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Abstract

Infiltration of Agrobacterium tumefaciens into Nicotiana benthamiana has become a foundational
technique in plant biology, enabling efficient delivery of transgenes in planta with technical ease,
robust signal, and relatively high throughput. Despite transient expression’s prevalence in
disciplines such as synthetic biology, little work has been done to describe and address the
variability inherent in this system, a concern for experiments that rely on highly quantitative
readouts. In a comprehensive analysis of N. benthamiana agroinfiltration experiments, we model
sources of variability that affect transient expression. Our findings emphasize the need to validate
normalization methods under the specific conditions of each study, as distinct normalization
schemes do not always reduce variation either within or between experiments. Using a dataset
of 1,915 plants collected over three years, we develop a model of variation in N. benthamiana
transient expression, using power analysis to determine the number of individual plants required
for a given effect size. Drawing on our longitudinal data, these findings inform practical guidelines
for minimizing variability through strategic experimental design and power analysis, providing a
foundation for more robust and reproducible use of N. benthamiana in quantitative plant biology
and synthetic biology applications.



Introduction

Nicotiana benthamiana is a workhorse of plant molecular biology due to the high efficiency of
transient Agrobacterium-mediated transformation, enabling researchers to assess gene function
and observe phenotypes within days, as opposed to the months it typically takes for stable
transformations 3. N. benthamiana’s capacity for transient expression precipitated its use to
study diverse aspects of cell and molecular biology 4, including virus-induced gene silencing °,
subcellular protein localization 8, biosynthetic pathway discovery and engineering %!, and gene
regulation 1216, Given the lengthy time required to generate stable transformants and the technical
challenges inherent in protoplast transformation 718, there are few viable in planta alternatives to

N. benthamiana transient expression, leading to its primacy as the model of plant synthetic biology
19,20

Despite its widespread use, N. benthamiana lacks substantial efforts to assess error and
reproducibility, like many other systems routinely leverage in synthetic biology ?'. Nor is there a
standardized way to design transient assays, and as a result, experimental design varies from
publication to publication 1322-26, These factors obstruct our ability to model and predict variation
in this model system, which is crucial for effective experimental design as has been demonstrated
in the closely related Nicotiana tabacum 27, Limited quantitative understanding of biology has
routinely impeded genetic engineers in developing predictable and reliable bioproducts 28, in
comparison to the precision associated with traditional engineering disciplines 2°. For plant
synthetic biology to truly be an engineering discipline, we require robust evaluation of variability
and its effects on our design goals.

The variability of transient expression in N. benthamiana in highly powered and longitudinal
experiments has never been rigorously evaluated. Without robust statistics, researchers risk
designing underpowered experiments and overlooking subtle effects. While there have been
attempts to determine transgene expression variability in stable plant lines 3031, it is unclear
whether these findings translate to transient expression. Transient expression variability in N.
benthamiana has been primarily studied using luciferase reporters, but these studies are plagued
by small sample size, lack of biological replicates, and the high noise inherent to the luciferase
assay %2734, Most methods used to reduce variability in transient expression experiments have
relied on using a second reporter (hereafter referred to as a normalizer) for ratiometric
normalization 1322-243536_|n this approach, every tested experimental construct is co-delivered
with the same constitutively expressed normalizer, under the assumption that any variation in the
experimental construct’s expression that tracks with variation in the normalizer’s expression must
not be due to the sequence of the reporters but rather other variables. Although this approach is
widely used, whether normalizing transgene expression actually reduces and controls for variation
has not been systematically examined.

Here, we use fluorescence reporter assays to systematically determine the sources of variation
of transient expression in N. benthamiana leaves. Using a large sample size (>1900 plants)
across multiple years of independent experiments, we comprehensively capture transgene
expression variation observed between plants and between independent experiments in order to
model sources of error. We also complete a systematic comparison of methods to normalize



transgene expression in N. benthamiana and demonstrate whether and to what extent these
methods reduce variability. Finally, we suggest best practices to mitigate variation through
purposeful experimental design and statistical power analysis.

Results

Categorizing the sources of transient expression variation

To determine sources of variability in N. benthamiana transient expression, we analyzed
previously published data wherein the same GFP reporter (vector 1 of Supplementary Table 1)
was agroinfiltrated in 15 independent experimental replicates using A. tumefaciens
GV3101::pMP90 (hereafter GV3101) (Fig. 1A, Supplementary Fig. 1) . The reporter strain was
infiltrated distal to the petiole of the fourth and fifth leaf from the top (leaves T4 and T5) of N.
benthamiana, and three days post-infiltration, four discs were collected from each infiltrated leaf.
All plants germinated at the same time and which experienced identical growing conditions and
care are referred to as belonging to the same batch. In this dataset, we observed as much as a
fourfold difference between experimental replicates with the lowest (teal, 2022.07.25) and highest
(orange, 2023.05.30) mean fluorescence (Fig. 1B, 1C). Using a mixed-effects model, we
attributed nearly all of the variation to fluctuations in batch-level mean GFP (23.8%) and GFP
standard deviation (15.6%); plant-level mean GFP (9.9%) and GFP standard deviation (28.2%)
within a given batch; and disc-level GFP standard deviation (22.3%) within a given plant (Fig. 1D).
Though the precise percent contributions of these components varies between experimental
replicates (Supplementary Fig. 2), they are nonetheless all major sources of variation that should
be accounted for in experimental design. The underlying factors of these sources of variation may
be batch effects across the fifteen experimental replicates’ plants, non-homogenous growing
conditions, and varying leaf cellular ages (Fig. 1E) 3839,

Since the experimental conditions across these 15 replicates were identical, we separately
investigated other potential contributors to variation that were controlled for in that experiment. In
other independent experiments, we assessed the effects of 96-well water volume, plant age, leaf
infiltration site, and collection time (both time of day and time elapsed between collection and
measurement). We found that water volume and plant age are negatively correlated with
fluorescence (Supplementary Figs. S3, S4), infiltration site significantly affects transgene
expression in a leaf- and strain-dependent manner (Supplementary Fig. 5), and collection time
has no effect (Supplementary Figs. S6, S7). Minor changes to water volume (e.g., evaporation,
pipetting error) may have contributed to residual error in the data from Fig. 1B. However, all plants
in this study were 4 weeks old at the time of infiltration and infiltrated distal to the petiole, so no
variation can be attributed to differences in age or infiltration site. With these additional
experiments, we have both accounted for the majority of variation in our model and now ruled out
other potential sources.

To demonstrate that these findings are generalizable beyond fluorescent proteins, we also
quantified variation for two different metabolic pathways to produce betalain (3 experimental
replicates) and 2-pyrone-4,6-dicarboxylic acid (PDC) (4 experimental replicates) %41, The three



enzymes of the betalain pathway were co-infiltrated on three separate T-DNAs or infiltrated as
one T-DNA separated by self-cleaving T2A peptides (RUBY reporter) 42. The absorbance of one
of the three betalain experimental replicates was significantly different from the other two for both
methods of delivery, and the greatest fold change between two replicates was about twofold for
co-infiltration and about fourfold for T2A, on par with the maximal difference observed for the GFP
reporter (Supplementary Fig. 8, Fig. 1B-D). For the PDC experimental replicates, yields were not
significantly different after Bonferroni correction, but there was a ~20% difference between the
highest and lowest yields (Supplementary Fig. 8). Multi-step metabolic pathway yields are subject
to enzyme subcellular localization, substrate diffusion, and the pathway’s underlying dynamics,
which may mask or exacerbate the effects of variable transgene expression. There are
considerable variations in yields, specific to each pathway, and the trends observed in FP
fluorescence likely translate to the variability of each component transgene in a metabolic
pathway.

Multiple methods of co-delivering a normalizing transgene can decrease expression
variability

Normalizing the expression level of a transgene of interest to that of another independent
transgene is thought to control for any sources of variability independent of the tested sequences,
since they should impact expression of the two transgenes equally. This practice should
theoretically reduce variation both within and between experiments. However, there are many
different conceivable ways the two transgenes could be delivered in N. benthamiana, and indeed
normalization schemes differ between publications 3:22-26,

We systematically compared normalization schemes for transient expression using fluorescent
protein (FP) reporters, whose gene expression is correlated to an easily measured phenotype,
fluorescence. The normalized readout of the assay is the ratio of eGFP and mCherry fluorescence
measured in a leaf disc. Designating FPs as the reporter or normalizer is arbitrary. The two
expression cassettes were co-delivered in three different ways. First, we co-infiltrated a mix of
two different strains of A. tumefaciens, each with a binary vector containing one FP (schemes 3-
7). Second, we infiltrated single A. tumefaciens strains carrying binary vectors with a T-DNA
containing both cassettes in every possible orientation, both relative to one another and to the left
and right borders (schemes 8-15). Third, we infiltrated a “BiBi” strain 43, wherein a single strain of
A. tumefaciens carries two binary vectors, each with a unique FP gene and ori (schemes 16-19).
All FP genes are driven by the medium strength PCM2 constitutive promoter derived from the A.
thaliana HTRS5 histone gene (AT4G40040) and are terminated by the A. thaliana Ubg3 terminator
(Supplementary Table 1, Supplementary Fig. 1) 4. These 17 methods of co-delivery were
compared to delivering eGFP (scheme 1) or mCherry (scheme 2) alone in two independent
experimental replicates.

Co-delivery methods have obvious ramifications for basal transgene expression levels that are
consistent between both experimental replicates (Supplementary Fig. 9). For both co-infiltrations
and BiBis, the low copy number origin, pSa, consistently produced much lower fluorescence
compared to the higher copy number origins, pVS1 or BBR1 (Fig. 2A) 44 For the stacked, two-
cassette T-DNAs, despite sharing the same pVS1 origin and backbone, these schemes yielded



up to eight-fold difference in fluorescence depending on the cassettes’ relative orientations (Fig.
2A, Supplementary Fig. 10). Convergent, tandem, and divergent cassettes produced the
strongest, intermediate, and weakest expression, respectively (Supplementary Fig. 10). The
expression of one gene is affected by the orientation of the other gene, even when its own position
and orientation is maintained, as with schemes 8 and 10 for eGFP or schemes 9 and 11 for
mCherry (Supplementary Fig. 10). The formation of a double terminator with the tOcs spacer in
some cassettes may be partly responsible for increased expression, as has been shown with
other binary vectors “%, but reversing tOcs does not consistently increase fluorescence from a
doubly terminated cassette over the corresponding singly terminated cassette (Supplementary
Fig. 10). These results suggest that gene position relative to the left and right borders and, most
importantly, relative orientation strongly affect expression in multi-gene T-DNAs.

Variability, as measured by coefficient of variation (CV) from all leaf discs, decreases for all
normalization schemes (Supplementary Fig. 11). Furthermore, all schemes have a lower CV for
reporter/normalizer than for reporter (Supplementary Fig. 12). The more appropriate comparison,
however, is whether a scheme’s reporter/normalizer CV is lower than the corresponding
unnormalized control's reporter CV. Most schemes produce an eGFP/mCherry CV that is
significantly less than scheme 1’s eGFP CV following a Bonferroni correction (Fig. 2B), but only
scheme 3 (co-infiltration of two pVSL1 binary vectors) meets this condition when mCherry is treated
as the reporter (Fig. 2C). Such a test is conservative, and it should be noted that there is at least
one scheme per co-delivery method that reduces CV by >50% compared to the unnormalized
control, whether CV is calculated per plant or pooling all discs together (Fig. 2B, 2C,
Supplementary Fig. 11). All co-delivery methods can offer reductions in variability, thereby
increasing the statistical power of transient expression-based experiments.

Inoculum densities of co-infiltrated strains affect signal strength but not variability

Because the decrease in CV was the greatest and most statistically significant for co-infiltration
of two pVS1 binary vectors (scheme 3), we used this scheme to explore other possible
experimental variables for further reductions in variability. Additionally, co-infiltration is highly
modular, and multiple T-DNAs can efficiently be delivered to each plant cell 4346, Since A.
tumefaciens strains in N. benthamiana leaves can antagonize or synergize with one another
depending on their densities %3, we next determined whether the ODsoo Of each strain in the co-
infiltration affects the resulting CV. Each strain was added to the infiltration mix at an ODsggo 0f O,
0.01, 0.1, 0.5, or 1 and combined with the other strain, also added at the same densities for a
total of 24 possible combinations.

Total ODeoo Of the co-infiltrated mix and the ODsoo Of the individual strains do not greatly nor
predictably affect variability, but inoculum density of a strain dictates its total transgene expression
levels. There is no discernible pattern in eGFP CV with respect to the ODeoo 0f the co-infiltrated
strains (Fig. 3A), and while all CVs for the ratio of eGFP/mCherry are comparatively much lower
(Fig. 3B), there is no one combination of ODs that is significantly superior to all others. The same
trends are apparent when mCherry is treated as the reporter and eGFP as the normalizer (Fig.
S13). For raw fluorescence, signal begins to saturate beyond an ODeggo Of 0.5, and when one
strain is held at a given ODsoo While the ODeoo 0f another competing strain increases, fluorescence



from the fixed strain decreases (Fig. 3C, 3D). The primary concern when selecting ODsgo, then,
should be the desired signal strength. Of the densities tested, 0.1 results in strong, measurable
signal and, in agreement with previous findings, does not saturate the transgene expression
capacity of the plant cell 4346,

Promoter choice determines the utility of normalization

Given that the choice of promoter(s) in transient transformations affects not only signal strength
but also normalization outcomes !4, we more thoroughly explored additional promoter
combinations. All transgenes in this study have hitherto been driven by a medium-strength
promoter, PCM2. From a library of low, medium, and high strength constitutive promoters
characterized by Zhou et al. (annotated as “PCL”, “PCM”, and “PCH,” respectively), we selected
low- and high-strength promoters, PCL2 and PCH5, to test alongside PCM2. eGFP and mCherry
were driven by this same set of three promoters (“same promoter set”). The eGFP binary vectors
were co-infiltrated with the mCherry binary vectors in every possible combination, and all binary
vectors were also infiltrated alone for a total of 15 unique infiltrations.

There is no discernible pattern in eGFP CV for any of the infiltrations (Fig. 4A), but for
eGFP/mCherry, identical promoters driving the two FP genes yield the lowest CVs (Fig. 4B).
Outside of these pairs, normalization does not provide as large reductions in variations, if at all.
In fact, for three nonidentical promoter pairs, their eGFP/mCherry CV is greater than their own
eGFP CV and, for one pair, also greater than the eGFP CV of its corresponding unnormalized
control (Fig. 4A, 4B). Similar observations are true when treating mCherry as the reporter and
eGFP as the normalizer (Supplementary Fig. 14). Additionally, fluorescence from a given strain
diminishes the stronger a competing strain’s FP promoter is, though this trend is weaker for
mCherry than it is for GFP (Fig. 4C, 4D).

We then sought to clarify whether the large decrease in CV when using identical promoters is due
to the similar promoter strengths or to other variables, such as shared trans factors affecting
MRNA abundance. To do so, we generated another set of three binary vectors with mCherry
driven by PCL1, PCM1, and PCH4 (“different promoter set”), which are the promoters in the library
closest in expression to the three already tested. As with the first promoter combination
experiment, the existing eGFP binary vectors were co-infiltrated with the new mCherry binary
vectors in every possible combination, and all six binary vectors were also infiltrated alone.

With these promoters, both the CVs of eGFP and of eGFP/mCherry follow no apparent pattern
(Fig. 4E, 4F), but the negative trend between fluorescence signals of the two competing strains
holds true, although PCH4 fits poorly in the trend (Fig. 4G, 4H). Several promoter pairs have
higher eGFP/mCherry CVs than their own eGFP CVs and/or the eGFP CV of the unnormalized
control (Fig. 4E, 4F), and vice versa when treating mCherry as the reporter (Supplementary Fig.
14). Similarity in promoter strength, then, does not guarantee lower CVs upon normalization.
Depending on the promoters used to normalize, normalization may even worsen the assay’s
statistical power. Since the co-delivery comparison and the OD optimization experiments were
conducted using PCM2 for every expression cassette, we had fortuitously picked the best case
scenario, identical promoters. Had we chosen nonidentical promoters, all methods of co-delivery



might not have decreased CV compared to the unnormalized controls. When possible, identical
promoters should be used.

Normalization does not yield reproducibility of absolute quantification

Normalization can serve two distinct purposes: (1) decreasing within-experiment variation to
improve detection of small effect sizes, or (2) decreasing between-experiment variation to allow
for comparison across independent experiments. Mitigating within-experiment variation does not
necessarily have an effect on between-experiment variation. To explore whether normalization
makes comparisons between experimental replicates or to historical data more valid, we co-
infiltrated GFP driven by PCL2 (which yielded the lowest average normalized CVs when driving
both FPs (Fig. 4, Supplementary Fig. 11)) alone and with all six mCherry binary vectors thus far
generated in six independent experimental replicates.

Normalization makes experimental replicates more similar to one another for most, but not all,
promoter pairs (Fig. 5A, 5B, Supplementary Fig. 15). We performed one-sample Kolmogorov-
Smirnov tests for every condition to determine the likelihood that a sample distribution (an
individual experimental replicate) is drawn from a reference distribution (all experimental
replicates, pooled). The cumulative density functions (CDFs) show that sample distributions
nearly all become more comparable to the reference distribution with normalization, i.e., the
maximum vertical distance between the distributions decreases (Fig. 5A, 5B, Supplementary Fig.
15). Replicate-to-replicate, the PCL2/PCM2 promoter pair produces the most consistent
distribution of GFP/mCherry values, far more reproducible than its raw eGFP fluorescences (Fig.
5A, 5B). The sole exception is the PCL2/PCM1 promoter pair, whose GFP/mCherry CDFs are
actually less comparable to the reference distribution than its GFP CDFs are (Fig. 5A, 5B); there
is no singular GFP/mCherry value that normalization with this promoter pair causes the data to
reliably converge upon. However, this pair and PCL2/PCL2 were the only promoter pairs for which
experimental replicate CVs, representing within-experiment variation, were regularly lower than
the unnormalized control’s (Fig. 5C). Additionally, PCL2/PCL2 produces the most consistent
experimental replicate CVs—it alone has an interquartile range of experimental replicate CVs
narrower than the unnormalized control’s (Fig. 5C). Decreasing within-experiment variation, then,
is not equivalent to decreasing between-experiment variation. Normalization schemes must be
designed with the desired outcome in mind (minimizing within- and/or between-experiment
variation) and then validated.

Developing a generalizable power analysis framework of N. benthamiana transient
expression

To evaluate whether normalization meaningfully reduces the number of plants required to detect
a given effect size, we developed a model informed by a large dataset of N. benthamiana transient
expression experiments. This dataset comprises 1,813 plants infiltrated with a GFP reporter over
nearly three years, spanning experiments conducted by multiple researchers and diverse
conditions, including different inoculum densities and Agrobacterium strains (see Supplementary
Method 2 for details). Because this dataset accounts for historical variation across diverse
experiments, the simulations trained with it will give conservative estimates of variance. Individual,



well-controlled experiments may yield lower variations, but since the precise variability cannot be
known beforehand, erring on the side of excessive rather than insufficient statistical power is
preferable. We calculated the CV for each plant infiltrated with one of two Agrobacterium strains:
GV3101 and the hypervirulent EHA105, which displays both elevated transgene expression and
variance compared to GV3101 (Fig. 6A). For batches of plants for which at least 30 plants were
used, we visualized the plant CVs in a CDF (Fig. 6B solid gray line). With these per-plant and per-
experiment CVs, we developed a Monte Carlo simulation of assay variability, which closely
recapitulates the observed distribution of real plant CVs across the training dataset (Fig. 6B dotted
black line; Wasserstein distance = 0.023, mean ECDF difference = 0.05).

We then simulated how variability propagates through an experiment on the per-plant and per-
experiment levels. First, a batch CV is drawn from the empirical distribution shown in Fig. 6A by
randomly generating a percentile and selecting the corresponding CV, which represents the
average CV of plants from a hypothetical experimental replicate. Around this batch-level value,
we simulate CVs of individual plants by incorporating additional noise that approximates within-
experiment heterogeneity between plants. For each simulated plant, eGFP fluorescence data for
eight leaf discs is generated based on the plant CV and a fixed, construct-specific mean
expression. Two conditions are compared with an independent, two-tailed Student’s t-test at
varying effect size differences and sample sizes (Fig. 6C). For each comparison, 1000
independent experimental replicates are simulated and used to calculate the probability of a
successful comparison.

This approach enables us to estimate the minimum number of plants needed to reliably (>95% of
simulations) and significantly (p < 0.05) distinguish between two constructs. From these
calculations of plants needed for given effect sizes, we fit an exponential decay curve assuming
fixed CV for three situations: unnormalized EHA105, unnormalized GV3101, and optimally
normalized GV3101 (lowest CV achieved in this publication) (Fig. 6D). The smallest detectable
effect size using 50 plants for unnormalized EHA105 was 13.7%, compared to 10.7% for
unnormalized GV3101 and 10.1% for GV3101 under optimal normalization (Fig. 6D). While larger
sample sizes can resolve even smaller differences, practical constraints limit the number of plants
that can be included in an experiment, but relatively small effect sizes can be accurately
distinguished with a small number of plants. Based on the Monte Carlo simulations, with n = 3,
the minimum reliably detectable effect size for unnormalized GV3101 is ~40%. Normalization is
most beneficial in experiments where small effect sizes must be resolved using limited sample
sizes. However, since normalization may also reduce statistical power in some cases
(Supplementary Fig. 16), any normalization strategy should be validated empirically prior to
implementation.

Discussion

Here, we systematically measure expression variability in N. benthamiana agroinfiltration. The
inherent noise in the transient expression of FPs is considerable (as much as fourfold difference
in mean expression across experimental replicates) but mitigable through proper experimental
design (Fig. 1B). Using a mixed-effects model, we categorize nearly all observed variation in our



dataset (Fig. 1D). We find that multiple co-delivery methods for dual reporters can decrease
variation via ratiometric normalization, and of the examined methods, co-infiltration best reduces
variation, approximately halving the CV compared to no normalization (Fig. 2). Neither inoculum
density nor promoter strength in co-infiltrations predictably affect expression variation, but
normalization efficacy is highly sensitive to promoter choice (Figs. 3, 4). Some promoter pairs
may in fact increase variation or make experimental replicates less comparable, and using
identical promoters is the surest and most effective way to reduce CV within experiments (Figs.
4, 5). Normalization should not be done arbitrarily but rather validated on a case-by-case basis
for the co-delivery method and experimental design used, as this is absolutely necessary for
results that are reproducible and robust to potential sources of variability.

Though unambiguously beneficial, the use of constitutive, identical promoters is also particularly
limiting given the popularity of N. benthamiana to characterize the effects of promoter identity and
architecture on transcription. This problem is undoubtedly compounded in more complex
experimental designs. To increase predictability and standardization of normalization methods,
multi-lab efforts to quantify variation using diverse methods will be necessary. More robust
transcriptomic datasets of N. benthamiana expressing diverse transgenes in distinct host strains
could discourage reliance on a single, unvalidated normalizer. Additionally, multi-factor analysis
of binary vector construction and expression cassette positioning could elucidate the extent to
which these variables affect both expression and variability.

There is little published analysis of how the design of multi-gene T-DNA structure affects the
transient expression of those genes #’. We find that convergent cassettes are far more highly
expressed than tandem or divergent cassettes. Since Agrobacteria’s VirD2 virulence protein
covalently binds the right border %8, it is thought that transgenes proximal to the right border would
be protected from exonucleolytic degradation and thus more likely to remain intact inside the plant
cell, but this hypothesis is not fully supported by our data (Fig. 2A, Supplementary Fig. 10).
Clearly, T-DNA architecture affects transgene expression strength and variation, and a high-
throughput library approach would be ideal to address the multiplicity of orientation and position
combinations in multi-gene binary vectors. Determining these rules of expression and assessing
them in both stable and transient systems requires further, data-intensive work.

Given the lack of large, curated datasets of transient gene expression in N. benthamiana, it is
likely that many published N. benthamiana experiments chose sample sizes arbitrarily based on
unvalidated assumptions. Our model of the statistical power required to determine different effect
sizes with high confidence shows that in cases where the expected effect size is large, it is easy
to achieve the necessary sample size. For example, for effect sizes >50%, fewer than three plants
are required using the GV3101 strain. For effect sizes <20%, many plants are required, to the
extent that the number of plants needed may be infeasible for single experiments (e.g. 50 plants
are needed to show a 13.7% effect using EHA105). The majority of synthetic biology applications
for transient expression, such as bioproduction or circuit reconstruction, require strong effects,
which call for small numbers of plants. However, these results could have strong implications for
subtle phenotypes, like the transformation efficiency of various Agrobacterium strains or mutants
8749 or inducible gene expression systems 475051,



While the data in this work required many hundreds of plants and multiple years to collect, we
were nonetheless only able to capture variation in N. benthamiana transient expression from a
rather narrow perspective. All of our data are from fluorescent reporters from 4-week-old plants,
with data collected three days after infiltration. We demonstrated that Agrobacterium strain,
promoter choice, and T-DNA design all impact variation, but many more strains, plasmids, and
expression cassette designs remain untested. There are other variables affecting Agrobacterium-
mediated transformation that we did not address, such as binary vector origin of replication or T-
DNA length. Furthermore, as novel Agrobacterium-independent technologies to introduce nucleic
acid and proteins into plant cells mature 5253, their variability should also be estimated. It is
critically important to establish whether our values of variance are broadly applicable, and future
work should prioritize cross-lab validation.

Even in this simple context, variation in N. benthamiana transient expression depends strongly
on a host of inputs, and attempts to normalize and mitigate this variation must be individually
validated. As complexity increases in synthetic biology experimental designs, this unpredictability
in variation and in confidence will likely be compounded. Our results show that the choice and
validation of normalization methods and data collection are critical for N. benthamiana to be a
reliable platform for applications such as reconstituting complex metabolic pathways and
designing large genetic circuits. As we have thoroughly demonstrated, careful, purposeful
experimental design and interpretation are paramount to ensure robust and reproducible results
when using this essential technique for synthetic plant biology.

Methods

Media, chemicals, and culture conditions

Routine bacterial cultures were grown in Luria-Bertani (LB) Miller medium (BD Biosciences, USA).
E. coliwas grown at 37 °C, while A. tumefaciens was grown at 30 °C. Cultures were supplemented
with rifampicin (100 pyg/mL), kanamycin (50 pg/L, Sigma Aldrich, USA), gentamicin (30 ug/L,
Fisher Scientific, USA), or spectinomycin (100ug/L, Sigma Aldrich, USA), when indicated.

Bacterial strain and plasmid construction

All bacterial strains and plasmids used in this work are listed in Supplementary Table 1. All strains
and plasmids created in this work are viewable through the public instance of the Joint BioEnergy
Institute (JBEI) registry: https://public-registry.jbei.org/folders/929. All strains and plasmids
created in this work can be requested from the strain archivist at JBEI with a signed material
transfer agreement. Plasmids were assembled by Gibson assembly using standard protocols
(New England Biolabs). Plasmids were routinely isolated using the QlAprep spin miniprep kit
(Qiagen) and all primers were purchased from Integrated DNA Technologies (IDT). Plasmid
sequences were verified using whole-plasmid sequencing (Primordium Labs). Agrobacterium was
routinely transformed by electroporation as described previously using a 1-mm cuvette and a 2.4-
kV, 25-uF, 200-Q pulse 4.



N. benthamiana growth conditions

Wild type N. benthamiana (LAB accession) plants were obtained from the in-house seed bank at
the Joint BioEnergy institute. All seedlings and plants were grown at 25 °C in 60% humidity under
long-day conditions (16 h of light, 8 h of darkness) of 150 umol m=2s™! photosynthetically active
radiation (PAR; wavelength: 400—700 nm).

As many pots as needed of Sungro Sunshine mix #4 (aggregate plus) were wetted by running
excess tap water from above and allowing it to drain through. The soil was then topped with a
layer of topsoil that was thoroughly wetted with a spray bottle. Using a spatula, a pinch of seeds
were sprinkled evenly over the soil. Ideally, 50-100 good seedlings per pot germinate. If seeds
are sown too densely, the seedlings are smaller, and having more sparse, healthy seedlings
results in superior plant quality at later stages. All seedling pots were placed in a flat with 1L
tapwater and covered with a hood, vents closed, in the growth room. If algal or cyanobacterial
contamination grows in the water, reduce the volume of water added to the tray.

After one week, flats (as many as needed) were filled with 18 3.11" x 3.11" x 2.25" Traditional
Inserts pots (Greenhouse Megastore). These pots were filled to the top with Sungro Sunshine
mix #4 (aggregate plus), supplemented with 1.5 Thsp Osmocote (14-14-14) pellets per 4L soll,
and then 3L of tap water was added to the flat. The soil was allowed to soak up the water for 2-3
hours, and then any excess was drained off and the pots broken apart. Small holes were made
in each pot’s soil, and the germinated seedlings were transplanted into individual pots. The root
of the seedling must not be damaged during transplantation. The block of soil from a seedling pot
can be removed and placed on its side to facilitate removing seedlings from soil without causing
damage. Flats were covered with a hood, vents closed, in the growth room. After one week, all
the vents were opened to allow the hood to slowly equilibrate to the ambient conditions in the
growth room. Five days later, the hoods were removed. Two days later, each flat was watered
with tap water supplemented with Peter’'s Professional (20-20-20) at 1 tsp per 4L water. After five
days, the pots were rearranged into a checkerboard pattern within the flats to maximize the
amount of space per plant, decreasing the density from 18 plants per flat to 9 plants per flat. Each
flat was also watered with 1L water. Three days later, plants were infiltrated. A highly detailed
protocol of N. benthamiana growth and care is provided in Supplementary Method 1.

Agroinfiltration of N. benthamiana

Generated binary vectors were transformed into A. tumefaciens strain GV3101 via electroporation
54, BiBi strains were generated by growing a liquid culture of single transformants to saturation,
pelleting and washing thrice with ice cold 10% glycerol, resuspending in 100ul water, and
electroporating the second binary vector into the cells. Selected transformants were inoculated in
liquid media with appropriate selection the night before the experiment. A. tumefaciens strains
were grown until ODesoo between 0.8-1.2, centrifuged for 10 min at 4000 g, and resuspended in
infiltration buffer (10 mM MgCI2, 10 mM MES, and 200 uM acetosyringone, pH 5.6) to achieve
the desired ODsoo. Cultures were induced for 1 h at room temperature on a rocking shaker. Leaves
T4 and T5 of 4-week-old N. benthamiana plants were syringe infiltrated with the A. tumefaciens
suspensions. After infiltration, N. benthamiana plants were maintained in the same growth



conditions as described above with 1L tap water per tray. Three days post infiltration, four 6-mm
leaf discs per infiltrated leaf were hole punched. The leaf discs were placed abaxial side up on
350 pL of water in black, 360-pyL 96 well Costar Assay Plates with clear flat bottoms (Corning).
eGFP (Ex.A = 488 nm, Em.A = 520 nm) and mCherry (Ex.A = 587 nm, Em.A = 615 nm)
fluorescences were measured using a Synergy 4 microplate reader (Bio-tek). Gain was set at 100
and read height at 10.5 mm.

RUBY extraction and quantification

Leaves T4 and T5 of 4-week N. benthamiana were co-infiltrated with equal amounts of three
strains (carrying vectors 2-4 from Supplementary Table 1) on side of the leaf and infiltrated with
one strain (carrying vector 5 from Supplementary Table 1) on the other. Total ODeoo for both
delivery methods was 0.5, and the infiltrated spots were not touching. Leaf tissues infiltrated with
RUBY constructs were excised with a razor blade from the leaf 5 dpi, frozen in liquid nitrogen,
and lyophilized for 2 d. Tissues were then weighed to record dry weights and homogenized with
metal beads in a PowerLyzer at 1000 g for 2 min. 80 uL of 20% methanol per mg of dry weight
was added to each sample. Samples were then centrifuged at 15,000 rcf for 5 min, and 100 pl of
the supernatant and diluted with an additional 500 pl of water. Absorbances at A = 538 nm of 300
pl of the diluted extracts in black, 360-uL 96 well Costar Assay Plates with clear flat bottoms
(Corning) were measured in a Synergy 4 microplate reader (Bio-tek).

2-pyrone-4,6-dicarboxylic acid (PDC) extraction and quantification

The entirety of leaves T4 and T5 of 4-week old N. benthamiana were infiltrated with 0.2 ODggo Of
each of the five enzymes inthe PDC pathway (total ODego = 1). At 5 dpi, both leaves were frozen
in liquid nitrogen together and lyophilized for 2 d. Leaves were then ball-milled and extracted with
80% (v/v) methanol-water as solvent as previously described %°. Metabolites were analyzed using
an HPLC-ESI-TOF-MS as previously described and quantified with a 6-point calibration curve of
PDC standard 4%4l, The monoisotopic m/z (negative ionization) of deprotonated PDC is
182.99351. A fermentation-monitoring HPX-87H column with 8% cross-linkage (150-mm length,
7.8-mm inside diameter, and 9-um particle size; Bio-Rad, Richmond, CA) was used to separate
metabolites with an Agilent Technologies 1100 Series HPLC system. Sample injection volumes
of 10 ul. The sample tray and column compartment were set to 4 and 50°C, respectively.
Metabolites were eluted isocratically with a mobile-phase composition of 0.1% formic acid in water
at a flow rate of 0.5 ml/min. The HPLC system was coupled to an Agilent Technologies 6210
series time-of-flight mass spectrometer (for LC-TOF MS) via a MassHunter workstation (Agilent
Technologies, CA). Drying and nebulizing gases were 13 L/min and 30 Ib/in?, respectively, and
drying-gas temperature was 330°C. ESI was conducted in the negative ion mode, and the
capillary voltage of was —3,500 V.



Statistics and reproducibility

No statistical method was used to predetermine sample size, as the work itself is an attempt to
characterize the variability inherent to the system, without making any assumptions about the
necessary sample size to detect a given effect size. To that end, arbitrarily large sample sizes
were chosen; all experimental conditions include at least six plants, two leaves per plant, four
discs per leaf, for a total of n=48 discs, with the exception of the six independent experiment
replicates in Fig. 5, which each include four plants, for a total of n=32 discs. Leaf discs were
excluded if they were infiltrated with an eGFP-containing binary vector, and the resulting green
fluorescence was less than 1000. Similarly, discs were excluded if they were infiltrated with an
mCherry-containing binary vector, and the resulting red fluorescence was <100. These
fluorescence values are within the range of an uninfiltrated leaf, so these discs are assumed to
be erroneously taken from uninfiltrated tissue. Plants were selected at random from different flats
(locations) from the plant growth room, as opposed to picking adjacent plants within the room,
which might introduce biases into the quality of plants in each group (and therefore into the data),
as the conditions within the growth room are not perfectly uniform. The investigators were not
blinded to allocation during experiments and outcome assessment.

Data availability

All raw data related to this study is publicly available on GitHub (https://github.com/shih-
lab/benthi_variation/tree/main/01-data) and Zenodo (DOI: 10.5281/zenodo.18004005 ©%). Prior
data reused for this work is available in the Source Data file. All plasmid sequences have been
deposited to NCBI and are available under GenBank accession numbers PX927304-PX927337
(available at https://www.ncbi.nlm.nih.gov/genbank/) — see Supplementary Table 1 for individual
accession codes. Source data are provided with this paper.

Code availability

Mixed effects model and Monte Carlo simulations were run using R (v4.2.0) and the following
packages: tidyverse (v2.0.0) %5, transport (v0.14.6), car (v3.1.3), Ime4 (v1.1.31) %6, and
performance (v0.13.0) 5’. All other analyses and figures were generated with Python (v3.11.4)
and the following packages: jupyterlab (v4.0.3) 58, pandas (v2.3.3), numpy (v2.3.3) %°, seaborn
(v0.13.2), matplotlib (v3.10.6), scipy (v1.16.1) ¢, and statsmodels (v0.14.5).

All code related to this study is publicly available on GitHub (github.com/shih-
lab/benthi_variation/tree/main/02-code) and Zenodo (DOI: 10.5281/zenodo.18004005 °1).
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Figure Captions

Figure 1. Longitudinal assessment of transient expression identifies sources of variability
in N. benthamiana fluorescence assays. A) Schematic of the transient fluorescence assay. N.
benthamiana is agroinfiltrated with an A. tumefaciens strain at an OD of 0.5. The binary vector
contains, from left to right border, CaMV35S2:nptll and PCM2:eGFP:At_Ubg3 oriented
divergently in the T-DNA. Discs are collected from leaves 3 days post-infiltration and measured
in a plate reader. B) Kernel density estimate plots of GFP fluorescence for 15 experimental
replicates, n=64 discs from 8 separate plants, except for 2022.06.06 and 2022.06.13 which are
n=40. Dates of sample collection and measurement are written YYYY.MM.DD. C) All plants in
experimental replicates with the lowest (2022.07.25) and highest (2023.05.30) mean raw
fluorescence. Boxes show the median and interquartile range (IQR), and whiskers show the
minima and maxima, excluding outliers (beyond 1.5 IQR). Scatterplots show T4 discs in white
and T5 discs in black. In both experimental replicates, four discs were collected from both
infiltrated leaves of 8 plants, for a total of n=64 discs per experimental replicate. D) Percent



contributions to observed variability as calculated from a mixed-effects model and illustrations of
sources of variability. Created in BioRender. Tang, S. (2025) https://BioRender.com/i2ej92v.
Source data for this figure is available in the Source Data file.

Figure 2. Comparison of three discrete methods to deliver normalizing reporters. A) Left,
categories of delivery methods: unnormalized (green or magenta), co-infiltration (yellow), same
T-DNA (pink), and BiBi (blue). Center, kernel density estimation plots of eGFP and mCherry
fluorescence, n=96 leaf discs per row. Right, cartoons showing the binary vector origin of
replication, resistance marker, and orientations of FP expression cassettes in the T-DNA. All
binary vector cartoons are read from left to right: ori, left border, T-DNA, right border. Origins of
replication are pVS1 (diamond, black), BBR1 (circle, teal), and pSa (square, gray). Circles
enclosing an X represent tOcs, a 722bp spacer in between the two expression cassettes. B) Plant
coefficients of variation (CV), as calculated from the 8 discs per plant, when eGFP is treated as
the reporter. All values are eGFP/mCherry CV except for scheme 1, which is GFP CV. C) Plant
CVs when mCherry is treated as the reporter. All values are mCherry/eGFP CV except for scheme
2, which is mCherry CV. Normalization scheme IDs match across all subpanels. Boxes show the
median and IQR, and whiskers show the minima and maxima, excluding outliers (beyond 1.5
IQR). For B) and C), an independent, one-tailed Welch’s t-test and a Bonferroni correction were
conducted to determine whether the reporter/normalizer CV of a scheme is significantly less than
the reporter CV for the corresponding unnormalized scheme. Two experimental replicates of six
plants are shown in B) and C), for a total of n=12 plants. Asterisks indicate p-values: * < 0.05, **
< 0.01. Total OD infiltrated in all schemes is 0.5. ODs of co-infiltrated strains are 0.25 each. In the
legend, “&” indicates co-infiltration, arrows indicate the direction of an expression cassette, “+”
indicates BiBi, and GFP is abbreviated to “G” and mCherry to “R”. Leaves T4 and T5 of six four-
week-old N. benthamiana plants were infiltrated in both experimental replicates, and four discs
were collected from each infiltrated leaf. Created in BioRender. Tang, S. (2025)
https://BioRender.com/0573uvz. Source data for this figure is available in the Source Data file.

Figure 3. ODsoo Of two co-infiltrated strains affect transgene expression strength but not
variability. Matrix of all ODgge combinations’ CV of A) eGFP fluorescence and B) ratio of
eGFP/mCherry. Raw fluorescence signal from C) eGFP and D) mCherry for all ODsgo
combinations. Darker hues indicate increasing ODsoo Of the competing strain, which carries the
other FP. Error bars show the standard error. Each condition was infiltrated into leaves T4 and
T5 of six plants. Four discs were collected from each leaf for a total of n=48 leaf discs. Source
data for this figure is available in the Source Data file.

Figure 4. Promoters of co-infiltrated transgenes determine the efficacy of normalization.
eGFP and mCherry were driven by PCL2, PCM2, or PCH5 for a total of six unique binary vectors.
Matrix of all promoter combinations’ CV of A) eGFP fluorescence and B) ratio of eGFP/mCherry.
Log. raw fluorescence from C) eGFP and D) mCherry for all promoter combinations. Darker hues
indicate stronger promoter of the competing strain. Error bars show the standard error. Matrix of
all promoter combinations’ CV of E) eGFP fluorescence and F) ratio of eGFP/mCherry. Log, raw
fluorescence signal from G) eGFP and H) mCherry for all promoter combinations when instead



the mCherry binary vectors are driven by PCL1, PCM1, or PCH4. Darker hues indicate stronger
promoter of the competing strain. Error bars show the standard error. Conditions from the “Same
Promoter Set” (A-D) and “Different Promoter Set” (E-H) experiments were infiltrated into leaves
T4 and T5 of six plants, and four discs were collected from each leaf for a total of n=48 leaf discs.
The experiments were performed independently on separate days. Source data for this figure is
available in the Source Data file.

Figure 5. Promoter choice affects variation between experimental replicates. A) Cumulative
density functions of PCL2:eGFP alone or normalized by mCherry driven by PCL2, PCM1, or
PCM2. Left: eGFP, right: eGFP/mCherry. Each experimental replicate is a unique color. The black
line is the CDF for the pooled data of all six experimental replicates. The p-values of one-sample
Kolmogorov-Smirnov tests appear to the right of each CDF, colored by experimental replicate.
Asterisks indicate p-values: * < 0.05, ** <0.01, *** < (0.001, and ns = not significant. B) Absolute
value of every experimental replicate’s D, the greatest vertical distance between the CDF a given
experimental replicate (color) and the pooled CDF (black) from A). White boxplots indicate D
values for eGFP CDFs and gray boxplots for eGFP/mCherry CDFs. C) CVs of the six experimental
replicates for each condition. As in B), white boxplots indicate eGFP and gray eGFP/mCherry.
Boxes show the median and IQR, and whiskers show the minima and maxima, excluding outliers
(beyond 1.5 IQR). Every condition was infiltrated into leaves T4 and T5 of four plants, and four
discs were collected from each leaf in all six experimental replicates, for a total of n=192 leaf
discs. Source data for this figure is available in the Source Data file.

Figure 6. Modeling variation of transgene expression in 4-week-old N. benthamiana plants.
A) Per-plant CV of unnormalized GFP calculated from data compiled across many years and
independent experiments. CV for a plant is calculated using all discs derived from that plant,
regardless of leaf. For EHA105, n=726, and for GV3101, n=1087. Violins show the distribution of
all data. Boxes show the median and IQR, and whiskers show the minima and maxima, excluding
outliers (beyond 1.5 IQR). B) Cumulative density function of per-plant, unnormalized eGFP CVs.
Solid gray, empirical data from 32 batches of at least 30 plants. Dotted black, Monte Carlo
simulated data. C) Minimum number of simulated plants needed to detect a given effect size with
the CV of unnormalized EHA105, unnormalized GV3101, or optimally normalized GV3101
assuming 95% accuracy and statistical significance (p<0.05) for a two-tailed Student’s t-test. D)
Exponential regression fit to the Monte Carlo simulated data in C), which are shown as points.
Dashed horizontal line indicates the arbitrary 50 plant cap, and dotted vertical lines indicate the
smallest detectable effect size with 50 plants. Orange, EHA105. Gray, unnormalized GV3101.
Teal, optimally normalized GV3101. Source data for this figure is available in the Source Data
file.



Editorial Summary

Little work has been done to describe and address the variability inherent in the agroinfiltration and
genetic engineering of Nicotiana benthamiana. Here the authors identify and quantify the sources of
virtually all variation and develop recommendations for minimizing variation.

Peer review information: Nature Communications thanks the anonymous, reviewers for their
contribution to the peer review of this work. A peer review file is available.
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