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Integrating menopause duration and
plasma metabolomics enhances
cardiovascular risk stratification in
aging women

Check for updates

Qi Wang1,7, Bo Xie1,7, Chunying Fu1, Meiling Li2, Xiaoyi Wang1, Nipun Shrestha3, Salim S. Virani4,
Shiva Raj Mishra5 & Dongshan Zhu1,6

Menopause-relatedmetabolic remodelingmay contribute to the excess cardiovascular disease (CVD)
burden in aging women, yet the longitudinal metabolic correlates of time sincemenopause (TSM) and
their prognostic value are unclear. In this prospective analysis of 67,582 postmenopausal women
without baseline CVD from the UK Biobank, we profiled 251 plasmametabolites by nuclear magnetic
resonance and followed participants for a median 13.7 years (8313 incident CVD events). Elastic net
regression identified a 95‑metabolite TSM-associated metabolomic signature (Spearman r with
TSM = 0.29). In multivariable Coxmodels, each 5-year increment in TSM (HR 1.14, 95%CI 1.11–1.16)
and each 1–standard deviation increases in the metabolomic signature (HR 1.18, 95% CI 1.15–1.21)
were independently associated with higher composite CVD risk, with consistent associations across
myocardial infarction, ischemic heart disease, atrial fibrillation, heart failure and stroke. Mendelian
randomization supported potential causal roles for 29 of the signature metabolites in CVD. Adding
TSM or the metabolomic signature to SCORE2 improved 10‑year risk discrimination (area under the
curve 0.584 to 0.657 and 0.660, respectively) and reclassification (net reclassification improvement
+0.027 and +1.043). These findings implicate cumulative postmenopausal metabolic alterations in
vascular risk and support metabolomic enhancement of risk stratification in postmenopausal women.

Cardiovascular diseases (CVD) remain the leading cause of mortality and
disease burden globally, particularly among women1. The risk of CVD
increases substantially after menopause, a phenomenon attributed to
declining estrogen levels,metabolic disturbances, and vascular dysfunction2.
While previous studies have primarily focused on traditional CVD risk
factors (such as dyslipidemia, hypertension, and insulin resistance) in
relation to menopause3, the complex metabolic alterations and underlying
biological mechanisms associated with menopausal transition remain
incompletely understood.

Recent advances in metabolomics technologies have provided new
perspectives for investigating disease mechanisms. Metabolomics, through
high-throughput measurement of metabolites in blood or other biological
samples, offers comprehensive insights into dynamic metabolic states,

reflecting the interplay between genetic and environmental factors while
potentially revealing disease pathways4. Studies have demonstrated that
specificmetabolomic signatures are closely associatedwithCVDand its risk
factors5. For instance, certain lipid metabolites, amino acids, and inter-
mediates of glucose metabolism have been identified as potential bio-
markers for CVD6. Metabolomic studies in postmenopausal women are
limited, especially regarding the link between time sincemenopause (TSM),
metabolomic signatures, and CVD risk. While metabolomic profiles are
associated with cardiovascular outcomes, their ability to enhance risk pre-
diction beyond traditional models remains unclear.

Menopause represents a critical physiological transition in women’s
lives, with metabolic changes potentially extending over years and having
long-term health implications7. Age at menopause and time since
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menopause (defined as the duration from age at menopause to current age)
may be key indicators for assessing the metabolic impact of menopause.
Previous studies have largely treated menopause as a static exposure vari-
able, overlooking the dynamic changes that occur over time post-
menopause8. In addition, the metabolic pathways underlying the associa-
tion between TSM and CVD risk remain poorly understood, and it is
unknownwhether TSM and its relatedmetabolomic signature can enhance
the prediction of cardiovascular events. Identifying metabolomic signature
associated with TSM and elucidating their relationship with cardiovascular
risk may offer novel insights into the mechanisms underlying menopause-
related CVD and inform risk stratification and intervention strategies for
postmenopausal women.

Based on these considerations, this study aims to systematically
investigate the relationships between time since menopause (TSM), meta-
bolomic signature, and CVD risk using metabolomics data from the UK
Biobank (Fig. 1). Specific objectives were to: (1) identify and construct a
metabolomic signature associated with time since menopause; (2) analyze

the associations of time since menopause and the metabolomic signature
with CVD risk; (3) investigate potential causal relationships between the
metabolomic signature andCVD risk usingMendelian randomization; and
(4) assess the predictive value of TSM and the metabolomic signature for
CVD risk in postmenopausal women.

Results
Characteristics of the participants
The study included a total of 67,582 participants with metabolites at base-
line, with a mean (SD) age of 59.8 (5.4) years. The majority of participants
were White (96.35%). After a median follow-up of 13.7 years, 8313 people
developed CVD. Participants with incident CVD were more likely to have
lower education levels (≤10 years: 58.45% vs. 50.40%) and lower annual
household income (<£18,000: 35.98% vs. 26.33%) compared to those
without incident CVD. The incident CVD group also showed a higher
prevalence of obesity (BMI ≥ 30 kg/m²: 30.57% vs. 20.35%) and current
smoking (11.12% vs. 7.48%). Poor sleep quality was more common in the

Fig. 1 | Overview of time since menopause (TSM), metabolomic signature and cardiovascular diseases (CVD) prediction in women. MI myocardial infarction, IHD
chronic ischemic heart disease, HF heart failure, AF atrial fibrillation,MHTmenopausal hormone therapy, AUCarea under the curve, NRI net reclassification improvement.
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incident CVD group (71.31% vs. 66.67%), as was the use of medications
such as statins (19.07%vs. 10.46%) and aspirin (15.64%vs. 7.44%) (Table 1).
The characteristics of participants at baseline were similar to those observed
in the first repeat data (Supplementary Table S8).

Metabolomic signature in response to time since
menopause (TSM)
The correlation matrix of all metabolites exhibited an obvious clustering
pattern due to the strong correlation between lipids and lipoprotein lipid
subclasses (Supplementary Fig. S1). Elastic net regressions on 251 meta-
bolites in baseline data were performed to determine the metabolomic
signature in response to TSM. A total of 95 metabolites were selected from
the model to calculate the total metabolomic signature, which was sig-
nificantly correlated with year since menopause (baseline data: r = 0.29,
P < 0.001; first repeat assessment: r = 0.26, P < 0.001; Fig. 2). The metabo-
lomic signature spanned various metabolic classes including lipids, lipo-
protein subclass, amino acids, fatty acids, ketone bodies, fluid balance-
related, glycolysis-related, and inflammation-related metabolites (Supple-
mentary Fig. S2).KEGGenrichment analysis revealed that thesemetabolites
were predominantly associated with four metabolic pathways: glyoxylate
and dicarboxylate metabolism; valine, leucine and isoleucine biosynthesis
and degradation; alanine, aspartate and glutamate metabolism; and phe-
nylalanine, tyrosine, and tryptophan biosynthesis (Supplementary Table
S9). As per the metabolites’ coefficients (weights) in the signature (Sup-
plementary Fig. S3), the most pronounced contribution to the positive
coefficient of the metabolomic signature came from triglycerides in large
LDL, triglycerides in large HDL, and phospholipids to total lipids in Small
LDL percentage. Conversely, choline, free cholesterol to total lipids in small
VLDL percentage, triglycerides in small LDL, and albumin played a sig-
nificant role in influencing the reverse coefficient of the metabolomic sig-
nature. Associations between TSM and the 95 metabolites comprising the
metabolomic signature, as well as the relationships between these metabo-
lites and the risk of CVD and its subtypes were illustrated in Supplementary
Fig. S3.

Associations of time since menopause, metabolomic signature
with CVD risk
In the fully adjustedmodel, i.e., after TSM andmetabolomic signature were
mutually adjusted, we observed that TSM per 1 unit (representing a 5-year
interval) increment associatedwith an increased risk ofCVD (HR1.14, 95%
CI 1.11–1.16) and its subtypes of IHD (1.16, 1.12–1.21), AF (1.15,
1.11–1.19), HF (1.18, 1.12–1.24), MI (1.18, 1.12–1.25) and stroke (1.12,
1.06–1.29) (Table 2). The associations also behaved in a dose-response
manner (Supplementary Fig. S4).

Metabolomic signature per 1-SD increment associated with increased
risk of CVD (HR 1.18, 1.15–1.21) and its subtypes of IHD (1.21, 1.17–1.26),

Table 1 | Characteristics of participants at baseline by CVD
incidence

Overall
participants

No
incident CVD

Incident CVD

N = 59269 % N = 8313 %

Age at baseline 59.8 ± 5.4 59.5 ± 5.4 62.0 ± 5.0

Race/ethnicity

White 65141 57107 96.4 8034 96.6

Non-white 2441 2162 3.6 279 3.4

Education level (years)

≤10 34,735 29,876 50.4 4859 58.5

10–11 7766 6921 11.7 845 10.2

>12 25,081 22,472 37.9 2609 31.3

Income level (£)

Less
than 18,000

18,598 15,607 26.3 2991 36.0

18,000–30,999 19,032 16,680 28.1 2352 28.3

31,000–51,999 16,486 14,773 24.9 1713 20.6

Greater
than 52,000

13,466 12,209 20.7 1257 15.1

Socioeconomic status

Q1 16781 14943 25.2 1838 22.1

Q2 16998 15025 25.3 1973 23.7

Q3 16897 14857 25.1 2040 24.5

Q4 16906 14444 24.4 2462 29.6

BMI level (kg/m2)

<18.5 513 449 0.7 64 0.8

18.5–24.9 26,632 24,045 40.6 2587 31.1

25.0–29.9 25,834 22,713 38.3 3121 37.5

≥30 14,603 12,062 20.4 2541 30.6

Smoking status

Never 39,679 35,230 59.4 4449 53.5

Former 22,543 19,603 33.1 2940 35.4

Current 5360 4436 7.5 924 11.1

Diet status

Poor 42,435 37,094 62.6 5341 64.3

Good 25,147 22,175 37.4 2972 35.7

Alcohol status

Never 3598 3021 5.1 577 7.0

Former 2216 1832 3.1 384 4.6

Current 61,768 54,416 91.8 7352 88.4

Sleep quality

Poor 45,445 39,517 66.7 5928 71.3

Good 22,137 19,752 33.3 2385 28.7

Family history of CVD

No 25,819 22,957 38.7 2862 34.4

Yes 41,763 36,312 61.3 5451 65.6

Statins use

No 59,796 53,068 89.5 6728 80.9

Yes 7786 6201 10.5 1585 19.1

Aspirin use

No 61,872 54,859 92.6 7013 84.4

Yes 5710 4410 7.4 1300 15.6

Table 1 (continued) | Characteristics of participants at
baseline by CVD incidence

Overall
participants

No
incident CVD

Incident CVD

N = 59269 % N = 8313 %

HRT use

No 39,158 34,888 58.9 4270 51.4

Yes 28,424 24,381 41.1 4043 48.6

Time since menopause

1 17,272 16,048 27.1 1224 14.7

2 19,262 17,258 29.1 2004 24.1

3 16,826 14,507 24.5 2319 27.9

4 9714 7910 13.4 1804 21.7

5 4508 3546 6.0 962 11.6
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AF (1.15,1.11–1.20), HF (1.30, 1.23–1.36), MI (1.21, 1.15–1.28), and stroke
(1.18, 1.11–1.25) (Table 2). The dose–response curves depicted an increased
trend of CVD and its subtypes’ risk with increment of the metabolomic
signature (Supplementary Fig. S5). In addition, a log-rank test indicated a
significant difference among individuals with low (Q1), intermediate
(Q2–Q4), and high (Q5) metabolomic signature in the probability of CVD
and its subtypes at any time point in Kaplan–Meier analysis (Fig. 3).
Pathway-specific analyses also revealed consistent associations with CVD
risk across all five group-based metabolomic signatures (Supplementary
Table S10). Replication analysis using metabolites at first repeat assessment
showed similarfindings to theprimary analysis usingmetabolites at baseline
(Supplementary Table S11).

Subgroup analyses and sensitivity analyses
After the analysis was stratified by baseline age (<60 years and ≥60 years)
and MHT status (ever used and never used), we observed consistent
findings as the primary analysis (Supplementary Table S12). In sensitivity
analyses, the findings remained robust after excluding participants who
developed incident CVD within the first three years of follow-up and
with additional adjustment for medication use, including menopausal
hormone therapy (MHT), lipid-lowering agents, and aspirin (Supple-
mentary Tables S13 and S14).

Proportion mediated by metabolomic signature between TSM
and CVD
Mediation analysis showed that the metabolomic signature partially
mediated the association between TSM and CVD and its subtypes,
accounting for 11.6% of CVD, 11.3% of ischemic heart disease, 10.6%
of myocardial infarction, 9.2% of atrial fibrillation, 13.8% of heart
failure, and 12.4% of stroke risk (Supplementary Fig. S6). Further
analyses of metabolite classes showed that relative lipoprotein lipid
concentrations, lipoprotein subclasses, fatty acids, amino acids, and
inflammation-related metabolites had higher mediation proportions
(Supplementary Fig. S7). These proportions should be interpreted as
indicative of potential mechanistic pathways rather than definitive
causal effects, given the assumptions required in observational
mediation analyses.

Mendelian randomization analyses
For the 95 metabolites identified as components of the metabolomic sig-
nature, we conducted two-sample Mendelian randomization to assess the
causal associations between eachmetabolite andCVDaswell as its subtypes.
No evidence of horizontal pleiotropy and heterogeneity was observed. We
identified causal associations for 29 metabolites with CVD, 23 metabolites
with MI, 4 metabolites with AF, 6 metabolites with HF, 2 metabolites with
IHD, and 7 metabolites with stroke (Fig. 4). For example, genetically ele-
vated levels of clinical LDL cholesterol, total lipids in medium LDL, satu-
rated fatty acid were associated with a higher CVD risk and genetically
elevated levels of phospholipids to total lipids in medium LDL percentage
and cholesteryl esters to total lipids in small LDL percentage were found to
be linked a lower risk of CVD.

10-year cardiovascular risk prediction with TSM and metabo-
lomic signature
The addition of the metabolomic signature to SCORE2 significantly
increased the AUC from 0.584 to 0.660 (DeLong test P < 0.001), and the
addition of TSM increased the AUC from 0.584 to 0.657 (DeLong test
P < 0.001). Net reclassification improvement (NRI) analysis further indi-
cated that SCORE2 plus metabolomic signature increased the total NRI by
1.043, and SCORE2 plus TSM increased the total NRI by 0.027, relative to
SCORE2 alone (Fig. 5).

Discussion
This study identified 95metabolites significantly associatedwithTSMusing
elastic net regression, which were primarily involved in lipid metabolism,
fatty acid metabolism, and amino acid metabolism. A metabolomic sig-
nature was constructed based on these metabolites. We found that each SD
increase in the TSM-related metabolomic signature was significantly asso-
ciated with a higher risk of CVD. Additionally, the metabolomic signature
mediated the relationship between TSM and CVD risk, suggesting that it
may be a criticalmechanismunderlying the increasedCVDrisk observed in
postmenopausal women. Mendelian Randomization (MR) analysis further
revealed that 37 of the 95 metabolites were potentially causally associated
with CVD, supporting the potential utility of the metabolomic signature in
assessing CVD risk among postmenopausal women.

(a) baseline data (b) repeat assessment

Fig. 2 | Correlations between time since menopause and metabolomic signature. a Correlation between time since menopause and metabolite signature at baseline.
b Correlation between time since menopause and metabolite signature at first repeat assessment.
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Premature menopause (<40 years) has been recognized as a risk
enhancer for atherosclerotic cardiovascular disease due to the cardiometa-
bolic changes that occur earlier3. While 1% of women undergo premature
menopause, up to 10% of women experience early menopause, defined as
<45 years9. A growing body of evidence has demonstrated that early
menopause (<45 years) significantly increases the risk ofCVD. For instance,
Honigberg et al.10 reported in a study involving 144,260 women that early
menopause was associated with an increased risk of coronary heart disease
(CHD) (HR: 1.32, 95% CI: 1.10–1.57) and stroke (HR: 1.23, 95% CI:
1.03–1.46)10. Similarly, Zhu et al.11, in a pooled analysis of individual patient
data, found that each additional year of delay in menopause reduced CHD
risk by 3% (HR: 0.97, 95% CI: 0.96–0.98) and stroke risk by 2% (HR: 0.98,
95% CI: 0.97–0.99)11. Moreover, the time since menopause has been iden-
tified as a critical predictor of CVD risk.Muka et al.8 reported that CVD risk
significantly increased within the first 10 years post-menopause (HR: 1.12,
95% CI: 1.05–1.20) and plateaued thereafter8. The associations between age
at menopause and CVD subtypes are not consistent. A nationwide cohort
study of Korea found that postmenopausal women with a history of pre-
mature menopause had 33% higher risk of heart failure (HR 1.33, 95% CI

1.26−1.40) and 9% higher risk of Atrial fibrillation (HR 1.09, 95% CI
1.02−1.16)12.

While themenopause transition contributes to activation of the renin-
angiotensin-aldosterone system as a result of estrogen loss, the current
analysis on MHT and CVD suggests that the mechanism underlying the
increased risk cannot be attributed solely to estrogen. Instead, estrogen
deficiency may be just one component of the causal link between meno-
pause and CVD. Additional intermediate or mediating factors likely con-
tribute to the relationship, warranting further investigation9. Despite
growing epidemiological evidence, the mechanistic link between meno-
pause and CVD remains unclear, with limited insights from omics, espe-
cially metabolomics. Existing studies indicated that postmenopausal
women experience significant metabolic changes, including disruptions in
lipid, amino acid, and glucosemetabolism7,13, whichmay underlie increased
cardiovascular risk. These findings suggest that analyzing postmenopausal
metabolomic profiles could unveil the mechanisms bridging menopause
and CVD risk, offering insights for precision intervention strategies.

Menopause marks a key life transition for women, defined by sig-
nificant endocrine changes, particularly a decline in estrogen. These

Table 2 | Associations between time since menopause (TSM), metabolomic signature (at baseline), and CVD risk

TSM per 1 incrementa Metabolomic signature per 1-SD increment

HR (95% CI) P HR (95% CI) P

CVD

Model 1 1.17 (1.15, 1.20) <0.001 1.25 (1.22, 1.28) <0.001

Model 2 1.15 (1.13, 1.18) <0.001 1.24 (1.21, 1.27) <0.001

Model 3 1.14 (1.12, 1.17) <0.001 1.19 (1.17, 1.22) <0.001

Model 4 1.14 (1.11, 1.16) <0.001 1.18 (1.15, 1.21) <0.001

MI

Model 1 1.24 (1.17, 1.31) <0.001 1.30 (1.23, 1.37) <0.001

Model 2 1.21 (1.15, 1.28) <0.001 1.28 (1.21, 1.35) <0.001

Model 3 1.19 (1.13, 1.26) <0.001 1.23 (1.17, 1.30) <0.001

Model 4 1.18 (1.12, 1.25) <0.001 1.21 (1.15, 1.28) <0.001

AF

Model 1 1.17 (1.13, 1.21) <0.001 1.22 (1.18, 1.26) <0.001

Model 2 1.16 (1.12, 1.20) <0.001 1.21 (1.17, 1.25) <0.001

Model 3 1.15 (1.12, 1.20) <0.001 1.17 (1.13, 1.21) <0.001

Model 4 1.15 (1.11, 1.19) <0.001 1.15 (1.11, 1.20) <0.001

HF

Model 1 1.24 (1.18, 1.31) <0.001 1.43 (1.36, 1.50) <0.001

Model 2 1.21 (1.15, 1.27) <0.001 1.40 (1.33, 1.47) <0.001

Model 3 1.19 (1.13, 1.25) <0.001 1.31 (1.25, 1.38) <0.001

Model 4 1.18 (1.12, 1.24) <0.001 1.30 (1.23, 1.36) <0.001

IHD

Model 1 1.21 (1.17, 1.26) <0.001 1.30 (1.25, 1.34) <0.001

Model 2 1.19 (1.14, 1.23) <0.001 1.28 (1.23, 1.33) <0.001

Model 3 1.17 (1.13, 1.21) <0.001 1.23 (1.18, 1.27) <0.001

Model 4 1.16 (1.12, 1.21) <0.001 1.21 (1.17, 1.26) <0.001

Stroke

Model 1 1.16 (1.10, 1.23) <0.001 1.23 (1.16, 1.30) <0.001

Model 2 1.14 (1.08, 1.21) <0.001 1.21 (1.14, 1.28) <0.001

Model 3 1.13 (1.07, 1.19) <0.001 1.19 (1.12, 1.26) <0.001

Model 4 1.12 (1.06, 1.19) <0.001 1.18 (1.11, 1.25) <0.001

Model 1 adjusted for age.Model 2 further adjusted for ethnicity, education, income and Townsend index of deprivation based onmodel 1.Model 3 further adjusted for smoking status, alcohol intake, sleep
status, diet status, BMI, and family history of CVD based on model 2. Model 4 further adjusted for both time since menopause and metabolomic signature to assess their independent associations.
CI confidence interval, HR hazard ratio, CVD cardiovascular diseases,MImyocardial infarction, AF atrial fibrillation, HF heart failure, IHD ischemic heart disease.
aOne unit representing a 5-year interval.
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hormonal shifts lead to extensive remodeling of the metabolomic profile.
These metabolic disruptions not only elucidate themechanisms underlying
the elevated CVD risk observed in postmenopausal women but also high-
light potential biomarkers and therapeutic targets for intervention.

First, menopause induces marked changes in lipid metabolism,
evidenced by increased levels of low-density lipoprotein cholesterol
(LDL-C) and very-low-density lipoprotein (VLDL) particles, as well as
diminished functionality of high-density lipoprotein cholesterol (HDL-
C)7,14. Studies have demonstrated that HDL particles in postmenopausal
women tend to shift toward smaller, less functional subtypes, thereby
impairing cholesterol efflux capacity and contributing to
atherogenesis6,15. Concurrently, elevated triglyceride (TG) levels exacer-
bate dyslipidemia, a key driver of heightened CVD risk, particularly
atherosclerotic cardiovascular disease (ASCVD)13,16. Our study also
found that over 50% of postmenopausal altered metabolites are lipid-
related metabolites. Consistently, we observed more stable associations
among participants with a higher baseline lipid burden. In addition, the
mediation analysis indicated that lipoprotein lipids accounted for the
largest proportion of the association between TSM and CVD.

Second, menopause significantly impacts amino acid metabolism,
particularly branched-chain amino acids (BCAAs) such as leucine, iso-
leucine, and valine, as well as aromatic amino acids (AAAs) like phenyla-
lanine and tyrosine17,18. Elevated BCAA levels have been strongly linked to
insulin resistance, chronic inflammation, and adipose tissuedysfunction19,20.
Moreover, BCAAs may exacerbate oxidative stress and endothelial dys-
function, further amplifying CVD risk21,22. Similarly, elevated AAA levels
have been implicated in vascular damage and atherogenesis through the
activation of inflammatory signaling pathways, such as nuclear factor kappa
B (NF-κB)16,23. In the pathway-based analysis, our constructed amino acid
signature showed stronger associations with CVD and its subtypes than
other pathway-based signatures, indicating that postmenopausal amino
acid metabolic changes are more closely associated with CVD.

Third, glucose metabolism dysregulation represents another hallmark
of postmenopausal metabolic changes. Postmenopausal women frequently
exhibit reduced insulin sensitivity and elevated fasting glucose levels15,24.
This insulin-resistant state not only directly promotes atherogenesis but also
interacts with lipid metabolism to accelerate cardiovascular
complications6,23. Furthermore, estrogen deficiency has been shown to

Fig. 3 | Metabolomic signature categorizations (low, intermediate and high) and cumulative incidence of cardiovascular disease (CVD) and its subtypes. Presented
from the top left to the bottom right are, in order, the categorizations of themetabolomic signaturewithCVD,myocardial infarction (MI), atrial fibrillation (AF), heart failure
(HF), chronic ischemic heart disease (IHD), and stroke.
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influence hepatic lipid metabolism by modulating gene expression, indir-
ectly disrupting fatty acid synthesis and breakdown, thus compounding
glucose-lipid metabolic dysfunction14,21.

Finally,menopause-associatedmetabolic changes are intricately linked
to inflammatory and oxidative stress pathways, which further exacerbate
cardiovascular risk. Elevated levels of advanced glycation end products
(AGEs) and glycoprotein acetyls (GlycA), both inflammatory markers
strongly associated with CVD, have been observed in postmenopausal
women18,20. Additionally, the accumulation of lipid peroxidation products
may activate the NF-κB signaling pathway, triggering inflammatory
responses and vascular damage17,22.

A study revealed that the majority of metabolic alterations
observed at the onset of menopause persisted or intensified throughout
the postmenopausal period. This suggests the persistence of post-
menopausal metabolomic changes and their potential cumulative
impact on future cardiovascular disease (CVD) risk24. We observed that

the metabolomic signature accounted for 12% of the association
between TSM and CVD risk, highlighting the unique biological path-
ways identified through metabolomics. This signature represents a
comprehensive depiction of overall metabolic homeostasis in response
to TSM. Leveraging the metabolomic signature allows for a more
objective and direct understanding of the cumulative metabolic effects
associated with time since menopause.

The observed discrete effects (HRs 1.14–1.18) indicate small relative
risk increases. Among high baseline risk populations or over extended
follow-up periods, these small relative risks may accumulate into more
appreciable absolute risk differences. Additionally, from a public health
perspective, even small relative risks can have significant implications for
overall disease burden when applied to large populations or prolonged
exposures. Thus, these discrete effects are better interpreted as incremental
signals for risk stratification andpredictivemodeling rather than standalone
triggers for clinical intervention.

Fig. 4 | Mendelian randomization analyses of associations between genetically determined metabolites with cardiovascular disease (CVD) and its subtypes. a 29
metabolites with CVD. b 23 metabolites with myocardial infarction. c 6 metabolites with heart failure. d 4 metabolites withatrial fibrillation. e 2 metabolites with chronic
ischemic heart disease. f 7 metabolites with stroke.

Fig. 5 | Area under the curve (AUC) and net reclassification improvement (NRI)
index relative to SCORE2 based on the 10-year CVD risk predicted. A AUC after
adding time since menopause and metabolomic signature to SCORE2; B NRI

compared (SCORE2+Time since menopause) to SCORE2 alone; C NRI compared
(SCORE2+Metabolomic signature) to SCORE2 alone.
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One strength of this study is its large-scale prospective cohort with
long-term follow-up (∼14 years) and standardized data collection, ensuring
robust statistical power and reliable outcomes. The use of untargeted
metabolomics reveals diverse metabolic changes beyond predefined path-
ways, aiding the discovery of novel biomarkers linked to postmenopausal
aging. Its longitudinal design captures cumulative metabolic effects across
different durations since menopause. Additionally, the well-characterized
cohort and detailed clinical and biochemical assessments allow for com-
prehensive adjustments for potential confounders, including lifestyle fac-
tors, comorbidities, andMHTstatus.However, several limitations should be
acknowledged.

First, our study was conducted in the UK Biobank, a cohort that is
predominantly White and generally healthier than the broader population.
These characteristics may limit generalizability, especially for absolute risk
predictions. Future work will focus on external validation and model
adjustment in more diverse cohorts and healthcare settings to assess
transportability and utility. Second, we observed sociodemographic differ-
ences betweenparticipantswith andwithoutCVD.Although these variables
were adjusted for in our analysis, residual confoundingmay still exist due to
unmeasured factors or their dynamic changes over time. Accordingly, the
reported hazard ratios are best interpreted as relative associations, not causal
effects, and should not be interpreted as direct evidence of biological
mechanisms or intervention-responsive causal impacts. Third, in this study,
we used Cox proportional hazards models and treated non-CVD death as
independent censoring. This does not account for non-CVD death as a
competing event and may bias the interpretation of cumulative incidence,
particularly in populations with a high incidence of non-CVD death.
Fourth, one limitation of our mediation analysis is the reliance on strong
identification assumptions, including no unmeasured confounding among
TSM, the metabolomic signature, and CVD, and the correct model speci-
fication. These assumptions cannot be fully verified in observational studies,
and the reported mediated proportions should be interpreted as indicative
of potential mechanistic pathways rather than definitive causal effects.

In this large-scale prospective cohort studyof postmenopausalwomen,
we demonstrated that time sincemenopause is significantly associated with

adverse alterations in themetabolomic profile and increased cardiovascular
disease (CVD) risk, independent of chronological age and traditional risk
factors. We identified a metabolomic signature linked to time since
menopause that not only predicted incident CVD but also partially medi-
ated the associationbetweenmenopausedurationandCVDrisk.Mendelian
randomization further supported the causal roles of several metabolites in
CVD development. These findings highlight the importance of metabolic
changes following menopause in shaping long-term cardiovascular health
and suggest that metabolomic profiling may provide novel biomarkers and
mechanistic insights for CVD risk stratification and prevention in
postmenopausal women.

Methods
Study design and participants
The UK Biobank is a prospective population-based cohort, recruited over
500,000 volunteers aged 40–69 years between 2006 and 2010. Individuals
were invited to attend one of the 22 centers across England, Scotland, and
Wales for baseline assessment. Written informed consent was obtained for
collection of questionnaire and biological data. UK Biobank has approval
from the North West Multicenter Research Ethics Committee (https://
www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics).
This research was conducted under UK Biobank application number
227947.Womenwho were postmenopausal at baseline and had nomissing
key covariates were included. A prospective design was adopted based on
participants with no CVD at baseline (Fig. 6). This study is reported as per
the Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines (Supplementary Table S1).

Age at natural menopause and time since menopause
Natural menopause was defined as the absence of menstruation for a
consecutive 12-month period, without a history of hysterectomy and/or
oophorectomy prior to this time. The duration of the postmenopausal
period, measured in time since menopause (TSM), was calculated by sub-
tracting the age at natural menopause from the baseline age at enrollment.
For analytical purposes, the calculated time since menopause was

Fig. 6 | Flow chart of study design and analytical approach. Left: Participants selection and analytical approach of primary analysis. Right: Participants selection and
analytical approach ofreplication analysis.
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standardized by dividing the value by 5, such that a single unit corresponds
to a 5-year interval. To limit misclassification from self-reported meno-
pause, we used a standardized definition, excluded uncertain cases (e.g.,
hysterectomy without bilateral oophorectomy if <55 years), validated self-
reports against age, reproductive/surgical history, and medication records,
and adjusted for menopausal hormone therapy (MHT).

Metabolomics profiling
This study employed a high-throughput nuclear magnetic resonance
(NMR) metabolomics platform (Nightingale Health Ltd, Finland) to ana-
lyze EDTA plasma samples from approximately 280,000 participants in the
UKBiobank.A total of 251metabolic biomarkers weremeasured, including
170metabolites quantified in absolute levels and 81 composite ratio indices
(Supplementary Table S2). These biomarkers represent a diverse array of
metabolic pathways, encompassing 14 subclasses of lipoprotein lipids, fatty
acids, and their compositions, as well as low-molecular-weight metabolites
such as amino acids, ketone bodies, and glycolysis-related metabolites25. To
ensure data integrity, rigorous quality control measures were implemented.
Natural logarithmtransformations andz-score standardization (mean0,SD
1) were applied to the metabolite concentration data to mitigate systemic
and technical variability.

The data analyzed were derived from phase 1 and phase 2 of the UK
Biobank study, with around 16,000 participants completing a repeat
assessment visit. All metabolic biomarkers were quantified in molar con-
centration units, providing a comprehensive characterization of the meta-
bolic profiles of the participants. Detailed methodologies regarding the
measurement ofmetabolic biomarkers and quality control procedures have
been published in the relevant literature26.

Ascertainment of cardiovascular diseases
The primary endpoint of the study was the occurrence of incident CVD,
defined as a composite outcome encompassingmyocardial infarction (MI),
chronic ischemic heart disease (IHD), heart failure (HF), atrial fibrillation
(AF), and stroke. Among these, MI and stroke were identified within
category 47 of the UK Biobank, based on algorithmically defined outcomes
derived from linkage of baseline self-reported data, hospital admission
records, and death registry data27. IHD, HF and AF were defined based on
the first occurrence data assembled in category 1712 from the UK Biobank.
The data includes the first reported occurrence of a disease in either the
linked primary care data (cat. 3000), inpatient hospital admissions (cat.
2000), death registry (fields: 40001, 40002), or self-reported data through
questionnaires (field: 20002). Detailed information on field IDs and out-
come cases was provided in the Supplementary Table S3.

Covariates
We included the following factors in the analyses as covariates according to
evidence from previous studies: age at baseline, race/ethnicity, years of
education, income levels, Townsend deprivation index, smoking status,
alcohol intakes, BMI, sleep status, diet, family history of CVD, and medi-
cations, including menopause hormone therapy status, aspirin use, and
statins use. Ethnicity was categorized as White, and non-white. Years of
education was categorized as ≤10, 11-12, >12. Annual household income
level was divided into four categories as level 1 (Less than £18,000), level 2
(£18,000 to £30,999), level 3 (£31,000 to £51,999), and level 4 (greater than
52,000). The Townsend deprivation index, which reflects the area-level
socio-economic status, was based on participants’ residential postcode at
recruitment and categorized based on quartile. Higher value indicates
greater levels of deprivation. Smoking status was categorized as current,
former, ornever smokers.Alcohol intakewas categorizedas current, former,
or never drinks. BMI was categorized according to the World Health
Organization criteria as <18.5 kg/m2, 18.5–24.9 kg/m2, 25.0–29.9 kg/m2, and
≥30 kg/m2. Diet consumption was classified into ideal or poor according to
whether adequate intake of at least half of 10 diet components28. Sleep
quality was defined by the criteria recommended by the National Sleep
Foundation, which integrates five sleep behaviors (sleep duration,

chronotype preference, insomnia, snoring, and daytime sleepiness)29. Par-
ticipants were divided into two groups: “good sleep quality” and “poor sleep
quality”. The family history of CVDwas categorized as yes or no. The status
of medication usage was categorized into use and non-use. For detailed
information on covariate collection and definitions, see Supplementary
Tables S4–S6.

Statistical analysis
Identification of the metabolomic signature reflecting menopause
duration. We identified metabolites associated with TSM in post-
menopausal women using baseline metabolomics data from the UK
Biobank. To exclude outliers, metabolite levels falling outside of 4
interquartile ranges from the median were removed. Prior to conducting
the planned analyses, all 251 metabolites were log-transformed and
standardized to the same scale using z-scores, and correlations among
them were examined using the Pearson correlation coefficient. The
associations of each metabolite with TSM were explored using multi-
variable linear regression, with a false discovery rate (FDR) adjusted
p-value of 0.05 considered statistically significant.

To identify a metabolomic signature associated with TSM, we
applied an elastic net regression model. This regularized regression
approach combines the strengths of both Lasso and Ridge methods,
effectively addressing multicollinearity, reducing overfitting, and select-
ing relevant features. Specifically, we regressed TSM on 251 named and
standardized plasma metabolites. The optimal penalty parameter
(lambda) was determined using a 10-fold cross-validation procedure,
selecting the largest lambda value that produced a mean squared error
within one standard error of the minimum. The resulting metabolomic
signature was calculated as theweighted sumofmetabolites with nonzero
coefficients, where the weights corresponded to the coefficients estimated
by the elastic net model. Finally, the metabolomic signature was stan-
dardized using z-scores (mean 0, SD 1), with each unit change in the
signature reflecting the combined effect of the selected metabolites’
weighted contributions30. We evaluated the Spearman correlation
between TSM and the derived metabolomic signature at baseline
(2006–2010) and the first repeat assessment visit (2012–2013).

To further investigate the patterns of the metabolomic signature, we
stratified it into three categories based on quintiles: low (Q1), intermediate
(Q2-Q4), and high (Q5). This categorization allowedus to examinewhether
themetabolic alterations associatedwith post-menopausal duration showed
distinct patterns across different groups. Additionally, we built pathway-
based signatures. The 251 metabolites were grouped into five categories—
amino acids, fatty acids, lipoprotein subclasses, relative lipoprotein lipid
concentrations, and other metabolites. For each group, we used the same
workflow to derive TSM-associated signatures and assessed their associa-
tions with CVD.

Associations between time since menopause, the metabolomic
signature and CVD risk. Cox proportional hazard models were also
conducted to obtain HRs and 95% CIs for the associations of time since
menopause and metabolomic signature with CVD risk. We first assessed
the proportional hazards assumption by analyzing the relationship
between standardized Schoenfeld residuals and time, confirming that the
assumption was not violated. Four nested models were developed,
sequentially including four sets of covariates to account for potential
confounders. In model 1, age was adjusted; in model 2, ethnicity,
socioeconomic status variables of education, income and Townsend
index of deprivation were further adjusted based onmodel 1; in model 3,
smoking status, alcohol intake, sleep status, diet status, BMI, and family
history of CVD were further adjusted based on model 2; in model 4 (full
adjusted model), we further included mutual adjustments for both TSM
and metabolomic signature to assess their independent associations. We
also examined potential non-linear associations between metabolomic
signature, TSM, and CVD risk using restricted cubic spline analysis.
Meanwhile, Kaplan-Meier survival curves were plotted to estimate the
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CVD risk between low, intermediate, and high levels of metabolomic
signature groups.

Subgroup analysis and sensitivity analysis. To distinguish the effects
of chronological age from postmenopausal duration, we conducted a
stratified analysis based on baseline age (<60 years and ≥60 years), as
these two factors are closely intertwined. We also examined whether the
associations of TSM and metabolomic signature with CVD varied by
baseline MHT status. To assess the robustness of these findings, several
sensitivity analyses were performed, including: (1) exclusion of partici-
pants who developed incident CVD within the first 3 years of follow-up;
and (2) additional adjustment for medication use, including menopausal
hormone therapy (MHT), lipid-lowering drugs, and aspirin.

Mediation analysis. We conducted mediation analyses to investigate
whether the association between TSM and CVD could be mediated by
metabolomic signature. Using the “mediation” packages of R software,
the proportion of mediation was determined by dividing the indirect
effect by the total effect, with 95% CIs estimated via bootstrapping.
Covariates from the multivariate-adjusted Cox model were included in
the mediation analysis to account for potential confounders. Further-
more, we evaluated the contribution of specific metabolite classes in
mediating the association between TSM and the risk of CVD, including
its subtypes.

Mendelian randomization analyses. Two-sample MR analyses were
performed to explore the potential causal associations between the
identified metabolites and risk of CVD.We obtained the genetic variants
that were considered as instrumental variables for MR from published
genome-wide association study summary statistics for each identified
metabolite. Summary statistics for CVD and its subtypes were derived
from open genome-wide association study projects (Supplementary
Table S7). To ensure independence, exposure, and outcome, GWASwere
drawn from independent consortia with non-overlapping cohorts.

We conducted stringent linkage disequilibrium (LD) clumping
thresholds (10,000 kb clumping window and r2 threshold = 0.1) to select
independent single-nucleotide polymorphisms. The random-effects
inverse-variance weighted (IVW) method was employed as the primary
analysis31,32, as it yields a more precise Mendelian randomization estimate
when all instruments are valid33.

10-year cardiovascular risk prediction with TSM and metabolomic
signature. To assess the potential improvement in 10-year cardiovas-
cular risk prediction by incorporating time sincemenopause (TSM) and a
metabolomic signature, we added these variables to the recently intro-
duced SCORE2 model, which was developed in 2021 for European
individuals without prior cardiovascular disease34. Individuals with a 10-
year cardiovascular risk of ≥7.5% were considered to be at high risk.
Model performance improvement was evaluated using the area under the
curve (AUC) and net reclassification improvement (NRI).

Two-sided P < 0.05 was considered statistically significant. P-values
were corrected for multiple comparison using the Benjamini-Hochberg
FDR adjustment. The primary R packages used in the analysis included
‘glmnet’ for elastic net regression and “survival” for Cox regression.

Data availability
The data described in the manuscript will be made available for researchers
who apply to use the UK Biobank data set by registering and applying at
http://www.ukbiobank.ac.uk/enable-your-research/register. Code avail-
ability: The underlying code for this study is not publicly available but may
be made available to qualified researchers on reasonable request from the
corresponding author.
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