
npj | aging Article
Published in partnership with the Japanese Society of Anti-Aging Medicine

https://doi.org/10.1038/s41514-025-00265-6

Epigenetic age acceleration and midlife
cognition: joint evidence from
observational study and Mendelian
randomization
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The relationship between epigenetic age acceleration (EAA) and midlife cognitive function remains
unclear, with limited causal evidence. We investigated this association in 1252 Black and White
middle-aged adults from the Bogalusa Heart Study (BHS) and conducted a two-sample Mendelian
randomization (MR) analysis using GWAS summary statistics for EAA (N = 34,710) and cognition
(N ≤ 106,162). In BHS, higher Hannum age acceleration, PhenoAge acceleration, and GrimAge
acceleration (GrimAA) were each associated with slower processing speed (p < 0.05). Additionally,
GrimAA was linked to lower global cognition scores (p < 0.001), independent of covariates. MR
analysis suggested a potential link, showing that genetically predicted GrimAA was nominally
associated with slower processing speed (p = 0.05). These findings suggest that epigenetic aging,
particularly GrimAA, is independently associated with lower cognitive function in midlife andmay play
an important role in cognitive impairment, especially in processing speed.

As the global population ages, it is projected that more than 150 million
adults will live with dementia by 2050, posing substantial burdens to
affected individuals, family members, and health care infrastructures1,2.
Despite recent advances3, effective treatment options are still limited. In
contrast, over 40% of dementia cases are potentially preventable through
interventions ofmodifiable risk factors2. Preclinical cognitive changes are
known to occur decades before the diagnosis of mild cognitive impair-
ment (MCI) and dementias4,5, with recent reports demonstrating strong,
independent associations between midlife cognitive function and later-
life dementia6. The long prodromal phase of dementias represents a
critical time window when disease may be more effectively prevented or
delayed7–9. While reports have highlighted the importance of identifying
early biomarkers for cognitive impairment and dementias2,10, molecular
precursors ormarkers thatmight bemeasurable bymidlife have not been
fully characterized4,5.

Epigenetic changes are independent to genetic alterations and poten-
tially reversible determinants of aging11 and age-related conditions,
including cognitive impairment and dementia susceptibility12,13. DNA
methylation-based age, or epigenetic clock age, may be among the most
accurate measures of aging14,15. Interestingly, deviation of epigenetic clock
age from chronological age, termed epigenetic age acceleration (EAA), has
also been identified as a powerful marker of chronic diseases16–19. Several
EAA phenotypes have been widely studied over the past decade in relation
to health and disease16,20. These include first-generation measures such as
intrinsic EAA (IEAA), which is derived from the ‘pan-tissue’ Horvath
epigenetic clock21 and reflects multi-tissue aging, as well as Hannum age
acceleration (HannumAA)18, which captures aging in blood and immune
cells. Second-generation EAA measures, namely PhenoAge acceleration
(PhenoAA)22 and GrimAge acceleration (GrimAA)23 were developed to
model aging in relation to chronic disease, multi-morbidity and mortality,
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respectively. Numerous epidemiologic studies have recently revealed asso-
ciations of EAA with both cognitive decline and increased risks of Alzhei-
mer’s disease and related dementia (AD/ADRD) in older adults24–28,
suggesting potential utility in patient stratification and precision interven-
tion. However, relatively few studies have focused on the EAA-cognition
relationship inmidlife. Aside from two reports29,30, most findings have been
derived from small studies and findings have been conflicting31–35. Further,
there is a dearth of causal evidence elucidating the role of EAA in cognitive
impairment.

The current study assessedwhether blood-derivedEAAmeasureswere
associated with cognition inmidlife by leveraging simultaneously measures
of EAA and cognitive function among 1252 middle-aged participants (433
Blackparticipants; 740 female participants; Supplementary Fig. S1) from the
Bogalusa Heart Study (BHS). Additionally, the causal relationship between
EAA and midlife cognitive function was investigated using genetic infor-
mation from large-scale genome-wide association studies (GWAS) utilizing
a Mendelian Randomization (MR) framework. The study design is illu-
strated in Fig. 1.

Results
Characteristics of BHS participants
Characteristics of the 1252 BHS participants with available cognitive
function and methylation measures are shown in Table 1. The mean age of
study participants was 48, 35% were Black participants, and 59% were
female. Approximately half had at least a high-school education (49%) and
were current drinkers (56%). Most BHS participants were non-smokers
(81%]) and showed no evidence of depression (90%). On average, partici-
pants were obese, prediabetic, and had modestly elevated systolic BP and
LDL-C values. In concurrence with previous observations, female partici-
pants were biologically younger (lower EAA)33.

Association of EAA and midlife cognitive function in BHS
participants
Findings from ourmain analyses are presented in Fig. 2. After adjusting for
demographics, behavioral and clinical covariates (Model 3), increased
HannumAA, GrimAA and PhenoAA were nominally or significantly
associated with slower attention and processing speed (HannumAA,
β =−0.049, 95% CI, −0.097 to −0.001; PhenoAA, β =−0.072, 95% CI,
−0.121 to −0.023; GrimAA, β =−0.147, 95% CI, −0.211 to −0.083). In
addition, greater GrimAA was strongly associated with lower global cog-
nition score (β =−0.095, 95%CI,−0.151 to−0.039) (Fig. 2 andTable 2). In
Model 1, nominal associations were also found between these three EAA
measures and individual neurocognitive tests (Supplementary Fig. S2). No
association was identified between IEAA and cognitive domains.

Associations between categorized EAA tertile and cognitive domains
were generally consistent with analyses examining the continuous EAA

measures (Table 2). For example, in Model 1, compared to the first tertile,
the last tertile of HannumAA, PhenoAA andGrimAAwere associated with
decreased attention andprocessing speed (P = 0.010, <0.001, and<0.001, for
linear trend, respectively). Likewise, the last tertile of GrimAA was asso-
ciated with decreased global cognition score (P < 0.001 for linear trend). As
shown in a sensitivity analysis, APOE status did not affect these identified
associations (Supplementary Table S1). Linear regression model fit and
assumptions were systematically evaluated, revealing no evidence of het-
eroskedasticity, non-linearity, or other violations that would compromise
the validity of ourfindings.Diagnostic plots, restricted cubic spline analyses,
and results from heteroskedasticity tests and robust regression (Supple-
mentary Figs. S3, S4, Supplementary Table S2) all support the validity of the
linear models used in the current study.

Race and sex-stratified associations between EAA and midlife
cognitive function in BHS participants
Stratified analyses were performed to discern sex and race-specific associa-
tions between EAA and cognitive function, as shown in Supplementary Figs.
S5–S8. Estimated effects of the stratified analysis concurred with the com-
bined analysis (Supplementary Table S3). While no interactions were
detected at the cognitive domain level, stratified analysis identified associa-
tions of GrimAA and PhenoAA with TMT Part B performance were
modified by sex (P for interaction = 0.02 and 0.004, respectively), indepen-
dent of known risk factors (Supplementary Table S4). In female participants,
each SD increase in GrimAA or PhenoAA was associated with worse per-
formance of TMT Part B (i.e., a higher score) (GrimAA: 0.151, 95% CI
0.052–0.249;PhenoAA:0.065, 95%CI−0.006 to0.136), anassociationwhich
was not observed in males. No significant race interactions were identified.

Causal estimates of genetically predicted EAA and cognitive
function
In the 2-sample MR analysis, nominally significant associations between
genetically predicted EAA and cognitive tests are presented in Table 3. Each
1-year higher genetic predisposition to GrimAA was associated with worse
performance of TMT part A test among 99479 participants of European
ancestry fromtheUKBiobank(β= 0.024, 95%CI,0–0.049), butnotassociated
with TMTpart B or numericmemory test. Sensitivity analyses usingmultiple
pleiotropy-robust methods showed generally consistent effect sizes compared
with the primary IVW method. No causal associations were identified for
HannumAAandPhenoAA(SupplementaryTable S5), both ofwhich showed
associations with midlife cognition in our cross-sectional analysis. No asso-
ciation remained significant after accounting for multiple testing.

Discussion
This study investigated cross-sectional associations between EAA and
cognition-related phenotypes using a racially diverse cohort of middle-aged

Fig. 1 | Study design flowchart. The diagram
depicts our study design. Cross-sectional associa-
tions between EAAmeasures and cognitive function
in midlife were examined within the BHS cohort.
The two-sample summary-level MR analysis was
performed to help infer a causal role of EAA in the
cognitive function.
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participants from the BHS, and leveraged MR study to further support
causal inference. Cross-sectional analyses revealed that increased Hannu-
mAA, PhenoAA and GrimAA were associated with lower cognitive func-
tion in midlife, independent of demographic, educational, behavioral, and
major clinical and cardiometabolic risk factors. Among the EAA measures
that associated with lower midlife cognition, MR analyses supported a
potentially causal association of GrimAA with worse performance in TMT
partA, a test reflectingprocessing speed. In aggregate, thesefindings support
a potentially important relation between EAA and cognition and suggest
that EAA-related decreases in cognitive function may be evident by mid-
dle age.

Associations between GrimAA and cognition were jointly supported
by our observational and genomic studies. Furthermore, we report early
evidence of a female-specific associationbetweenhigherGrimAAandworse
performance in TMT Part B, which aligns with a report of GrimAA med-
iating sex-specific cognitive aging in an older population36. In general, per
standard deviation effect sizes for GrimAA measures were larger in mag-
nitude than those identified for the other EAAmeasures. Like in our study,
GrimAA has outperformed ‘first-generation’ EAAmeasures and PhenoAA
in the predictionof decreased cognition in several previous reports25,27–29,35,37.
One explanation is that GrimAA includes the highest number of cytosine-
guanine dinucleotide (CpG) sites among the four common EAAmeasures,
and is built to capture key aging and inflammatory biomarkers, whichmay
be involved in cognitive aging processes23,29. Our MR analysis bolsters the
link between GrimAA and midlife cognitive impairment, showing some of
the first evidence that genetic liability of GrimAA may relate to slower
processing speed, measured by TMT Part A. However, this finding should

be interpretedwith cautiongiven theweakgenetic instrument forGrimAA38

and nominal significance observed. Moreover, the relatively weak genetic
instrument makes it difficult to discern if null findings for TMT Part B or
numeric memory reflect low statistical power or true lack of association.
Overall, our data suggests a potentially important role for GrimAA in
midlife cognition.

PhenoAA was consistently associated with reduced attention and
processing speed inmidlife across all observationalmodels, but this was not
supported by our MR analysis. Among the limited studies examining this
molecular phenotype for a relation with cognition phenotypes, a recent
study reported similarfindings, identifying a significant association between
PhenoAA and processing speed, measured using the letter cancellation test,
in a meta-analysis of 1602 adults 45–87 years of age37. The discrepancy
between our observational and MR findings may reflect a non-causal
relationship or insufficient power in the MR analysis. Further research is
needed to clarify this association.

HigherHannumAAwas associated with lower attention and processing
speed in midlife but was not supported by our MR analysis. Similar to our
results, a recent cross-sectional study limited to the assessment of ‘first-gen-
eration’EAAidentifiedanassociationbetweenHannumAAwith cognition in
2157 middle-aged Black participants, with replication in over 1600 White
participants30. Likewise, a small longitudinal study recently reported asso-
ciations between higher extrinsic EAA (EEAA), a slightlymodified version of
HannumAA, and faster declines in visual memory and attention/processing
speed33. While the biological mechanisms underlying this relationship have
not been completely elucidated, HannumAA has been temporally associated
with accelerated blood cell aging and immunosenescence15,38, biological

Table 1 | Characteristics of 1252 BHS participants

Participants, no. (%)

Black White

Characteristic Overall Female (n = 272) Male (n = 161) Female (n = 468) Male (n = 351)

Age, mean (SD), y 48.2 (5.2) 47.7 (5.4) 47.4 (5.9) 48.1 (5.1) 48.9 (4.9)

≤12 years (high school) 633 (50.7) 164 (60.5) 115 (71.9) 183 (39.1) 171 (48.9)

Vocabulary score, mean (SD) 26.6 (9.9) 20.3 (7.9) 20.1 (7.9) 0.4 (9.4) 29.1 (9.1)

Depression 131 (10.5) 30 (11.0) 13 (8.1) 61 (13.0) 27 (7.7)

Smoking

Never 637 (50.9) 159 (58.5) 55 (34.2) 250 (53.4) 173 (49.3)

Former 371 (29.6) 68 (25.0) 50 (31.1) 139 (29.7) 114 (32.5)

Current 244 (19.5) 45 (16.5) 56 (34.8) 79 (16.9) 64 (18.2)

Drinking

Never 153 (12.3) 60 (22.3) 19 (11.9) 58 (12.5) 16 (4.6)

Former 394 (31.6) 80 (29.7) 49 (30.6) 149 (32.0) 116 (33.1)

Current 698 (56.1) 129 (48.0) 92 (57.5) 258 (55.5) 219 (62.4)

BMI, mean (SD), kg/m2 31.4 (7.8) 34.7 (8.8) 31.2 (8.6) 30.21 (7.4) 30.58 (6.1)

SBP, mean (SD), mmHg 123.4 (16.9) 126.3 (21.2) 131.5 (15.7) 117.3 (14.5) 125.7 (13.9)

Glycated hemoglobin, mean (SD), mmol/mol 5.9 (1.2) 6.1 (1.4) 6.1 (1.4) 5.8 (1.1) 5.8 (1.0)

LDL cholesterol, mean (SD), mg/dl 114.8 (35.1) 112.9 (37.5) 109.4 (37.1) 115.8 (34.0) 117.4 (33.4)

White blood cell count, mean (SD), *1000/μL 6.5 (2.1) 6.3 (2.0) 6.2 (2.4) 6.6 (1.9) 6.7 (2.0)

Hypertension medication 144 (11.5) 41 (15.1) 19 (11.8) 52 (11.1) 32 (9.1)

Diabetes medication 437 (34.9) 141 (51.8) 63 (39.1) 128 (27.4) 105 (29.9)

EAA

IEAA, mean (SD), y 0 (3.9) −0.4 (4.3) 0.8 (4.3) −0.3 (3.7) 0.3 (3.7)

HannumAA, mean (SD), y 0 (3.9) −1.1 (4.0) 0.5 (4.3) −0.4 (3.7) 1.1 (3.6)

GrimAA, mean (SD), y 0 (4.9) 0.2 (4.3) 3.2 (4.9) −1.5 (4.7) 0.4 (4.7)

PhenoAA, mean (SD), y 0 (5.5) 0.7 (6.0) 1.1 (6.3) −0.6 (5.4) −0.3 (4.8)

Missing covariates: vocabulary score (N = 17), education (N = 3), drinking (N = 7), LDL-cholesterol (N = 40), HbA1c (N = 9), white blood cell count (N = 24).
BMI body mass index, EAA epigenetic age acceleration, IEAA intrinsic EAA, LDL low-density lipoprotein, SBP systolic blood pressure, SD standard deviation.
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processes strongly implicated in cognitive decline39,40.However, ourMRstudy
did not support the role of HannumAA in cognitive impairment. Never-
theless, our study adds to the accumulating evidence implicatingHannumAA
as a biomarker of lower cognitive function.

In contrast, IEAA, another ‘first-generation’EAAmeasure, showed no
associations with cognitive function in midlife or with genetically predicted
cognition. This aligns with most studies of midlife cognition29–31,33,35. Two
smaller studies did reportmemory decline linked to IEAAover 10 years, but
differences in populations, predominantly white or male in these small
cohorts, may explain the discrepancy32,34. While the IEAA-cognition asso-
ciationwas observed among elderly populations, genetic analyses, including
our MR and prior genetic correlation studies, suggest IEAA is not a causal
factor in midlife cognitive function 41.

As a large study investigating all fourmajor EAAmeasures andmidlife
cognition29,30, our study was well-powered to detect important but modest
effects of thesemeasureson cognitive function.The large anddiverse sample
ofmenandwomenparticipating in theBHSenabled investigation into these
associations according to race and sex groups, an examination that has been
rarely conducted31–35. Additional strengths include the use of the deeply-
phenotyped BHS cohort, with data from a large battery of cognitive tests
allowing us to examine global cognitive function and multiple cognitive
domains. Moreover, the use of MR analyses provided a unique method to
help support temporality and potential causal relations with cognitive
function, which is not possible in cross-sectional analyses.

Although we tried to shed light on temporality and causality through
MR analyses, our findings are only nominally significant, and our null
results in our MR studies do not rule out potential causals associations of
EAA measures with decreased cognition. Our genetic instrument for EAA
wasweak38, with largerMR studies or longitudinal analyses needed to better
articulate the relationship between EAA and cognitive impairment over
time. While some SNPs selected as instruments are associated with blood
traits, this reflects the biological basis of EAA and does not violate MR
assumptions, as blood traits are not established risk factors for cognitive
decline42 and are unlikely to violate the Instrument Strength Independent of
Direct Effect (InSIDE) assumption43. Except for IEAA, a pan-tissue epige-
netic clock, all otherEAAmeasureswerederived fromblood,whichmaynot
reflect EAA values in cognition related brain tissue44,45. Despite leveraging a
diverse sample of Black andWhite participants for cross-sectional analyses,

there were a lack of GWAS studies conducted in diverse samples, which
limited the generalizability of ourMRanalyses beyondpredominantlywhite
populations. These preliminary results are hypothesis-generating and
warrant replication using GWAS data from larger and more diverse
populations.

This observational and Mendelian randomization study found that
EAA measures, particularly GrimAA, were associated with impairment in
processing speed or global cognition in midlife. These findings suggest that
epigenetic agingmay influencemidlife cognitive decline, serving as potential
early indicators of future impairment. Further studies are needed to explore
their role in dementia risk.

Methods
Study design
We examined cross-sectional associations between EAA measures and
cognitive function in midlife within the BHS cohort, followed by MR ana-
lysis to help infer a causal role of EAA inmidlife cognitive impairment (Fig.
1). Cross-sectional associations were tested in 1252 BHS participants with
EAA and cognitive data from the 2013–2016 study visit. A 2-sample MR
analysis used recent large-scale genome-wide association study (GWAS)
meta-analyses of EAA measures (n = 34,710 individuals of European-
ancestry)38 and cognitive function (up to 106,162 UK Biobank
participants)46–48.

Bogalusa Heart Study population
The BogalusaHeart Study (BHS) is a long-term, community-based study of
cardiovascular disease among a racially diverse cohort from Bogalusa,
Louisiana. The core cohort is comprised of 1298 middle-aged participants
born between 1959 and 1979. During the 2013 to 2016 study visit, BHS
cohort participants underwent epigenetics profiling and cognitive assess-
ments. After excluding those missing cognition (N = 20) or DNA methy-
lation data (N = 29), 1252 participants (mean age 48.2 years, 34.6% Black)
were included in the current cross-sectional analysis (Supplementary
Fig. S1).

Measurement of epigenetic age acceleration in the BHS
Genome-wide epigenetic profilingwas performed usingwhole blood drawn
during the2013–2016BHSvisit cycle, as describedpreviously49. Briefly,BHS

Fig. 2 | Associations between EAA and scores of cognitive domains and global
cognition amongmiddle-agedBHSparticipants.Forest plots show cross-sectional
associations between midlife EAA and cognitive domain scores and a global cog-
nition score. There are three cognitive domains, included, namely attention and

processing speed, episodic memory, and working memory. A higher score indicates
higher cognitive function. All cognition scores were normalized and effects of EAA
were standardized.
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samples were processed at theMicroarrayCore Facility, University of Texas
Southwestern Medical Center at Dallas, Texas, US49. Genomic DNA was
first extracted from whole blood samples using the PureLink Pro 96
Genomic DNA Kit (LifeTechnology, CA) following the manufacturer’s
instruction. DNA methylation was measured using the Infinium Human-
Methylation450 BeadChip (Illumina, CA). The generated raw IDAT files
were further processed by the Methylation Module in the GenomeStudio
(Illumina, CA). The default normalization method was used by Geno-
meStudio to generate a final report of beta estimates at each CpG site.

The DNAmethylation measures were then normalized and uploaded
to Horvath’s DNAmethylation age calculator available at https://dnamage.
genetics.ucla.edu/new. Four measures of EAA, which correspond to EAA
measures also available for MR study, namely, IEAA, HannumAA, Phe-
noAA, and GrimAA, were extracted from the generated output. To adjust
for batch effects, an additional normalization step was performed internally
within the Horvath’s DNA methylation age estimation algorithm. This
normalization step was a modified version of the beta mixture quantile
dilation (BMIQ) normalization method50, specifically designed for Hor-
vath’s epigenetic age calculator. This method aligns user-inputted methy-
lation data with gold standard methylation data, allowing a robust batch
effect adjustment (available at https://horvath.genetics.ucla.edu/html/
dnamage/faq.htm).

Measurement of cognition in the BHS
In accordancewith the latest recommendations from theNIH toolbox51, the
BHS participants underwent evaluations of four cognitive domains, i.e.,
attention and processing speed, verbal episodic memory, working memory
and language. Trained technicians conducted a battery of eight standard
tests (10measurements). Attention andprocessing speedwere assessedwith
theDigit Symbol Coding subtest (WAIS-IV), andTrailMakingTest (TMT)
Part A and B; episodic memory were assessed with the Logical Memory I
and II and Recognition (WMS-IV) for short- and long term narrative
memory under a free recall condition, and delayed recognition; working
memory were assessed with the Digit Span Task forwards and backwards
(WAIS-IV); and language were assessed with theWord and Letter Reading
(Wide Range Achievement Test [WRAT] 4th edition) and Vocabulary
(WAIS-IV). Higher scores indicated better performance on most tests,
except for the TMT, where lower scores indicated better cognition.

To normalize the distribution of each cognitive test score, crude scores
underwent a rank-based inverse normal transformation. Four domain-
specific scores and the global cognitive score (GCS) were estimated by
averaging Z-score transformed crude scores from the corresponding cog-
nitive tests (see Supplementary Fig. S2). TMT scores were flipped so that
higher scores reflect better performance. Both domain scores andGCSwere
subjected to the same normalization approach as the individual cognitive
tests scores.

Measurement of study covariables in the BHS
Covariables were collected following stringent protocols, which have been
used consistently at eachBHS study visit and described in detail elsewhere52.
Briefly, information on demographic characteristics (including age, sex,
race, and education) and lifestyle risk factors (including cigarette smoking
and alcohol consumption) were obtained by administered questionnaires.
Depression was evaluated using the CES-D instrument53,54. Clinical cov-
ariables, including body mass index (BMI), blood pressures (BP), serum
lipids, and blood hemoglobin A1c (HbA1c), were measured by trained staff.
Briefly, information on demographic characteristics (including age, sex,
race, and education) and lifestyle risk factors (including cigarette smoking
and alcohol consumption) were obtained by administered questionnaires.
Depressionwas evaluated using theCES-D instrument53,54. Anthropometric
measures were collected by trained staff with participants in light clothing
without shoes. At each visit, bodyweight and height weremeasured twice to
the nearest 0.1 kg and 0.1 cm, respectively. Body mass index (BMI) was
estimated using the mean values of weight and height, as weight (in kilo-
grams) divided by height (inmeters squared). Blood pressure (BP) levelwasT
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measured in the morning in triplicate by a trained staff using the OMRON
HEM-907 XL digital BP monitor (Omron Healthcare, Kyoto, Japan) with
the participant in a relaxed, sitting position. Themean of the three BP values
were used to estimate BP. Participants were instructed to fast for 12 h prior
to the blood sample collection. Serum lipids, including total cholesterol
(TC), high density lipoprotein cholesterol (HDL-C), and triglyceride (TG)
levels were assayed using an enzymatic procedure as part of a lipid panel
(Laboratory Corporation of America, Burlington, NC, USA). Low-density
lipoprotein cholesterol (LDL-C) was calculated following the Friedewald
equation (LDL-C = TC−HDL-C−TG/5) for those with TG less than
400mg/dl55. Blood hemoglobin A1c (HbA1c) was measured by turbidi-
metric immunoinhibition assay on a Hitachi 902 Automatic Analyzer
(Tina-quant, Roche Diagnostics)56. APOE genotype information was
available in a subset of the BHS participants (n = 653) who underwent
genome-wide genotyping using the Illumina Human610-Quad array57.

Achieved education and premorbid cognitive abilities (before examina-
tionorbefore theonsetof anybraindysfunction)were estimatedbya language
index (i.e., language cognitive domain score). This is because social determi-
nants affect thequalityof educationandarenot fully reflectedby the education
measurementusing grade-level cutoff 58,59. Evidence fromtheBHSandothers
support the use of indicators of achieved education for more accurate com-
parisons involving traditionally marginalized racial groups58–61.

Statistical analysis
Multiple linear regression analyses were employed to examine cross-
sectional associations of EAA with cognitive function measures in midlife.
Three multivariable models were used, model 1 adjusted for age, sex, race,
and achieved education; model 2 adjusted for covariables in model 1, and
additionally adjusted for smoking status, alcohol consumption, and
depression; and model 3 adjusted for covariables in model 2, and addi-
tionally adjusted for systolic blood pressure, LDL-C, glycated hemoglobin
(HbA1c), BMI, log-transformed white blood cell counts, and BP, lipid, and
glucose lowering medications. A conservative Bonferroni correction was
applied to account for the number of EAA-cognitive domain tests (α = 0.05/
12 = 4.16 × 10−3). Original P values are displayed in tables and figures
throughout this study with footnotes indicating their significance after the
Bonferroni correction. For association of EAA and individual neurocog-
nitive tests, a conservative Bonferroni correction was applied to account for
the number of EAA-neurocognition tests (Bonferroni α = 0.05/
32 = 1.56 × 10−3). The associations of categorized EAA tertiles with cogni-
tive domains were also tested to assess dose-response relations. Tests of
linear trend were calculated by assigning the median of each tertile to each
participant in the tertile. Sex and race stratified analyses were conducted.
Sensitivity analyses were conducted to assess the impact ofAPOE genotype
on associations between EAA and cognition.

We assessed the validity of linear regression assumptions using mul-
tiple approaches in the BHS cohort analysis across all models examining
associations between EAA and cognitive function scores.Model diagnostics
included residual vs. fitted plots and Q–Q plots to visually inspect linearity
and the distribution of residuals. Heteroskedasticity was formally tested
using the studentized Breusch–Pagan test62, as implemented in lmtest R
package. Robust regression analyses were conducted using MM-
estimation63, as implemented in the robustbase R package, to evaluate the
robustness of findings to potential model violations. Non-linearity was
assessed using restricted cubic splines with three knots in fully adjusted
models, as implemented in splines and rmsRpackages. Likelihood ratio tests
were used to compare models containing only a linear term with those
including both linear and spline terms. If the spline model did not sig-
nificantly improve model fit, a secondary test was conducted by comparing
the full model (including the linear term and covariates) to a covariate-
only model.

2-sample Mendelian randomization
Selection of genetic instruments. Genetic instruments for the four
distinct EAAmeasures, i.e., IEAA,HannumAA, PhenoAA, andGrimAA,

were derived from a recent GWAS meta-analysis of epigenetic aging38

(n = 34710 ancestrally European participants). Briefly, genetic instru-
ments for each EAA variable were comprised of independent SNPs (500-
kb window, r2 < 0.01) that achieved genome-wide significant associations
(P = 5 × 10−8) with EAA in GWASmeta-analysis, with exclusion of SNPs
robustly associated with hypertension, blood pressure, diabetes mellitus,
cholesterol-lowering medications, BMI, obesity, and smoking (described
in detail in the below section). Among SNPs selected for the EAA genetic
instruments, no ambiguous and non-inferable palindromic SNPs were
found. Steiger filtering64, a procedure that removes SNPs failing to explain
significantly more variance in the exposure than the outcome after
comparing their effect sizes, was performed to confirm the directionality
of instrument SNPs. Summary statistics for individual genetic instru-
ments are presented in Supplementary Tables S6–S9, with effect sizes
aligned toward “increasing” EAA.

Excluding SNPs associated with potential confounders for EAA
instruments. Genetic instruments for eachEAAvariable were comprised
of independent SNPs associated with EAA in GWASmeta-analysis, with
exclusion of SNPs associated with potential confounders. These con-
founders include hypertension, blood pressure, diabetes mellitus,
cholesterol-lowering medications, body mass index (BMI), obesity, and
smoking. To implement such filter, summary statistics of GWAS analysis
results of corresponding traits based on UK Biobank were retrieved from
an external resource available at https://yanglab.westlake.edu.cn/data/
ukb_fastgwa/imp/. EAA index SNPs that had a genome-wide significant
association (P = 5 × 10−8) with potential confounderswere removed. This
external GWAS was conducted using fastGWA65, and adjusted for age,
sex, and the first 10 genetic principal components within the individual-
level UK Biobank data.

Outcome data for the two-sample MR. Summary statistics of midlife
cognitive function were obtained from large-scale GWAS in the UK
Biobank participants of European ancestry (N ≤ 106,162)46–48. Cognitive
assessments in the UK Biobank were administered via automated
touchscreen or web-based questionnaires46,48. While the test battery is
non-standard, it has evaluated for validity and reliability with standard
cognitive tests66, including some used in the current study. Three cog-
nitive tests, namely UKBNumericMemory, UKBTMTpart A, and TMT
part B (UK Biobank Data-Fields 20240, 20156, 20157), were selected for
MR analysis, corresponding closely to the cognitive tests used in the BHS
analysis. Specifically, UKBNumericMemory strongly correlatedwith the
Digit Span Task (WAIS-IV), while UKB TMT Parts A and B correlated
with the paper-and-pencil TMT tests66. GWAS summary statistics were
retrieved via the MRC IEU OpenGWAS, which applied rank-based
inverse normal transformation to the TMT tests and treated Numeric
Memory results as ordered categorical data for the GWAS analysis67,68.
There is no sample overlap between theGWASmeta-analysis of EAAand
UK Biobank cognition data.

MR analysis framework. We applied the Rücker model-selection fra-
mework for MR analysis69,70. Briefly, the multiplicative random-effects
inverse variance–weighted (IVW) method was used as the primary MR
approach in the absence of significant horizontal pleiotropic effect. The
IVW method has the best power when all SNPs are valid instrumental
variables71. The MR-Egger method was used as the primary method when
horizontal pleiotropy was detected and the MR-Egger43 demonstrated
better fit than IVW. Model selection was based on a significant difference
(P < 0.05) between Cochran’s Q statistic for the IVWmethod and Rücker’s
Q’ for theMR-Eggermethod (with respect to a χ21 distribution), alongwith a
significant non-zero MR-Egger intercept (P < 0.1)69,70. Using this frame-
work, a multiplicative random-effects inverse variance–weighted (IVW)
method was used as the primaryMR approach in the absence of significant
horizontal pleiotropic effect. When horizontal pleiotropy was detected, the
MR-Egger method was utilized as the primaryMR approach. Results from
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the Steiger test64 for directionality were reported to further indicate whether
assumed directionality was valid. We also employed additional methods
that partially relax MR assumptions, including weighted median72 and
weightedmode73, as sensitivity analyses to assess causality in the presence of
unbalanced pleiotropy74. MR analyses were performed by the
TwoSampleMR75 package in R.Multiple testing correction was applied, and
no associations met the threshold for statistical significance after adjust-
ment. P-values reported for MR analyses are unadjusted for multiple
comparisons.

Pleiotropy-robust sensitivity analyses. We performed sensitivity
analyses using various MR methods to explore the validity of ‘indepen-
dence’ and ‘exclusion-restriction’ assumptions in our primary MR ana-
lyses, which is a recommended practice for MR studies74. Methods
including MR-Egger43, weighted median72 and weighted mode73 were all
employed. In brief, MR-Egger43 regression is considered a pleiotropy-
robust method that estimates and adjusts for an overall pleiotropic effect
on all SNVs. The Egger intercept was also used in the Rücker framework69

for model section of our primary MR approach in this study. MR-Egger
provides consistent estimates of the causal effect under the InSIDE
assumption, which requires that pleiotropic effects of genetic variants be
uncorrelated with the genetic variant–exposure association. Weighted
median72 is robust to pleiotropy by relaxing the requirement of valid
instrumental SNPs. Thismethod produces consistent estimates when the
majority, or more than half of the instrumental SNPs are valid.Weighted
mode, using the mode-based estimate, can also obtain causal effect
estimate robust to horizontal pleiotropy and is proposed to use in com-
bination with other methods in sensitivity analysis 73.

Data availability
The present study utilized publicly available data of GWAS summary sta-
tistics for the MR analysis: GWAS Catalog ID GCST90014001-
GCST90015000 for EAA GWAS, IEU OpenGWAS ukb-b-18683,
ukb-b-16026, ukb-b-20140 for UK Biobank cognitive function GWAS. De-
identified data fromBHS is available by request. Further details anddatanot
presented in the article can be shared upon request.
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