
memory measurements for evaluating the memory function based on participant response: memory
encoding and memory recall.

Memory encoding, as a proxy for measuring the sensory coding efficacy, tends to evaluate how
effectively the participant encodes a novel image into memory such that the participant can
correctly recognize the image as previously seen. We formally define the memory encoding
accuracy for each novel image as the memory recognition accuracy at the second presentation of
the image. Memory recall, on the other hand, tends to evaluate how effectively the participants is
able to accurately retrieve and recognize an image previously seen. For each image, we can derive
two recall accuracy, corresponding to the participant's recognition performance during the second
and third presentations of the image, which is not novel to the participant.

Neural Population Sensory Decoding Analysis

To assess the sensory information encoded by neuronal populations, we analyzed spiking data
obtained during natural scene image stimulation sessions from the Allen Mice Neuropixel dataset.



In these sessions, mice were subjected to passive viewing of a sequence of images, each displayed
for a duration of 250 milliseconds. Strictly following the approach in (17), we defined the neural
code as a population response to each displayed image and employed support vector machines
(SVMs) based on neural code to decode which one of the 118 images was viewed by the mouse.
The sensory efficacy is quantified by the decoding accuracy of the SVMs.

SMRI Infra-slow Propagating Waves

To detect SM-to-DMN fMRI propagating waves, we adopt a template-matching approach (7). The
propagations, which typically involve a majority of cortical regions, are assumed entrained within
the fMRI global signal fluctuations. Accordingly, we defined set of candidate events based on the
low-frequency (<0.15Hz) components of the global signal, with the event boundaries defined by
the adjacent troughs. We derived a delay profile for each candidate event and a candidate event
was considered as SM-to-DMN propagation if its delay profile closely matched the principal
gradient profile (PG) upg € RN (36). The degree of similarity was quantitatively assessed using
Pearson's correlation coefficient, and we considered a candidate event as SM-to-DMN propagation
if the correlation was significant (p < 0.001). See Supplementary Methods for further details.

Neural Spiking Cascades

In line with prior studies (15, 17), we first computed neural spike rates using 200ms time bins and
identified candidate infra-slow neural events by segmenting the spiking rate data based on the
troughs of the filtered global mean spike rate (low-pass, 0.25Hz). We then, using the delay-profile
decomposition method, extract delay profile for each candidate event and the principal delay
profile representing the predominant sequential pattern within infra-slow brain activity. A
candidate event was considered as a valid cascade event when the principal delay (PD) profile
matched with its delay profile with a significant correlation (p < 0.001). Similar to (15, 17), we
categorized neurons into two distinct groups based on their positioning within the PD profile:
positive-delay neurons exhibiting significant PD values and negative-delay neurons characterized
by significantly negative PD values (p < 0.001, one-sample t-test). The slow cascade features a
sharp increase in the spiking activity of positive-delay neurons in the middle, following the
definition in (15), we thus identified and defined these time points as the local peak of the first-
order temporal derivative of the mean spiking time course of the positive-delay neurons. See
Supplementary Methods for further details.

Modulation Across Propagating Wave Cycles

To assess the fluctuation of the trial-based measurements, i.e., semantic encoding accuracy,
memory encoding/decoding accuracy across the propagating waves cycle, as shown in Fig. 3C, we
constructed time series f,..(t) for each measurement during fMRI scan session defined as

fe® = D FR® )
k

=1
C, IfT,<t<T,+AT

; (k) —
With foe () = {NaN otherwise,



where Ty is the onset time of stimulus and Cy is the accuracy for the k-th trial, and AT is the time
window following the stimulus onset, which was set to 2 seconds throughout our study. The NaN
stands for "Not a Number" and is omitted in the summation in equation.

Therefore, by formulating these trial-based assessments as time series, they are analyzed exactly
same to other continuous measurements, such as pupil diameter and delta power. For the analysis
of modulation across the propagation wave cycle, we aligned and averaged these time-series
metrics relative to the propagation center (defined as the global signal peak) and normalized to the
change in percentage relative to baseline, defined from -21s to -11s prior to the global signal peak.

To present the temporal relationship between these trial-based measurements and the neural
dynamics underlying fMRI waves, we shifted the fMRI BOLD wave backward in time by 6
seconds to account for the hemodynamic delay.

Predicting Subsequent Memory Performance with Semantic Encoding

We conducted two analyses using the NSD dataset to study how initial image presentation
encoding accuracy influences subsequent memory task performance. In the first analysis (Fig. 2G),
stimuli from all eight participants were grouped into bins based on the percentile of the first
encoding accuracy, incremented by 20%, and the memory task accuracy during the second
presentation was averaged within each bin. In the second analysis (Fig. 2H), for each participant,
trials were grouped based on whether they were correctly decoded. The subsequent memory
accuracy for each group was then averaged and compared across groups.

Relationship Between Propagating Waves and Brain Size

We examined the effect of brain size on SM-to-DMN propagating waves using the HCP-7T
dataset. Brain size was estimated based on brain volume (BrainSegNotVent, generated in
FreeSurfer (112)). The duration (segment length) of each propagation event was calculated and
averaged for each subject. Propagation speed was determined by dividing brain volume by the
average event duration for each subject. Based on brain size, the 184 subjects were divided into
three groups: small (lower 1/3), medium (middle 1/3), and large (upper 1/3). Group analyses were
then conducted to compare propagation speed and durations across these groups (Fig. S5).

Software and implementation

All code was developed in Python. Deep learning models were implemented using PyTorch
(v1.13.1) and dalle-pytorch (v1.6.4). Data processing and analysis were performed with SciPy
(v1.10.0), NumPy (v1.24.2), scikit-learn (v1.2.0), and pandas (v1.5.3). Visualization was carried
out using Matplotlib (v3.6.3) and Seaborn (v0.13.2). fMRI data were processed and visualized
with Nilearn (v0.10.0) and NiBabel (v5.3.2). The CLIP model was implemented based on the open-
source repository from OpenAl (https://github.com/openai/CLIP).

Data Availability



For mice single neuron analysis, we used the Neuropixels Visual Coding Neuropixels and two-
photon calcium imaging datasets from the Allen Institute (32, 33), accessible at https://portal.brain-
map.org/overview. For resting-state human fMRI analysis, we used HCP-7T dataset from
https://www.humanconnectome.org. We shared our EEG-fMRI dataset at
https://openneuro.org/datasets/ds003768. For task human fMRI analysis, we used NSD dataset
available at https://naturalscenesdataset.org. Source data are provided with this paper. The
processed data in this study is available upon request.

Code Availability

The Python code that produced the major results of this paper is available at
https://zenodo.org/records/17065604. All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials.
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Figure Captions

Figure 1. Association of spontaneous pupil dilations and brain-wide sequential activity in
mice and humans. (A) Locations of neuropixel probes from all mice with major recording sites
color-coded: visual cortex (blue), hippocampus (green), and thalamus (pink). Top: 3D illustration
. Bottom: 2D projection on a middle brain slice. (B) Example pupil and spiking data from a
representative mouse during stationary visual stimulation. Top: spontaneous fluctuation of pupil
diameter with alternating dilation (red) and constriction (blue) phases, with dilation onsets marked
by red dashed lines and triangles. Bottom: normalized spiking activity of recorded neurons sorted
by the principal delay profile, revealing spiking cascades of sequential activations from negative-
delay neurons (blue-symbolic-neurons) to positive-delay neurons (red-symbolic-neurons). (C) The
normalized pupil diameter (top, mean = SEM) and spiking activity (bottom) from this
representative mouse were averaged based on pupil dilation onsets over an 8-s time window . (D)
Schematic of a resting-state fMRI scan from HCP 7-Tesla dataset. (E) Example pupil and fMRI
data from a representative human HCP subject at rest. Top: pupil diameter fluctuations. Bottom:
concurrent fMRI signals of various brain regions sorted by principal gradient values (36). (F) The
normalized pupil diameter (top, mean = SEM) and fMRI signals (bottom) were averaged at pupil
dilation onsets over an 18-s time window, summarized from all 184 subjects. (G) The pupil-
dilation-associated fMRI changes mapped onto a brain surface, shown at 7 time lags (0—12s post-
dilation onset). Rows display cortical surface maps (first two rows) and thalamic volume maps
(third row). Directional arrows denote dorsal (D), anterior (A), and anatomical left (L) directions.



Figure 2. Stimulus information encoding was assessed through fMRI responses using deep
learning-based model. (A) Framework for training and evaluating a CLIP-based semantic
decoder. An fMRI encoder was trained to map stimulus-evoked fMRI responses into CLIP
embedding space via contrastive learning. For evaluation, the trained fMRI encoder encodes fMRI
responses to fMRI embeddings in CLIP space, which are decoded by pre-trained caption decoder
(38) to generate text descriptions, which were then compared to ground truth captions for
evaluation. (B) Representational dissimilarity matrices based on cosine similarity for semantic
CLIP embeddings (left) and fMRI embeddings (right) showed highly similar (p = 0; the
permutation test) structures. (C) Visualization of trained fMRI embeddings using t-SNE reveals
categorical distinctions, with categories color-coded. (D) Examples of correctly and incorrectly
decoded samples, from top to bottom: image stimuli IDs in the NSD dataset, ground truth captions,
and captions decoded from fMRI response. (E) Schematic of task design in the NSD dataset. Eight
participants viewed 10,000 unique images, each presented three times over 30—40 scans over a
year, using a 4-second event-related design. (F) Box plot comparing the encoding accuracy, i.e.
the proportion of correctly decoded samples, between the trained and untrained fMRI encoders
(p=2.8x107, N=8, two-sided paired t-test). Dots represent participants, and the dotted line
indicates 5% chance level. (G) Influence of encoding accuracy on subsequent memory task
performance. Stimuli are binned by initial encoding accuracy (20% increments). Memory
performance at the second presentation showed significant differences across bins (p=2.8x107,
one-way ANOVA, N = 195,000 trials, 5 groups). Error bars represent the standard error of the
mean (SEM). (H) Box plot showing significant difference (p=0.004, N=8, two-sided one-sample
t-test) in subsequent memory performance between trials with correct and incorrect initial
encoding. Dots represent participants. Box plots show the interquartile range (boxes), minima and
maxima (whiskers), and the median (center line). Source data are provided as a Source Data file.

Figure 3. Semantic encoding and memory retrieval are oppositely modulated over the fMRI
SM-to-DMN wave cycle. (A) Detection of SM-to-DMN propagating waves during the task. The
waves were detected using template-matching methods (7), with the principal gradient (PG) map
as the template. Six examples of detected waves, with similarity values showing correlations
between their delay profile and the PG template. (B) Schematics of memory encoding and recall
measurements. (C) Opposite modulations of semantic/memory encoding and memory recall over
the cycle of the SM-to-DMN waves. The averaged pattern of the detected SM-to-DMN waves
(first row) was shifted 6 seconds backward in time to account for the hemodynamic response delay.
Time zero marks the onset of the global mean signal increase (dashed line), which appears to
correspond to the cascade center (D), as indicated by the timing of the upswing in semantic and
visual encoding accuracies for human and mouse data. Both pupil size (second row) and memory
recall (green, bottom row) change significantly across the wave cycle and peak at the DMN-
activated phase, whereas the semantic encoding (third row) and memory encoding (purple, bottom
row) are modulated in an opposite manner. Shadows represent areas within one SEM (N=8
subjects). (D) Opposite modulations of visual encoding accuracy (third row) and hippocampal
SPW-R rate (bottom row) across the spiking cascade cycle (first row) during stationary periods of
continuous natural image stimulation in mice, adapted from (17). Time zero (dashed line) marks
the onset of positive-delay neuron firing. Shadows represent areas within one SEM (N = 20 mice).
Source data are provided as a Source Data file.



Figure 4. Stimulus encoding and its modulation across the SM-to-DMN wave cycle in
different brain regions. (A) Cortical surface map showing the regional significance (paired t-
tests: trained vs. untrained) of semantic encoding accuracy. (B) A box plot showing the semantic
encoding accuracy estimated for different brain regions defined in the Yeo-17 networks atlas (101,
113). Each dot represents an individual participant. The significance of encoding accuracy was
assessed by comparing the trained model to untrained model, similar to the analysis in Figure 2F.
Asterisks denote the levels of statistical significance (two-sided paired t-test, N=8): *, 0.01 <p
<0.05; **,0.001 <p <0.01; *** p <0.001. Exact p-values are listed in Table S3. Box plots show
the interquartile range (boxes), minima and maxima (whiskers), and the median (center line). (C)
Semantic encoding accuracy (solid line) is consistently modulated over the SM-to-DMN wave
cycle in six brain regions exhibiting the most significant encoding accuracy. There is no significant
variation in the phase of peak encoding accuracy among these regions (p = 0.64, one way ANOVA,
N =48, 6 groups). For comparison, the average activation for each region is marked with a dashed
line, which is shifted ahead of time by 6 seconds to account for the hemodynamic response delay.
These regions are distinctly color-coded and their locations are indicated on a flattened cortical
surface. Time series data are provided as the mean + SEM for eight participants (N=8). Source
data are provided as a Source Data file.



Editor’s Summary

Sensory encoding and memory retrieval are oppositely modulated across the cycle of infra-slow
brain dynamics in both humans and mice, revealing a conserved brain mechanism coordinating
seconds-scale sensory and mnemonic processing.

Peer Review Information: Nature Communications thanks Ryan Raut and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file
is available.
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