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ABSTRACT 

Menopause-related metabolic remodeling may contribute to the excess cardiovascular disease 

(CVD) burden in aging women, yet the longitudinal metabolic correlates of time since 

menopause (TSM) and their prognostic value are unclear. In this prospective analysis of 67,582 

postmenopausal women without baseline CVD from the UK Biobank, we profiled 251 plasma 

metabolites by nuclear magnetic resonance and followed participants for a median 13.7 years 

(8313 incident CVD events). Elastic net regression identified a 95‑metabolite TSM-associated 

metabolomic signature (Spearman r with TSM = 0.29). In multivariable Cox models, each 5-

year increment in TSM (HR 1.14, 95% CI 1.11–1.16) and each 1–standard deviation increases 

in the metabolomic signature (HR 1.18, 95% CI 1.15–1.21) were independently associated with 

higher composite CVD risk, with consistent associations across myocardial infarction, ischemic 

heart disease, atrial fibrillation, heart failure and stroke. Mendelian randomization supported 

potential causal roles for 29 of the signature metabolites in CVD. Adding TSM or the 

metabolomic signature to SCORE2 improved 10‑year risk discrimination (area under the curve 

0.584 to 0.657 and 0.660, respectively) and reclassification (net reclassification improvement 

+0.027 and +1.043). These findings implicate cumulative postmenopausal metabolic alterations 

in vascular risk and support metabolomic enhancement of risk stratification in postmenopausal 

women. 

Keywords: time since menopause; cardiovascular disease; metabolomic signature; prediction; 

postmenopausal women 
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Introduction 

Cardiovascular diseases (CVD) remain the leading cause of mortality and disease burden 

globally, particularly among women1. The risk of CVD increases substantially after menopause, 

a phenomenon attributed to declining estrogen levels, metabolic disturbances, and vascular 

dysfunction2. While previous studies have primarily focused on traditional CVD risk factors 

(such as dyslipidemia, hypertension, and insulin resistance) in relation to menopause3, the 

complex metabolic alterations and underlying biological mechanisms associated with 

menopausal transition remain incompletely understood. 

Recent advances in metabolomics technologies have provided new perspectives for 

investigating disease mechanisms. Metabolomics, through high-throughput measurement of 

metabolites in blood or other biological samples, offers comprehensive insights into dynamic 

metabolic states, reflecting the interplay between genetic and environmental factors while 

potentially revealing disease pathways4. Studies have demonstrated that specific metabolomic 

signatures are closely associated with CVD and its risk factors5. For instance, certain lipid 

metabolites, amino acids, and intermediates of glucose metabolism have been identified as 

potential biomarkers for CVD6. Metabolomic studies in postmenopausal women are limited, 

especially regarding the link between time since menopause (TSM), metabolomic signatures, 

and CVD risk. While metabolomic profiles are associated with cardiovascular outcomes, their 

ability to enhance risk prediction beyond traditional models remains unclear. 

Menopause represents a critical physiological transition in women’s lives, with metabolic 

changes potentially extending over years and having long-term health implications7. Age at 

menopause and time since menopause (defined as the duration from age at menopause to 

current age) may be key indicators for assessing the metabolic impact of menopause. Previous 

studies have largely treated menopause as a static exposure variable, overlooking the dynamic 

changes that occur over time post-menopause8. In addition, the metabolic pathways underlying 

the association between TSM and CVD risk remain poorly understood, and it is unknown 

whether TSM and its related metabolomic signature can enhance the prediction of 
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cardiovascular events. Identifying metabolomic signature associated with TSM and elucidating 

their relationship with cardiovascular risk may offer novel insights into the mechanisms 

underlying menopause-related CVD and inform risk stratification and intervention strategies 

for postmenopausal women. 

Based on these considerations, this study aims to systematically investigate the relationships 

between time since menopause (TSM), metabolomic signature, and CVD risk using 

metabolomics data from the UK Biobank (Figure 1). Specific objectives were to: (1) identify 

and construct a metabolomic signature associated with time since menopause; (2) analyze the 

associations of time since menopause and the metabolomic signature with CVD risk; (3) 

investigate potential causal relationships between the metabolomic signature and CVD risk 

using Mendelian randomization; and (4) assess the predictive value of TSM and the 

metabolomic signature for CVD risk in postmenopausal women. 

Results 

Characteristics of the participants 

The study included a total of 67,582 participants with metabolites at baseline, with a mean (SD) 

age of 59.8 (5.4) years. The majority of participants were White (96.35%). After a median 

follow-up of 13.7 years, 8313 people developed CVD. Participants with incident CVD were 

more likely to have lower education levels (≤10 years: 58.45% vs. 50.40%) and lower annual 

household income (<£18,000: 35.98% vs. 26.33%) compared to those without incident CVD. 

The incident CVD group also showed a higher prevalence of obesity (BMI ≥30 kg/m²: 30.57% 

vs. 20.35%) and current smoking (11.12% vs. 7.48%). Poor sleep quality was more common in 

the incident CVD group (71.31% vs. 66.67%), as was the use of medications such as statins 

(19.07% vs. 10.46%) and aspirin (15.64% vs. 7.44%) (Table 1). The characteristics of 

participants at baseline was similar to those observed in the first repeat data (Supplementary 

Table S8). 

Metabolomic signature in response to time since menopause (TSM) 
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The correlation matrix of all metabolites exhibited an obvious clustering pattern due to the 

strong correlation between lipids and lipoprotein lipid subclasses (Supplementary Figure S1). 

Elastic net regressions on 251 metabolites in baseline data were performed to determine the 

metabolomic signature in response to TSM. A total of 95 metabolites were selected from the 

model to calculate the total metabolomic signature, which was significantly correlated with 

year since menopause (baseline data: r = 0.29, P<0.001; first repeat assessment: r = 0.26, 

P<0.001; Figure 2). The metabolomic signature spanned various metabolic classes including 

lipids, lipoprotein subclass, amino acids, fatty acids, ketone bodies, fluid balance-related, 

glycolysis-related, and inflammation-related metabolites (Supplementary Figure S2). KEGG 

enrichment analysis revealed that these metabolites were predominantly associated with four 

metabolic pathways: glyoxylate and dicarboxylate metabolism; valine, leucine and isoleucine 

biosynthesis and degradation; alanine, aspartate and glutamate metabolism; and phenylalanine, 

tyrosine and tryptophan biosynthesis (Supplementary Table S9). As per the metabolites’ 

coefficients (weights) in the signature (Supplementary Figure S3), the most pronounced 

contribution to the positive coefficient of the metabolomic signature came from triglycerides in 

large LDL, triglycerides in large HDL, and phospholipids to total lipids in Small LDL 

percentage. Conversely, choline, free cholesterol to total lipids in small VLDL percentage, 

triglycerides in small LDL, and albumin played a significant role in influencing the reverse 

coefficient of the metabolomic signature. Associations between TSM and the 95 metabolites 

comprising the metabolomic signature, as well as the relationships between these metabolites 

and the risk of CVD and its subtypes were illustrated in Supplementary Figure S3. 

Associations of time since menopause, metabolomic signature with CVD risk 

In the fully adjusted model, i.e., after TSM and metabolomic signature were mutually adjusted, 

we observed that TSM per 1 unit (representing a 5-year interval) increment associated with an 

increased risk of CVD (HR 1.14, 95% CI 1.11-1.16) and its subtypes of IHD (1.16, 1.12-1.21), 

AF (1.15, 1.11-1.19), HF (1.18, 1.12-1.24), MI (1.18, 1.12-1.25) and stroke (1.12, 1.06-1.29) 

(Table 2).The associations also behaved in a dose-response manner (Supplementary Figure 
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S4).  

Metabolomic signature per 1-SD increment associated with increased risk of CVD (HR 1.18, 

1.15-1.21) and its subtypes of IHD (1.21, 1.17-1.26), AF (1.15,1.11-1.20), HF (1.30, 1.23-1.36), 

MI (1.21, 1.15-1.28) and stroke (1.18, 1.11-1.25) (Table 2). The dose–response curves depicted 

an increased trend of CVD and its subtypes’ risk with increment of the metabolomic signature 

(Supplementary Figure S5). In addition, a log-rank test indicated a significant difference 

among individuals with low (Q1), intermediate (Q2-Q4), and high (Q5) metabolomic signature 

in the probability of CVD and its subtypes at any time point in Kaplan–Meier analysis (Figure 

3). Pathway-specific analyses also revealed consistent associations with CVD risk across all 

five group-based metabolomic signatures (Supplementary Table S10). Replication analysis 

using metabolites at first repeat assessment showed similar findings to the primary analysis 

using metabolites at baseline (Supplementary Table S11).  

Subgroup analyses and sensitivity analyses 

After the analysis was stratified by baseline age (<60 years and ≥60 years) and MHT status 

(ever used and never used), we observed consistent findings as the primary analysis 

(Supplementary Table S12). In sensitivity analyses, the findings remained robust after 

excluding participants who developed incident CVD within the first three years of follow-up 

and with additional adjustment for medication use, including menopausal hormone therapy 

(MHT), lipid-lowering agents, and aspirin (Supplementary Table S13-S14). 

Proportion mediated by metabolomic signature between TSM and CVD 

Mediation analysis showed that the metabolomic signature partially mediated the association 

between TSM and CVD and its subtypes, accounting for 11.6% of CVD, 11.3% of ischemic 

heart disease, 10.6% of myocardial infarction, 9.2% of atrial fibrillation, 13.8% of heart failure, 

and 12.4% of stroke risk (Supplementary Figure S6). Further analyses of metabolite classes 

showed that relative lipoprotein lipid concentrations, lipoprotein subclasses, fatty acids, amino 

acids, and inflammation-related metabolites had higher mediation proportions 
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(Supplementary Figure S7). These proportions should be interpreted as indicative of potential 

mechanistic pathways rather than definitive causal effects, given the assumptions required in 

observational mediation analyses. 

Mendelian randomization analyses 

For the 95 metabolites identified as components of the metabolomic signature, we conducted 

two-sample Mendelian randomization to assess the causal associations between each metabolite 

and CVD as well as its subtypes. No evidence of horizontal pleiotropy and heterogeneity were 

observed. We identified causal associations for 29 metabolites with CVD, 23 metabolites with 

MI, 4 metabolites with AF, 6 metabolites with HF, 2 metabolites with IHD, and 7 metabolites 

with stroke (Figure 4). For example, genetically elevated levels of clinical LDL cholesterol, 

total lipids in medium LDL, saturated fatty acid were associated with a higher CVD risk and 

genetically elevated levels of phospholipids to total lipids in medium LDL percentage and 

cholesteryl esters to total lipids in small LDL percentage were found to be linked a lower risk 

of CVD. 

10-year cardiovascular risk prediction with TSM and metabolomic signature 

The addition of the metabolomic signature to SCORE2 significantly increased the AUC from 

0.584 to 0.660 (DeLong test P < 0.001), and the addition of TSM increased the AUC from 0.584 

to 0.657 (DeLong test P < 0.001). Net reclassification improvement (NRI) analysis further 

indicated that SCORE2 plus metabolomic signature increased the total NRI by 1.043, and 

SCORE2 plus TSM increased the total NRI by 0.027, relative to SCORE2 alone (Figure 5). 

Discussion 

This study identified 95 metabolites significantly associated with TSM using elastic net 

regression, which were primarily involved in lipid metabolism, fatty acids metabolism, and 

amino acid metabolism. A metabolomic signature was constructed based on these metabolites. 

We found that each SD increase in the TSM-related metabolomic signature was significantly 

associated with a higher risk of CVD. Additionally, the metabolomic signature mediated the 
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relationship between TSM and CVD risk, suggesting that it may be a critical mechanism 

underlying the increased CVD risk observed in postmenopausal women. Mendelian 

Randomization (MR) analysis further revealed that 37 of the 95 metabolites were potentially 

causally associated with CVD, supporting the potential utility of the metabolomic signature in 

assessing CVD risk among postmenopausal women. 

Premature menopause (<40 years) has been recognized as a risk enhancer for atherosclerotic 

cardiovascular disease due to the cardiometabolic changes that occur earlier3. While 1% of 

women undergo premature menopause, up to 10% of women experience early menopause, 

defined as <45 years9. A growing body of evidence has demonstrated that early menopause 

(<45 years) significantly increases the risk of CVD. For instance, Honigberg et al. (2019) 

reported in a study involving 144,260 women that early menopause was associated with an 

increased risk of coronary heart disease (CHD) (HR: 1.32, 95% CI: 1.10-1.57) and stroke (HR: 

1.23, 95% CI: 1.03-1.46)10. Similarly, Zhu et al. (2019), in a pooled analysis of individual 

patient data, found that each additional year of delay in menopause reduced CHD risk by 3% 

(HR: 0.97, 95% CI: 0.96-0.98) and stroke risk by 2% (HR: 0.98, 95% CI: 0.97-0.99)11. 

Moreover, time since menopause has been identified as a critical predictor of CVD risk. Muka 

et al. (2016) reported that CVD risk significantly increased within the first 10 years post-

menopause (HR: 1.12, 95% CI: 1.05-1.20) and plateaued thereafter8. The associations between 

age at menopause and CVD subtypes is not consistent. A nationwide cohort study of Korea 

found that postmenopausal women with a history of premature menopause had 33% higher risk 

of heart failure (HR 1.33, 95% CI 1.26−1.40) and 9% higher risk of Atrial fibrillation (HR 1.09, 

95% CI 1.02−1.16)12. 

While the menopause transition contributes to activation of the renin-angiotensin-aldosterone 

system as a result of estrogen loss, the current analysis on MHT and CVD suggesting that the 

mechanism underlying the increased risk cannot be attributed solely to estrogen. Instead, 

estrogen deficiency may be just one component of the causal link between menopause and CVD. 

Additional intermediate or mediating factors likely contribute to the relationship, warranting 
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further investigation9. Despite growing epidemiological evidence, the mechanistic link between 

menopause and CVD remains unclear, with limited insights from omics, especially 

metabolomics. Existing studies indicated that postmenopausal women experience significant 

metabolic changes, including disruptions in lipid, amino acid, and glucose metabolism7,13, 

which may underlie increased cardiovascular risk. These findings suggest that analyzing 

postmenopausal metabolomic profiles could unveil the mechanisms bridging menopause and 

CVD risk, offering insights for precision intervention strategies.  

Menopause marks a key life transition for women, defined by significant endocrine changes, 

particularly a decline in estrogen. These hormonal shifts lead to extensive remodeling of the 

metabolomic profile. These metabolic disruptions not only elucidate the mechanisms 

underlying the elevated CVD risk observed in postmenopausal women but also highlight 

potential biomarkers and therapeutic targets for intervention. 

First, menopause induces marked changes in lipid metabolism, evidenced by increased levels 

of low-density lipoprotein cholesterol (LDL-C) and very-low-density lipoprotein (VLDL) 

particles, as well as diminished functionality of high-density lipoprotein cholesterol (HDL-

C)7,14. Studies have demonstrated that HDL particles in postmenopausal women tend to shift 

toward smaller, less functional subtypes, thereby impairing cholesterol efflux capacity and 

contributing to atherogenesis15,6. Concurrently, elevated triglyceride (TG) levels exacerbate 

dyslipidemia, a key driver of heightened CVD risk, particularly atherosclerotic cardiovascular 

disease (ASCVD)13,16. Our study also found that over 50% of postmenopausal altered 

metabolites are lipid-related metabolites. Consistently, we observed more stable associations 

among participants with a higher baseline lipid burden. In addition, the mediation analysis 

indicated that lipoprotein lipids accounted for the largest proportion of the association between 

TSM and CVD. 

Second, menopause significantly impacts amino acid metabolism, particularly branched-chain 

amino acids (BCAAs) such as leucine, isoleucine, and valine, as well as aromatic amino acids 

(AAAs) like phenylalanine and tyrosine17,18. Elevated BCAA levels have been strongly linked 
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to insulin resistance, chronic inflammation, and adipose tissue dysfunction19,20. Moreover, 

BCAAs may exacerbate oxidative stress and endothelial dysfunction, further amplifying CVD 

risk21,22. Similarly, elevated AAA levels have been implicated in vascular damage and 

atherogenesis through the activation of inflammatory signaling pathways, such as nuclear factor 

kappa B (NF-κB)16,23. In the pathway-based analysis, our constructed amino acid signature 

showed stronger associations with CVD and its subtypes than other pathway-based signatures, 

indicating that postmenopausal amino acid metabolic changes are more closely associated with 

CVD. 

Third, glucose metabolism dysregulation represents another hallmark of postmenopausal 

metabolic changes. Postmenopausal women frequently exhibit reduced insulin sensitivity and 

elevated fasting glucose levels 15,24. This insulin-resistant state not only directly promotes 

atherogenesis but also interacts with lipid metabolism to accelerate cardiovascular 

complications6,23. Furthermore, estrogen deficiency has been shown to influence hepatic lipid 

metabolism by modulating gene expression, indirectly disrupting fatty acid synthesis and 

breakdown, thus compounding glucose-lipid metabolic dysfunction14,21. 

Finally, menopause-associated metabolic changes are intricately linked to inflammatory and 

oxidative stress pathways, which further exacerbate cardiovascular risk. Elevated levels of 

advanced glycation end products (AGEs) and glycoprotein acetyls (GlycA), both inflammatory 

markers strongly associated with CVD, have been observed in postmenopausal women18,20. 

Additionally, the accumulation of lipid peroxidation products may activate the NF-κB signaling 

pathway, triggering inflammatory responses and vascular damage17,22. 

A study revealed that the majority of metabolic alterations observed at the onset of menopause 

persisted or intensified throughout the postmenopausal period. This suggests the persistence of 

postmenopausal metabolomic changes and their potential cumulative impact on future 

cardiovascular disease (CVD) risk24. We observed that the metabolomic signature accounted 

for 12% of the association between TSM and CVD risk, highlighting the unique biological 

pathways identified through metabolomics. This signature represents a comprehensive 
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depiction of overall metabolic homeostasis in response to TSM. Leveraging the metabolomic 

signature allows for a more objective and direct understanding of the cumulative metabolic 

effects associated with time since menopause. 

The observed discrete effects (HRs 1.14–1.18) indicate small relative risk increases. Among 

high baseline risk populations or over extended follow-up periods, these small relative risks 

may accumulate into more appreciable absolute risk differences. Additionally, from a public 

health perspective, even small relative risks can have significant implications for overall disease 

burden when applied to large populations or prolonged exposures. Thus, these discrete effects 

are better interpreted as incremental signals for risk stratification and predictive modeling rather 

than standalone triggers for clinical intervention. 

One strength of this study is its large-scale prospective cohort with long-term follow-up (∼14 

years) and standardized data collection, ensuring robust statistical power and reliable outcomes. 

The use of untargeted metabolomics reveals diverse metabolic changes beyond predefined 

pathways, aiding the discovery of novel biomarkers linked to postmenopausal aging. Its 

longitudinal design captures cumulative metabolic effects across different durations since 

menopause. Additionally, the well-characterized cohort and detailed clinical and biochemical 

assessments allow for comprehensive adjustments for potential confounders, including lifestyle 

factors, comorbidities, and MHT status. However, several limitations should be acknowledged.  

First, our study was conducted in UK Biobank, a cohort that is predominantly White and 

generally healthier than the broader population. These characteristics may limit generalizability, 

especially for absolute risk predictions. Future work will focus on external validation and model 

adjustment in more diverse cohorts and healthcare settings to assess transportability and utility. 

Second, we observed sociodemographic differences between participants with and without 

CVD. Although these variables were adjusted for in our analysis, residual confounding may 

still exist due to unmeasured factors or their dynamic changes over time. Accordingly, the 

reported hazard ratios are best interpreted as relative associations, not causal effects, and should 

not be interpreted as direct evidence of biological mechanisms or intervention-responsive 
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causal impacts. Third, in this study, we used Cox proportional hazards models and treated non-

CVD death as independent censoring. This does not account for non-CVD death as a competing 

event and may bias interpretation of cumulative incidence, particularly in populations with a 

high incidence of non-CVD death. Fourth, one limitation of our mediation analysis is the 

reliance on strong identification assumptions, including no unmeasured confounding among 

TSM, the metabolomic signature, and CVD, and the correct model specification. These 

assumptions cannot be fully verified in observational studies, and the reported mediated 

proportions should be interpreted as indicative of potential mechanistic pathways rather than 

definitive causal effects. 

In this large-scale prospective cohort study of postmenopausal women, we demonstrated that 

time since menopause is significantly associated with adverse alterations in the metabolomic 

profile and increased cardiovascular disease (CVD) risk, independent of chronological age and 

traditional risk factors. We identified a metabolomic signature linked to time since menopause 

that not only predicted incident CVD but also partially mediated the association between 

menopause duration and CVD risk. Mendelian randomization further supported the causal roles 

of several metabolites in CVD development. These findings highlight the importance of 

metabolic changes following menopause in shaping long-term cardiovascular health and 

suggest that metabolomic profiling may provide novel biomarkers and mechanistic insights for 

CVD risk stratification and prevention in postmenopausal women. 

Methods 

Study design and participants 

The UK Biobank is a prospective population-based cohort, recruited over 500,000 volunteers 

aged 40-69 years between 2006 and 2010. Individuals were invited to attend one of the 22 

centers across England, Scotland, and Wales for baseline assessment. Written informed consent 

was obtained for collection of questionnaire and biological data. UK Biobank has approval from 

the North West Multicenter Research Ethics Committee (https://www.ukbiobank.ac.uk/learn-more-

about-uk-biobank/about-us/ethics). This research was conducted under UK Biobank application 
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number 227947. Women who were postmenopausal at baseline and had no missing key 

covariates were included. A prospective design was adopted based on participants with no CVD 

at baseline (Figure 6). This study is reported as per the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) guidelines (supplementary Table S1). 

Age at natural menopause and time since menopause 

Natural menopause was defined as the absence of menstruation for a consecutive 12-month period, 

without a history of hysterectomy and/or oophorectomy prior to this time. The duration of the 

postmenopausal period, measured in time since menopause (TSM), was calculated by subtracting 

the age at natural menopause from the baseline age at enrollment. For analytical purposes, the 

calculated time since menopause was standardized by dividing the value by 5, such that a single 

unit corresponds to a 5-year interval. To limit misclassification from self-reported menopause, we 

used a standardized definition, excluded uncertain cases (e.g., hysterectomy without bilateral 

oophorectomy if <55 years), validated self-reports against age, reproductive/surgical history, and 

medication records, and adjusted for menopausal hormone therapy (MHT). 

Metabolomics profiling 

This study employed a high-throughput nuclear magnetic resonance (NMR) metabolomics 

platform (Nightingale Health Ltd, Finland) to analyze EDTA plasma samples from 

approximately 280,000 participants in the UK Biobank. A total of 251 metabolic biomarkers 

were measured, including 170 metabolites quantified in absolute levels and 81 composite ratio 

indices (supplementary Table S2). These biomarkers represent a diverse array of metabolic 

pathways, encompassing 14 subclasses of lipoprotein lipids, fatty acids and their compositions, 

as well as low-molecular weight metabolites such as amino acids, ketone bodies, and 

glycolysis-related metabolites25. To ensure data integrity, rigorous quality control measures 

were implemented. Natural logarithm transformations and z-score standardization (mean 0, SD 

1) were applied to the metabolite concentration data to mitigate systemic and technical 

variability. 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

 

 

The data analyzed were derived from phase 1 and phase 2 of the UK Biobank study, with around 

16,000 participants completing a repeat assessment visit. All metabolic biomarkers were 

quantified in molar concentration units, providing a comprehensive characterization of the 

metabolic profiles of the participants. Detailed methodologies regarding the measurement of 

metabolic biomarkers and quality control procedures have been published in the relevant 

literature26. 

Ascertainment of cardiovascular diseases 

The primary endpoint of the study was the occurrence of incident CVD, defined as a composite 

outcome encompassing myocardial infarction (MI), chronic ischemic heart disease (IHD), heart 

failure (HF), atrial fibrillation (AF), and stroke. Among these, MI and stroke were identified 

within category 47 of the UK Biobank, based on algorithmically defined outcomes derived from 

linkage of baseline self-reported data, hospital admission records, and death registry data27. IHD, 

HF and AF were defined based on the first occurrence data assembled in category 1712 from the 

UK Biobank. The data includes the first reported occurrence of a disease in either the linked 

primary care data (cat. 3000), inpatient hospital admissions (cat. 2000), death registry (fields: 

40001, 40002) or self-reported data through questionnaires (field: 20002). Detailed information 

on field IDs and outcome cases was provided in the Supplementary Table S3. 

Covariates 

We included the following factors in the analyses as covariates according to evidence from 

previous studies: age at baseline, race/ethnicity, years of education, income levels, Townsend 

deprivation index, smoking status, alcohol intakes, BMI, sleep status, diet, family history of 

CVD, and medications, including menopause hormone therapy status, aspirin use, and statins 

use. Ethnicity was categorized as White, and non-white. Years of education was categorized as 

≤10, 11-12, >12. Annual household income level was divided into four categories as level 1 

(Less than £18,000), level 2 (£18,000 to £30,999), level 3 (£31,000 to £51,999), and level 4 

(greater than 52,000). Townsend deprivation index, which reflects the area-level socio-

economic status, was based on participants’ residential postcode at recruitment and categorized 
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based on quartile. Higher value indicates greater levels of deprivation. Smoking status was 

categorized as current, former, or never smokers. Alcohol intake was categorized as current, 

former, or never drinks. BMI was categorized according to the World Health Organization 

criteria as < 18.5 kg/m2, 18.5-24.9 kg/m2, 25.0-29.9 kg/m2 and ≥30 kg/m2. Diet consumption 

was classified into ideal or poor according to whether adequate intake of at least half of 10 diet 

components28. Sleep quality was defined by the criteria recommended by the National Sleep 

Foundation, which integrate five sleep behaviors (sleep duration, chronotype preference, 

insomnia, snoring, and daytime sleepiness)29. Participants were divided into two groups: “good 

sleep quality” and “poor sleep quality”. The family history of CVD was categorized as yes or 

no. The status of medication usage was categorized into use and non-use. For detailed 

information on covariate collection and definitions see Supplementary Table S4-S6.  

Statistical analysis 

Identification of the metabolomic signature reflecting menopause duration 

We identified metabolites associated with TSM in postmenopausal women using baseline 

metabolomics data from the UK Biobank. To exclude outliers, metabolite levels falling outside 

of 4 interquartile ranges from the median were removed. Prior to conducting the planned 

analyses, all 251 metabolites were log-transformed and standardized to the same scale using z-

scores, and correlations among them were examined using the Pearson correlation coefficient. 

The associations of each metabolite with TSM were explored using multivariable linear 

regression, with a false discovery rate (FDR) adjusted p-value of 0.05 considered statistically 

significant. 

To identify a metabolomic signature associated with TSM, we applied an elastic net regression 

model. This regularized regression approach combines the strengths of both Lasso and Ridge 

methods, effectively addressing multicollinearity, reducing overfitting, and selecting relevant 

features. Specifically, we regressed TSM on 251 named and standardized plasma metabolites. 

The optimal penalty parameter (lambda) was determined using a 10-fold cross-validation 

procedure, selecting the largest lambda value that produced a mean squared error within one 
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standard error of the minimum. The resulting metabolomic signature was calculated as the 

weighted sum of metabolites with nonzero coefficients, where the weights corresponded to the 

coefficients estimated by the elastic net model. Finally, the metabolomic signature was 

standardized using z-scores (mean 0, SD 1), with each unit change in the signature reflecting 

the combined effect of the selected metabolites’ weighted contributions30. We evaluated the 

Spearman correlation between TSM and the derived metabolomic signature at baseline (2006-

2010) and the first repeat assessment visit (2012–2013).  

To further investigate the patterns of the metabolomic signature, we stratified it into three 

categories based on quintiles: low (Q1), intermediate (Q2-Q4), and high (Q5). This 

categorization allowed us to examine whether the metabolic alterations associated with post-

menopausal duration showed distinct patterns across different groups. Additionally, we built 

pathway-based signatures. The 251 metabolites were grouped into five categories—amino 

acids, fatty acids, lipoprotein subclasses, relative lipoprotein lipid concentrations, and other 

metabolites. For each group, we used the same workflow to derive TSM-associated signatures 

and assessed their associations with CVD. 

Associations between time since menopause, the metabolomic signature and CVD risk 

Cox proportional hazard models were also conducted to obtain HRs and 95% CIs for the 

associations of time since menopause and metabolomic signature with CVD risk. We first 

assessed the proportional hazards assumption by analyzing the relationship between 

standardized Schoenfeld residuals and time, confirming that the assumption was not violated. 

Four nested models were developed, sequentially including four sets of covariates to account 

for potential confounders. In model 1, age was adjusted; in model 2, ethnicity, socioeconomic 

status variables of education, income and Townsend index of deprivation were further adjusted 

based on model 1; in model 3, smoking status, alcohol intake, sleep status, diet status, BMI, 

and family history of CVD were further adjusted based on model 2; in model 4 (full adjusted 

model), we further included mutual adjustments for both TSM and metabolomic signature to 

assess their independent associations. We also examined potential non-linear associations 
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between metabolomic signature, TSM, and CVD risk using restricted cubic spline analysis. 

Meanwhile, Kaplan-Meier survival curves were plotted to estimate the CVD risk between low, 

intermediate, and high levels of metabolomic signature groups. 

Subgroup analysis and sensitivity analysis 

To distinguish the effects of chronological age from postmenopausal duration, we conducted a 

stratified analysis based on baseline age (<60 years and ≥60 years), as these two factors are 

closely intertwined. We also examined whether the associations of TSM and metabolomic 

signature with CVD varied by baseline MHT status. To assess the robustness of these findings, 

several sensitivity analyses were performed, including: (1) exclusion of participants who 

developed incident CVD within the first 3 years of follow-up; and (2) additional adjustment for 

medication use, including menopausal hormone therapy (MHT), lipid-lowering drugs, and 

aspirin. 

Mediation analysis 

We conducted mediation analyses to investigate whether the association between TSM and 

CVD could be mediated by metabolomic signature. Using the ‘mediation’ packages of R 

software, the proportion of mediation was determined by dividing the indirect effect by the total 

effect, with 95% CIs estimated via bootstrapping. Covariates from the multivariate-adjusted 

Cox model were included in the mediation analysis to account for potential confounders. 

Furthermore, we evaluated the contribution of specific metabolite classes in mediating the 

association between TSM and the risk of CVD, including its subtypes. 

Mendelian randomization analyses 

Two-sample MR analyses were performed to explore the potential causal associations between 

the identified metabolites and risk of CVD. We obtained the genetic variants that were 

considered as instrumental variables for MR from published genome-wide association study 

summary statistics for each identified metabolite. Summary statistics for CVD and its subtypes 

were derived from open genome wide association study projects (Supplementary Table S7). 
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To ensure independence, exposure and outcome GWAS were drawn from independent consortia 

with non-overlapping cohorts. 

We conducted stringent linkage disequilibrium (LD) clumping thresholds (10 000 kb clumping 

window and r2 threshold = 0.1) to select independent single nucleotide polymorphisms. The 

random-effects inverse-variance weighted (IVW) method was employed as the primary 

analysis31,32, as it yields a more precise Mendelian randomization estimate when all instruments 

are valid33. 

10-year cardiovascular risk prediction with TSM and metabolomic signature 

To assess the potential improvement in 10-year cardiovascular risk prediction by incorporating 

time since menopause (TSM) and a metabolomic signature, we added these variables to the 

recently introduced SCORE2 model, which was developed in 2021 for European individuals 

without prior cardiovascular disease34. Individuals with a 10-year cardiovascular risk of ≥7.5% 

were considered to be at high risk. Model performance improvement was evaluated using the 

area under the curve (AUC) and net reclassification improvement (NRI). 

Two-sided P < 0.05 was considered statistically significant. P-values were corrected for 

multiple comparison using the Benjamini-Hochberg FDR adjustment. The primary R packages 

used in the analysis included ‘glmnet’ for elastic net regression and ‘survival’ for Cox regression. 
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Figure legends 

Figure 1. Overview of time since menopause (TSM), metabolomic signature and 

cardiovascular diseases (CVD) prediction in women. MI, myocardial infarction; IHD, chronic 

ischemic heart disease; HF, heart failure; AF, atrial fibrillation; MHT, menopausal hormone 

therapy, AUC: area under the curve; NRI: net reclassification improvement. 

Figure 2. Correlations between time since menopause and the metabolomic signature using 

baseline data (a) and first repeat data (b) 

Figure 3. Cumulative incidence of CVD according to metabolomic signature categorizes of 

low, intermediate and high 

Figure 4. Mendelian randomization analyses of associations between genetically determined 

metabolites with CVD 

Figure 5. Aera under the curve (AUC) and net reclassification improvement (NRI) index 

relative to SCORE2 based on the10-year CVD risk predicted. (A) AUC after adding time since 

menopause and metabolomic signature to SCORE2; (B) NRI compared (SCORE2+Time since 

menopause) to SCORE2 alone; (C) NRI compared (SCORE2+Metabolomic signature) to 

SCORE2 alone.  

Figure 6. Flow chart of study design and analytical approach 
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Table 1. Characteristics of participants at baseline by CVD incidence 

  
Overall 

participants 

  No incident CVD   Incident CVD 

  N=59269 %   N=8313 % 

Age at baseline 59.8±5.4  
59.5±5.4 

  

62.0±5.0 

 

Race/ethnicity 
       

White 65141 
 

57107 96.4 
 

8034 96.6 

Non-white 2441 
 

2162 3.6 
 

279 3.4 

Education level (years) 
      

<=10 34735 
 

29876 50.4 
 

4859 58.5 

10-11 7766 
 

6921 11.7 
 

845 10.2 

>12 25081 
 

22472 37.9 
 

2609 31.3 

Income level (£) 
       

Less than 18,000 18598 
 

15607 26.3 
 

2991 36.0 

18,000 to 30,999 19032 
 

16680 28.1 
 

2352 28.3 

31,000 to 51999 16486 
 

14773 24.9 
 

1713 20.6 

Greater than 52,000 13466 
 

12209 20.7 
 

1257 15.1 

Socioeconomic status 
      

Q1 16781 
 

14943 25.2 
 

1838 22.1 

Q2 16998 
 

15025 25.3 
 

1973 23.7 

Q3 16897 
 

14857 25.1 
 

2040 24.5 

Q4 16906 
 

14444 24.4 
 

2462 29.6 

BMI level (kg/m2) 
      

<18.5 513 
 

449 0.7 
 

64 0.8 

18.5-24.9 26632 
 

24045 40.6 
 

2587 31.1 

25.0-29.9 25834 
 

22713 38.3 
 

3121 37.5 

>=30 14603 
 

12062 20.4 
 

2541 30.6 

Smoking status 
       

Never 39679 
 

35230 59.4 
 

4449 53.5 

Former 22543 
 

19603 33.1 
 

2940 35.4 

Current 5360 
 

4436 7.5 
 

924 11.1 

Diet status 
       

Poor 42435 
 

37094 62.6 
 

5341 64.3 

Good 25147 
 

22175 37.4 
 

2972 35.7 

Alcohol status 
       

Never 3598 
 

3021 5.1 
 

577 7.0 

Former 2216 
 

1832 3.1 
 

384 4.6 

Current 61768 
 

54416 91.8 
 

7352 88.4 

Sleep quality 
       

Poor 45445 
 

39517 66.7 
 

5928 71.3 

Good 22137 
 

19752 33.3 
 

2385 28.7 

Family history of CVD 
      

No 25819 
 

22957 38.7 
 

2862 34.4 

Yes 41763 
 

36312 61.3 
 

5451 65.6 

Statins use 
       

No 59796 
 

53068 89.5 
 

6728 80.9 

Yes 7786 
 

6201 10.5 
 

1585 19.1 

Aspirin use 
       

No 61872 
 

54859 92.6 
 

7013 84.4 
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Yes 5710 
 

4410 7.4 
 

1300 15.6 

HRT use 
       

No 39158 
 

34888 58.9 
 

4270 51.4 

Yes 28424 
 

24381 41.1 
 

4043 48.6 

Time since menopause 
      

1 17272 
 

16048 27.1 
 

1224 14.7 

2 19262 
 

17258 29.1 
 

2004 24.1 

3 16826 
 

14507 24.5 
 

2319 27.9 

4 9714 
 

7910 13.4 
 

1804 21.7 

5 4508   3546 6.0   962 11.6 
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Table 2. Associations between time since menopause (TSM), metabolomic signature (at 

baseline) and CVD risk 

 TSM per 1 increment* 
  

Metabolomic signature per 

1-SD increment 

HR (95%CI) P   HR (95%CI) P 

CVD      

Model 1 1.17 (1.15, 1.20) <0.001  1.25 (1.22, 1.28) <0.001 

Model 2 1.15 (1.13, 1.18) <0.001  1.24 (1.21, 1.27) <0.001 

Model 3 1.14 (1.12, 1.17) <0.001  1.19 (1.17, 1.22) <0.001 

Model 4 1.14 (1.11, 1.16) <0.001   1.18 (1.15, 1.21) <0.001 

MI      

Model 1 1.24 (1.17, 1.31) <0.001  1.30 (1.23, 1.37) <0.001 

Model 2 1.21 (1.15, 1.28) <0.001  1.28 (1.21, 1.35) <0.001 

Model 3 1.19 (1.13, 1.26) <0.001  1.23 (1.17, 1.30) <0.001 

Model 4 1.18 (1.12, 1.25) <0.001  1.21 (1.15, 1.28) <0.001 

AF      

Model 1 1.17 (1.13, 1.21) <0.001  1.22 (1.18, 1.26) <0.001 

Model 2 1.16 (1.12, 1.20) <0.001  1.21 (1.17, 1.25) <0.001 

Model 3 1.15 (1.12, 1.20) <0.001  1.17 (1.13, 1.21) <0.001 

Model 4 1.15 (1.11, 1.19) <0.001  1.15 (1.11, 1.20) <0.001 

HF      
Model 1 1.24 (1.18, 1.31) <0.001  1.43 (1.36, 1.50) <0.001 

Model 2 1.21 (1.15, 1.27) <0.001  1.40 (1.33, 1.47) <0.001 

Model 3 1.19 (1.13, 1.25) <0.001  1.31 (1.25, 1.38) <0.001 

Model 4 1.18 (1.12, 1.24) <0.001  1.30 (1.23, 1.36) <0.001 

IHD      
Model 1 1.21 (1.17, 1.26) <0.001  1.30 (1.25, 1.34) <0.001 

Model 2 1.19 (1.14, 1.23) <0.001  1.28 (1.23, 1.33) <0.001 

Model 3 1.17 (1.13, 1.21) <0.001  1.23 (1.18, 1.27) <0.001 

Model 4 1.16 (1.12, 1.21) <0.001  1.21 (1.17, 1.26) <0.001 

Stroke      

Model 1 1.16 (1.10, 1.23) <0.001  1.23 (1.16, 1.30) <0.001 

Model 2 1.14 (1.08, 1.21) <0.001  1.21 (1.14, 1.28) <0.001 

Model 3 1.13 (1.07, 1.19) <0.001  1.19 (1.12, 1.26) <0.001 

Model 4 1.12 (1.06, 1.19) <0.001  1.18 (1.11, 1.25) <0.001 

CI: confidence interval, HR: hazard ratio; CVD: cardiovascular diseases; MI: myocardial infarction; 

AF: atrial fibrillation; HF: heart failure; IHD: ischemic heart disease. Model 1 adjusted for age. 

Model 2 further adjusted for ethnicity, education, income and Townsend index of deprivation based 

on model 1. Model 3 further adjusted for smoking status, alcohol intake, sleep status, diet status, 

BMI, and family history of CVD based on model 2. Model 4 further adjusted for both time since 

menopause and metabolomic signature to assess their independent associations. * One unit 

representing a 5-year interval. 
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Structured Graphical Abstract

Median follow-up 13.7 

years TSM-associated 

metabolic 

signature (95 

metabolites)

67,582 postmenopausal women with 

metabolites at baseline 

4262 postmenopausal women with 

metabolites at repeat assessment

Elastic Net

regression
Exposure

Incident CVD (MI, HF, AF, IHD, stroke)

Time since menopause (TSM)

Outcome

NMR-based 

quantification of 

251 metabolites

Study population To construct and validate a metabolic signature related to TSM

To analyze the association of TSM and metabolomic signature with CVD

Cox models—TSM and CVD

To identify the causal associations between 

metabolites and CVD

To assess improvement in CVD risk prediction after adding 

TSM and metabolomic signature to SCORE2 model

Mendelian 

randomization

AUC NRI

Relative 

lipoprotein 

lipid 

concentrations

35.79%

Lipoprotein 

subclasses 

26.32%

Fatty acids 

10.53%

Amino acids

10.53%

Ketone bodies 4.21%

Glycolysis related 4.21%
Other lipids 2.11%

Lipoprotein particle sizes 2.11%

Fluid balance 2.11%

Inflammation 1.05%

Cholesterol 1.05%

HR (95%CI) TSM per 1 increment HR (95%CI)

1 1.1 1.2

Cox models—metabolomic signature  and CVD

HR (95%CI) Metabolomic signature per 1-SD increment HR (95%CI)

1.1 1.31 1.2 1.4

MI

AF

HF

IHD

Stroke

CVD

1.18 (1.12, 1.25)

1.15 (1.11, 1.19)

1.18 (1.12, 1.24)

1.16 (1.12, 1.21)

1.12 (1.06, 1.19)

1.14 (1.11, 1.16)

MI

AF

HF

IHD

Stroke

CVD

1.21 (1.15, 1.28)

1.15 (1.11, 1.20)

1.30 (1.23, 1.36)

1.21 (1.17, 1.26)

1.18 (1.11, 1.25)

1.18 (1.15, 1.21)
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(a) baseline data (b) repeat assessment
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All females in the UK Biobank

(n=273,255)

Missing metabolomics data ≥25%

(n=116,751)

Primary analysis (Metabolites at baseline)

(n=148,041)

Replication analysis (Metabolites at first repeat assessment)

(n=8463)

Women who were premenopausal, 

experienced non-natural menopause, 

or had abnormal menopause age 
(<28 or >65 years) (n=70,984)；
With CVD at baseline (n=6333)；
Missing covariates (n=3142).

Participants with available metabolomics data and complete 

information

(n=67,582)

Women who were premenopausal, 

experienced non-natural menopause, 

or had abnormal menopause age 

(<28 or >65 years)(n=3791);

With CVD at baseline (n=314);

Missing covariates (n=96).

Participants with available metabolomics data and complete 

information

(n=4262)

Training set

(70%, n=47,307)
Elastic net regressions

10-fold cross-validation

Model applied interesting set to 

calculate metabolite signature

Testing set

(30%, n=20,275)

Elastic net regressions Leave-one-out approach to calculate scores

67, 582 participants included in the association of baseline metabolite 

signature with CVD

Elastic net coefficients 

applied in repeat dataset 

to calculate metabolite 

signature score

4262 participants included in the association of metabolite 

signature at first repeat with CVD

Excluded
Excluded
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