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based study
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This study analyzed UK Biobank data from 46,463 postmenopausal women to investigate metabolic
changes linked to years since menopause (YSM) and their impact on aging biomarkers. Elastic net
regression identified 115 YSM-associated metabolites, forming a metabolic signature strongly
correlated with YSM (r = 0.30, P < 0.001). Each standard deviation increase in this metabolic signature
was associated with decreased odds of long telomere length (0.94, 0.92-0.96), increased odds of high
allostatic load (1.53, 1.50-1.56) and high PhenoAge (2.30, 2.17-2.44). Mediation analysis indicated
that the metabolic signature explained 43.5% of the association between YSM and allostatic load,
9.09% between YSM and telomere length, and 89.3% between YSM and PhenoAge. These findings
reveal how menopause-related metabolic shifts drive biological aging, highlighting potential

intervention targets for postmenopausal health.

Menopause marks a key transition in women, characterized by the end of
ovarian function and significant hormonal and metabolic changes'.
Menopause induces an atherogenic metabolic shift, including increased
low-density lipoprotein (LDL), remnant cholesterol, smaller LDL
particles™, and higher levels of certain amino acids, fatty acids, and
inflammatory markers™, all contributing to elevated cardiovascular risk. It
also accelerates biological aging, as shown by faster telomere shortening’,
higher allostatic load (AL)", and increased PhenoAge (PA)’, largely inde-
pendent of chronological age and reflecting reproductive aging.

Ovarian aging and chronological aging are related but not identical.
Ovarian aging is marked by loss of ovarian function and hormonal changes,
with menopause as a key milestone. Extended postmenopausal duration
does not directly correspond to chronological aging’, as women experien-
cing early menopause will demonstrate longer postmenopausal intervals
compared to age-matched peers with typical menopausal onset’. Distin-
guishing these processes is crucial for understanding menopause’s unique
impact on health and the metabolic pathways driving
postmenopausal aging.

Metabolomics, as an emerging research approach, provides a
comprehensive analysis of small-molecule metabolites in biological
samples, capturing an individual’s metabolic state and its interaction with
environmental, lifestyle, and genetic factors'’. Previous studies have
demonstrated the utility of metabolomics in elucidating the links

between metabolic alterations and health outcomes, such as all-cause
mortality", cardiovascular disease risk'’, and dementia". Biological aging
is a complex process characterized by the progressive decline in phy-
siological function and the accumulation of molecular damage. In recent
years, several biomarkers have been developed to quantify biological
aging, including telomere length (TL) (TL, reflecting cellular replicative
senescence via chromosomal attrition), AL (AL, indicating cumulative
physiological dysregulation from chronic stress), and PA (PA, predicting
mortality risk through clinical biomarker integration)'*. AL measures
multisystem physiological stress, which increases after menopause'®. PA
estimates biological age using clinical and biochemical markers sensitive
to menopause-related changes'. TL reflects cellular aging and is affected
by oxidative stress and inflammation, both heightened post-
menopause"’. These biomarkers collectively span molecular, systemic,
clinical, and multisystem dimensions of aging. However, studies speci-
fically examining postmenopausal metabolic changes and their impact
on biological aging are scarce.

Metabolomics and aging biomarkers are closely related. Certain
metabolites, such as amino acids and lipids, are associated with aging bio-
markers like TL and epigenetic clocks, and can predict biological aging
rates™'”'". Similar patterns are observed across various organ systems and
diseases, where both metabolomic changes and aging biomarkers indicate
disease progression and organ aging'’. Thus, metabolomic changes not only
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parallel but may also drive or mediate the alterations captured by established
biomarkers of biological aging.

This study integrates metabolomics and aging biomarkers to investi-
gate postmenopausal metabolic changes and their impact on aging. The
objectives are: (1) to identify years since menopause (YSM) associated
metabolites and develop a metabolomic signature score; (2) to explore the
links between YSM, metabolomic signature, and aging biomarkers (TL, AL,
and PA); and (3) to evaluate the metabolomic signature’s mediating role in
the YSM-aging relationship. This research will provide insights into pro-
moting healthy aging in women and identify potential targets for early
intervention and personalized health management.

Results

Characteristics of the participants

This study included 46,463 participants at baseline and 3072 participants at
first repeat assessment. Participants at baseline were 96.7% white, and mean
(SD) age was 59.8 (5.4) years. Participants with lower educational attain-
ment, lower income level, and higher Townsend deprivation index had
higher prevalence of high PA (2.8%), and high AL (45.4%), and lower
prevalence of long TL (50.1%). Also, those who were overweight or obese,
smokers, and those with poor diet or sleep showed similar trends. People
with longer menopause duration had higher prevalence of high PA (4.1%),
high AL (57.8%) and lower prevalence of long TL (40.3%) (Table 1). The
characteristics of participants in first repeat assessment were showed in
Supplementary Table S7.

Metabolic signature in response to YSM

Menopause causes hormonal and metabolic changes, but YSM-related
metabolites were not well characterized. Elastic net regressions on 251
metabolites in baseline data were performed to determine the metabolic
signature in response to YSM. A total of 115 metabolites were selected from
the model to calculate the total metabolic signature, spanned various
metabolic classes including lipids, lipoprotein subclass, amino acids, fatty
acids, and inflammation-related metabolites et al. (Supplementary Fig. S1).
These metabolites were primarily enriched in four metabolic pathways:
glyoxylate and dicarboxylate metabolism; valine, leucine, and isoleucine
biosynthesis; alanine, aspartate, and glutamate metabolism; and phenyla-
lanine, tyrosine, and tryptophan biosynthesis (Supplementary Table S8).
Most metabolites remained significantly associated with YSM after adjust-
ment for age (Supplementary Table S9). The metabolic signature was sig-
nificantly correlated with YSM (baseline data: r=0.30, P < 0.001; the first
repeat assessment: r = 0.26, P < 0.001; Fig. 1). As per the metabolites’ coef-
ficients (weights) in the signature (Fig. 2), the most pronounced contribu-
tion to the positive coefficient of the metabolic signature came from
triglycerides (TG) inlarge LDL, TG in large high-density lipoprotein (HDL),
and phospholipids to total lipids in small LDL percentage. Conversely,
cholines, albumin, free cholesterol to total lipids in small very-low-density
lipoprotein (VLDL) percentage, phospholipids in medium HDL played a
significant role in influencing the reverse coefficient of the metabolic sig-
nature. Figure 2 also illustrated the associations between YSM and the 115
metabolites comprising the metabolic signature, as well as the relationships
between these metabolites and three aging biomarkers. These findings
defined a metabolic profile that tracks postmenopausal progression, offering
a molecular basis to study how menopause duration affects aging.

Associations of YSM, metabolic signature with three aging
biomarkers

While menopause accelerates biological aging, the links between YSM-
related metabolic changes and aging biomarkers (TL, AL, and PA) remain
unclear. In the fully adjusted model, each 1-unit increase in YSM (repre-
senting a 5-year interval) was associated with a decreased likelihood of long
TL (OR: 0.92, 95% CI: 0.90-0.94) and an increased likelihood of high AL
(1.07, 1.05-1.10). Before adjusting for the metabolic signature, each 1-unit
increase in YSM was linked to higher odds of high PA (1.14,1.07-1.20);
however, this association became nonsignificant after further adjustment for

the metabolic signature (Model 4). Dose-response curves showed a positive
linear relationship between YSM and high AL odds, and a negative linear
relationship with long TL odds (Table 2).

In the fully adjusted model, we observed that each 1-SD increase in
metabolic signature was associated with decreased odds of long TL (0.94,
0.92-0.96), increased odds of high AL (1.53, 1.49-1.56) and high PA (2.30,
2.17-2.44) (Table 2). Dose-response curves showed a positive relationship
between metabolic signature and high AL, high PA, and negative rela-
tionship with long TL (Fig. 3). Replication analysis using metabolites at first
repeat assessment showed similar findings to the primary analysis using
metabolites at baseline (Supplementary Table S10). These results showed
that the identified metabolic changes reflected menopause duration and
were strongly linked to accelerated biological aging, highlighting their
potential role in postmenopausal health risks.

Subgroup analysis and mediation analysis

After the analysis was stratified by baseline age and menopause hormone
therapy (MHT) status, we observed consistent findings as the primary
analysis (Table 3). Mediation analysis indicated that the metabolic signature
partially mediated the association between YSM and long TL (8.5%) as well
as high AL (43.5%), while the associations of YSM with PA (89.3%) were
predominantly mediated by the metabolomic signature, with no direct link
observed (Fig. 4). To clarify how YSM affects aging, we used mediation
analyses to assess how much the metabolomic signature explains the link
between YSM and aging biomarkers. This helped quantify indirect effects
and reveal causal pathways. It was found that for HPA, mediation was
mainly through lipoprotein subclasses, relative lipoprotein lipid con-
centrations, fatty acids, and amino acids. For HAL, the main mediators were
lipoprotein subclasses, relative lipoprotein lipid concentrations, fluid bal-
ance metabolites, fatty acids, and amino acids. For LTL, mediation was
primarily driven by relative lipoprotein lipid concentrations, lipoprotein
subclasses, and amino acids (Supplementary Fig. S2). These findings sug-
gested metabolic changes mediate the link between menopause duration
and biological aging, especially for indices like PA, highlighting metabolic
pathways as potential targets to slow aging in postmenopausal women.

Discussions

This study identified 115 metabolites significantly associated with YSM
using elastic net regression, which were primarily involved in lipid meta-
bolism, amino acid metabolism, and inflammatory pathways. A metabo-
lomic signature was constructed based on these metabolites. We found that
each SD increase in the YSM-related metabolomic signature was sig-
nificantly associated with an increased odds of high AL, high PA and
decreased odds of long TL. The metabolomic signature was found to
mediate the relationship between YSM and aging biomarkers of TL and AL,
highlighting its potential role as a key mechanism driving accelerated aging
in postmenopausal women.

Menopause, marked by the cessation of ovarian function and estrogen
depletion, represents a pivotal period associated with accelerated biological
aging. A growing body of epidemiological research has investigated the
relationship between menopause and various biomarkers of biological
aging, including TL, PA and epigenetic clocks. Our findings corroborate and
expand upon prior evidence. An earlier age at menopause has been con-
sistently associated with shorter leukocyte TL, a well-established marker of
cellular senescence. For instance, Schuermans et al. analyzed data from
130,254 postmenopausal women and observed a significant association
between earlier menopause and shorter TL (per 5-year earlier menopause:
B=-0.02SD, 95% CI: —0.03 to —0.02, P < 2.2 x 10~ *¢)’. Similarly, Crestol
et al. reported that later natural menopause was associated with longer TL
(8=0.030, pFDR = 1.50 x 10~*°), with longer reproductive duration also
positively correlated with TL (8=0.034, pFDR =134 x 10**. These
findings suggest that menopause may contribute to biological aging through
accelerated telomere shortening. Epigenetic clocks, particularly DNA
methylation-based measures, have emerged as robust tools for assessing
biological aging at the molecular level. Evidence consistently indicates that
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Table 1 | Characteristics of participants at baseline by aging biomarkers status

N PA AL TL
High PA (N, %) P High AL (N, %) P Long TL (N, %) P
Total 46,463 1321 (2.8) 21,078 (45.4) 23,282 (50.1)
Age at baseline, mean (SD) 59.8 (5.4) 60.2 (5.6) 0.004 60.7 (5.2) <0.001 59.2 (5.4) <0.001
Race <0.001 <0.001 <0.001
White 44,935 1233 (2.7) 20,219 (45) 22,373 (49.8)
Non white 1528 88 (5.8) 859 (56.2) 909 (59.5)
Education (years) <0.001 <0.001 <0.001
<10 23,806 757 (3.2) 11,784 (49.5) 11,318 (47.5)
11-12 5412 151 (2.8) 2308 (42.6) 2818 (52.1)
>12 17,245 413 (2.4) 6986 (40.5) 9146 (53)
Income <0.001 <0.001 <0.001
Less than 18,000 12,774 486 (3.8) 6624 (51.9) 6013 (47.1)
18,000 to 30,999 13,089 384 (2.9) 6131 (46.8) 6423 (49.1)
31,000 to 51,999 11,429 274 (2.4) 4862 (42.5) 5970 (52.2)
Greater than 52,000 9171 177 (1.9) 3461 (37.7) 4876 (53.2)
Townsend <0.001 <0.001 0.131
1 11,767 230 (2) 5015 (42.6) 5947 (50.5)
2 11,622 292 (2.5) 5182 (44.6) 5787 (49.8)
3 11,650 323 (2.8) 5205 (44.7) 5909 (50.7)
4 11,424 476 (4.2) 5676 (49.7) 5639 (49.4)
BMI status (kg/m?) <0.001 <0.001 <0.001
<24.9 18763 365 (1.9) 5820 (31) 9750 (52)
25.0-29.9 17725 374 (2.1) 8489 (47.9) 8753 (49.4)
>30.0 9975 582 (5.8) 6769 (67.9) 4779 (47.9)
Smoking status <0.001 <0.001 <0.001
Never 27,132 635 (2.3) 11,874 (43.8) 13,719 (50.6)
Previous 15,753 447 (2.8) 7219 (45.8) 7885 (50.1)
Current 3578 239 (6.7) 1985 (55.5) 1678 (46.9)
Alcohol intake <0.001 <0.001 0.017
Never 2388 109 (4.6) 1338 (56) 1166 (48.8)
Previous 1539 96 (6.2) 833 (54.1) 723 (47)
Current 42,536 1116 (2.6) 18,907 (44.4) 21,393 (50.3)
Diet <0.001 <0.001 0.157
Poor 28,939 888 (3.1) 13,684 (47.3) 14,427 (49.9)
Good 17,524 433 (2.5) 7394 (42.2) 8855 (50.5)
Sleep <0.001 <0.001 0.717
Poor 31,133 990 (3.2) 14,718 (47.3) 15,582 (50)
Good 15,330 331(2.2) 6360 (41.5) 7700 (50.2)
Physical activity <0.001 <0.001 0.274
Light 10,415 413 (4) 5003 (48) 5147 (49.4)
Moderate 19,556 527 (2.7) 8987 (46) 9847 (50.4)
Vigorous 16,492 381 (2.3) 7088 (43) 8288 (50.3)
MHT 0.382 <0.001 <0.001
No use 26,818 747 (2.8) 11,820 (44.1) 13,922 (51.9)
Used 19,645 574 (2.9) 9258 (47.1) 9360 (47.6)
YSM <0.001 <0.001 <0.001
1 11,823 287 (2.4) 4330 (36.6) 6692 (56.6)
2 13,263 350 (2.6) 5748 (43.3) 6865 (51.8)
3 11,569 327 (2.8) 5656 (48.9) 5575 (48.2)
4 6688 230 (3.4) 3541 (52.9) 2894 (43.3)
5 3120 127 (4.1) 1803 (57.8) 1256 (40.3)
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Fig. 1 | Correlation between years since menopause and metabolic signature. A Correlation between years since menopause and metabolite signature at baseline.

B Correlation between years since menopause and metabolite signature at first repeat assessment.

menopause accelerates epigenetic aging. For instance, Morgan et al. found
that earlier menopause was significantly associated with increased epige-
netic age acceleration (P =8.32 x 10™*) after adjusting for age, race/ethni-
city, smoking status, age at menarche, and MHT use. Furthermore, the
duration of time since menopause was positively associated with greater
epigenetic age acceleration in blood ( = 0.038, P =0.007), suggesting that
postmenopausal physiological changes may drive epigenetic aging'’. To
date, direct studies examining the associations between menopause and AL
remain limited. Consistent with previous findings’, our analysis suggests
that a longer duration since menopause is associated with a decreased
likelihood of long TL, an increased likelihood of high AL, and elevated odds
of advanced PA.

These findings underscore the critical role of menopause as a biological
aging accelerator and highlight the need for further investigation into its
mechanistic pathways. Menopause and biological aging share several
molecular pathways, notably chronic low-grade inflammation (“inflam-
maging,”) mitochondrial dysfunction, and increased oxidative stress. The
decline in estrogen after menopause is associated with elevated inflamma-
tory markers (such as GlycA), impaired mitochondrial bioenergetics, and
reduced antioxidant capacity, all of which accelerate biological aging and
disease risk™™.

Metabolism plays an important role in regulating aging at several levels,
and metabolic reprogramming is the main driving force of aging. Meno-
pause marked by a significant decline in circulating estrogen levels, which
profoundly influences metabolic pathways and contributes to biological
aging. The cascading impact of these metabolic alterations drive biological
aging through inflammation, mitochondrial dysfunction, and metabolic
instability. One of the most notable metabolic changes following menopause
is dysregulated lipid metabolism, characterized by an increase in LDL and
VLDL particles, accompanied by a reduction in HDL. These alterations
promote an atherogenic lipid profile, predisposing postmenopausal women
to cardiovascular diseases’. Additionally, TG levels tend to rise, with small

LDL and intermediate-density lipoprotein particles increasing in circula-
tion, further exacerbating the risk of atherosclerosis’. The decline in estrogen
also influences phospholipid metabolism, leading to reductions in phos-
phatidylcholine, a key component of cell membranes, which may com-
promise cellular integrity and accelerate aging-related processes™.

Beyond lipid alterations, amino acid metabolism undergoes substantial
shifts post-menopause. Elevated branched-chain amino acids (BCAAs),
including isoleucine, leucine, and valine, are associated with insulin resis-
tance, chronic inflammation, and metabolic syndromezz. BCAAs activate
the mTOR pathway, inhibiting autophagy, promoting cellular senescence,
and driving metabolic dysfunction”. Additionally, increased glutamine and
tyrosine levels in postmenopausal women suggest a shift toward insulin
resistance and systemic inflammation, contributing to age-related diseases
like type 2 diabetes™. Impairments in glucose metabolism have also been
observed in postmenopausal women, largely driven by a reduction in
estrogen’s regulatory effects on insulin sensitivity. A decrease in glycolytic
intermediates (e.g., pyruvate) and tricarboxylic acid cycle metabolites (e.g.,
citrate) suggests a decline in mitochondrial function, leading to inefficient
ATP production and metabolic inflexibility. This mitochondrial dysfunc-
tion, further amplifies oxidative stress, promoting DNA damage and cellular
senescence™.

Investigating the links between metabolomic signature and aging
biomarkers will help identify therapeutic targets to mitigate postmenopausal
metabolic decline”. The metabolomic signature partially elucidates the
relationship between YSM and accelerated aging, highlighting distinct
biological pathways revealed through metabolomic profiling. This signature
provides a holistic representation of metabolic homeostasis as it adapts to
the duration of YSM. Utilizing this approach offers a more precise and
objective understanding of the cumulative metabolic effects associated with
postmenopausal progression.

One strength of this study lies in using untargeted metabolomics to
uncover diverse metabolic changes beyond predefined pathways, enabling
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metabolite weights in the metabolic signature, regression coefficients for YSM significance (two stars indicated Bonferroni-corrected p < 0.05, and three stars
(changes in metabolites per YSM increment), and regression coefficients for aging  indicated p <0.001), and p < 0.05 was considered statistically significant. Telomere
biomarkers (In(HR) per SD increase in metabolites). Elastic net analysis, multi- length (TL), allostatic load (AL), PhenoAge (PA).

variable linear models and logistic regression models were used respectively. Colors
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Table 2| Associations of YSM one unit, metabolomic signature
per SD increment with aging biomarkers in UK Biobank
baseline data

YSM* Metabolic signature
OR (95%Cl) P OR (95%Cl) P
Long TL
Model 1 0.90(0.88,0.92) <0.001 0.92 (0.90,0.93)  <0.001
Model 2 0.91(0.89,0.93) <0.001 0.92 (0.90,0.94)  <0.001
Model 3 0.92 (0.90,0.93) <0.001 0.93(0.91,0.95)  <0.001
Model 4 0.92 (0.90,0.94) <0.001 0.94 (0.92,0.96) <0.001
High AL
Model 1 1.13(1.11,1.15)  <0.001 1.66 (1.63,1.70)  <0.001
Model 2 1.11(1.09, 1.13)  <0.001 1.65(1.61,1.68) <0.001
Model 3 1.11(1.09, 1.14)  <0.001 1.54 (1.50,1.57)  <0.001
Model 4 1.07 (1.05,1.10)  <0.001 1.53(1.49,1.56) <0.001
High PA
Model 1 1.14(1.07,1.20)  <0.001 2.54 (2.40,2.69) <0.001
Model 2 1.10(1.04,1.17)  0.001 2.48(2.34,2.63) <0.001
Model 3 1.09(1.03,1.15)  0.005 2.30(2.17,2.44) <0.001
Model 4 1.02(0.96,1.08) 0.617 2.30(2.17,2.44) <0.001

ClI Confidence Interval, OR Odds Ratio, TL Telomere Length, AL Allostatic Load, PA PhenoAge.
*One unit representing a 5-year interval.

the discovery of novel biomarkers linked to postmenopausal aging. By
integrating aging markers like TL, AL, and PA, it offers a multidimensional
perspective on how metabolic changes contribute to biological aging.
Another strength is the longitudinal aspect of postmenopausal metabolic
changes, capturing the cumulative metabolic effects over different YSM.
Also, the study benefits from a well-characterized cohort with detailed
clinical and biochemical assessments, allowing for robust adjustments of
potential confounders, including lifestyle factors, comorbidities, and MHT
status.

Despite these strengths, several limitations should be acknowledged.
First, although this study shows links between YSM-related metabolic
profiles and aging biomarkers, the inherent correlation between YSM and
age may cause residual confounding even after adjusting for age, especially
in mediation analyses. Therefore, these associations should be interpreted
with caution, and future studies using alternative methods (such as
instrumental variable analysis) are needed to delineate the independent
effects of YSM. Second, menopausal status and age at natural menopause
were ascertained through self-reported questionnaires, which may lead to
misclassification and should be considered when interpreting our findings.
Third, we were unable to account for women with a history of irregular
menses or gynecologic disorders, such as PCOS, which can affect hormone
levels and metabolic profiles. These conditions are associated with persistent
metabolic abnormalities and increased cardiovascular risk that may con-
tinue after menopause™. Including these individuals may introduce het-
erogeneity and confound associations between menopausal duration,
metabolomic changes, and aging biomarkers. Further studies with more
detailed reproductive and gynecologic histories are needed to clarify these
effects. Fourth, while metabolomic profiling provides valuable insights into
systemic metabolic alterations, the cross-sectional nature of the metabo-
lomic data limits the ability to infer causality from the mediation analysis.
Finally, The UK Biobank cohort is primarily white, well-educated, and
relatively healthy, which may limit the generalizability of our findings to
broader populations.

This study highlights the critical association between YSM, metabo-
lomic signature, and aging biomarkers, demonstrating that metabolic
alterations following menopause are closely linked to accelerated aging
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Table 3| Associations of YSM one unit, metabolomic signature
per SD increment with aging biomarkers by baseline age and
MHT use status

YSM Metabolic signature
OR (95%Cl) P OR (95%Cl) P
Baseline age < =60
Long TL 0.94 (0.92, 0.97) <0.001 0.94 (0.92, 0.97) <0.001
High AL 1.09 (1.05, 1.12) <0.001 1.52 (1.47, 1.57) <0.001
High PA 0.96 (0.88, 1.06) 0.429 2.40 (2.20, 2.61) <0.001
Baseline age > 60
Long TL 0.89 (0.87, 0.91) <0.001 0.93 (0.90, 0.96) <0.001
High AL 1.07 (1.04, 1.10) <0.001 1.53 (1.48, 1.58) <0.001
High PA 1.07 (0.99, 1.15) 0.095 2.22 (2.05, 2.42) <0.001
MHT (No)
Long TL 0.90 (0.88, 0.93) <0.001 0.95 (0.93, 0.98) <0.001
High AL 1.10(1.06, 1.13) <0.001 1.53 (1.48, 1.57) <0.001
High PA 1.083(0.95, 1.12) 0.521 2.33(2.15, 2.53) <0.001
MHT (Yes)
Long TL 0.94 (0.92, 0.97) <0.001 0.93 (0.90, 0.95) <0.001
High AL 1.05 (1.02, 1.09) <0.001 1.52 (1.47, 1.58) <0.001
High PA 1.00 (0.92, 1.09) 0.987 2.27 (2.08, 2.48) <0.001

NIE: - 0.002, P < 0.001

Metabolic
Signature

Mediation proportion: 8.45%
p< 0.001

(A)

Years since
Menopause

NDE: - 0.020, P < 0.001
NIE: 0.010, P < 0.001

Metabolic
Signature

Mediation proportion: 43.48%
p< 0.001

(B)

OR Odds Ratio, C/ Confidence Interval, TL Telomere Length, AL Allostatic Load, PA PhenoAge,
MHT menopausal hormone therapy.

pathways. By identifying a metabolomic signature reflective of post-
menopausal progression, we provide evidence that specific metabolic shifts-
particularly in lipoprotein subclasses, relative lipoprotein lipid concentra-
tions, amino acids-mediate the relationship between YSM and aging bio-
markers. These findings underscore the importance of metabolomics in
understanding postmenopausal health and aging mechanisms, offering
potential applications in clinical risk stratification, early intervention, and
personalized health management for aging women. Future longitudinal
studies and research in more ethnically and socioeconomically diverse
populations are warranted to further validate the generalizability and
robustness of the identified metabolomic signatures associated with YSM
and biological aging.

Methods

Study design and participants

The UK Biobank is a large-scale, population-based prospective cohort study
that recruited over 500,000 volunteers aged 40-69 years between 2006 and
2010. Participants attended one of 22 assessment centers across England,
Scotland, and Wales, where they underwent a comprehensive baseline
evaluation. Written informed consent was obtained from all individuals for
the collection of questionnaire responses, biological samples, and other
health-related data”. UK Biobank has approval from the North West
Multicenter Research Ethics Committee (Ref: 21/NW/0157) (https://www.
ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). This
study was performed in line with the principles of the Declaration of Hel-
sinki. This research was conducted under UK Biobank application number
227947. Women who were postmenopausal at baseline and had no missing
key covariates were included. Figure 5 provides an overview of the study
design and participant selection. In this study, we used clinical traits at
baseline to define three aging biomarkers. This study is reported as per the
strengthening the reporting of observational studies in epidemiology
guidelines (Supplementary Table S1).

Definition of YSM

Natural menopause was defined as the permanent cessation of menstrual
cycles for a consecutive 12-month period, excluding individuals with a
history of hysterectomy and/or oophorectomy prior to this timeframe®. The

Years since1
Menopause

NDE: 0.013, P < 0.001
NIE: 0.002, P < 0.001

Metabolic
Signature

Mediation proportion: 89.3%
p=0.002

(C)

Years since
Menopause

NDE: - 0.0003, P =0.712 =

Fig. 4 | Proportions mediated by the constructed metabolic signature in the
association between years since menopause and aging biomarkers. A Proportions
mediated by the constructed metabolic signature in the association between years
since menopause and telomere length (TL). B Proportions mediated by the con-
structed metabolic signature in the association between years since menopause and
allostatic load (AL). C Proportions mediated by the constructed metabolic signature
in the association between years since menopause and PhenoAge (PA).

duration of the postmenopausal phase, quantified in YSM, was calculated by
subtracting the age at natural menopause from the age at study enrollment.
For analytical purposes, YSM was normalized by dividing it by five, with
each unit corresponding to a 5-year interval.

Metabolomics profiling

This research utilized a high-throughput nuclear magnetic resonance
metabolomics platform (Nightingale Health Ltd, Finland) to assess
EDTA plasma samples from nearly 280,000 UK Biobank participants. A
total of 251 metabolic biomarkers were evaluated, comprising 170
metabolites measured in absolute concentrations and 81 composite ratio
indices (Supplementary Table S2). These biomarkers capture a broad
spectrum of metabolic pathways, including 14 lipoprotein lipid
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Fig. 5 | Flow chart of study design and analytical approach.

3072 participants were included in the association of metabolite
signature at first repeat and three aging biomarkers

subclasses, fatty acids and their compositions, as well as small-molecule
metabolites such as amino acids, ketone bodies, and glycolysis-related
compounds”. To ensure data accuracy, strict quality control procedures
were applied. Technical variation in these data was removed using the
“ukbnmr” R package (for further details see https://github.com/
sritchie73/ukbnmr). Briefly, technical variation removed included: (1)
time between sample preparation and measurement, (2) batch effects
from sample position on the 96-well plate, (3) measurement drift, (4)
inter-spectrometer differences, and (5) plates with systematically
abnormal concentrations of non-biological origin. Metabolite con-
centrations underwent natural logarithmic transformation™ and z-score
standardization (mean 0, SD 1) to address systemic and technical
variability.

The data analyzed originated from phases 1 (baseline) and 2 (first
repeat assessment) of the UK Biobank study, with ~16,000 participants
completing a follow-up assessment. All metabolic biomarkers were
expressed in molar concentration units, providing an in-depth depiction of
participants’ metabolic profiles. Further details on the biomarker mea-
surement methods and quality control protocols can be found in the rele-
vant literature’".

Definitions of three aging biomarkers

In this study, baseline clinical traits were used to define three aging bio-
markers. We used the best-validated algorithms to construct PA and AL
using blood-chemistry-derived biomarkers from the UK Biobank* ™
(Supplementary Table S3). The R package BioAge (https://github.com/
dayoonkwon/BioAge) was used for computation®. PA was derived from a
multivariate mortality hazard model™. AL was calculated as the proportion
of ten biomarkers classified as “at risk”, defined as values in the highest
quartile for nine biomarkers and the lowest quartile for albumin, resulting in
an AL score ranging from 0 to 17. DNA was extracted from participants’
peripheral blood leukocytes at baseline, and TL was measured via multiplex
quantitative polymerase chain reaction, using the telomere amplification
products to single-copy genes (T/S) ratio as an estimate. The T/S ratio was
log-transformed and z-standardized for analysis™.

We set PA, AL, and TL as binary variables for analysis. Participants
were categorized for each aging marker as follows: those with PA exceeding
chronological age were classified as accelerated aging (i.e., high PA), while
others were non-accelerated”. For AL, individuals with higher levels of AL

were at greater risk of physiological stress; thus, values above the median
indicated physiological dysregulation (ie., high AL), and those below
indicated no dysregulation. TL above the median was classified as long
telomeres (i.e., long TL), while values below were short telomeres™.

Covariates

We included the following factors as covariates based on evidence from
prior studies: baseline age, race/ethnicity, years of education, income levels,
Townsend Deprivation Index, smoking status, alcohol consumption, BMI,
sleep patterns, diet, and medication use, including menopausal hormone
therapy, aspirin, and statins. Race/ethnicity was categorized as White, Asian
or Asian British, Black or Black British, and Other. Years of education were
grouped into <10 years, 11-12 years, and >12 years. Annual household
income was divided into four categories: Level 1 (<£18,000), Level 2
(£18,000-£30,999), Level 3 (£31,000-£51,999), and Level 4 (>£52,000). The
Townsend Deprivation Index, which reflects area-level socioeconomic
status, was derived from participants’ residential postal codes at recruitment
and categorized into quartiles, with higher values indicating greater depri-
vation. Smoking status was classified as current, former, or never smokers.
Alcohol consumption was grouped into daily, 3-4 times per week, 1-2 times
per week, occasional, and never. BMI was classified according to World
Health Organization criteria as <18.5, 18.5-24.9, 25.0-29.9, and >30 kg/m”.
Diet consumption was classified into ideal or poor according to whether
adequate intake of at least half of the ten diet components®. Sleep quality
was defined by the criteria recommended by the National Sleep Foundation,
which integrates five sleep behaviors (sleep duration, chronotype pre-
ference, insomnia, snoring, and daytime sleepiness)®’. Participants were
divided into two groups: good sleep quality and poor sleep quality. Medi-
cation use was categorized as use or non-use. For further details on the
collection and definitions of covariates, please refer to Supplementary
Table S4-6.

Statistical analysis

Using baseline metabolomics data from the UK Biobank, we investigated
metabolites associated with YSM in postmenopausal women. Metabolite
levels exceeding four interquartile ranges from median were excluded as
outliers. Before performing the analyses, all 251 metabolites were log-
transformed and standardized to z-scores to ensure comparability across
scales. Pearson correlation coefficients were used to assess correlations
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between metabolites. The relationships between each metabolite and YSM
were analyzed using multivariable linear regression, with statistical sig-
nificance determined by an FDR-adjusted p-value threshold of 0.05.

To identify a metabolomic signature linked to YSM, we utilized an
elastic net regression model. This method integrates the advantages of both
Lasso and Ridge regression, effectively managing multicollinearity, mini-
mizing overfitting, and selecting key features”. In our analysis, YSM was
regressed on 251 standardized plasma metabolites. The optimal penalty
parameter (Lambda) was determined through a ten-fold cross-validation
process, selecting the largest lambda value that yielded a mean squared error
within one standard error of the minimum. The derived metabolomic
signature was calculated as a weighted sum of metabolites with nonzero
coefficients, where the weights corresponded to the coefficients estimated by
the elastic net model. Finally, the metabolomic signature was standardized
using z-scores (mean of 0 and standard deviation of 1), with each unit
reflecting the cumulative contribution of the selected metabolites’ weighted
effects’.We assessed the Spearman correlation between YSM, and the
derived metabolomic signature at both the baseline period (2006-2010) and
the first follow-up assessment (2012-2013).

Logistic regression analyses were conducted to test the association
between YSM (each 5-year increase), metabolic signature (each SD increase)
and high PA, high AL, and long TL, with non-accelerated, no dysregulation,
and short telomeres as the reference, respectively. Four nested models were
developed, sequentially including four sets of covariates to account for
potential confounders. In model 1, age was adjusted; in model 2, ethnicity,
income level, years of education and Townsend index of deprivation were
further adjusted based on model 1; in model 3, BMI, smoking status, alcohol
consumption, diet, sleep and hormone therapy were further adjusted based
on model 2; in model 4 (full adjusted model), we further included mutual
adjustments for both YSM and metabolic signature to assess their inde-
pendent associations. We also examined potential non-linear associations
between metabolic signature, YSM and aging biomarkers using restricted
cubic spline analysis.

To distinguish the effects of chronological age from postmenopausal
duration, we conducted a stratified analysis based on baseline age (<60 years
and 260 years), as these two factors are closely intertwined. We also stratified
the analyses by MHT status.

We conducted mediation analyses to examine whether the association
between YSM and the three aging biomarkers—TL, AL, and PA—was
mediated by metabolomic signature. We used mediation models via the
“mediation” R package. The proportion of mediation was determined by
dividing the indirect effect by the total effect, with 95% confidence intervals
estimated via bootstrapping. Covariates from the logistic regression model
were included in the mediation analysis to account for potential con-
founders. We further analyzed the mediation proportions of various
metabolite types within the metabolic signature in the relationship between
YSM and aging biomarkers to identify the key metabolite types serving as
primary mediators.

Statistical significance was defined as two-sided P < 0.05, with p values
adjusted for multiple comparisons using the Benjamini-Hochberg FDR
method. Elastic net regression was conducted with the R package ‘glmnet.”

Data availability

The data described in the manuscript will be made available for researchers
who apply to use the UK Biobank data set by registering and applying at
https://www.ukbiobank.ac.uk/enable-your-research/register.
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