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ABSTRACT 

Conventional storage and retrieval of nucleic acid specimens, particularly unstable RNA, rely on 

costly cold-chain infrastructure and inefficient robotic handling, inhibiting large-scale nucleic acid 

archives needed for global genomic biobanking. We introduce a scalable room-temperature 

storage system with minimal physical footprint that enables database-like queries on 

encapsulated, barcoded, and pooled nucleic acid samples. Queries incorporate numerical 

ranges, categorical filters, and combinations thereof, advancing beyond previous demonstrations 

of single-sample retrieval or Boolean classifiers. We evaluate this system on ninety-six mock 

SARS-CoV-2 genomic samples barcoded with theoretical patient data including age, location, 

and diagnostic state, demonstrating rapid, scalable retrieval. We further demonstrate storage and 

sequencing of human patient-derived nucleic acid samples, illustrating applicability to clinical 

genomic analysis. By avoiding freezer-based storage and retrieval, this approach scales to 

millions of samples without loss of fidelity or throughput, enabling large-scale pathogen and 

genomic repositories in under-resourced or isolated regions of the US and worldwide. 
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INTRODUCTION 

Large-scale collection, transport, storage, and retrieval of nucleic acids is essential to enable 

numerous advanced biotechnological application areas including population-scale disease 

tracking1, precision genomic medicine2–4, forensics5, and global ecological record-keeping6,7. In 

particular, genomic DNA and RNA collected from large and diverse patient cohorts empower both 

pathogen tracing and genomic medicine by enabling the prediction of disease-onset likelihood, 

as well as informing personalized treatment plans4,8–12. In general, intact native nucleic acid 

samples provide the most complete representation of genomic information, including epigenetic 

marks, such as methylation patterns in DNA and genomic viral RNA, as well as modifications to 

mRNA and lncRNA13,14.  

Comprehensive nucleic acid analyses rely on both short-read and long-read sequencing 

platforms to generate the most detailed and accurate genomic data. These platforms, along with 

gold standard assays like mass spectrometry for analyzing epigenomic and RNA modifications15, 

can be both time- and cost-prohibitive. As a result, most samples are preserved in cold storage 

for future analysis rather than being fully processed immediately. For example, the UK Biobank 

has collected approximately 500,000 patient samples, but genetic characterization has been 

limited to a large pre-selected set of genetic markers. Portions of the original blood samples were 

preserved at either -80° C or -180° C to enable future analyses.16,17  

This long-term storage strategy offers several advantages. It reduces upfront costs, allows 

researchers to take advantage of future improvements in sequencing technology, and enables 

sequencing efforts to focus on samples that prove relevant to research questions of interest, 

which may only become apparent long after sample collection. Yet despite its advantages, 

storage of intact nucleic acid samples is also a costly option. Samples require energy-intensive 

cold-chain infrastructure for sample preservation and, once sequencing is desired, transport to 

centralized analysis facilities18–20. This infrastructure burden is particularly challenging for RNA 

samples, which are highly susceptible to degradation without stringent preservation protocols21,22. 

Even after reaching analysis facilities, samples may require prolonged low-temperature storage 

while awaiting comprehensive analyses. Further, the throughput and efficiency of sample recall 

from large-scale, automated freezer systems are limited by mechanical factors such as robotic 

automation speed. 
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As epidemiology, pathogen surveillance, personalized medicine, and ecological 

conservation efforts attempt to scale to worldwide sample collection, the aforementioned 

challenges create significant technological barriers that limit access to nucleic acid samples from 

under-resourced regions both in low- and high-income nations23. This contributes to severely 

limited participation in rare diseases research, where understanding complex genetic traits and 

disease associations requires the analysis of tens of millions or more intact DNA and RNA 

samples from diverse global populations24–28. Similarly, pathogen monitoring and ecological 

preservation efforts at a global scale become prohibitively cumbersome and costly. Thus, there 

is an urgent need for low-cost, low-energy, and scalable storage infrastructures that preserve 

DNA and RNA at the point of collection while simultaneously enabling ambient transport and 

efficient sample retrieval for downstream genomic analyses.  

Traditional biosample storage methods, which rely on barcoded tubes stored in freezers 

or liquid nitrogen tanks, face significant challenges in cost and practicality as collections scale into 

the millions. For these vast biosample databases, sophisticated systems are required for efficient 

sample search and retrieval, in addition to continuous energy consumption and high-cost storage 

infrastructure. While automation partially alleviates these barriers, these biosample databases 

remain limited by their low storage density and use of sequential rather than parallel or multiplexed 

sample access.  

In contrast, molecular-based approaches enable in principle the pooling of millions to 

billions of unique nucleic acid biosamples per tube, effectively creating a highly dense biosample 

database. Retrieval of specific samples or sets of related samples can be achieved using 

biochemical approaches such as PCR29, magnetic pulldown30, or fluorescence-activated sorting 

(FAS)31,32 that use molecular labels including primers, affinity tags, and fluorescent dyes. Primers 

and affinity tags are often made from DNA, capitalizing on the innate specificity of DNA 

hybridization to ensure precision and scalability of retrieval. These methods simultaneously 

process the entire pool of biosamples, which improves retrieval efficiency significantly by 

executing millions to billions of concurrent molecular search and retrieval operations in solution 

to far surpass the capabilities of conventional manual or robotic search-and-retrieval of individual 

tubes. For example, we previously demonstrated a system of silica-encapsulated biosamples 

labeled with DNA barcodes. The DNA barcodes encoded Boolean metadata about each sample, 

such as the species of origin, with each barcode sequence associated with a single metadata 

value (e.g., E. coli or Homo sapiens). This framework facilitated precise identification of samples 

using fluorescent probes to detect each barcode, while silica encapsulation effectively preserved 
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biosamples at room temperature and prevented unintended interactions with the biosamples that 

could interfere with biochemical retrieval. With this framework, we demonstrated Boolean retrieval 

in two studies: one using a prototypical image database stored in plasmid DNA32, and another 

with a pool of genomic DNA and RNA samples31. Retrieval was demonstrated to have high 

specificity, with successful retrieval of target samples comprising just 1 in 106 of the total sample 

pool32. However, this and prior molecular labeling systems29,30,33 remain limited to simple Boolean 

queries and do not effectively perform numerical range searches (e.g., for time or age ranges) or 

categorical searches that are required for efficient, large-scale biospecimen retrieval and are 

routinely performed on modern digital databases using Structured Query Language (SQL). 

As an example, consider labeling samples with barcodes to indicate patient ages between 

0 and 99. Previous barcoding schemes would associate each possible age value with one of 100 

distinct barcode sequences.31,32 A simple numerical range query for samples from patients aged 

50 to 74 would require checking for the presence of 25 different barcodes, requiring 9 stages of 

fluorescent sorting assuming up to three barcodes may be checked at each stage. Moreover, the 

queries essential for genomics and epidemiological applications routinely involve selection based 

on multiple patient criteria, diagnostic conditions, and/or time periods, further compounding the 

number of sorting stages required. Considering the time taken and selection error compounded 

at each sorting stage, this type of barcoding scheme quickly becomes impractical for complex 

queries. This renders these prior molecular labeling systems unsuitable for large-scale genomic 

databases, which contain tens to hundreds of millions or even billions of samples, and where such 

queries become essential.  

To enable biosample database implementations that approach the capabilities of modern 

digital databases, in the current work we develop a scalable biosample database that permits 

efficient metadata queries for numerical ranges, such as ranges of dates or ages; categories, 

such as cities or countries; and previously demonstrated Boolean classifications, such as 

symptomatic/asymptomatic. Central to our approach is the introduction of a type-aware schema 

that maps each metadata field to a compact, composable set of barcodes (rather than one 

barcode per value), enabling these queries via barcode presence readout. In this framework, sets 

of barcodes efficiently encode values across distinct data types, providing a high-level abstraction 

over the raw binary information encoded by the presence or absence of each barcode sequence. 

Using a synthesized database of model SARS-CoV-2 genomes, we demonstrate the 

effectiveness of our query system in a simulated pathogen outbreak scenario, where passengers 

entering a major international airport are comprehensively swabbed for SARS-CoV-2 to track the 
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pandemic (Figure 1a). Each sample simultaneously encodes age, vaccination status, presence 

of symptoms, and flight information (flight number, month and year, and place of origin). We 

performed retrospective epidemiological and immunological analyses with queries of increasing 

complexity, including queries for a particular health status, for three distinct age ranges, and for 

simultaneous matches to criteria for date range, location, and health status. These examples 

illustrate a general-purpose SQL-like query language, permitting arbitrary logical expressions 

composed of numerical range, categorical, and Boolean metadata criteria. This work thereby 

demonstrates a scalable storage system that supports the expressive query capabilities of 

modern digital databases (Figure 1b), while eliminating cold-chain logistics through silica 

encapsulation for long-term RNA sample preservation at room temperature31,32. This framework 

addresses bottlenecks in nucleic acid storage and retrieval, offering broad applications in 

molecular diagnostics, pathogen surveillance, and ecological preservation. 

 

 

Figure 1 | Application of a molecular database to simulated SARS-CoV-2 tracking. a, Simulated scenario of 
sample collection at Boston Logan airport with subsequent pooling and nucleic acid extraction, encapsulation, and 
barcoding of samples using our proposed molecular filesystem. b, Workflow for querying and analyzing samples within 
a molecular database, shown side-by-side with generic database operations. Some image elements taken from NIAID 
NIH BioArt Source.34–36 

 
RESULTS 
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Database construction 

Ninety-six mock patient samples were separately encapsulated in 5 µm silica microcapsules 

(Figure 1a). These microcapsules simulated samples drawn from passengers flying into Logan 

International Airport in Boston, Massachusetts, and subsequently stored archivally for future 

diagnostic or epidemiological testing, if needed. Each sample consisted of at most one variant of 

the SARS-CoV-2 genome using either synthetic P.1 and B.1.1.7 variants and a unique internal 

85-nt barcode whose purpose was to aid validation of microcapsule retrieval by making possible 

downstream identification of de-encapsulated microcapsules in a pool. Variants were quasi-

randomly assigned to each sample, with approximately a 15% chance of some variant being 

present. In contrast to our previous work32,37, where each encapsulation reaction contained a 

single nucleic acid species such as plasmid DNA32, or various other individual nucleic acids like 

mammalian and bacterial genomic DNA, total RNA from human cells, or SARS-CoV-2 RNA37, the 

current work employed co-encapsulation of multiple nucleic acid types within each reaction. 

Specifically, the nucleic acids introduced into each encapsulation reaction consisted of ~1015 

copies of 85-nt ssDNA internal barcodes that uniquely identified each patient sample for purposes 

of retrieval validation and, for designated samples, ~107 copies of 5-kb fragments of synthetic 

SARS-CoV-2 RNA. Because the encapsulation process relied solely on charge interactions 

between the negatively charged phosphate backbone of nucleic acids, we expected successful 

incorporation of all nucleic acids irrespective of length or type (Supplementary Figure 1), as 

previously demonstrated37. Subsequent validation using qPCR and RT-qPCR confirmed efficient 

nucleic acid encapsulation and de-encapsulation, yielding an estimated average of approximately 

1 copy of SARS-CoV-2 genome and ~108 copies of the internal barcode per microcapsule.  

 

Database labeling and querying 

The ideal SARS-CoV-2 genomic database would label each sample with metadata features, such 

as its unique identifier, patient health status, sample acquisition date, and flight origin. For our 

example use case, several features were chosen to describe a variety of relevant metadata, 

including patient age and month and year of the arrival flight, which are examples of numerical 

metadata; vaccination status, which is an example of Boolean metadata; and flight number and 

city of origin, which are examples of categorical metadata. For each microcapsule, each feature 

value was encoded into a set of barcodes to be displayed on its exterior (Figure 1a), with a total 
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of either 13 or 14 unique 25-nt ssDNA barcodes per microcapsule. These barcodes were derived 

from a library of 240,000 orthogonal 25-mers38, which were computationally designed and 

experimentally validated for orthogonality to ensure minimal cross-hybridization even when many 

distinct barcode sequences were used within a pooled system. Differing encoding strategies were 

employed based on the type of metadata (numerical, Boolean, or categorical), which enabled 

type-specific queries of each feature, such as queries for numerical ranges. More detail about 

each encoding and retrieval strategy is given in Methods. 

For numerical metadata, we encoded each numerical value as a sequence of digits in a mixed-

radix representation, corresponding to a sequence of barcodes with one barcode per digit. 

Queries for an exact numerical match are performed by probing for every barcode in its 

representation, while ranges of various sizes are possible by omitting one or more of the less 

significant digits (Figure 2). Categorical metadata were encoded using distinct combinations of k 

barcodes for each possible value, so that the value of k determined the number of barcodes 

required to identify a sample's specific feature value. This approach scales to accommodate an 

extensive number of feature values. Boolean metadata, on the other hand, were straightforward, 

with the presence or absence of a single barcode indicating the feature's state. 

When performing a query, the search string is first translated into a DNA barcode list (Figure 2). 

This list not only facilitates the query but also informs the selection of unique dyes needed for 

FAS. For NOT logic, the barcode that denotes the unwanted condition is tagged with a fluorescent 

dye. During sorting, microcapsules that do not show this fluorescence are selected, thus excluding 

the condition indicated by the dye. OR logic employs a single dye for all relevant barcodes, 

selecting samples with the matching dye. For AND logic, each query barcode is tagged with a 

distinct dye, and only samples displaying all unique dyes are selected. This intricate logic 

necessitates a careful selection of dyes and strategic grouping of search parameters, ensuring 

precise sample retrieval. 
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Figure 2 | Conversion of search query to operations on a molecular database. a, Each query is composed of 
criteria on numerical, Boolean, and categorical metadata. b, Each metadata feature corresponds to a set of barcodes, 
with different encoding strategies depending on data type. In this example, the numerical metadata date is represented 
by one barcode per digit for a total of seven barcodes (two for the month, three for the day, and two for the last two 
digits of the year). The year is in base 10 while the month and day are represented using a mixed-radix representation 
combining bases 3 and 4, with the place value of each digit indicated by subscript. Ranges of contiguous dates are 
specified by omitting one or more barcodes (see Supplementary Figure 6 for additional details). Note that only barcodes 
for month and year were attached and queried experimentally in this paper. For the categorical metadata city, each 
possible value is represented by a distinct subset of three barcodes. The Boolean metadata symptomatic is indicated 
by the presence (True) or absence (False) of a single barcode. c, Any query corresponds to a corresponding logical 
expression comprising AND, OR, NOT operations on several barcodes. This logical expression then guides the dye-
labeling strategy, search grouping, and dispensing of dye-labeled DNA barcodes for sample selection. Selected 
samples are then retrieved using optical sorting. Some image elements taken from NIAID BioArt Source.34,35 

 

Immunological case study 

To demonstrate the application of a large-scale molecular database with advanced search query 

capabilities, we performed several database queries on the synthetic database of 96 SARS-CoV-

2 samples hypothetically collected from airplane passengers entering Boston, MA. We designed 

search queries to demonstrate the breadth of the queries enabled by the sample labeling 

approach, as well as to show how an actual database of this type could be used to answer 

valuable retrospective epidemiological and immunological questions. 

We began with the immunological question of whether specific SARS-CoV-2 variants were 

present in asymptomatic passengers. To answer this question, we used a query for when the 

Boolean feature symptomatic was false. For each sample, the barcode bc_symptomatic was 

present when this feature was true, and absent when this feature was false. Thus, our query NOT 

symptomatic should retrieve exactly those samples not displaying this barcode.  

The presence of the barcode bc_symptomatic on each microcapsule was determined 

using a fluorescent probe combined with fluorescence-associated sorting (FAS). However, in 
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comparison to previous work using FAS for barcode detection on microcapsules32,37, the number 

of distinct barcodes attached per microcapsule was increased from 3 to up to 14, leading to a 

proportional decrease in the copy number of each barcode per microcapsule. To compensate for 

this copy number reduction, we used fluorescence amplifiers routinely used to detect low copy 

numbers of RNA in cells in flow cytometry39 (Figure 3a). The pool of microcapsules was mixed 

with this amplifier probe and subsequently passed through a FAS instrument, which generates a 

stream of droplets. Fluorescence from each droplet was measured, and selected populations 

were defined using fluorescence intensity to distinguish microcapsules with and without the 

fluorescent probe attached. The number of particles measured for each sample bimodal 

distribution between the retrieved and non-retrieved microcapsules for the NOT symptomatic 

query (Figure 3b). The low-intensity population was separated from the rest of the pool for 

subsequent de-encapsulation and sequencing.  

 

Figure 3 | Database querying results for the query NOT symptomatic. a, For this query, the probe included a region 
complementary to barcode bc_symptomatic followed by a repeating sequence that allowed 3-fold fluorescence 
amplification. b, Histogram of FAS results showing 93% of microcapsules with low fluorescence indicating absence of 
the bc_symptomatic barcode. c, AUC across read depths for the NOT symptomatic selection. Bars represent mean 
AUC across three independently sorted replicate samples, with individual replicate data points shown. Source data are 
provided as a Source Data file. d, Internal barcode read counts distributions from retrieved samples across varying 
sequencing depths, where each point represents the number of counts per barcode per replicate (total of three 
independent sorting replicates). These distributions, depicted with box-and-whisker plots, compare true positive reads 
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from retrieved barcodes that correspond to ground truth positive samples, i.e., for this selection samples that are truly 
NOT symptomatic, and false positive reads, i.e., reads from retrieved barcodes that correspond to ground truth negative 
samples. For each sequencing depth, the total read counts from all sorting replicates are 279 true positive read counts 
and 9 false positive read counts. In each box-and-whisker plot, boxes span the first and third quartiles, with center line 
indicating the median. Whiskers indicate maxima and minima of points within 1.5 times the interquartile range. Source 
data are provided as a Source Data file. Data plots were made using Matplotlib.40 Some image elements taken from 
NIAID NIH BioArt Source.34 

To validate correct retrieval, sequencing reads of the 85-nt internal barcodes were 

matched to the known sequences to identify the samples in the sequencing data. We quantified 

retrieval performance using several metrics. Receiver operator characteristic (ROC) analysis on 

the internal barcode read counts was performed to compute the area under the ROC curve (AUC). 

The AUC value provides a threshold-independent measure reflecting the system's overall ability 

to rank target samples above non-target samples, with 1.0 indicating every target sample is 

enriched relative to every non-target sample, and 0.5 indicating performance no better than 

random chance (i.e., a randomly selected target sample is equally likely to be enriched or not 

relative to a randomly selected non-target sample). For the NOT symptomatic query, where the 

target (non-symptomatic samples) constituted a high proportion (93 of 96 samples, or ~96.9%) of 

the initial pool (Figure 3b), the mean AUC over 3 replicates was consistently high, approaching 

1.0 with increasing read depth (Figure 3c). Figure 3d further details the retrieval performance by 

presenting the distributions of internal barcode read counts for the NOT symptomatic query at 

different sequencing depths. These distributions indicate that read counts from true positive 

barcodes were generally higher than those from false positive barcodes, with improved separation 

between the two distributions as sequencing depth increased. 

Next, we demonstrated how range queries on patient age could be used to explore if 

certain age groups were more susceptible to different SARS-CoV-2 variants41. Age metadata was 

encoded numerically using a base-5 representation of three digits with place values 25, 5, and 1. 

Our conversion of numerical representations to barcodes is described in more detail in 

Supplementary Figure 6. We considered three age range queries of different size: age = 0 (Figure 

4a), 15 ≤ age < 20 (Figure 4e), and 50 ≤ age < 75 (Figure 4i). Range queries of other sizes or 

positions are also possible by combining ranges using AND, OR, and NOT logic. For the narrow 

query age = 0, we selected samples labeled with barcodes bc_age_x25_seq0, bc_age_x5_seq0, 

and bc_age_x1_seq0 using the same type of multi-stranded branched probes as previously 

described, labeled with fluorophores Atto 565, Alexa Fluor 647, and Alexa Fluor 750, respectively 

(Figure 4b). For the moderate-range query 15 ≤ age < 20, we selected samples labeled with 

barcodes bc_age_x25_seq0 and bc_age_x5_seq3, using probes labeled with fluorophores Atto 

565 and Alexa 647 (Figure 4f). For the query of broad range 50 ≤ age < 75, we selected samples 
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labeled with the barcode bc_age_x25_seq2 using a probe labeled with fluorophore Atto 565 

(Figure 4j).  

 

 

Figure 4 | Database querying results for different age range queries. a–d, Query age = 0. a, Schematic 
representation of the query and retrieval process. b, Representative FAS histograms for the query age = 0, showing 
sequential selection based on barcodes age_x25_seq0 (Atto 565), age_x5_seq0 (Alexa Fluor 647), and age_x1_seq0 
(Alexa Fluor 750). c, AUC values across read depths for the query age = 0. d, Internal barcode read counts distributions 
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from retrieved samples across varying sequencing depths for the query age = 0, separated by true positive read counts 
(n = 3 at each sequencing depth) and false positive read counts (n = 285). e–h, Query 15 ≤ age < 20. e, Schematic 
representation of the query and results. f, Representative FAS histograms for the query 15 ≤ age < 20, showing 
sequential selection based on barcodes age_x25_seq0 (Atto 565) and age_x5_seq3 (Alexa Fluor 647). g, AUC values 
across read depths for the query 15 ≤ age < 20. h, Internal barcode read counts distributions from retrieved samples 
across varying sequencing depths for the query 15 ≤ age < 20, separated by true positive read counts (n=12) and false 
positive read counts (n = 276). i–l, Query 50 ≤ age < 75. i, Schematic representation of the query and retrieval process 
for the query 50 ≤ age < 75. j, Representative FAS histograms for the query 50 ≤ age < 75, showing selection based 
on barcode age_x25_seq2 (Atto 565). k, AUC values across read depths for the query 50 ≤ age < 75. l, Internal barcode 
read counts distributions from retrieved samples across varying sequencing depths for the query 50 ≤ age < 75, 
separated by true positive read counts (n = 63) and false positive read counts (n = 225). AUC plots show mean values 
across three independently sorted replicate samples with individual data points shown. Whisker plots display individual 
barcode read counts per replicate (3 independent sorting replicates). In each box-and-whisker plot, boxes span the first 
and third quartiles, with center line indicating the median. Whiskers indicate maxima and minima of points within 1.5 
times the interquartile range. Source data for bar plots and box-and-whisker plots are provided as a Source Data file. 
Data plots were made using Matplotlib.40 

 

In each case, sequencing the internal 85-nt barcodes confirmed accurate sample retrieval. 

ROC analysis yielded perfect AUC values (1.0) across all read depths for the first two queries, 

age = 0 (Figure 4c) and 15 ≤ age < 20 (Figure 4g). The broader query, 50 ≤ age < 75, also showed 

good performance, with AUC values improving from approximately 0.8 to over 0.9 with increasing 

read depth (Figure 4k). Examination of the internal barcode read count distributions (Figure 4d, 

4h, 4l) provided further insight. For the narrower queries (age = 0, Figure 4d; and 15 ≤ age < 20, 

Figure 4h), a clear and consistent separation was observed between the higher read counts of 

true positive barcodes and the very low read counts of false positive barcodes across all 

sequencing depths, indicating excellent discrimination. The broader query (50 ≤ age < 75, Figure 

4l) exhibited more overlap between true positive and false positive read count distributions 

compared to the narrower queries, particularly at lower sequencing depths.  

 

Epidemiological case study 

We then sought to demonstrate how a composite query involving multiple metadata types can be 

used to understand the transmission of SARS-CoV-2 infection from specific areas, date ranges, 

and flight city42. For the epidemiological case study, we illustrated two aspects of our database: 

first, efficient representation and querying of categorical features; and second, the composition of 

several smaller queries into arbitrarily complex logical expressions. This was performed via 

retrieval of all samples for passengers flying from Chicago between July and September 2020, 

who were either symptomatic or unvaccinated. This was equivalent to the query (symptomatic 

OR NOT vaccinated) AND flight_city = Chicago AND 6 ≤ arrival_month ≤ 8 AND arrival_year = 

2020, which combines queries on two numerical features, one categorical feature, and two 
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Boolean features. Such a query necessitated examining eight barcodes: bc_vaccinated, 

bc_symptomatic, bc_city_seq0, bc_city_seq3, bc_city_seq4, bc_flight_month_x3_seq2, 

bc_flight_year_x10_seq2, and bc_flight_year_x1_seq0, making it the one of the most complex 

queries tested on any molecular database to date, both semantically and in terms of the number 

of barcodes tested. To further exhibit the flexibility of our approach to a variety of fluorescent 

channels and probe design methodologies, we selected a new set of dyes for this query, which 

modified the bandwidth of our dye markers (Figure 5a). Specifically, we transitioned from Atto 

565, Alexa Fluor 647, and Alexa Fluor 750 to Atto 488, Atto 565, and Alexa Fluor 647. The 

reduced brightness of Atto 488 relative to the other dyes necessitated the use of branched probe 

designs that amplify fluorescence signals, similar to branched probed designs used to improve 

the relative brightness of low-copy targets in cell imaging43,44. This strategy allowed the 

amplification of the net fluorescent signal by increasing the number of dye markers per barcode. 
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Figure 5 | Database querying results for the query (symptomatic OR NOT vaccinated) AND flight_city = Chicago 
AND 6 ≤ arrival_month ≤ 8 AND arrival_year = 2020. a, Three-stage selection schematic showing sequential 
application of query criteria with corresponding FAS histograms. b, Representative scatterplots from first round and 
histograms from second and third rounds of FAS. Top (round 1): Scatterplots assessing vax_seq0 (Atto 565) and 
symptomatic_seq0 (Atto 488) against flight_month_x3_seq2 (Alexa Fluor 647). Middle (round 2): Histograms for city 
selection using city_seq0 (Atto 488), city_seq3 (Atto 565), and city_seq4 (Alexa Fluor 647). Bottom (round 3): 
Histograms for year selection using flight_year_x10_seq2 (Atto 488) and flight_year_x1_seq0 (Atto 565). c, AUC across 
read depths for the combined query. AUC data for each sequencing depth show mean values (n = 3 independent 
sorting experiments). Source data are provided as a Source Data file. d, Internal barcode read counts distributions from 
retrieved samples across varying sequencing depths for the combined query, separated by true positive read counts 
(n = 6) and false positive read counts (n = 282). In each box-and-whisker plot, boxes span the first and third quartiles, 
with center line indicating the median. Whiskers indicate maxima and minima of points within 1.5 times the interquartile 
range. Source data are provided as a Source Data file. Data plots were made using Matplotlib.40 Some image elements 
taken from NIAID NIH BioArt Source.34 

 

This query was performed over three FAS passes, using probes with fluorophores Atto 

488, Atto 565, and Alexa Fluor 647 for bc_vaccinated, bc_symptomatic, and 
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bc_flight_month_x3_seq2, respectively, for the first pass (Figure 5b, top). The sorted populations 

were stripped of their fluorescent probes using a denaturation buffer. For the second round of 

selection, fluorophores Atto 488, Atto 565, and Alexa Fluor 647 were used for selecting 

bc_city_seq0, bc_city_seq3, bc_city_seq4, respectively (Figure 5b, middle). Again, the previous 

probes were removed prior to subjecting the sorted population to the next round of selection. For 

the final FAS pass, Atto 488 and Atto 565 were used for bc_flight_year_x10_seq2 and 

bc_flight_year_x1_seq0, respectively (Figure 5b, bottom). Sequencing of the 85-nt internal 

barcodes after all three passes indicated correct enrichment of all on-target samples (AUC = 1.0) 

(Figure 5c). Consistent with this performance, the internal barcode read count distributions (Figure 

5d) showed a clear and consistent separation between the high read counts from the on-target 

samples and the low read counts from the off-target samples across all sequencing depths. The 

success of this demonstration illustrates two important features of our approach: first, the ability 

to implement a single molecular database query that describes criteria spanning many features, 

such as numerical ranges, categorical values, and multiple Boolean conditions; and second, the 

ability to split complex queries over several FAS passes without loss of retrieval fidelity.  

SARS-CoV-2 sequencing 

Identifying the dominant SARS-CoV-2 variant is essential for assessing the virulence of emerging 

strains, forecasting outbreaks, and expediting vaccine development45. We aimed to identify the 

predominant SARS-CoV-2 variant in our queries, given that our samples were encapsulated with 

either the Alpha or Gamma variants. After sorting 100,000 to 700,000 microcapsules for each 

selection, we sequenced samples that showed a positive result from a specifically designed end-

point tiling amplicon PCR for SARS-CoV-2 (ARTIC protocol)46 yielding the expected distribution 

of fragment lengths (Supplementary Figure 3). Computational demultiplexing using Freyja47 

revealed that all samples showed mostly Alpha variants followed by Gamma variants and other 

variants that were not assigned by Freyja (Figure 6a). In all cases, the ratio of expected Alpha to 

Gamma abundance: 8:3 for selections from Figure 3, 2:1 for selections from Figure 4c, and 1:0 

for selections from Figure 5, closely matched the measured abundances in Figure 6a, further 

providing support to the high retrieval precision observed using an orthogonal sequencing 

approach.  

To demonstrate the viability of encapsulation for storage and recovery of clinical SARS-

CoV-2 samples, we applied our approach to five distinct patient-derived samples. Each sample 

contained different sub-lineages of the Omicron variant, allowing us to gauge our ability to detect 
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small variations in the viral genomes present during encapsulation through the comparison of 

called variants of each sample with and without encapsulation. For each sample, we successfully 

recalled the sub-lineages of Omicron variants (Supplementary Table 2). Further examination of 

the data indicated that the precision and recall of variant calling for the encapsulated samples 

were affected by the sequencing coverage (Figure 6b), which we attribute to the low copy 

numbers of SARS-CoV-2 retrieved from encapsulation resulting in amplicon dropouts 

(Supplementary Figure 4 and Supplementary Figure 5). The dropouts observed in the low-copy 

clinical samples (Supplementary Figure 4 and Supplementary Figure 5) appeared stochastic and 

were not consistently biased against longer amplicons, a pattern characteristic of low template 

input effects rather than systematic RNA degradation during processing48–50. Crucially, despite 

these low-template effects in some clinical samples, overall RNA integrity was sufficient for 

successful variant identification using the short-read ARTIC protocol for both our synthetic 

retrieved samples (Figure 6a) and the recalled Omicron sub-lineages from the clinical samples 

(Supplementary Table 2). 

 

Figure 6 | Sequencing results for synthetic and clinically-derived SARS-CoV-2 samples that were encapsulated 
and then de-encapsulated, to demonstrate the feasibility of our approach to real-world nucleic acid samples. 
a, For the three database queries NOT symptomatic, 50 ≤ age < 75, and (symptomatic OR NOT vaccinated) AND 
flight_city = Chicago AND 6 ≤ arrival_month ≤ 8 AND arrival_year = 2020, the variants in each sample were quantified. 
These variants should correspond to the synthetic Alpha or Gamma that had been encapsulated in each of the 96 mock 
patient samples. Each bar height indicates mean abundance values calculated across three independently sorted 
replicates. Source data are provided as a Source Data file. b, Results for sequencing of clinical SARS-CoV-2 samples. 
Dark and light-colored circles represent each duplicate sequencing run for each sample. Source data are provided as 
a Source Data file. Data plots were made using Matplotlib.40 

 

DISCUSSION 

The large-scale, global collection of genomic DNA and RNA promises a plethora of new data 

relevant to health and security sectors, ranging from pathogen surveillance to personalized 

medicine. Although centralized laboratories for genomic analysis have enabled sequencing of 
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nucleic acid samples even in low-resource settings, the continuous energy requirements and 

physical constraints of cold-chain storage and transportation remain major accessibility barriers 

to the creation of large-scale global nucleic acid repositories,23 indicating the need for scalable, 

low-cost long-term storage facilities with efficient sample retrieval capabilities. In this work, we 

demonstrated an intuitive yet powerful sample labeling strategy that significantly expands 

querying capabilities within a pooled molecular database, rendering it analogous to searching 

common digital file databases such as public datasets hosted by Google BigQuery, Microsoft 

Azure, and Amazon Web Services51–53. The nucleic acid database query language can 

accommodate arbitrary logical combinations of ranged queries, categorical queries, and truth 

queries on features that have been encoded into barcodes displayed on each nucleic acid 

specimen, encapsulated within a microcapsule for long-term stability. In our demonstration of the 

search query language, we showed how this nucleic acid database could be applied to answer 

several examples of retrospective epidemiological and immunological questions by analyzing 

sequencing results from cohorts retrieved from a database of simulated SARS-CoV-2 samples.  

The effectiveness and reliability of such a query language depend on the high specificity 

of the underlying molecular recognition and retrieval process. Our FAS system of retrieval differs 

from other DNA-based information systems, such as those using PCR amplification. In PCR-

based systems, even rare initial non-specific binding or mispriming events can be exponentially 

amplified over subsequent PCR cycles, introducing false positives and imposing practical limits 

on usable primer sequence space. Previous studies have shown the number of usable barcodes 

for PCR-based retrieval may be as low as 14,000 to avoid off-target binding29. In contrast, our 

retrieval based on direct hybridization of fluorescent probes allows the use of a large library of 

240,000 barcode sequences originally designed for use with microarrays38. This is possible 

because our FAS approach involves no enzymatic amplification of the initial probe-barcode 

binding event, weak or transient off-target interactions typically result in fluorescence signals 

below our detection threshold and are thus rejected without propagation or amplification. 

Furthermore, whereas additional PCR cycles can exacerbate false positives, additional cycles of 

FAS can progressively enrich on-target samples, improving the purity of the final retrieved 

samples.  

In this paper, we illustrate the utility of our query language and specificity of our FAS-

based retrieval with a demonstration on a database of 96 samples with up to 14 barcodes per 

microcapsule. Our system of barcoded microcapsules allows all 96 samples to be consolidated 

into a single tube resulting in a hundredfold reduction in storage space while maintaining a broad 
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range of sophisticated search capabilities, including combinations of numerical range, categorical, 

and Boolean queries. This scalability and efficiency in sample management have direct 

implications for enhancing biosurveillance strategies as proposed by the Nucleic Acid 

Observatory54. By enabling the pooling of thousands or millions of samples into fewer tubes, our 

approach offers a significant footprint reduction over methods that require a separate vessel for 

each sample, thereby streamlining the process of monitoring and responding to pathogenic 

threats. Consider the traditional storage of 1 million nucleic acid samples. Storing these samples 

in –80°C freezers, each accommodating 40,000 samples, would require 25 freezers. In contrast, 

the microcapsule architecture, capable of retrieval from a pool of 10,000 distinct nucleic acids in 

just one tube at room temperature as we have previously shown32,37, would only require 100 tubes 

for storage. An entire tube can be queried in around 15 minutes, assuming a FAS rate of 1000 

microcapsules per second and a redundancy of 100 microcapsules per sample. This streamlined 

approach not only offers a potential solution to the challenges outlined by the Nucleic Acid 

Observatory in deploying biosurveillance approaches but also underscores the potential for our 

technology to facilitate rapid and efficient global health responses.  

Beyond the immediate benefits of consolidation and advanced search, our approach also 

incorporates features crucial for robust, long-term archive management and utility. First, as we 

demonstrated in previous work32,37, the FAS-based retrieval system allows for the recovery of 

non-target populations of the pooled archive after each query. This feature ensures that the 

overall sample collection remains intact and available for subsequent, unrelated queries. Second, 

our system permits quality control checks beyond the standard pre-encapsulation assessment of 

nucleic acid integrity and quantity via the co-encapsulated 85-nt internal DNA barcodes within 

each sample. These internal barcodes can be periodically interrogated via simple PCR—akin to 

fixity checks in digital data storage—to confirm sample presence and accessibility within the 

pooled archive without needing to amplify or sequence the primary encapsulated material. This 

enables efficient, low-cost monitoring of archive integrity over time. Post-retrieval, these same 

internal barcodes can validate the success and specificity of each query. When coupled with the 

room-temperature nucleic acid stability endowed by silica encapsulation37, this comprehensive 

approach to sample preservation and quality control significantly alleviates the long-term 

operational burdens and costs associated with traditional cold-chain storage. 

The successful demonstration herein sets the stage for broader application and further 

refinement. Future work will seek to characterize per-step efficiencies during multi-round FAS, 

particularly for very complex queries, and perform comprehensive techno-economic analyses. 
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Such studies will more precisely define throughput capabilities, understanding the optimum 

balance between number of samples aggregated per tube against search time, and cost 

considerations for extremely large archives under high query loads, enabling quantitative 

comparisons with freezer farms as implemented by, for example, Azenta Life Sciences55. 

Continued refinement of these operational aspects, potentially incorporating hierarchical storage 

strategies as well as custom selection and sorting instrumentation, as discussed, may be crucial 

for facilitating the widespread dissemination and adoption of this genomic banking and querying 

system. In addition, we hope to investigate further improvements to this barcoding scheme in 

future studies. For example, more advanced barcoding schemes could incorporate other data 

types and search criteria, such as text metadata with substring matching, or the use of non-

orthogonal barcode sequence design as demonstrated previously for similarity-based 

searching56. 

This approach represents a significant advance in expanding our ability to store, organize, 

and access nucleic acids, implementing the ability to perform the search functions that are 

essential for modern digital databases. Moreover, with the ongoing transformation of 

immunoassays57 and spatial tissue data48 into DNA molecules, we anticipate that the 

encapsulation and barcoding approach that we have demonstrated here can be used to store and 

query a comprehensive range of genomic, transcriptomic, and proteomic data. Leveraging these 

capabilities in future work could generalize the application of our approach from pathogen 

surveillance to related fields such as personalized medicine and ecological conservation. Finally, 

the prospect of encoding digital data, such as health records, into DNA, envisages a future where 

vast biological information could be efficiently stored, marking a significant leap forward in the 

compact and versatile storage of biological information in the palm of the hand. 

 

METHODS 

Statistics and reproducibility. No statistical method was used to predetermine sample size. All 

experiments were performed in at least three independent biological replicates, unless otherwise 

stated. For Figure 6b, two technical replicates are shown for each clinical sample; no statistical 

analyses or error estimates were derived from these data. No data were excluded from the 

analyses. The experiments were not randomized. The investigators were not blinded to allocation 

during experiments and outcome assessment. 
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Quantitative values such as area under the receiver operating characteristic curve (AUC) 

and read count distributions were computed directly from sequencing data without inferential 

statistical testing. Replicates yielded consistent results across independent experiments, 

confirming reproducibility of the molecular retrieval and sequencing workflows. 

Data analysis was performed using Python 3.13.3 with pandas (v2.2.3) and NumPy 

(v2.2.5). ROC curves and AUROC values were calculated using scikit-learn (v1.6.1). Figures were 

generated using Matplotlib (v3.10.3)40 and Seaborn (v0.13.2). Custom analysis scripts are 

available in https://doi.org/10.5281/zenodo.17402438. 

 

General materials. All DNA oligonucleotides (oligos)—including internal barcodes 

(Supplementary Data 2), splint adapters, 5’-amino-modified DNA barcodes (Supplementary Data 

3), dye-labeled probes, preamplifier probes, amplifier sequences (Supplementary Data 1), master 

forward and reverse primers (Supplementary Table 1), random hexamers, and 20-mer 

oligodeoxythymidine—were synthesized and processed by Integrated DNA Technologies (IDT). 

Specifically, 5’-amino-modified barcodes in Echo 384 polypropylene microplates and internal 

barcodes in 96-deep well plates were purchased as desalted and delivered in nuclease-free water 

at 1000 μM and in 1× TE at 500 μM, respectively. Dye-labeled probes were selected for their 

brightness (quantum yield × molar absorption coefficient at the excitation wavelength for each 

detection channel) while minimizing fluorescence spillover, with the final selections being Atto 

488, Atto 565, Alexa Fluor 647, and Alexa Fluor 750. These dye-labeled probes, along with 

adapter sequences and branch sequences, were received in 1× TE at concentrations of 100 μM, 

33 μM, and 10 μM, respectively. The master primers were desalted and resuspended at 100 μM 

with nuclease-free water, while random hexamers and 20-mer oligodeoxythymidine were purified 

using ion-exchange high-performance liquid chromatography and resuspended at 50 μM with 

nuclease-free water. SARS-CoV-2 RNA controls were sourced from Twist Bioscience with catalog 

numbers 103909 and 104044. All oligos were stored at –20°C. Silica particles of 5 μm diameter 

with hydroxy-terminated surfaces (catalog number: DNG-B017) were obtained from Creative 

Diagnostics, and N-[3-(Trimethoxysilyl)propyl]-N,N,N-trimethylammonium chloride (TMAPS; 50% 

methanol; catalog number: H66414) was acquired from Alfa Aesar. Chemicals such as tetraethyl 

orthosilicate (TEOS), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTS), N-methyl-2-

pyrrolidone (NMP), isopropanol, and ethanol were sourced from Millipore Sigma, bearing catalog 

numbers: 131903, 8.19172, 270458, 278475, and 459836, respectively. DBCO-PEG5-tetra ester 
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(1260-10) and azidoacetic acid N-hydroxysuccinimide ester (1070-100) were from Click 

Chemistry Tools. Additionally, carbonate buffer (500 mM, pH 9.0; catalog number: J63899.AK) 

and saline sodium citrate (SSC, 20×; catalog number: 15557044) were purchased from Thermo 

Fisher, while dextran sulfate (50% in water; catalog number: S4030) came from Millipore Sigma, 

10% Tween 20 from VWR (catalog number: 97063-980), formamide from VWR (catalog number: 

97062-006), and 5M sodium chloride from VWR (catalog number: 97062-858).  

Internal barcode generation. A subset of primers, 700 in total, from the validated 240,000 primer 

library38 was checked for alignment against SARS-CoV-2 using BLAST59. The alignment XML 

output file from BLAST was then parsed to create a list of primers orthogonal to the SARS-CoV-

2 genome. The resulting primer list was further filtered by selecting primers with 60–65C melting 

temperature using the melting temperature module in Biopython (version 1.85). 

Internal barcodes were generated by first picking a master primer pair from the filtered 

primer list, forward: 5’–GGCTATGAGACTGTTCGCTAATCAC–3’ and reverse: 5’–

CCCTTTGTGGGCACAGTTTAGTCTC–3’, which flanked a unique barcode taken from the primer 

list. Five nucleotide randomer spacers (N) were also added between the master primers and the 

unique barcode to increase the sequence diversity of the internal barcodes for downstream 

sequencing. Together, the 85-nucleotide internal barcode sequence structure is 

GGCTATGAGACTGTTCGCTAATCACNNNNNUUUUUUUUUUUUUUUUUUUUUUUUUNNNN

NCCCTTTGTGGGCACAGTTTAGTCTC, where U is the unique barcode sequence. The full list 

of internal barcode sequences is given in Supplementary Data 2. 

96-well encapsulation. Ammonium-functionalized silica particles were prepared by hydrolyzing 

100 l TMAPS in a suspension containing 100 mg of silica particles in ethanol at room 

temperature for 24 h under constant agitation (1500 rpm) using a BioShake iQ thermal mixer, 

followed by three sequential washes in ethanol. The ammnonium-functionalized particles are 

stored in isopropanol. 

 

For each well in a Nunc 96 deep-well polypropylene plates (Thermo Fisher; catalog number: 

278752), a total of 2 mg of ammonium-functionalized silica particles and 800 l of 0.1% (v/v) 

Tween 20 in nuclease-free water were added. A total of 5 nanomoles of each internal barcode 

were added to their respective wells. Ten million copies of SARS-CoV-2 standards were added 

to each randomly selected well; the list of SARS-CoV-2 variants of concern (VOC) associated 

with each sample are given in Supplementary Data 5. A volume of 10 l of TMAPS and 5 l of 
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TEOS were then added to each well. The plate was then covered with a chemically resistant 

silicone mat (Axygen; catalog number: AM-2ML-RD-S) and shaken for four days at 1500 rpm 

using a BioShake iQ thermal mixer (Bulldog Bio; catalog number: 1808-0506).  

Encoding of features with DNA barcodes. A full list of sequences for each DNA barcode is 

given in Supplementary Data 3. The mapping between feature values and DNA barcodes is given 

in Supplementary Data 6. For each feature, a set of barcodes was allocated from which a subset 

was drawn to encode each feature value. The sets of barcodes for each feature were disjoint from 

each other. The encoding strategy for feature values differed based on the type of the metadata 

(numerical, Boolean, or categorical), which enabled type-specific queries of each feature, such 

as queries for feature values matching particular numerical ranges. 

Numerical features. Numerical features were encoded using a mixed-radix number system (i.e. a 

sequence of digits with the base allowed to vary between positions) (Supplementary Figure 6a). 

A position with base n was allocated n distinct barcode sequences, one for each of the n possible 

digit values at that position. Thus, a feature value represented by k digits was encoded on each 

microcapsule with a collection of k distinct barcodes. Ranges of varying size could be specified 

by allowing some number of the least significant digits to vary (i.e. using wildcards at these digits) 

(Supplementary Figure 6b). Experimentally, any numerical range specified in this manner can be 

retrieved by omitting the corresponding complementary probes during sorting. The base at each 

position was chosen to provide a good compromise between compression (number of barcodes 

required on each microcapsule) and the variety of the range sizes that could be represented. 

Boolean features. Each Boolean feature was encoded using a single barcode assigned to that 

feature, similar to barcoding previously used to indicate image content in a database of images32. 

When the value of a Boolean feature was TRUE for a sample, the barcode was displayed on the 

microcapsule; a value of FALSE was indicated by the absence of that barcode. 

Categorical features. For each categorical feature we used a combinatorial number system60 to 

associate each possible feature value with a distinct k-combination drawn from a chosen set of n 

barcodes, where k is the number of distinct barcodes used to represent this feature on each 

microcapsule. The number of possible feature values that may be represented is  (𝑛
𝑘

), which grows 

rapidly with both n and k. The combinatorial number system provides a method to associate each 

possible k-combination with a unique integer value between 0 and (𝑛
𝑘

) − 1. Each feature value 

was assigned a unique numerical index in that range, from which the corresponding k-
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combination of barcodes was determined. The values of k and n were chosen to provide a 

reasonable compromise between feature width (the number of barcodes required on a 

microcapsule to represent its feature value) and the number of barcodes that needed to be 

allocated for this feature. 

Barcoding of individual samples and pooling. After encapsulation, the plate was centrifuged 

for 1 minute at 1000 ×g. The supernatant was removed then backfilled with 1000 l of 0.1% (v/v) 

Tween 20. A volume of 10 l of AEAPTS was then added. The plate was then covered with a 

chemically resistant silicone mat and shaken for 1 day at 1500 rpm using a BioShake iQ thermal 

mixer.  

To wash the encapsulated microparticles after amino modification, the plate was 

centrifuged for 1 minute at 1000 ×g. The supernatant was removed and then backfilled with 1000 

l of NMP. The washing step was repeated thrice and finally resuspended with 500 l of NMP. A 

mass of 1 mg of azidoacetic acid N-hydroxysuccinimide ester was added to each well. The plates 

were then re-sealed with a chemically resistant silicone mat and shaken for 3 hours at 1500 rpm 

using a BioShake iQ thermal mixer. After azide modification, the previous wash steps were 

repeated, and the microparticles were finally resuspended in 500 l of NMP. A mass of 0.5 mg of 

DBCO-PEG5-tetrafluorophenyl ester was added to each well, re-sealed with a chemically 

resistant silicone mat, and shaken for 5 hours at 1500 rpm using a BioShake iQ thermal mixer. 

The plate was washed with NMP thrice and then resuspended with 200 l of NMP. 

Barcode combinations were dispensed in a 96-well plate using an Echo 550 liquid handler 

and then transferred to the 96-deep-well plate containing the encapsulated microparticles. To 

each well of the 96 deep-well plates was added 800 l of 50 mM carbonate buffer. The plate was 

re-sealed with a chemically resistant silicone mat and then shaken for 12 hours at 1500 rpm using 

a BioShake iQ thermal mixer. The barcoded microparticles were centrifuged at 1000 ×g then the 

supernatant was removed. The resulting pellet was washed with 20 mM Tris, 1 mM EDTA, and 

0.1% (v/v) Tween 20 through repeated centrifugation, removal of the supernatant, and 

redispersing of the supernatant with 20 mM Tris, 1 mM EDTA, and 0.1% Tween 20 for three times. 

The microparticles were finally redispersed in 1000 l of 20 mM Tris, 1 mM EDTA, and 0.1% (v/v) 

Tween 20. A volume of 500 l from each well was taken and pooled together to create the sample 

library. 

A full list of the metadata associated with each sample is given in Supplementary Data 4. 
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Selection of microparticles. An aliquot of 500 l of the sample library was placed in a 1.5-ml 

tube and then centrifuged at 1000 ×g to sediment the microparticles. The supernatant was 

removed then the microparticles were re-dispersed with 200 l of hybridization buffer (10× SSC, 

10% (v/v) dextran sulfate, 10% (v/v) formamide, and 0.05% (v/v) Tween 20). The hybridization 

buffer was optimized to create stringent conditions that minimized non-specific binding by 

destabilizing weak or mismatched duplexes. Separately, equivolume of barcode probes, 

adapters, and fluorescent probes, and 1× SSC were pre-hybridized using the following method: 

98C for 10 seconds, 40C for 5 minutes, 20C for 2 minutes. A volume of 20 l of prehybridized 

probe solutions were then added to the microparticle suspension. The resulting mixture was 

shaken at 1500 rpm for 15 minutes at 35C using a BioShake iQ thermal mixer then centrifuged 

at 1000 ×g to sediment the microparticles. The supernatant was removed, and the microparticles 

were re-dispersed in 1000 l of the sorting buffer, composed of 1× SSC and 0.05% (v/v) Tween 

20, to further remove any non-specifically bound probes. The microparticle sedimentation and 

washing steps were repeated thrice. The microparticles were finally resuspended in 1000 l of 

sorting buffer. The fluorescently labeled microparticles were sorted using a Sony SH800 sorter 

equipped with a 100-m sorting chip.  

FAS were performed using a Sony SH800 cell sorter with a 100-µm sorting chip and three 

fluorescence detection channels. Forward and side scatter were first used to gate singlet 

microcapsules, excluding debris and aggregates. Fluorescence intensities for Atto 488, Atto 565, 

Alexa Fluor 647, and Alexa Fluor 750 were analyzed in two-dimensional scatterplots for each dye 

combination. Gates were established manually using unstained and single-stained controls to 

define positive and negative populations for each barcode-specific probe (Supplementary 

Figure 15). All gating thresholds and instrument settings were held constant for every query and 

replicate. Because fluorescence profiles were indistinguishable between sorts performed under 

identical conditions, a representative gating dataset was recorded once and used as the reference 

for all subsequent experiments. 

In the multi-pass selection process, existing fluorescent probes from previously sorted 

populations were meticulously removed before initiating subsequent rounds. Populations from an 

earlier selection were initially centrifuged in a 1.5-ml tube at 1000 ×g for 20 seconds, after which 

the sheath buffer was gently discarded. Next, 1000 µl of a denaturation buffer, comprised of 0.2 

M NaOH in 90% formamide and pre-heated to 70°C, was added. This mixture was swiftly vortexed 

for 5 seconds and then incubated at 70°C in a BioShake iQ thermal mixer for 15 minutes. 
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Following this incubation period, another 20-second centrifugation at 1000 ×g was performed then 

denaturation buffer was discarded. Then, 1000 µl of a denaturation wash buffer, composed of 

0.05% Tween 20 and pre-heated to 70°C, was added. After a brief 5-second vortex and a 20-

second centrifugation at 1000 ×g, the denaturation wash buffer supernatant was carefully 

siphoned off. Finally, 200 µl of hybridization buffer was added, preparing the sample for the next 

selection phase. 

Sorted microparticles were de-encapsulated using 10 l of electronics-grade 5:1 buffered 

oxide etch (VWR, catalog number: JT5192-3) and then diluted to 50 l with nuclease-free water. 

The released samples were immediately used for Illumina sequencing library preparation. 

Internal barcode validation using short-read sequencing. A volume of 1 l of 50 M of 

combined master forward (5’– 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNGGCTATGAGACTGTTCGCTAAT*

C*A*C –3’) and reverse (5’– 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAGACTAAACTGTGCCCACAAA*G*G*

G –3’) primers with three consecutive phosphorothioates from the 3’-end, 44 l of nuclease-free 

water, and 50 l of repliQa HiFi ToughMix (Quantabio, catalog number: 95200-500) were added 

to 5 l of released sample. The samples were amplified for 20 cycles using the manufacturer’s 

protocol then purified using 1× of AMPure XP beads (Beckman Coulter, catalog number: A63881). 

Samples were eluted from the magnetics beads using 22 l of 20 mM Tris with 0.05% (v/v) Tween 

20. Concentration of the amplified sample was measured using Qubit fluorescence assay 

(Thermo Fisher, catalog number: Q33231). Ten nanograms from the first PCR amplification were 

then taken to cycle-limited indexing PCR. Indexing PCR includes 10 l of an indexing primer set 

from IDT® for Illumina® DNA/RNA UD Indexes (Illumina, catalog number: 20027213) or 

Nextera™ DNA CD Indexes (Illumina, catalog number: 20018708) and repliQa HiFi ToughMix as 

PCR master mix. Indexed samples were cleaned using 1× of AMPure XP beads and then 

quantified using quantitative PCR (qPCR). Final pooled libraries were then sequenced using an 

Illumina Nexsteq 2000 (800 pM loading concentration) using P1 flow cell with 1502 reads, 50–

80% human genome spike-in for nucleotide diversity, and 2% PhiX internal standard. 

Internal barcode analysis and performance metric calculation. Retrieval performance was 

assessed by analyzing internal barcode sequencing data at varying read depths (103, 104, 105, 

and 106 reads) across three independent biological replicates. Sequencing reads were aligned to 

reference barcode sequences using the Biopython PairwiseAligner package (version 1.85) with 
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stringent parameters (match: +1, mismatch: -20, gap open: -2, gap extend: -2). Alignments 

exceeding a score threshold of 35 were classified as matches and tabulated for downstream 

analysis. 

For each query, we calculated the area under the receiver operating characteristic curve 

(AUC) to quantify discrimination performance independent of threshold selection. Complementing 

this analysis, distributions of read counts for true positive and false positive barcodes were 

generated and analyzed to visualize the separation between correctly retrieved target barcodes 

and any incorrectly retrieved non-target barcodes. True positive barcode counts were defined as 

reads matching the internal barcodes of known target samples present in the retrieved population. 

Conversely, false positive barcode counts were defined as reads matching the internal barcodes 

of known non-target samples that were nonetheless detected in the retrieved population. 

Synthetic SARS-CoV-2 sequencing. A portion of the released samples were then processed 

for sequencing SARS-CoV-2 samples using NEBNext® ARTIC SARS-CoV-2 FS Library Prep Kit 

for Illumina (New England Biolabs, catalog number: E7658) using the VarSkip primers with 

several modifications. Complementary DNA synthesis was performed using SuperScriptTM IV 

(catalog number: 18091200), 12 l of released sample, and 1 l of 50 M 20-mer 

oligodeoxythymidine and 50 M random hexamers for primers. Reverse transcription reactions 

were incubated at 50 C for 1 hour. Finally, amplicons were amplified for 40 cycles. 

Resulting libraries following the NEBNext® ARTIC SARS-CoV-2 FS Library Prep protocol 

were quantified using qPCR and then sequenced on a Nextseq 2000 (750 pM loading 

concentration) using a P1 flow cell with 1502 reads and 1–10% PhiX internal standard.  

Sequencing reads were first aligned with the SARS-CoV-2 Wuhan sequence 

(NC_045512.2) using minimap261 (2.24-r1122). Human-readable sequence alignment maps were 

converted to binary alignment maps using samtools62 (v1.13). Variant calling was perfomed using 

LoFreq63 (v2.1.5). Resulting variant calls were then used to demix the SARS-CoV-2 variants for 

each samples using Freyja47 (v1.5.3). 

Encapsulation of clinical SARS-CoV-2 samples. Copy numbers of the SARS-CoV-2 virus were 

measured upon receipt using probe-based quantitative reverse transcription polymer chain 

reaction (New England Biolabs; catalog number: M3019; Thermo Fisher; catalog number: 

A45583), detecting the N1 gene (Integrated DNA Technologies; catalog number: 10006713), and 

using synthetic SARS-CoV-2 Alpha variant as positive controls for the calibration curve (Twist 
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Bioscience; catalog number: 103907). A sample volume of 1 µL was used for each qRT-PCR 

reaction. 

To encapsulate, 500 µL of each sample was added to individual 1.5-mL tubes then diluted 

to 1000 µL using nuclease-free water. A mass of 1 mg of trimethylammonium-functionalized silica 

microparticles was then added to the solution. After mixing for 5 seconds using a vortex mixer, 10 

µL of 50% N-[3-(trimethoxysilyl)propyl]-N,N,N-trimethylammonium chloride in methanol (TMAPS; 

Alfa Aesar; catalog number: H66414) and 10 µL of tetraethoxysilane (Millipore Sigma; catalog 

number: 333859) were then added. The resulting mixture was shaken using a BioShake iQ 

thermal mixer at 1600 rpm for 4 days, then centrifuged at 1000 ×g for 30 seconds to pellet the 

encapsulated samples. The supernatant was carefully removed, then 1000 µL of 2% (v/v) 2-azido-

N-[3-(triethoxysilyl)propyl]acetamide in ethanol was added. The resulting mixture was further 

mixed for 16 hours at room temperature.  

The azido-modified encapsulated samples were pelleted and washed twice with N,N-

dimethylacetamide (DMAc; Millipore Sigma; catalog number: 185884) then the particles were re-

dispersed with 1000 µL DMAc. A mass of 0.5 mg of DBCO-dPEG®₁₂-tetrafluorophenyl ester 

(Quanta Biodesign; catalog number: 11366) were added to each azide-modified encapsulated 

sample then the resulting mixture was shaken at 1600 rpm using a BioShake iQ thermal mixer for 

1 hour at 40°C.  

The tetrafluorophenyl-modified encapsulated samples were pelleted using a centrifuge at 

1000 ×g for 30 seconds and washed twice with DMAc then the particles were re-dispersed with 

100 µL DMAc. A volume of 900 µL of 500 mM phosphate buffer (Thermo Fisher; catalog number: 

J60825.AP) was added. Then, a volume of 10 µL of each DNA barcode as amino-modified DNA 

oligonucleotides 500 µM in nuclease-free water were added to each sample. Three barcodes for 

each sample were used to add complexity to the library. The table below shows the DNA barcode 

assigned to each sample.  

Table 1 | Barcode sequences for encapsulated clinical samples 

Sample Barcode 1 Barcode 2 Barcode 3 

1 /5AmMC6/GGATGCATGATCTAG
GGCCTCGTCT 

/5AmMC6/GAGGTCTTTCATGCG
TATAGTCACA 

/5AmMC6/GATTCAATATGTGTC
GTCTATCCTC 

2 /5AmMC6/GGTAACTGCGCATAG
TTGGCTCTAT 

/5AmMC6/GCGTTTAAGGTCACA
TCGCATGAAT 

/5AmMC6/GCCCGGGAAGTGTGA
GGATATACCC 
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3 /5AmMC6/GCTCTTAAAACTGGT
ATCACCTGAC 

/5AmMC6/GGGTGGTTAGTGATT
TGCCCGTCAC 

/5AmMC6/TAGTTGGTGGGTTTC
CCTACCGTGT 

4 /5AmMC6/GCCACCTTAACACGC
GATGATATTG 

/5AmMC6/GCTATTACGAGCGCT
TGGATCCCGT 

/5AmMC6/TATGTTGTGCCTTAC
GCCTCGATTA 

5 /5AmMC6/GGTACAGTAAGTGAG
AATCCTCTCT 

/5AmMC6/GGTTCTAAGTTTAGC
GTAGCCGGTT 

/5AmMC6/CTTTAGGTGGGTGCG
ATTGCCAGTT 

 

After 16 hours of mixing on a thermomixer at room temperature, the barcoded 

encapsulated samples were pelleted using a centrifuge at 1000 ×g for 30 seconds, washed twice 

with 1000 µL of hybridization buffer, then finally resuspended with 1000 µl of hybridization buffer. 

Barcoded encapsulated samples were kept at room temperature. 

Clinical SARS-CoV-2 sequencing. Ten µl of unencapsulated and 500,000 microparticles of 

encapsulated clinical SARS-CoV-2 samples were prepared for sequencing using NEBNext® 

ARTIC SARS-CoV-2 FS Library Prep Kit for Illumina (New England Biolabs, catalog number: 

E7658) using the VarSkip primers with several modifications. Encapsulated RNA was released 

from microparticles with 25 µl of 5:1 buffered oxide etch, and 12 µl was desalted using a 7k MWCO 

Zeba column (Thermo Fisher; catalog number: 89878). To remove any residual DNA fragments, 

all samples were first subjected to DNAse treatment (Thermo Fisher; catalog number: 11766051). 

First-strand complementary DNA synthesis was performed using SuperScript IV, 12 µL of the 

released sample or unencapsulated sample, and 20-mer oligodeoxythymidine and random for 

primers. Reverse transcription reactions were incubated at 50°C for 1 hour. Finally, amplicons 

were amplified for 40 cycles. 

Following the rest of the NEBNext® ARTIC SARS-CoV-2 FS Library Prep protocol, the 

resulting libraries were quantified using qPCR and then sequenced on a Nextseq 2000 (800 pM 

loading concentration) using a P3 flow cell with 150×2 reads and 2–20% PhiX internal standard.  

Sequencing reads were aligned using bwa64 (v.0.7.17-r1188). Sequence alignment maps 

were then converted to binary alignment maps using samtools62 (v1.13). Variant calling, variant 

filtering, and consensus generation were performed using GATK65 (v4.6.1.0). Duplicates from 

binary alignment maps were filtered using GATK MarkDuplicates then variant calling was 

performed using GATK HaplotypeCaller. Variants were filtered using GATK VariantFiltration. 

First, variants with a QualByDepth (QD) value less than 2.0 were excluded, using a filter tag QD2. 

QD provides a normalized variant confidence score by the depth of sample reads supporting a 

variant. Variants with a raw quality score (QUAL) below 30.0 were discarded, labeled under the 
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QUAL30 filter. Strand Odds Ratio (SOR), a metric that denotes the symmetry of the variant's 

presence in both forward and reverse reads, was also considered. Variants with an SOR greater 

than 3.0 were filtered out and marked with the SOR3 tag. This ensures that the variant is 

supported by both forward and reverse reads and isn't an artifact from a potential strand bias. 

Further, Fisher Strand (FS) values, which indicate strand bias, exceeding 60.0 led to excluding 

the respective variants, tagged under the FS60 filter. Variants with a Mapping Quality (MQ) less 

than 40.0, indicative of the overall alignment quality of reads supporting a given variant, were 

filtered out and designated with the MQ40 tag. Normalization of filtered variant calling files and 

variant overlap analyses between encapsulated and unencapsulated samples were performed 

using BCFtools27 (v1.13). True positive (TP) variant counts were directly inferred from the 

overlapping VCF, while the false positive (FP) and false negative (FN) counts were derived by 

subtracting TP from the encapsulated and unencapsulated normalized variant calling files, 

respectively. Precision was computed as the proportion of TP relative to the sum of TP and FP, 

and recall was derived as the proportion of TP relative to the sum of TP and FN. Finally, SARS-

CoV-2 lineages were analyzed using NextClade66 (v2.12.0). 

Ethics statement. This study was reviewed by the Massachusetts Institute of Technology 

Committee on the Use of Humans as Experimental Subjects (COUHES), which determined that 

it does not involve human subjects as defined in the U.S. Federal Regulations 45 CFR 46 and 

therefore does not require IRB review or approval. This study did not involve human participants 

as defined under U.S. Federal Regulations 45 CFR 46. The work used de-identified residual 

clinical SARS-CoV-2 samples provided by an external diagnostic laboratory solely for 

methodological validation. No identifiable information, sex, gender, age, or other participant 

metadata were collected or accessible to the investigators. Accordingly, no informed consent, 

participant recruitment, or compensation was required. Sex and gender were not considered in 

the study design because no participant-level data were available. All research was performed in 

accordance with relevant institutional guidelines and regulations for the handling of de-identified 

or synthetic nucleic acid samples. 
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Raw sequencing data from human-derived samples have been deposited in the NCBI BioProject 

database under accession number PRJNA1344794: 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1344794. Processed match counts to each 

internal barcode for each experiment are available on Zenodo at 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

https://doi.org/10.5281/zenodo.1050134767. Raw datasets are available on Zenodo at 
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TABLES 

Table 1 | Barcode sequences for encapsulated clinical samples 

Sample Barcode 1 Barcode 2 Barcode 3 

1 /5AmMC6/GGATGCATGATCTAG
GGCCTCGTCT 

/5AmMC6/GAGGTCTTTCATGCG
TATAGTCACA 

/5AmMC6/GATTCAATATGTGTC
GTCTATCCTC 

2 /5AmMC6/GGTAACTGCGCATAG
TTGGCTCTAT 

/5AmMC6/GCGTTTAAGGTCACA
TCGCATGAAT 

/5AmMC6/GCCCGGGAAGTGTGA
GGATATACCC 

3 /5AmMC6/GCTCTTAAAACTGGT
ATCACCTGAC 

/5AmMC6/GGGTGGTTAGTGATT
TGCCCGTCAC 

/5AmMC6/TAGTTGGTGGGTTTC
CCTACCGTGT 

4 /5AmMC6/GCCACCTTAACACGC
GATGATATTG 

/5AmMC6/GCTATTACGAGCGCT
TGGATCCCGT 

/5AmMC6/TATGTTGTGCCTTAC
GCCTCGATTA 

5 /5AmMC6/GGTACAGTAAGTGAG
AATCCTCTCT 

/5AmMC6/GGTTCTAAGTTTAGC
GTAGCCGGTT 

/5AmMC6/CTTTAGGTGGGTGCG
ATTGCCAGTT 

 

FIGURE CAPTIONS 

Figure 1 | Application of a molecular database to simulated SARS-CoV-2 tracking. a, Simulated 

scenario of sample collection at Boston Logan airport with subsequent pooling and nucleic acid 

extraction, encapsulation, and barcoding of samples using our proposed molecular filesystem. b, 

Workflow for querying and analyzing samples within a molecular database, shown side-by-side 

with generic database operations. ................................................................................................ 5 

Figure 2 | Conversion of search query to operations on a molecular database. a, Each query is 

composed of criteria on numerical, Boolean, and categorical metadata. b, Each metadata feature 

corresponds to a set of barcodes, with different encoding strategies depending on data type. In 

this example, the numerical metadata date is represented by one barcode per digit for a total of 

seven barcodes (two for the month, three for the day, and two for the last two digits of the year). 

The year is in base 10 while the month and day are represented using a mixed-radix 

representation combining bases 3 and 4, with the place value of each digit indicated by subscript. 

Ranges of contiguous dates are specified by omitting one or more barcodes (see Supplementary 

Figure 6 for additional details). Note that only barcodes for month and year were attached and 
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queried experimentally in this paper. For the categorical metadata city, each possible value is 

represented by a distinct subset of three barcodes. The Boolean metadata symptomatic is 

indicated by the presence (True) or absence (False) of a single barcode. c, Any query 

corresponds to a corresponding logical expression comprising AND, OR, NOT operations on 

several barcodes. This logical expression then guides the dye-labeling strategy, search grouping, 

and dispensing of dye-labeled DNA barcodes for sample selection. Selected samples are then 

retrieved using optical sorting. ...................................................................................................... 8 

Figure 3 | Database querying results for the query NOT symptomatic. a, For this query, the probe 

included a region complementary to barcode bc_symptomatic followed by a repeating sequence 

that allowed 3-fold fluorescence amplification. b, Histogram of FAS results showing 93% of 

microcapsules with low fluorescence indicating absence of the bc_symptomatic barcode. c, AUC 

across read depths for the NOT symptomatic selection. Bars represent mean AUC across three 

independently sorted replicate samples, with individual replicate data points shown. Source data 

are provided as a Source Data file. d, Internal barcode read counts distributions from retrieved 

samples across varying sequencing depths, where each point represents the number of counts 

per barcode per replicate (total of three independent sorting replicates). These distributions, 

depicted with box-and-whisker plots, compare true positive reads from retrieved barcodes that 

correspond to ground truth positive samples, i.e., for this selection samples that are truly NOT 

symptomatic, and false positive reads, i.e., reads from retrieved barcodes that correspond to 

ground truth negative samples. For each sequencing depth, the total read counts from all sorting 

replicates are 279 true positive read counts and 9 false positive read counts. In each box-and-

whisker plot, boxes span the first and third quartiles, with center line indicating the median. 

Whiskers indicate maxima and minima of points within 1.5 times the interquartile range. Source 

data are provided as a Source Data file. ....................................................................................... 9 

Figure 4 | Database querying results for different age range queries. a–d, Query age = 0. a, 

Schematic representation of the query and retrieval process. b, Representative FAS histograms 

for the query age = 0, showing sequential selection based on barcodes age_x25_seq0 (Atto 565), 

age_x5_seq0 (Alexa Fluor 647), and age_x1_seq0 (Alexa Fluor 750). c, AUC values across read 

depths for the query age = 0. d, Internal barcode read counts distributions from retrieved samples 

across varying sequencing depths for the query age = 0, separated by true positive read counts 

(n = 3 at each sequencing depth) and false positive read counts (n = 285). e–h, Query 15 ≤ age 

< 20. e, Schematic representation of the query and results. f, Representative FAS histograms for 

the query 15 ≤ age < 20, showing sequential selection based on barcodes age_x25_seq0 (Atto 
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565) and age_x5_seq3 (Alexa Fluor 647). g, AUC values across read depths for the query 15 ≤ 

age < 20. h, Internal barcode read counts distributions from retrieved samples across varying 

sequencing depths for the query 15 ≤ age < 20, separated by true positive read counts (n=12) 

and false positive read counts (n = 276). i–l, Query 50 ≤ age < 75. i, Schematic representation of 

the query and retrieval process for the query 50 ≤ age < 75. j, Representative FAS histograms for 

the query 50 ≤ age < 75, showing selection based on barcode age_x25_seq2 (Atto 565). k, AUC 

values across read depths for the query 50 ≤ age < 75. l, Internal barcode read counts distributions 

from retrieved samples across varying sequencing depths for the query 50 ≤ age < 75, separated 

by true positive read counts (n = 63) and false positive read counts (n = 225). AUC plots show 

mean values across three independently sorted replicate samples with individual data points 

shown. Whisker plots display individual barcode read counts per replicate (3 independent sorting 

replicates). In each box-and-whisker plot, boxes span the first and third quartiles, with center line 

indicating the median. Whiskers indicate maxima and minima of points within 1.5 times the 

interquartile range. Source data for bar plots and box-and-whisker plots are provided as a Source 

Data file. ...................................................................................................................................... 11 

Figure 5 | Database querying results for the query (symptomatic OR NOT vaccinated) AND 

flight_city = Chicago AND 6 ≤ arrival_month ≤ 8 AND arrival_year = 2020. a, Three-stage selection 

schematic showing sequential application of query criteria with corresponding FAS histograms. 

b, Representative scatterplots from first round and histograms from second and third rounds of 

FAS. Top (round 1): Scatterplots assessing vax_seq0 (Atto 565) and symptomatic_seq0 (Atto 

488) against flight_month_x3_seq2 (Alexa Fluor 647). Middle (round 2): Histograms for city 

selection using city_seq0 (Atto 488), city_seq3 (Atto 565), and city_seq4 (Alexa Fluor 647). 

Bottom (round 3): Histograms for year selection using flight_year_x10_seq2 (Atto 488) and 

flight_year_x1_seq0 (Atto 565). c, AUC across read depths for the combined query. AUC data for 

each sequencing depth show mean values (n = 3 independent sorting experiments). Source data 

are provided as a Source Data file. d, Internal barcode read counts distributions from retrieved 

samples across varying sequencing depths for the combined query, separated by true positive 

read counts (n = 6) and false positive read counts (n = 282). In each box-and-whisker plot, boxes 

span the first and third quartiles, with center line indicating the median. Whiskers indicate maxima 

and minima of points within 1.5 times the interquartile range. Source data are provided as a 

Source Data file. ......................................................................................................................... 14 

Figure 6 | Sequencing results for synthetic and clinically-derived SARS-CoV-2 samples that were 

encapsulated and then de-encapsulated, to demonstrate the feasibility of our approach to real-
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world nucleic acid samples. a, For the three database queries NOT symptomatic, 50 ≤ age < 75, 

and (symptomatic OR NOT vaccinated) AND flight_city = Chicago AND 6 ≤ arrival_month ≤ 8 

AND arrival_year = 2020, the variants in each sample were quantified. These variants should 

correspond to the synthetic Alpha or Gamma that had been encapsulated in each of the 96 mock 

patient samples. Each bar height indicates mean abundance values calculated across three 

independently sorted replicates. Source data are provided as a Source Data file. b, Results for 

sequencing of clinical SARS-CoV-2 samples. Dark and light-colored circles represent each 

duplicate sequencing run for each sample. Source data are provided as a Source Data file. .... 16 
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Editor’s Summary  
Large biospecimen banks are limited by a lack of fast, flexible, database-like retrieval. Here, 
authors encode metadata as DNA barcodes on silica-encapsulated samples and demonstrate 
numerical range, categorical, and Boolean queries, enabling rapid, precise recall from pooled 
DNA/RNA archives. 
 
 
Peer Review Information: Nature Communications thanks Fajia Sun and the other, anonymous, 
reviewer(s) for their contribution to the peer review of this work. A peer review file is available. 
 


