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Nonlocal entanglement between pair-correlated particles is a highly counter-intuitive aspect of
quantum mechanics, where measurement on one particle can instantly affect the other, regardless
of distance. While the rigorous Bell’s inequality framework has enabled the demonstration of such
entanglement in photons and atomic internal states, no experiment has yet involved motional states
of massive particles. Here we report the experimental observation of Bell correlations in motional
states of momentum-entangled ultracold helium atoms. Momentum-entangled pairs are first gen-
erated via s-wave collisions. Using a Rarity-Tapster interferometer and a Bell-test framework, we
observe atom-atom correlations required for violation of a Bell inequality. This result shows the
potential of ultracold atoms for fundamental tests of quantum mechanics and opens new avenues to

studying gravitational effects in quantum states.

INTRODUCTION

Bell’s inequality serves as a fundamental test for dis-
tinguishing between classical local realism and the non-
local correlations predicted by quantum mechanics [1, 2].
Its violation is a cornerstone of quantum mechanics, di-
rectly challenging local hidden variable (LHV) theories
and demonstrating the nonlocal nature of quantum en-
tangled states. Such violations of Bell’s inequality have
been experimentally observed in various systems, pre-
dominantly focusing on internal degrees of freedom such
as the polarization states of massless photons [3-6] and
atomic spin states [7-11]. These Bell tests involve mea-
suring so-called Bell correlations — a set of certain joint
probability measurements on a pair of particles — that
provide compelling evidence supporting the nonlocal na-
ture of quantum entanglement.

Extending Bell tests to external, motional degrees
of freedom — particularly momentum-entanglement — of
massive particles offers a deeper understanding of quan-
tum nonlocality and its implications for the foundations
of quantum mechanics. Momentum-entangled states
of massive particles, for instance, enable fundamental
experiments involving couplings to gravitational fields,
thereby enabling tests of theories that seek to recon-
cile the currently incompatible frameworks of quantum
mechanics and general relativity [12-16]. However, ex-
perimental demonstrations of Bell inequality violations
in motional states remain limited, with only photonic
demonstrations to date [17].

Ultracold atomic systems, and particularly metastable
helium (*He*) atoms [18], have been proposed as promis-
ing systems for observing Bell nonlocality in momentum-
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entangled massive particle states [19]. The high internal
energy of metastable helium enables precise single-atom
detection with high spatial and temporal resolution. Ef-
forts towards this goal so far [20-22] include demon-
strating a matter-wave Rarity-Tapster configuration [17]
interferometer using colliding Bose-Einstein Condensate
(BECs) of “He* [23] and showing control over the rela-
tive phases of momentum modes in atomic Bragg diffrac-
tion [24]. Additionally, Perrier et al. [25] validated the
quantum statistics of a two-mode squeezed vacuum state
generated via atomic four-wave mixing in BEC collisions,
either in free space [23, 26—29], within an optical lattice
potential [22, 30-34] or via cavity mediated interaction
[35]. In the low-mode occupancy limit, such states ap-
proximate the archetypal Bell state that maximally vio-
lates Bell’s inequality. However, a demonstration of non-
local behaviour in this system has remained elusive.
This work presents the first experimental observation
of Bell correlations necessary to demonstrate nonlocal-
ity in momentum-entangled pairs of atoms. By col-
liding two BECs of “He*, we generate pairs of corre-
lated atoms with opposite momenta via spontaneous s-
wave scattering. We implement the matter-wave ana-
log of the Rarity-Tapster interferometric scheme and
measure phase-sensitive momentum correlations between
scattered atoms after passing through separate interfer-
ometric arms. Analyzing these momentum correlations
within the framework of a Bell inequality test, we ob-
serve strong correlations that provide direct evidence of
the nonlocal quantum nature of the system and are un-
able to be explained by a large class of LHV theories.

RESULTS

Momentum-entanglement via BEC collision.
Our experiment begins with a BEC of helium atoms mag-
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Fig. 1. Schematic of the experimental procedure in momentum space. a Orthogonal laser beams with wavevectors k,,
and k; (orange arrows) initially drive a two-photon Raman transition to transfer *He* atoms to the m =0 sublevel and impart
momentum of —2koz in the direction of gravity (g). b A Bragg transition at to coherently splits the atoms into momentum
modes: 0,—2ko,—4ko. The 0 and —2ko components (red) and —2ko and —4ko components (blue) collide to create two spherical
s-wave scattering halos of entangled pairs of atoms. ¢ A Rarity-Tapster interferometer mixes atom pairs in momentum modes
{p,p’} and {q,q'} from each halo, which are entangled through momentum conservation. Bragg transition pulses couple
the atoms in separate arms of the interferometer, denoted by L for (p,q) and R for (p’,q’). At t1 and t2, we apply mirror
and beamsplitter pulses of duration Ths and T and impart phases 7/2 and ¢r.r = 6, — 01, respectively, equal to the phase
difference between the upper (,) and lower (6;) Bragg beams. After a fall-time ¢¢ ~ 0.416 s the scattered atoms are detected
on a multichannel plate and delay line detector (MCP-DLD). Detection windows (grey-shaded annuli) centred around each
halo’s equatorial plane yield multi-particle correlations between {DLl, D2, Dri, DRQ} at the output of the interferometer.

netically trapped (see Methods section for details) in the
my = +1 sub-level of the long-lived 23S; metastable
state [18, 36]. Following trap switch-off, momentum-
entanglement is created and manipulated via resonant
two-photon Raman and Bragg transitions using two or-
thogonal off-resonant laser beams (see Methods section
for details). Figure 1 shows a schematic representation

laser beams. By transferring atoms to a magnetically
insensitive state, we prevent momentum distortions that
may occur due to stray magnetic fields in the vacuum
chamber during the experiment.

We then coherently split the condensate of my; = 0
atoms, already moving with momentum —2hkg, by im-

of the experimental procedure.

We first transfer 90(5)% of the BEC atoms to the
magnetically insensitive m; = 0 sub-level via a Raman
pulse. This pulse also imparts a two-photon recoil mo-
mentum of —2hky in the 2-direction, where kg = koz
and kg = K/ V2 based on our beam geometry. Here
K = 27/X is the wavenumber of the laser beam and
A=1083.19 nm denotes the wavelength of the incident

parting +2hky momentum to the atoms via a two-photon
Bragg transition pulse [28, 37] (Fig. 1b). This ‘collision
pulse’ splits the bulk of the condensate atoms into three
momentum orders: 0, —2hky, —4hky. As the momen-
tum displaced condensates spatially separate, pairs of
constituent atoms undergo s-wave collisions [26], forming
spherically symmetric halos of spontaneously scattered
atom pairs in momentum space. Each halo is centred
about the centre-of-mass (COM) momentum of the rel-



evant pair of colliding condensates. Since we split the
condensate into three momentum orders, we observe the
formation of two distinct scattering halos: one between 0
and —2hkg (red), and another between —2hk, and —4hk,
(blue), as illustrated in Fig. 1c.

This collision process creates momentum-entangled
atom pairs analogous to the process of four-wave mix-
ing in quantum optics [26, 27|, in which entangled pho-
ton pairs are generated through spontaneous paramet-
ric down-conversion [38]. In this context, each of the
halos can be characterized as an ensemble of two-mode
squeezed vacuum states, with atom pairs occupying di-
ametrically opposite momentum modes within the halo,
in accordance with conservation of momentum and en-
ergy [19, 23]. We operate our experiment in the low-gain
regime with mode occupancies n < 1, i.e., a low aver-
age number of atoms in a scattered momentum mode
[39]. Under such conditions, we analyse data with a sin-
gle pair detected in the relevant output momentum ports
of the Rarity-Tapster interferometer, which allows us to
truncate and transform the halo’s mode-squeezed states
into a prototypical Bell state for atoms [19, 23] (see Sup-
plementary Note 1). The reduced and truncated initial
state (i.e., the state of a quartet of scattering modes that
form the initial state at the input ports of the interfer-
ometer) can be approximated to acquire the form of a
prototypical Bell state [19, 23]:

1
W) ~ \—@(|1>p\1>p/|0>q\0>q/ +10)p[0)pr Vgl L)ar), (1)

where (p,p’) and (q,q’) (illustrated in Fig. 1) correspond
to correlated momentum modes in the top (red) and bot-
tom (blue) halos, respectively, satisfying, p+p’ = —2ko,
q+q = -4k, p — 2kg = q and p’ — 2ko = ¢

Interferometry and single-atom detection. We
wait a separation time of 350 us (= ¢1) after the colli-
sion pulse (tg) to apply a series of Bragg pulses - mirror
(at t1) and beamsplitter (at to = ¢ + 350 ps) pulses
(see Supplementary Methods for details on Bragg pulse
characterisation and optimisation) - to selectively couple
the momentum modes: (p,p’) and (q,q’), whose total
paths through the interferometer are indistinguishable
and interfere. The interference is manipulated through
phases ¢, and ¢ imparted onto the momentum modes
by the beamsplitter pulse. In our experimental setup,
we are limited to equal phase settings ¢; = ¢r con-
trolled via the relative phase of a single pair of Bragg
laser beams that we use to globally address all momen-
tum modes within the halos. We refer to this setup as a
Rarity-Tapster type matter-wave interferometer [17, 23]
(Fig. 1c).

To detect atoms, we utilize a micro-channel plate
(MCP) and a delay line detector (DLD) system located
848 mm below the trap that provides three-dimensional
(3D) resolved detection with single atom resolution [40].
From spatial-temporal information the DLD records, we
can reconstruct the velocity (i.e., momentum) distribu-
tion of the atoms, enabling us to measure multi-atom

momentum correlations within our system [39]. We be-
gin with a raw reconstruction of the 3D momenta of the
atoms and then proceed through several post-processing
stages, involving coordinate transformations, filtering,
and masking, to accurately determine the correlations
between selected atomic momenta.

Momentum-correlations and non-local charac-
terisation. Forming the central basis in the analysis of
our experiment is the measurement of two-particle mo-
mentum correlations between atoms in opposite momen-
tum modes k, —k + Ak of the scattering halos given by
[39],

9D (AK) = ¢ (k,-k + Ak) — D kev <1A77/kn:k+Ak :))
> xev (M) (Paiet-Ak)

(2)
where n denotes the momentum-mode number operator
and V is the volume of the scattering halo occupied in
momentum space (Fig. 2a). We describe this correla-
tion function as the measurement of the joint probability
of detecting atoms in the momenta k,-k+Ak divided by
the product of their individual detection probabilities.
Figures 2b and c display the experimentally measured
second-order correlation function g(®) (Ak) obtained from
the pair of scattering halos, where Ak = |Ak|. The high
amplitude observed at Ak = 0 indicates the generation
of highly correlated atom pairs and is set by the mode
occupancy 7 (following the relationship, ¢ (0) = 2+1/7a
[39]), which represents the average number density of
a scattering mode whose volume is set by the momen-
tum correlation widths of the source condensate [41]. We
reach averaged amplitudes of ¢(*)(0) ~ 30 for each of the
halos (Fig. 2, b and ¢) corresponding to average mode
occupancies of i &~ 0.035, demonstrating correlation am-
plitudes consistent with those required to violate a Bell
inequality [19, 42].

In the interferometer, the spatially separated atoms
in the entangled momentum modes (p, p’) and (q, q')
must be made to overlap to observe significant multi-
particle interference [22]. This interference depends on
the phases applied by the beam splitter pulse on each
separated arm of the interferometer (Fig. 1c). Success-
fully achieving this multi-particle interference with in-
dependently adjustable phases is essential to effectively
demonstrate quantum non-locality in the sense of a vio-
lation of the CHSH-Bell inequality [43]. We can observe
this multi-particle interference at the output of our inter-
ferometer by measuring the joint probability distribution
function or population correlations Py s between entan-
gled momentum pairs (p, p’) and (q, q’). This is defined

as Py = (afal, ay an) = (Aine) (where k € {p,q} and
k' € {p’,q'}) and measures correlations between joint-
detection events at the outputs of the left (L) and right
(R) arms of the interferometer. Taking the input of our
interferometer as the momentum-entangled Bell state in
Eq. (1) and treating the mirror and beamsplitter pulses
of the interferometer as instantaneous linear transforma-
tions (see Supplementary Note 2), we arrive at the joint
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Fig. 2. Two-particle momentum correlations in scat-
tering halos. a Experimental data from 1000 shots showing
the momentum distribution of the initial double s-wave scat-
tering halo state. The yellow annulus about the equator of
each halo depicts the chosen detection window range with
a vertical range of +4° about the equator. b, ¢ Measured
g? (Ak), with Ak = |Ak| and ko = |ko|, for the ‘Top halo’-
between 0 and —2k¢ (red), and the ‘Bottom halo’- between
—2ko and —4kg (blue), respectively. Error bars show the shot
noise for each data point and solid lines are Gaussian fits to
the data.

probability distribution functions
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with respect to the output state. Interference of the scat-
tered pairs is illustrated by the dependence of the joint
probability distribution function on the combined phase
® = ¢y + ¢r, where ¢, and ¢p represent the beamsplit-
ter phases imparted on the momentum modes {p, q} and
{p’,d'}, respectively. Although our experimental config-
uration only allows for uniform control of the phases, i.e.
o1 = ¢r, Egs. (3) and (4) demonstrate that it is still pos-
sible to use the global phase ® = ¢, + ¢ (instead of the
relative phase ¢;, — ¢ as in the original Rarity-Tapster
scheme [17, 19]) to demonstrate entanglement and Bell
correlations present in the initial state.

Figure 3a displays the experimental joint probability
distribution functions measured at the output of the in-

terferometer as we vary the global phase ®. We ob-
serve strong out-of-phase oscillations of the joint prob-
abilities consistent with the predictions of the ideal Bell
state (Eqs. (3) and (4)), confirming the existence of multi-
particle interference in our setup.

From the joint probability distribution functions, we
can obtain the Bell correlation function

Pp,p’ + Pq,q’ - Pp,q’ - Pq,p’

Eq) == )
( ) Pp,p’ "‘Pq,q' "‘Pp,q’ +Pq7p/

()

which is expected to have the general form [44]
E(®) = —Acos(®' + 9). (6)

Here, ® = &'+ 4 is the absolute combined phase acquired
by the atoms from the beamsplitter pulse, where ¢ is
a phase offset that incorporates any deviation from the
experimentally set phase @'.

The ideal Bell state (Eq.(1)) would yield an ampli-
tude of A = 1, following from Eqgs. (3) and (4). However,
contributions from higher-order Fock states in the entan-
gled pair generation process lead to a reduced amplitude
A = (1+n)/(1+ 3n) expressed in terms of the aver-
age mode occupancy 7 [19, 42]. The additional phase
offset § in Eq. (6) accounts for details in the precise im-
plementation of the Rarity-Tapster interferometer, such
as path length differences between the two Bragg beams
and phase drifts experienced by the scattered particles
as they follow free-fall trajectories in a uniform gravita-
tional potential.

The Bell correlation function E(®) constructed from
the experimentally detected joint probabilities is shown
in Fig. 3b. We find remarkable agreement with both a
sinusoidal fit function, consistent with the expectation
(Eq. (6)), as well as theory predictions (represented by
the black-dotted line) with A = (1 + 7)/(1 + 372) com-
puted from the experimentally obtained average mode
occupancy.

We further characterise our observed correlations by
demonstrating the distinct nonlocal behaviour in our sys-
tem through a violation of a steering inequality [11, 45—
47]. From the steering inequality, we construct (see Sup-
plementary Note 3 for details on the nonlocality crite-
rion) the following nonlocality criterion using the values
that E(®) takes at complementary global phase settings,

C(D,®+7) = |E(®) — E(®+ )| > V2. (7)

Satisfying this criterion implies a violation of the steer-
ing inequality, C(®,® + 7) < /2, thus demonstrating
that a set of correlations observed in our system can-
not be described by a wide range of hybrid local hid-
den wvariable (LHV)—local hidden state (LHS) models
[45, 46, 48] (see Supplementary Note 3). We plot the LHS
of Eq. (7) in Fig. 3c using the experimentally constructed
values of F(®) (markers), a sinusoidal fit of E(®) (solid
mauve line) and theory predictions (black-dotted line).
The strong oscillations in the Bell correlation function
lead to an observed maximum violation of C(®,® 4 7) =
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Fig. 3. Multi-particle interference and non-classical correlations. Experimental data from over 35,000 shots. a Global
phase (®)-sensitive joint probability distribution function experimentally measured at the interferometer output as @ is varied.
Teal data points represent the measured values of (Pp p'+Pq,q/), While magenta data points correspond to (Pq,p/+Pp,q’). b
The Bell correlation function E(®) with a sinusoidal fit following Eq. (6), where we obtain an amplitude of A = 0.86(3) and
phase-offset 6 = 1.02(4). The light-coloured data points around E = 0 indicate uncorrelated atom pairs passing through the
interferometer, demonstrating expected near-zero Bell correlation amplitudes (see Supplementary Note 3). ¢ A nonlocality
witness C constructed from values of the Bell correlation function F at complimentary phase settings. Data points located
within the shaded region (> v/2) indicate the presence of Bell correlations strong enough to exclude a class of LHV theories,
with an observed maximum violation of ~ 3.90 at C(®,® + 7) = 1.752 £ 0.085 when ® = 3.062. All error bars correspond
to standard deviation estimates using a binomial proportional estimator (see Supplementary Methods for details on the error

analysis) with solid lines being fits to the data. The theoretical prediction (black-dashed line) is Eq. (6).

1.752 £ 0.085 > /2 (i.e., a violation of about ~ 3.90) at
$ = 3.062.

DISCUSSION

The violation of the inequality (Eq. (7)) is dependent
on the Bell correlation function FE(®) displaying a suffi-
ciently large difference between the maximal and minimal
correlation, as well as following a particular functional
form. In the context of Eq. (6), this reduces to a require-
ment that the oscillation amplitude exceeds A > 1/ V2.
Such a requirement on A is also shared by more stringent
tests of nonlocality, including the celebrated CHSH-Bell
inequality [43, 44]. However, in the context of Bell non-
locality an equally important aspect that leads to the in-
compatibility of quantum mechanics with LHV theories
is the sinusoidal variation of the Bell correlation function
[2]. In Fig. 3b we demonstrate that our experimental ob-
servations feature both key elements by fitting Eq. (6) to
our experiment observations, which yields a fitted value
of A =0.86(3). This signals the detection of Bell correla-
tions in our experiment with the potential to violate the
CHSH-Bell inequality upon the implementation of inde-
pendent phase settings in the spatially separate regions
of L and R. This is a major improvement on our pre-
vious work [23], where we were unable to demonstrate
multi-particle interference sufficient for a non-locality vi-
olation. This was possible due to key improvements to
the experimental setup that yielded higher correlation
amplitudes and signal-to-noise ratio. Such improvements
include upgrading the micro-channel plates to have a
higher quantum efficiency, frequency-locking the Bragg

beams to minimize frequency fluctuations and narrowing
the detection windows to only +4 deg around the equator
of the halo (see Methods) for increased precision.

In conclusion, we generate momentum-entangled pairs
of massive particles by colliding atomic BECs to form
dual s-wave collision halos. Using Bragg beams, we co-
herently manipulate the momentum states of the scat-
tered atoms, allowing for selective coupling of desired
atom pairs in momentum states (p,p’,q,q’) and impart-
ing an arbitrary global phase onto them.

We have observed two-particle correlations dependent
on the global interferometric phase ® and having a suf-
ficiently strong amplitude A that signal the detection
of nonclassical, nonlocal Bell correlations in our exper-
iment. This demonstration could be extended by adding
independent phase settings in separate regions of the
scattering halos to test a CHSH-Bell inequality violation
[43] using momentum-entangled states of atoms, an even
stronger bound on nonlocality.

We remind the reader that an important aspect in
any such future demonstration would be to ensure large
space-like separation between the correlated atoms, re-
quired for closing the locality loophole. To ensure this,
the independent phase setting ¢ and ¢r must be in-
voked at a time when the atom pairs are already space-
like separated. Given that our detection resolution in
time is approximately 1 ns, this requirement implies that
the atom pairs must be separated by at least 30 cm. For
comparison, the diameter of our current atom detector
is 8 cm, which—while being significantly smaller than 30
cm—is not out of reach of the next generation of experi-
ments.

The future development of this scheme could poten-



tially involve generating momentum-entanglement be-
tween isotopes of helium—specifically, *He* and *He*
[49]. This entanglement between momentum states of
atoms with different masses would offer a suitable ba-
sis for the testing of the weak equivalence principle with
quantum test masses [50]. Furthermore, such a platform
for entangling massive particles could be useful in ex-
amining decoherence theories in quantum systems influ-
enced by gravitational field interactions [12, 51-54], and
enhance our understanding of the relation between quan-
tum theory and gravity, as described by general relativity.

Our findings not only establish a new platform for
testing the fundamental principles of quantum mechanics
but also open avenues for exploring quantum information
protocols that leverage motional entanglement [55-57].
Demonstrating and controlling momentum-entanglement
in ultracold atomic systems holds promise for advanc-
ing quantum technologies such as quantum sensing and
quantum imaging through sub-shot noise atom interfer-
ometry [58, 59].

METHODS

Condensate formation and atom-optical con-
trol. Using a bi-planar quadrupole loffe configura-
tion magnetic trap [60], we prepare our ‘He* BEC of
~10° atoms in a harmonic potential with frequencies of
(Wgy wy,w,) /21 =~ (15,25,25) Hz. The magnetic trap is
then rapidly switched off, where we then wait approxi-
mately 1.5 ms for the background magnetic field to sta-
bilise to a uniform magnetic field By ~ [0.5(%+2) —0.8y]
G which is maintained for the remainder of the experi-
ment. The atoms’ momentum and internal states are ma-
nipulated using resonant two-photon Raman and Bragg
transitions, which utilize two orthogonal laser beams
aligned along the (% +2)/+/2 directions. The beams are
frequency-locked and tuned to have optical frequencies
far-detuned (to the blue) from the 23S; — 23Pq transi-
tion by 2.3 GHz (Fig. 1, a and b), to minimize single-
photon absorption. With these laser beams, a series of
light pulses is employed to transfer groups of atoms be-
tween different momentum and internal states (see Sup-
plementary Methods for a detailed characterisation of the
Bragg pulses).

Detection and scattering halo analysis. Exploit-
ing the ~19.8 eV internal energy of the metastable helium
atoms, we can measure single atom detection events at
the microchannel plate (MCP) and delay line detector
(DLD) with an estimated quantum efficiency of 20(2)%
[61] and spatial-temporal resolutions of 120 pm and 3 ps
[62], corresponding to a momentum resolution of about
~ (4.5 x 1073)ko along k,, and ~ (4.6 x 10~%)ko along
k.

From the reconstructed velocities of the atoms, we ac-
curately determine the momenta of the scattered atoms
by performing coordinate transforms for each of the halos
into the centre-of-momentum (COM) reference frame for

respective halos. Due to the number of scattered atoms
in the halos being relatively few (< 100), we determine
the COM of the halo using its colliding parent conden-
sates which have a higher number of atoms (~ 3 x 103).
This estimation of the position of the COM is a good
approximation of the true COM of the halo. Further,
we perform this coordinate transform to the halo COM
reference frame for each experimental run, thus minimiz-
ing any broadening or skewing of momentum distribu-
tions due to shot-to-shot fluctuations when integrating
over multiple datasets. We also perform dataset filter-
ing based on the number of scattered atoms in the halos
to ensure that we analyse datasets having similar mode
occupancy (7 & 0.035) and hence consistent two-particle
correlation amplitudes g(?)(0).

We obtain the measured correlation results by lim-
iting our detection windows around each of the halo
equators. This is to ensure that selected momentum
modes within our detection window experience nearly
uniform and identical coupling from the Bragg trans-
fer pulses (see Supplementary Methods). Specifically, we
only include scattered pairs having radial velocities of
0.8 < w/v, < 1.1 (v, is the velocity radius of the scat-
tering halo equal to ~ 65 mm/s), and pairs within +4°
from the halo’s equatorial plane, corresponding to a verti-
cal velocity range of +£4.5 mm/s about the equator. We
arrive at this detection window range as a balance be-
tween two competing constraints — minimizing uninten-
tional averaging of the imprinted phases of the scattered
pairs across the detection range resulting in decreased
interference contrast and reduced joint-detection proba-
bilities at the output of the interferometer, and maxi-
mizing the signal-to-noise ratio (SNR) through integrat-
ing over a wider scattered momentum range. Our cho-
sen detection window ranges {Dr1, Dr2, Dr1, Dra} are
shown in Fig. 1c, within which the phase varies by ap-
proximately 1.5 radians due to particle-path trajectories,
and we achieve an average SNR of 30:1. From this trun-
cated distribution we measure the pair-correlations be-
tween the scattered atoms, where we define the size of
the integration volume (equivalently, size of a scattering
mode) as a cubic volume with sides equal to ~ 0.02 x k.
(k. = m - v,./h). The side length of integration volume
is approximately 0.50 g g, where opp represents the two-
atom back-to-back correlation length [39]. This length
follows from the relation opp ~ 1.1og, with o being
the rms momentum width of the source condensate, as-
suming it can be approximated by an isotropic Gaus-
sian distribution [41]. The small integration volume size
also ensures several bins are within the detection window
range.

DATA AVAILABILITY

The data that support the findings of this study are
available from Zenodo at [63].
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