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Abstract 

Infiltration of Agrobacterium tumefaciens into Nicotiana benthamiana has become a foundational 

technique in plant biology, enabling efficient delivery of transgenes in planta with technical ease, 

robust signal, and relatively high throughput. Despite transient expression’s prevalence in 

disciplines such as synthetic biology, little work has been done to describe and address the 

variability inherent in this system, a concern for experiments that rely on highly quantitative 

readouts. In a comprehensive analysis of N. benthamiana agroinfiltration experiments, we model 

sources of variability that affect transient expression. Our findings emphasize the need to validate 

normalization methods under the specific conditions of each study, as distinct normalization 

schemes do not always reduce variation either within or between experiments. Using a dataset 

of 1,915 plants collected over three years, we develop a model of variation in N. benthamiana 

transient expression, using power analysis to determine the number of individual plants required 

for a given effect size. Drawing on our longitudinal data, these findings inform practical guidelines 

for minimizing variability through strategic experimental design and power analysis, providing a 

foundation for more robust and reproducible use of N. benthamiana in quantitative plant biology 

and synthetic biology applications.  
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Introduction 

Nicotiana benthamiana is a workhorse of plant molecular biology due to the high efficiency of 

transient Agrobacterium-mediated transformation, enabling researchers to assess gene function 

and observe phenotypes within days, as opposed to the months it typically takes for stable 

transformations 1–3. N. benthamiana’s capacity for transient expression precipitated its use to 

study diverse aspects of cell and molecular biology 4, including virus-induced gene silencing 5, 

subcellular protein localization 6, biosynthetic pathway discovery and engineering 7–11, and gene 

regulation 12–16. Given the lengthy time required to generate stable transformants and the technical 

challenges inherent in protoplast transformation 17,18, there are few viable in planta alternatives to 

N. benthamiana transient expression, leading to its primacy as the model of plant synthetic biology 
19,20.  

 

Despite its widespread use, N. benthamiana lacks substantial efforts to assess error and 

reproducibility, like many other systems routinely leverage in synthetic biology 21. Nor is there a 

standardized way to design transient assays, and as a result, experimental design varies from 

publication to publication 13,22–26. These factors obstruct our ability to model and predict variation 

in this model system, which is crucial for effective experimental design as has been demonstrated 

in the closely related Nicotiana tabacum 27. Limited quantitative understanding of biology has 

routinely impeded genetic engineers in developing predictable and reliable bioproducts 28, in 

comparison to the precision associated with traditional engineering disciplines 29. For plant 

synthetic biology to truly be an engineering discipline, we require robust evaluation of variability 

and its effects on our design goals.  

 

The variability of transient expression in N. benthamiana in highly powered and longitudinal 

experiments has never been rigorously evaluated. Without robust statistics, researchers risk 

designing underpowered experiments and overlooking subtle effects. While there have been 

attempts to determine transgene expression variability in stable plant lines 30,31, it is unclear 

whether these findings translate to transient expression. Transient expression variability in N. 

benthamiana has been primarily studied using luciferase reporters, but these studies are plagued 

by small sample size, lack of biological replicates, and the high noise inherent to the luciferase 

assay 32–34. Most methods used to reduce variability in transient expression experiments have 

relied on using a second reporter (hereafter referred to as a normalizer) for ratiometric 

normalization 13,22–24,35,36. In this approach, every tested experimental construct is co-delivered 

with the same constitutively expressed normalizer, under the assumption that any variation in the 

experimental construct’s expression that tracks with variation in the normalizer’s expression must 

not be due to the sequence of the reporters but rather other variables. Although this approach is 

widely used, whether normalizing transgene expression actually reduces and controls for variation 

has not been systematically examined. 

 

Here, we use fluorescence reporter assays to systematically determine the sources of variation 

of transient expression in N. benthamiana leaves. Using a large sample size (>1900 plants) 

across multiple years of independent experiments, we comprehensively capture transgene 

expression variation observed between plants and between independent experiments in order to 

model sources of error. We also complete a systematic comparison of methods to normalize 
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transgene expression in N. benthamiana and demonstrate whether and to what extent these 

methods reduce variability. Finally, we suggest best practices to mitigate variation through 

purposeful experimental design and statistical power analysis.  

Results 

Categorizing the sources of transient expression variation  

To determine sources of variability in N. benthamiana transient expression, we analyzed 

previously published data wherein the same GFP reporter (vector 1 of Supplementary Table 1) 

was agroinfiltrated in 15 independent experimental replicates using A. tumefaciens 

GV3101::pMP90 (hereafter GV3101) (Fig. 1A, Supplementary Fig. 1) 37. The reporter strain was 

infiltrated distal to the petiole of the fourth and fifth leaf from the top (leaves T4 and T5) of N. 

benthamiana, and three days post-infiltration, four discs were collected from each infiltrated leaf. 

All plants germinated at the same time and which experienced identical growing conditions and 

care are referred to as belonging to the same batch. In this dataset, we observed as much as a 

fourfold difference between experimental replicates with the lowest (teal, 2022.07.25) and highest 

(orange, 2023.05.30) mean fluorescence (Fig. 1B, 1C). Using a mixed-effects model, we 

attributed nearly all of the variation to fluctuations in batch-level mean GFP (23.8%) and GFP 

standard deviation (15.6%); plant-level mean GFP (9.9%) and GFP standard deviation (28.2%) 

within a given batch; and disc-level GFP standard deviation (22.3%) within a given plant (Fig. 1D). 

Though the precise percent contributions of these components varies between experimental 

replicates (Supplementary Fig. 2), they are nonetheless all major sources of variation that should 

be accounted for in experimental design. The underlying factors of these sources of variation may 

be batch effects across the fifteen experimental replicates’ plants, non-homogenous growing 

conditions, and varying leaf cellular ages (Fig. 1E) 38,39.  

 

Since the experimental conditions across these 15 replicates were identical, we separately 

investigated other potential contributors to variation that were controlled for in that experiment. In 

other independent experiments, we assessed the effects of 96-well water volume, plant age, leaf 

infiltration site, and collection time (both time of day and time elapsed between collection and 

measurement). We found that water volume and plant age are negatively correlated with 

fluorescence (Supplementary Figs. S3, S4), infiltration site significantly affects transgene 

expression in a leaf- and strain-dependent manner (Supplementary Fig. 5), and collection time 

has no effect (Supplementary Figs. S6, S7). Minor changes to water volume (e.g., evaporation, 

pipetting error) may have contributed to residual error in the data from Fig. 1B. However, all plants 

in this study were 4 weeks old at the time of infiltration and infiltrated distal to the petiole, so no 

variation can be attributed to differences in age or infiltration site. With these additional 

experiments, we have both accounted for the majority of variation in our model and now ruled out 

other potential sources.  

 

To demonstrate that these findings are generalizable beyond fluorescent proteins, we also 

quantified variation for two different metabolic pathways to produce betalain (3 experimental 

replicates) and 2-pyrone-4,6-dicarboxylic acid (PDC) (4 experimental replicates) 40,41. The three 
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enzymes of the betalain pathway were co-infiltrated on three separate T-DNAs or infiltrated as 

one T-DNA separated by self-cleaving T2A peptides (RUBY reporter) 42. The absorbance of one 

of the three betalain experimental replicates was significantly different from the other two for both 

methods of delivery, and the greatest fold change between two replicates was about twofold for 

co-infiltration and about fourfold for T2A, on par with the maximal difference observed for the GFP 

reporter (Supplementary Fig. 8, Fig. 1B-D). For the PDC experimental replicates, yields were not 

significantly different after Bonferroni correction, but there was a ~20% difference between the 

highest and lowest yields (Supplementary Fig. 8). Multi-step metabolic pathway yields are subject 

to enzyme subcellular localization, substrate diffusion, and the pathway’s underlying dynamics, 

which may mask or exacerbate the effects of variable transgene expression. There are 

considerable variations in yields, specific to each pathway, and the trends observed in FP 

fluorescence likely translate to the variability of each component transgene in a metabolic 

pathway.  

Multiple methods of co-delivering a normalizing transgene can decrease expression 

variability  

Normalizing the expression level of a transgene of interest to that of another independent 

transgene is thought to control for any sources of variability independent of the tested sequences, 

since they should impact expression of the two transgenes equally. This practice should 

theoretically reduce variation both within and between experiments. However, there are many 

different conceivable ways the two transgenes could be delivered in N. benthamiana, and indeed 

normalization schemes differ between publications 13,22–26.  

 

We systematically compared normalization schemes for transient expression using fluorescent 

protein (FP) reporters, whose gene expression is correlated to an easily measured phenotype, 

fluorescence. The normalized readout of the assay is the ratio of eGFP and mCherry fluorescence 

measured in a leaf disc. Designating FPs as the reporter or normalizer is arbitrary. The two 

expression cassettes were co-delivered in three different ways. First, we co-infiltrated a mix of 

two different strains of A. tumefaciens, each with a binary vector containing one FP (schemes 3-

7). Second, we infiltrated single A. tumefaciens strains carrying binary vectors with a T-DNA 

containing both cassettes in every possible orientation, both relative to one another and to the left 

and right borders (schemes 8-15). Third, we infiltrated a “BiBi” strain 43, wherein a single strain of 

A. tumefaciens carries two binary vectors, each with a unique FP gene and ori (schemes 16-19). 

All FP genes are driven by the medium strength PCM2 constitutive promoter derived from the A. 

thaliana HTR5 histone gene (AT4G40040) and are terminated by the A. thaliana Ubq3 terminator 

(Supplementary Table 1, Supplementary Fig. 1) 14. These 17 methods of co-delivery were 

compared to delivering eGFP (scheme 1) or mCherry (scheme 2) alone in two independent 

experimental replicates.  

 

Co-delivery methods have obvious ramifications for basal transgene expression levels that are 

consistent between both experimental replicates (Supplementary Fig. 9). For both co-infiltrations 

and BiBis, the low copy number origin, pSa, consistently produced much lower fluorescence 

compared to the higher copy number origins, pVS1 or BBR1 (Fig. 2A) 44. For the stacked, two-

cassette T-DNAs, despite sharing the same pVS1 origin and backbone, these schemes yielded 
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up to eight-fold difference in fluorescence depending on the cassettes’ relative orientations (Fig. 

2A, Supplementary Fig. 10). Convergent, tandem, and divergent cassettes produced the 

strongest, intermediate, and weakest expression, respectively (Supplementary Fig. 10). The 

expression of one gene is affected by the orientation of the other gene, even when its own position 

and orientation is maintained, as with schemes 8 and 10 for eGFP or schemes 9 and 11 for 

mCherry (Supplementary Fig. 10). The formation of a double terminator with the tOcs spacer in 

some cassettes may be partly responsible for increased expression, as has been shown with 

other binary vectors 45, but reversing tOcs does not consistently increase fluorescence from a 

doubly terminated cassette over the corresponding singly terminated cassette (Supplementary 

Fig. 10). These results suggest that gene position relative to the left and right borders and, most 

importantly, relative orientation strongly affect expression in multi-gene T-DNAs.  

 

Variability, as measured by coefficient of variation (CV) from all leaf discs, decreases for all 

normalization schemes (Supplementary Fig. 11). Furthermore, all schemes have a lower CV for 

reporter/normalizer than for reporter (Supplementary Fig. 12). The more appropriate comparison, 

however, is whether a scheme’s reporter/normalizer CV is lower than the corresponding 

unnormalized control’s reporter CV. Most schemes produce an eGFP/mCherry CV that is 

significantly less than scheme 1’s eGFP CV following a Bonferroni correction (Fig. 2B), but only 

scheme 3 (co-infiltration of two pVS1 binary vectors) meets this condition when mCherry is treated 

as the reporter (Fig. 2C). Such a test is conservative, and it should be noted that there is at least 

one scheme per co-delivery method that reduces CV by >50% compared to the unnormalized 

control, whether CV is calculated per plant or pooling all discs together (Fig. 2B, 2C, 

Supplementary Fig. 11). All co-delivery methods can offer reductions in variability, thereby 

increasing the statistical power of transient expression-based experiments. 

Inoculum densities of co-infiltrated strains affect signal strength but not variability 

Because the decrease in CV was the greatest and most statistically significant for co-infiltration 

of two pVS1 binary vectors (scheme 3), we used this scheme to explore other possible 

experimental variables for further reductions in variability. Additionally, co-infiltration is highly 

modular, and multiple T-DNAs can efficiently be delivered to each plant cell 43,46. Since A. 

tumefaciens strains in N. benthamiana leaves can antagonize or synergize with one another 

depending on their densities 43, we next determined whether the OD600 of each strain in the co-

infiltration affects the resulting CV. Each strain was added to the infiltration mix at an OD600 of 0, 

0.01, 0.1, 0.5, or 1 and combined with the other strain, also added at the same densities for a 

total of 24 possible combinations.  

 

Total OD600 of the co-infiltrated mix and the OD600 of the individual strains do not greatly nor 

predictably affect variability, but inoculum density of a strain dictates its total transgene expression 

levels. There is no discernible pattern in eGFP CV with respect to the OD600 of the co-infiltrated 

strains (Fig. 3A), and while all CVs for the ratio of eGFP/mCherry are comparatively much lower 

(Fig. 3B), there is no one combination of ODs that is significantly superior to all others. The same 

trends are apparent when mCherry is treated as the reporter and eGFP as the normalizer (Fig. 

S13). For raw fluorescence, signal begins to saturate beyond an OD600 of 0.5, and when one 

strain is held at a given OD600 while the OD600 of another competing strain increases, fluorescence 
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from the fixed strain decreases (Fig. 3C, 3D). The primary concern when selecting OD600, then, 

should be the desired signal strength. Of the densities tested, 0.1 results in strong, measurable 

signal and, in agreement with previous findings, does not saturate the transgene expression 

capacity of the plant cell 43,46. 

Promoter choice determines the utility of normalization  

Given that the choice of promoter(s) in transient transformations affects not only signal strength 

but also normalization outcomes 14, we more thoroughly explored additional promoter 

combinations. All transgenes in this study have hitherto been driven by a medium-strength 

promoter, PCM2. From a library of low, medium, and high strength constitutive promoters 

characterized by Zhou et al. (annotated as “PCL”, “PCM”, and “PCH,” respectively), we selected 

low- and high-strength promoters, PCL2 and PCH5, to test alongside PCM2. eGFP and mCherry 

were driven by this same set of three promoters (“same promoter set”). The eGFP binary vectors 

were co-infiltrated with the mCherry binary vectors in every possible combination, and all binary 

vectors were also infiltrated alone for a total of 15 unique infiltrations.  

 

There is no discernible pattern in eGFP CV for any of the infiltrations (Fig. 4A), but for 

eGFP/mCherry, identical promoters driving the two FP genes yield the lowest CVs (Fig. 4B). 

Outside of these pairs, normalization does not provide as large reductions in variations, if at all. 

In fact, for three nonidentical promoter pairs, their eGFP/mCherry CV is greater than their own 

eGFP CV and, for one pair, also greater than the eGFP CV of its corresponding unnormalized 

control (Fig. 4A, 4B). Similar observations are true when treating mCherry as the reporter and 

eGFP as the normalizer (Supplementary Fig. 14). Additionally, fluorescence from a given strain 

diminishes the stronger a competing strain’s FP promoter is, though this trend is weaker for 

mCherry than it is for GFP (Fig. 4C, 4D).  

 

We then sought to clarify whether the large decrease in CV when using identical promoters is due 

to the similar promoter strengths or to other variables, such as shared trans factors affecting 

mRNA abundance. To do so, we generated another set of three binary vectors with mCherry 

driven by PCL1, PCM1, and PCH4 (“different promoter set”), which are the promoters in the library 

closest in expression to the three already tested. As with the first promoter combination 

experiment, the existing eGFP binary vectors were co-infiltrated with the new mCherry binary 

vectors in every possible combination, and all six binary vectors were also infiltrated alone. 

 

With these promoters, both the CVs of eGFP and of eGFP/mCherry follow no apparent pattern 

(Fig. 4E, 4F), but the negative trend between fluorescence signals of the two competing strains 

holds true, although PCH4 fits poorly in the trend (Fig. 4G, 4H). Several promoter pairs have 

higher eGFP/mCherry CVs than their own eGFP CVs and/or the eGFP CV of the unnormalized 

control (Fig. 4E, 4F), and vice versa when treating mCherry as the reporter (Supplementary Fig. 

14). Similarity in promoter strength, then, does not guarantee lower CVs upon normalization. 

Depending on the promoters used to normalize, normalization may even worsen the assay’s 

statistical power. Since the co-delivery comparison and the OD optimization experiments were 

conducted using PCM2 for every expression cassette, we had fortuitously picked the best case 

scenario, identical promoters. Had we chosen nonidentical promoters, all methods of co-delivery 
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might not have decreased CV compared to the unnormalized controls. When possible, identical 

promoters should be used.  

Normalization does not yield reproducibility of absolute quantification 

Normalization can serve two distinct purposes: (1) decreasing within-experiment variation to 

improve detection of small effect sizes, or (2) decreasing between-experiment variation to allow 

for comparison across independent experiments. Mitigating within-experiment variation does not 

necessarily have an effect on between-experiment variation. To explore whether normalization 

makes comparisons between experimental replicates or to historical data more valid, we co-

infiltrated GFP driven by PCL2 (which yielded the lowest average normalized CVs when driving 

both FPs (Fig. 4, Supplementary Fig. 11)) alone and with all six mCherry binary vectors thus far 

generated in six independent experimental replicates. 

 

Normalization makes experimental replicates more similar to one another for most, but not all, 

promoter pairs (Fig. 5A, 5B, Supplementary Fig. 15). We performed one-sample Kolmogorov-

Smirnov tests for every condition to determine the likelihood that a sample distribution (an 

individual experimental replicate) is drawn from a reference distribution (all experimental 

replicates, pooled). The cumulative density functions (CDFs) show that sample distributions 

nearly all become more comparable to the reference distribution with normalization, i.e., the 

maximum vertical distance between the distributions decreases (Fig. 5A, 5B, Supplementary Fig. 

15). Replicate-to-replicate, the PCL2/PCM2 promoter pair produces the most consistent 

distribution of GFP/mCherry values, far more reproducible than its raw eGFP fluorescences (Fig. 

5A, 5B). The sole exception is the PCL2/PCM1 promoter pair, whose GFP/mCherry CDFs are 

actually less comparable to the reference distribution than its GFP CDFs are (Fig. 5A, 5B); there 

is no singular GFP/mCherry value that normalization with this promoter pair causes the data to 

reliably converge upon. However, this pair and PCL2/PCL2 were the only promoter pairs for which 

experimental replicate CVs, representing within-experiment variation, were regularly lower than 

the unnormalized control’s (Fig. 5C). Additionally, PCL2/PCL2 produces the most consistent 

experimental replicate CVs–it alone has an interquartile range of experimental replicate CVs 

narrower than the unnormalized control’s (Fig. 5C). Decreasing within-experiment variation, then, 

is not equivalent to decreasing between-experiment variation. Normalization schemes must be 

designed with the desired outcome in mind (minimizing within- and/or between-experiment 

variation) and then validated.  

Developing a generalizable power analysis framework of N. benthamiana transient 

expression 

To evaluate whether normalization meaningfully reduces the number of plants required to detect 

a given effect size, we developed a model informed by a large dataset of N. benthamiana transient 

expression experiments. This dataset comprises 1,813 plants infiltrated with a GFP reporter over 

nearly three years, spanning experiments conducted by multiple researchers and diverse 

conditions, including different inoculum densities and Agrobacterium strains (see Supplementary 

Method 2 for details). Because this dataset accounts for historical variation across diverse 

experiments, the simulations trained with it will give conservative estimates of variance. Individual, 
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well-controlled experiments may yield lower variations, but since the precise variability cannot be 

known beforehand, erring on the side of excessive rather than insufficient statistical power is 

preferable. We calculated the CV for each plant infiltrated with one of two Agrobacterium strains: 

GV3101 and the hypervirulent EHA105, which displays both elevated transgene expression and 

variance compared to GV3101 (Fig. 6A). For batches of plants for which at least 30 plants were 

used, we visualized the plant CVs in a CDF (Fig. 6B solid gray line). With these per-plant and per-

experiment CVs, we developed a Monte Carlo simulation of assay variability, which closely 

recapitulates the observed distribution of real plant CVs across the training dataset (Fig. 6B dotted 

black line; Wasserstein distance = 0.023, mean ECDF difference = 0.05). 

 

We then simulated how variability propagates through an experiment on the per-plant and per-

experiment levels. First, a batch CV is drawn from the empirical distribution shown in Fig. 6A by 

randomly generating a percentile and selecting the corresponding CV, which represents the 

average CV of plants from a hypothetical experimental replicate. Around this batch-level value, 

we simulate CVs of individual plants by incorporating additional noise that approximates within-

experiment heterogeneity between plants. For each simulated plant, eGFP fluorescence data for 

eight leaf discs is generated based on the plant CV and a fixed, construct-specific mean 

expression. Two conditions are compared with an independent, two-tailed Student’s t-test at 

varying effect size differences and sample sizes (Fig. 6C). For each comparison, 1000 

independent experimental replicates are simulated and used to calculate the probability of a 

successful comparison. 

 

This approach enables us to estimate the minimum number of plants needed to reliably (>95% of 

simulations) and significantly (p < 0.05) distinguish between two constructs. From these 

calculations of plants needed for given effect sizes, we fit an exponential decay curve assuming 

fixed CV for three situations: unnormalized EHA105, unnormalized GV3101, and optimally 

normalized GV3101 (lowest CV achieved in this publication) (Fig. 6D). The smallest detectable 

effect size using 50 plants for unnormalized EHA105 was 13.7%, compared to 10.7% for 

unnormalized GV3101 and 10.1% for GV3101 under optimal normalization (Fig. 6D). While larger 

sample sizes can resolve even smaller differences, practical constraints limit the number of plants 

that can be included in an experiment, but relatively small effect sizes can be accurately 

distinguished with a small number of plants. Based on the Monte Carlo simulations, with n = 3, 

the minimum reliably detectable effect size for unnormalized GV3101 is ~40%. Normalization is 

most beneficial in experiments where small effect sizes must be resolved using limited sample 

sizes. However, since normalization may also reduce statistical power in some cases 

(Supplementary Fig. 16), any normalization strategy should be validated empirically prior to 

implementation. 

Discussion 

Here, we systematically measure expression variability in N. benthamiana agroinfiltration. The 

inherent noise in the transient expression of FPs is considerable (as much as fourfold difference 

in mean expression across experimental replicates) but mitigable through proper experimental 

design (Fig. 1B). Using a mixed-effects model, we categorize nearly all observed variation in our 
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dataset  (Fig. 1D). We find that multiple co-delivery methods for dual reporters can decrease 

variation via ratiometric normalization, and of the examined methods, co-infiltration best reduces 

variation, approximately halving the CV compared to no normalization (Fig. 2). Neither inoculum 

density nor promoter strength in co-infiltrations predictably affect expression variation, but 

normalization efficacy is highly sensitive to promoter choice (Figs. 3, 4). Some promoter pairs 

may in fact increase variation or make experimental replicates less comparable, and using 

identical promoters is the surest and most effective way to reduce CV within experiments (Figs. 

4, 5). Normalization should not be done arbitrarily but rather validated on a case-by-case basis 

for the co-delivery method and experimental design used, as this is absolutely necessary for 

results that are reproducible and robust to potential sources of variability. 

 

Though unambiguously beneficial, the use of constitutive, identical promoters is also particularly 

limiting given the popularity of N. benthamiana to characterize the effects of promoter identity and 

architecture on transcription. This problem is undoubtedly compounded in more complex 

experimental designs. To increase predictability and standardization of normalization methods, 

multi-lab efforts to quantify variation using diverse methods will be necessary. More robust 

transcriptomic datasets of N. benthamiana expressing diverse transgenes in distinct host strains 

could discourage reliance on a single, unvalidated normalizer. Additionally, multi-factor analysis 

of binary vector construction and expression cassette positioning could elucidate the extent to 

which these variables affect both expression and variability.  

 

There is little published analysis of how the design of multi-gene T-DNA structure affects the 

transient expression of those genes 47. We find that convergent cassettes are far more highly 

expressed than tandem or divergent cassettes. Since Agrobacteria’s VirD2 virulence protein 

covalently binds the right border 48, it is thought that transgenes proximal to the right border would 

be protected from exonucleolytic degradation and thus more likely to remain intact inside the plant 

cell, but this hypothesis is not fully supported by our data (Fig. 2A, Supplementary Fig. 10). 

Clearly, T-DNA architecture affects transgene expression strength and variation, and a high-

throughput library approach would be ideal to address the multiplicity of orientation and position 

combinations in multi-gene binary vectors. Determining these rules of expression and assessing 

them in both stable and transient systems requires further, data-intensive work. 

 

Given the lack of large, curated datasets of transient gene expression in N. benthamiana, it is 

likely that many published N. benthamiana experiments chose sample sizes arbitrarily based on 

unvalidated assumptions. Our model of the statistical power required to determine different effect 

sizes with high confidence shows that in cases where the expected effect size is large, it is easy 

to achieve the necessary sample size. For example, for effect sizes >50%, fewer than three plants 

are required using the GV3101 strain. For effect sizes <20%, many plants are required, to the 

extent that the number of plants needed may be infeasible for single experiments (e.g. 50 plants 

are needed to show a 13.7% effect using EHA105). The majority of synthetic biology applications 

for transient expression, such as bioproduction or circuit reconstruction, require strong effects, 

which call for small numbers of plants. However, these results could have strong implications for 

subtle phenotypes, like the transformation efficiency of various Agrobacterium strains or mutants 
37,49, or inducible gene expression systems 47,50,51.  
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While the data in this work required many hundreds of plants and multiple years to collect, we 

were nonetheless only able to capture variation in N. benthamiana transient expression from a 

rather narrow perspective. All of our data are from fluorescent reporters from 4-week-old plants, 

with data collected three days after infiltration. We demonstrated that Agrobacterium strain, 

promoter choice, and T-DNA design all impact variation, but many more strains, plasmids, and 

expression cassette designs remain untested. There are other variables affecting Agrobacterium-

mediated transformation that we did not address, such as binary vector origin of replication or T-

DNA length. Furthermore, as novel Agrobacterium-independent technologies to introduce nucleic 

acid and proteins into plant cells mature 52,53, their variability should also be estimated. It is 

critically important to establish whether our values of variance are broadly applicable, and future 

work should prioritize cross-lab validation.  

 

Even in this simple context, variation in N. benthamiana transient expression depends strongly 

on a host of inputs, and attempts to normalize and mitigate this variation must be individually 

validated. As complexity increases in synthetic biology experimental designs, this unpredictability 

in variation and in confidence will likely be compounded. Our results show that the choice and 

validation of normalization methods and data collection are critical for N. benthamiana to be a 

reliable platform for applications such as reconstituting complex metabolic pathways and 

designing large genetic circuits. As we have thoroughly demonstrated, careful, purposeful 

experimental design and interpretation are paramount to ensure robust and reproducible results 

when using this essential technique for synthetic plant biology.  

Methods 

Media, chemicals, and culture conditions 

Routine bacterial cultures were grown in Luria-Bertani (LB) Miller medium (BD Biosciences, USA). 

E. coli was grown at 37 °C, while A. tumefaciens was grown at 30 °C. Cultures were supplemented 

with rifampicin (100 μg/mL), kanamycin (50 μg/L, Sigma Aldrich, USA), gentamicin (30 μg/L, 

Fisher Scientific, USA), or spectinomycin (100μg/L, Sigma Aldrich, USA), when indicated.  

Bacterial strain and plasmid construction 

All bacterial strains and plasmids used in this work are listed in Supplementary Table 1. All strains 

and plasmids created in this work are viewable through the public instance of the Joint BioEnergy 

Institute (JBEI) registry: https://public-registry.jbei.org/folders/929. All strains and plasmids 

created in this work can be requested from the strain archivist at JBEI with a signed material 

transfer agreement. Plasmids were assembled by Gibson assembly using standard protocols 

(New England Biolabs). Plasmids were routinely isolated using the QIAprep spin miniprep kit 

(Qiagen) and all primers were purchased from Integrated DNA Technologies (IDT). Plasmid 

sequences were verified using whole-plasmid sequencing (Primordium Labs). Agrobacterium was 

routinely transformed by electroporation as described previously using a 1-mm cuvette and a 2.4-

kV, 25-μF, 200-Ω pulse 54. 
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N. benthamiana growth conditions 

Wild type N. benthamiana (LAB accession) plants were obtained from the in-house seed bank at 

the Joint BioEnergy institute. All seedlings and plants were grown at 25 °C in 60% humidity under 

long-day conditions (16 h of light, 8 h of darkness) of 150 μmol m−2 s−1 photosynthetically active 

radiation (PAR; wavelength: 400–700 nm).  

 

As many pots as needed of Sungro Sunshine mix #4 (aggregate plus) were wetted by running 

excess tap water from above and allowing it to drain through. The soil was then topped with a 

layer of topsoil that was thoroughly wetted with a spray bottle. Using a spatula, a pinch of seeds 

were sprinkled evenly over the soil. Ideally, 50-100 good seedlings per pot germinate. If seeds 

are sown too densely, the seedlings are smaller, and having more sparse, healthy seedlings 

results in superior plant quality at later stages. All seedling pots were placed in a flat with 1L 

tapwater and covered with a hood, vents closed, in the growth room. If algal or cyanobacterial 

contamination grows in the water, reduce the volume of water added to the tray. 

 

After one week, flats (as many as needed) were filled with 18 3.11" x 3.11" x 2.25" Traditional 

Inserts pots (Greenhouse Megastore). These pots were filled to the top with Sungro Sunshine 

mix #4 (aggregate plus), supplemented with 1.5 Tbsp Osmocote (14-14-14) pellets per 4L soil, 

and then 3L of tap water was added to the flat. The soil was allowed to soak up the water for 2-3 

hours, and then any excess was drained off and the pots broken apart. Small holes were made 

in each pot’s soil, and the germinated seedlings were transplanted into individual pots. The root 

of the seedling must not be damaged during transplantation. The block of soil from a seedling pot 

can be removed and placed on its side to facilitate removing seedlings from soil without causing 

damage. Flats were covered with a hood, vents closed, in the growth room. After one week, all 

the vents were opened to allow the hood to slowly equilibrate to the ambient conditions in the 

growth room. Five days later, the hoods were removed. Two days later, each flat was watered 

with tap water supplemented with Peter’s Professional (20-20-20) at 1 tsp per 4L water. After five 

days, the pots were rearranged into a checkerboard pattern within the flats to maximize the 

amount of space per plant, decreasing the density from 18 plants per flat to 9 plants per flat. Each 

flat was also watered with 1L water. Three days later, plants were infiltrated. A highly detailed 

protocol of N. benthamiana growth and care is provided in Supplementary Method 1. 

Agroinfiltration of N. benthamiana 

Generated binary vectors were transformed into A. tumefaciens strain GV3101 via electroporation 
54. BiBi strains were generated by growing a liquid culture of single transformants to saturation, 

pelleting and washing thrice with ice cold 10% glycerol, resuspending in 100ul water, and 

electroporating the second binary vector into the cells. Selected transformants were inoculated in 

liquid media with appropriate selection the night before the experiment. A. tumefaciens strains 

were grown until OD600 between 0.8-1.2, centrifuged for 10 min at 4000 g, and resuspended in 

infiltration buffer (10 mM MgCl2, 10 mM MES, and 200 μM acetosyringone, pH 5.6) to achieve 

the desired OD600. Cultures were induced for 1 h at room temperature on a rocking shaker. Leaves 

T4 and T5 of 4-week-old N. benthamiana plants were syringe infiltrated with the A. tumefaciens 

suspensions. After infiltration, N. benthamiana plants were maintained in the same growth 
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conditions as described above with 1L tap water per tray. Three days post infiltration, four 6-mm 

leaf discs per infiltrated leaf were hole punched. The leaf discs were placed abaxial side up on 

350 μL of water in black, 360-μL 96 well Costar Assay Plates with clear flat bottoms (Corning). 

eGFP (Ex.λ = 488 nm, Em.λ = 520 nm) and mCherry (Ex.λ = 587 nm, Em.λ = 615 nm) 

fluorescences were measured using a Synergy 4 microplate reader (Bio-tek). Gain was set at 100 

and read height at 10.5 mm. 

 

RUBY extraction and quantification 

Leaves T4 and T5 of 4-week N. benthamiana were co-infiltrated with equal amounts of three 

strains (carrying vectors 2-4 from Supplementary Table 1) on side of the leaf and infiltrated with 

one strain (carrying vector 5 from Supplementary Table 1) on the other. Total OD600 for both 

delivery methods was 0.5, and the infiltrated spots were not touching. Leaf tissues infiltrated with 

RUBY constructs were excised with a razor blade from the leaf 5 dpi, frozen in liquid nitrogen, 

and lyophilized for 2 d. Tissues were then weighed to record dry weights and homogenized with 

metal beads in a PowerLyzer at 1000 g for 2 min. 80 μL of 20% methanol per mg of dry weight 

was added to each sample. Samples were then centrifuged at 15,000 rcf for 5 min, and 100 μl of 

the supernatant and diluted with an additional 500 μl of water. Absorbances at λ = 538 nm of 300 

μl of the diluted extracts in black, 360-μL 96 well Costar Assay Plates with clear flat bottoms 

(Corning) were measured in a Synergy 4 microplate reader (Bio-tek). 

 

2-pyrone-4,6-dicarboxylic acid (PDC) extraction and quantification 

The entirety of leaves T4 and T5 of 4-week old N. benthamiana were infiltrated with 0.2 OD600 of 

each of the five enzymes in the PDC pathway (total OD600 = 1).  At 5 dpi, both leaves were frozen 

in liquid nitrogen together and lyophilized for 2 d. Leaves were then ball-milled and extracted with 

80% (v/v) methanol-water as solvent as previously described 40. Metabolites were analyzed using 

an HPLC-ESI-TOF-MS as previously described and quantified with a 6-point calibration curve of 

PDC standard 40,41. The monoisotopic m/z (negative ionization) of deprotonated PDC is 

182.99351. A fermentation-monitoring HPX-87H column with 8% cross-linkage (150-mm length, 

7.8-mm inside diameter, and 9-μm particle size; Bio-Rad, Richmond, CA) was used to separate 

metabolites with an Agilent Technologies 1100 Series HPLC system. Sample injection volumes 

of 10 μl. The sample tray and column compartment were set to 4 and 50°C, respectively. 

Metabolites were eluted isocratically with a mobile-phase composition of 0.1% formic acid in water 

at a flow rate of 0.5 ml/min. The HPLC system was coupled to an Agilent Technologies 6210 

series time-of-flight mass spectrometer (for LC-TOF MS) via a MassHunter workstation (Agilent 

Technologies, CA). Drying and nebulizing gases were 13 L/min and 30 lb/in2, respectively, and 

drying-gas temperature was 330°C. ESI was conducted in the negative ion mode, and the 

capillary voltage of was −3,500 V. 
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Statistics and reproducibility 

No statistical method was used to predetermine sample size, as the work itself is an attempt to 

characterize the variability inherent to the system, without making any assumptions about the 

necessary sample size to detect a given effect size. To that end, arbitrarily large sample sizes 

were chosen; all experimental conditions include at least six plants, two leaves per plant, four 

discs per leaf, for a total of n=48 discs, with the exception of the six independent experiment 

replicates in Fig. 5, which each include four plants, for a total of n=32 discs. Leaf discs were 

excluded if they were infiltrated with an eGFP-containing binary vector, and the resulting green 

fluorescence was less than 1000. Similarly, discs were excluded if they were infiltrated with an 

mCherry-containing binary vector, and the resulting red fluorescence was <100. These 

fluorescence values are within the range of an uninfiltrated leaf, so these discs are assumed to 

be erroneously taken from uninfiltrated tissue. Plants were selected at random from different flats 

(locations) from the plant growth room, as opposed to picking adjacent plants within the room, 

which might introduce biases into the quality of plants in each group (and therefore into the data), 

as the conditions within the growth room are not perfectly uniform. The investigators were not 

blinded to allocation during experiments and outcome assessment. 

 

Data availability 

All raw data related to this study is publicly available on GitHub (https://github.com/shih-

lab/benthi_variation/tree/main/01-data) and Zenodo (DOI: 10.5281/zenodo.18004005 61). Prior 

data reused for this work is available in the Source Data file. All plasmid sequences have been 

deposited to NCBI and are available under GenBank accession numbers PX927304-PX927337 

(available at https://www.ncbi.nlm.nih.gov/genbank/) – see Supplementary Table 1 for individual 

accession codes. Source data are provided with this paper. 

 

Code availability 

Mixed effects model and Monte Carlo simulations were run using R (v4.2.0) and the following 

packages: tidyverse (v2.0.0) 55, transport (v0.14.6), car (v3.1.3), lme4 (v1.1.31) 56, and 

performance (v0.13.0) 57. All other analyses and figures were generated with Python (v3.11.4) 

and the following packages: jupyterlab (v4.0.3) 58, pandas (v2.3.3), numpy (v2.3.3) 59, seaborn 

(v0.13.2), matplotlib (v3.10.6), scipy (v1.16.1) 60, and statsmodels (v0.14.5). 

 

All code related to this study is publicly available on GitHub (github.com/shih-

lab/benthi_variation/tree/main/02-code) and Zenodo (DOI: 10.5281/zenodo.18004005 61). 
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Figure Captions 
 

Figure 1. Longitudinal assessment of transient expression identifies sources of variability 

in N. benthamiana fluorescence assays. A) Schematic of the transient fluorescence assay. N. 

benthamiana is agroinfiltrated with an A. tumefaciens strain at an OD of 0.5. The binary vector 

contains, from left to right border, CaMV35S2:nptII and PCM2:eGFP:At_Ubq3 oriented 

divergently in the T-DNA. Discs are collected from leaves 3 days post-infiltration and measured 

in a plate reader. B) Kernel density estimate plots of GFP fluorescence for 15 experimental 

replicates, n=64 discs from 8 separate plants, except for 2022.06.06 and 2022.06.13 which are 

n=40. Dates of sample collection and measurement are written YYYY.MM.DD. C) All plants in 

experimental replicates with the lowest (2022.07.25) and highest (2023.05.30) mean raw 

fluorescence. Boxes show the median and interquartile range (IQR), and whiskers show the 

minima and maxima, excluding outliers (beyond 1.5 IQR). Scatterplots show T4 discs in white 

and T5 discs in black. In both experimental replicates, four discs were collected from both 

infiltrated leaves of 8 plants, for a total of n=64 discs per experimental replicate. D) Percent 
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contributions to observed variability as calculated from a mixed-effects model and illustrations of 

sources of variability. Created in BioRender. Tang, S. (2025) https://BioRender.com/i2ej92v. 

Source data for this figure is available in the Source Data file. 

 

 

Figure 2. Comparison of three discrete methods to deliver normalizing reporters. A) Left, 

categories of delivery methods: unnormalized (green or magenta), co-infiltration (yellow), same 

T-DNA (pink), and BiBi (blue). Center, kernel density estimation plots of eGFP and mCherry 

fluorescence, n=96 leaf discs per row. Right, cartoons showing the binary vector origin of 

replication, resistance marker, and orientations of FP expression cassettes in the T-DNA. All 

binary vector cartoons are read from left to right: ori, left border, T-DNA, right border. Origins of 

replication are pVS1 (diamond, black), BBR1 (circle, teal), and pSa (square, gray). Circles 

enclosing an X represent tOcs, a 722bp spacer in between the two expression cassettes. B) Plant 

coefficients of variation (CV), as calculated from the 8 discs per plant, when eGFP is treated as 

the reporter. All values are eGFP/mCherry CV except for scheme 1, which is GFP CV. C) Plant 

CVs when mCherry is treated as the reporter. All values are mCherry/eGFP CV except for scheme 

2, which is mCherry CV. Normalization scheme IDs match across all subpanels. Boxes show the 

median and IQR, and whiskers show the minima and maxima, excluding outliers (beyond 1.5 

IQR). For B) and C), an independent, one-tailed Welch’s t-test and a Bonferroni correction were 

conducted to determine whether the reporter/normalizer CV of a scheme is significantly less than 

the reporter CV for the corresponding unnormalized scheme. Two experimental replicates of six 

plants are shown in B) and C), for a total of n=12 plants. Asterisks indicate p-values: * < 0.05,  ** 

< 0.01. Total OD infiltrated in all schemes is 0.5. ODs of co-infiltrated strains are 0.25 each. In the 

legend, “&” indicates co-infiltration, arrows indicate the direction of an expression cassette, “+” 

indicates BiBi, and GFP is abbreviated to “G” and mCherry to “R”. Leaves T4 and T5 of six four-

week-old N. benthamiana plants were infiltrated in both experimental replicates, and four discs 

were collected from each infiltrated leaf. Created in BioRender. Tang, S. (2025) 

https://BioRender.com/0573uvz. Source data for this figure is available in the Source Data file. 

 

Figure 3. OD600 of two co-infiltrated strains affect transgene expression strength but not 

variability. Matrix of all OD600 combinations’ CV of A) eGFP fluorescence and B) ratio of 

eGFP/mCherry. Raw fluorescence signal from C) eGFP and D) mCherry for all OD600 

combinations. Darker hues indicate increasing OD600 of the competing strain, which carries the 

other FP. Error bars show the standard error. Each condition was infiltrated into leaves T4 and 

T5 of six plants. Four discs were collected from each leaf for a total of n=48 leaf discs. Source 

data for this figure is available in the Source Data file. 

 

 Figure 4. Promoters of co-infiltrated transgenes determine the efficacy of normalization. 

eGFP and mCherry were driven by PCL2, PCM2, or PCH5 for a total of six unique binary vectors. 

Matrix of all promoter combinations’ CV of A) eGFP fluorescence and B) ratio of eGFP/mCherry. 

Log2 raw fluorescence from C) eGFP and D) mCherry for all promoter combinations. Darker hues 

indicate stronger promoter of the competing strain. Error bars show the standard error. Matrix of 

all promoter combinations’ CV of E) eGFP fluorescence and F) ratio of eGFP/mCherry. Log2 raw 

fluorescence signal from G) eGFP and H) mCherry for all promoter combinations when instead 
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the mCherry binary vectors are driven by PCL1, PCM1, or PCH4. Darker hues indicate stronger 

promoter of the competing strain. Error bars show the standard error. Conditions from the “Same 

Promoter Set” (A-D) and “Different Promoter Set” (E-H) experiments were infiltrated into leaves 

T4 and T5 of six plants, and four discs were collected from each leaf for a total of n=48 leaf discs. 

The experiments were performed independently on separate days. Source data for this figure is 

available in the Source Data file. 

 

Figure 5. Promoter choice affects variation between experimental replicates. A) Cumulative 

density functions of PCL2:eGFP alone or normalized by mCherry driven by PCL2, PCM1, or 

PCM2. Left: eGFP, right: eGFP/mCherry. Each experimental replicate is a unique color. The black 

line is the CDF for the pooled data of all six experimental replicates. The p-values of one-sample 

Kolmogorov-Smirnov tests appear to the right of each CDF, colored by experimental replicate. 

Asterisks indicate p-values: * < 0.05,  ** < 0.01, *** < 0.001, and ns = not significant. B) Absolute 

value of every experimental replicate’s D, the greatest vertical distance between the CDF a given 

experimental replicate (color) and the pooled CDF (black) from A). White boxplots indicate D 

values for eGFP CDFs and gray boxplots for eGFP/mCherry CDFs. C) CVs of the six experimental 

replicates for each condition. As in B), white boxplots indicate eGFP and gray eGFP/mCherry. 

Boxes show the median and IQR, and whiskers show the minima and maxima, excluding outliers 

(beyond 1.5 IQR). Every condition was infiltrated into leaves T4 and T5 of four plants, and four 

discs were collected from each leaf in all six experimental replicates, for a total of n=192 leaf 

discs. Source data for this figure is available in the Source Data file. 

 

Figure 6. Modeling variation of transgene expression in 4-week-old N. benthamiana plants. 

A) Per-plant CV of unnormalized GFP calculated from data compiled across many years and 

independent experiments. CV for a plant is calculated using all discs derived from that plant, 

regardless of leaf. For EHA105, n=726, and for GV3101, n=1087. Violins show the distribution of 

all data. Boxes show the median and IQR, and whiskers show the minima and maxima, excluding 

outliers (beyond 1.5 IQR). B) Cumulative density function of per-plant, unnormalized eGFP CVs. 

Solid gray, empirical data from 32 batches of at least 30 plants. Dotted black, Monte Carlo 

simulated data. C) Minimum number of simulated plants needed to detect a given effect size with 

the CV of unnormalized EHA105, unnormalized GV3101, or optimally normalized GV3101 

assuming 95% accuracy and statistical significance (p<0.05) for a two-tailed Student’s t-test. D) 

Exponential regression fit to the Monte Carlo simulated data in C), which are shown as points. 

Dashed horizontal line indicates the arbitrary 50 plant cap, and dotted vertical lines indicate the 

smallest detectable effect size with 50 plants. Orange, EHA105. Gray, unnormalized GV3101. 

Teal, optimally normalized GV3101. Source data for this figure is available in the Source Data 

file. 
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Editorial Summary  

Little work has been done to describe and address the variability inherent in the agroinfiltration and 

genetic engineering of Nicotiana benthamiana. Here the authors identify and quantify the sources of 

virtually all variation and develop recommendations for minimizing variation. 

 

Peer review information: Nature Communications thanks the anonymous, reviewers for their 

contribution to the peer review of this work. A peer review file is available. 

 

 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

Measure fluorescenceCollect discs

A. tumefaciens
GV3101
OD = 0.5

Agroinfiltrate

BA C



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

0.0 0.01 0.1 0.5 1.0
mCherry OD

0.
0

0.
01

0.
1

0.
5

1.
0

eG
FP

 O
D

0.293 0.339 0.256 0.205 0.218

0.306 0.216 0.282 0.303 0.190

0.235 0.436 0.369 0.358 0.374

0.292 0.300 0.325 0.236 0.314

eGFP CV

0.0 0.01 0.1 0.5 1.0
mCherry OD

0.
0

0.
01

0.
1

0.
5

1.
0

eG
FP

 O
D

0.084 0.095 0.116 0.164

0.111 0.093 0.113 0.107

0.151 0.120 0.130 0.110

0.107 0.103 0.108 0.129

eGFP/mCherry CV

0.0 0.01 0.1 0.5 1.0
eGFP OD

10.0

12.5

15.0

17.5

lo
g 2

(e
G

FP
) [

AU
] mCherry

OD
0.0
0.01
0.1
0.5
1.0

0.0 0.01 0.1 0.5 1.0
mCherry OD

5.0

7.5

10.0

12.5
lo

g 2
(m

C
he

rry
) [

AU
] eGFP

OD
0.0
0.01
0.1
0.5
1.0

0.10

0.15

0.20

0.25

0.30

A B

C D



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

NA PCL2 PCM2 PCH5
mCherry Promoter

PC
H

5
PC

M
2

PC
L2

N
A

eG
FP

 P
ro

m
ot

er

0.261 0.184 0.221 0.215

0.158 0.188 0.172 0.128

0.230 0.155 0.157 0.144

eGFP CV

NA PCL2 PCM2 PCH5
mCherry Promoter

PC
H

5
PC

M
2

PC
L2

N
A

eG
FP

 P
ro

m
ot

er

0.157 0.178 0.074

0.107 0.080 0.188

0.075 0.212 0.202

eGFP/mCherry CV

0.10

0.15

0.20

0.25

0.30

NA PCL2 PCM2 PCH5
eGFP promoter

10

15

lo
g 2

(e
G

FP
) [

AU
] mCherry

Promoter
NA
PCL2
PCM2
PCH5

NA PCL2 PCM2 PCH5
mCherry promoter

5

10
lo

g 2
(m

C
he

rry
) [

AU
]

eGFP
Promoter

NA
PCL2
PCM2
PCH5

NA PCL1 PCM1 PCH4
mCherry Promoter

PC
H

5
PC

M
2

PC
L2

N
A

eG
FP

 P
ro

m
ot

er

0.218 0.216 0.177 0.678

0.219 0.182 0.172 0.148

0.227 0.145 0.144 0.290

eGFP CV

NA PCL1 PCM1 PCH4
mCherry Promoter

PC
H

5
PC

M
2

PC
L2

N
A

eG
FP

 P
ro

m
ot

er

0.199 0.161 0.620

0.177 0.194 0.162

0.193 0.178 0.252

eGFP/mCherry CV

0.10

0.15

0.20

0.25

0.30

NA PCL2 PCM2 PCH5
eGFP Promoter

10

15

lo
g 2

(e
G

FP
) [

AU
] mCherry

Promoter
NA
PCL1
PCM1
PCH4

NA PCL1 PCM1 PCH4
mCherry Promoter

5

10

lo
g 2

(m
C

he
rry

) [
AU

]

eGFP
Promoter

NA
PCL2
PCM2
PCH5

A B

C D

E F

G H

Sa
m

e 
Pr

om
ot

er
 S

et
D

iff
er

en
t P

ro
m

ot
er

 S
et



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

5000 10000 15000

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

ns

***ns
ns

*ns

N
A

5000 10000 15000

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n ***
***ns
ns

***
***

PC
L2

15 20 25

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

ns

**
*
***
***ns

5000 10000 15000 20000

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

ns

***ns
ns
ns

***

PC
M

1

4 6 8

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n ***
***
**ns
ns
ns

2500 5000 7500 10000
eGFP

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

ns

***
*
**
**
**

PC
M

2

2 4
eGFP/mCherry

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

ns
ns
ns
ns
ns

*

NA PCL1 PCL2 PCM1 PCM2 PCH4 PCH5
mCherry Promoter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|D
is

ta
nc

e|

NA PCL1 PCL2 PCM1 PCM2 PCH4 PCH5
mCherry Promoter

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
V

eGFP eGFP/mCherry

A B

Cm
C

he
rry

 P
ro

m
ot

er



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

EHA105 GV3101
Strain

0.0

0.5

1.0

1.5

C
V

726

1087

0 1 2
CV

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

32 batches,
empirical
1000 batches,
simulated

15 30 50 70 200 300
Effect size difference, %

0

10

20

30

40

Pl
an

ts

0 10 20 30 40 50
Effect size difference, %

0

10

20

30

40

50

Pl
an

ts

EHA105 GV3101 GV3101 (best)

A B

C

D


