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ABSTRACT

Menopause-related metabolic remodeling may contribute to the excess cardiovascular disease
(CVD) burden in aging women, yet the longitudinal metabolic correlates of time since
menopause (TSM) and their prognostic value are unclear. In this prospective analysis of 67,582
postmenopausal women without baseline CVD from the UK Biobank, we profiled 251 plasma
metabolites by nuclear magnetic resonance and followed participants for a median 13.7 years
(8313 incident CVD events). Elastic net regression identified a 95-metabolite TSM-associated
metabolomic signature (Spearman r with TSM = 0.29). In multivariable Cox models, each 5-
year increment in TSM (HR 1.14, 95% CI 1.11-1.16) and each 1-standard deviation increases
in the metabolomic signature (HR 1.18, 95% CI1 1.15-1.21) were independently associated with
higher composite CVD risk, with consistent associations across myocardial infarction, ischemic
heart disease, atrial fibrillation, heart failure and stroke. Mendelian randomization supported
potential causal roles for 29 of the signature metabolites in CVD. Adding TSM or the
metabolomic signature to SCORE2 improved 10-year risk discrimination (area under the curve
0.584 to 0.657 and 0.660, respectively) and reclassification (net reclassification improvement
+0.027 and +1.043). These findings implicate cumulative postmenopausal metabolic alterations
in vascular risk and support metabolomic enhancement of risk stratification in postmenopausal

women.
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Introduction

Cardiovascular diseases (CVD) remain the leading cause of mortality and disease burden
globally, particularly among women'. The risk of CVD increases substantially after menopause,
a phenomenon attributed to declining estrogen levels, metabolic disturbances, and vascular
dysfunction®. While previous studies have primarily focused on traditional CVD risk factors
(such as dyslipidemia, hypertension, and insulin resistance) in relation to menopause’, the
complex metabolic alterations and underlying biological mechanisms associated with

menopausal transition remain incompletely understood.

Recent advances in metabolomics technologies have provided new perspectives for
investigating disease mechanisms. Metabolomics, through high-throughput measurement of
metabolites in blood or other biological samples, offers comprehensive insights into dynamic
metabolic states, reflecting the interplay between genetic and environmental factors while
potentially revealing disease pathways®. Studies have demonstrated that specific metabolomic
signatures are closely associated with CVD and its risk factors’. For instance, certain lipid
metabolites, amino acids, and intermediates of glucose metabolism have been identified as
potential biomarkers for CVD®. Metabolomic studies in postmenopausal women are limited,
especially regarding the link between time since menopause (TSM), metabolomic signatures,
and CVD risk. While metabolomic profiles are associated with cardiovascular outcomes, their

ability to enhance risk prediction beyond traditional models remains unclear.

Menopause represents a critical physiological transition in women’s lives, with metabolic
changes potentially extending over years and having long-term health implications’. Age at
menopause and time since menopause (defined as the duration from age at menopause to
current age) may be key indicators for assessing the metabolic impact of menopause. Previous
studies have largely treated menopause as a static exposure variable, overlooking the dynamic
changes that occur over time post-menopause®. In addition, the metabolic pathways underlying
the association between TSM and CVD risk remain poorly understood, and it is unknown

whether TSM and its related metabolomic signature can enhance the prediction of



cardiovascular events. Identifying metabolomic signature associated with TSM and elucidating
their relationship with cardiovascular risk may offer novel insights into the mechanisms
underlying menopause-related CVD and inform risk stratification and intervention strategies

for postmenopausal women.

Based on these considerations, this study aims to systematically investigate the relationships
between time since menopause (TSM), metabolomic signature, and CVD risk using
metabolomics data from the UK Biobank (Figure 1). Specific objectives were to: (1) identify
and construct a metabolomic signature associated with time since menopause; (2) analyze the
associations of time since menopause and the metabolomic signature with CVD risk; (3)
investigate potential causal relationships between the metabolomic signature and CVD risk
using Mendelian randomization; and (4) assess the predictive value of TSM and the

metabolomic signature for CVD risk in postmenopausal women.

Results

Characteristics of the participants

The study included a total of 67,582 participants with metabolites at baseline, with a mean (SD)
age of 59.8 (5.4) years. The majority of participants were White (96.35%). After a median
follow-up of 13.7 years, 8313 people developed CVD. Participants with incident CVD were
more likely to have lower education levels (<10 years: 58.45% vs. 50.40%) and lower annual
household income (<£18,000: 35.98% vs. 26.33%) compared to those without incident CVD.
The incident CVD group also showed a higher prevalence of obesity (BMI >30 kg/m?: 30.57%
vs. 20.35%) and current smoking (11.12% vs. 7.48%). Poor sleep quality was more common in
the incident CVD group (71.31% vs. 66.67%), as was the use of medications such as statins
(19.07% vs. 10.46%) and aspirin (15.64% vs. 7.44%) (Table 1). The characteristics of
participants at baseline was similar to those observed in the first repeat data (Supplementary

Table S8).

Metabolomic signature in response to time since menopause (TSM)



The correlation matrix of all metabolites exhibited an obvious clustering pattern due to the
strong correlation between lipids and lipoprotein lipid subclasses (Supplementary Figure S1).
Elastic net regressions on 251 metabolites in baseline data were performed to determine the
metabolomic signature in response to TSM. A total of 95 metabolites were selected from the
model to calculate the total metabolomic signature, which was significantly correlated with
year since menopause (baseline data: r = 0.29, P<0.001; first repeat assessment: r = 0.26,
P<0.001; Figure 2). The metabolomic signature spanned various metabolic classes including
lipids, lipoprotein subclass, amino acids, fatty acids, ketone bodies, fluid balance-related,
glycolysis-related, and inflammation-related metabolites (Supplementary Figure S2). KEGG
enrichment analysis revealed that these metabolites were predominantly associated with four
metabolic pathways: glyoxylate and dicarboxylate metabolism; valine, leucine and isoleucine
biosynthesis and degradation; alanine, aspartate and glutamate metabolism; and phenylalanine,
tyrosine and tryptophan biosynthesis (Supplementary Table S9). As per the metabolites’
coefficients (weights) in the signature (Supplementary Figure S3), the most pronounced
contribution to the positive coefficient of the metabolomic signature came from triglycerides in
large LDL, triglycerides in large HDL, and phospholipids to total lipids in Small LDL
percentage. Conversely, choline, free cholesterol to total lipids in small VLDL percentage,
triglycerides in small LDL, and albumin played a significant role in influencing the reverse
coefficient of the metabolomic signature. Associations between TSM and the 95 metabolites
comprising the metabolomic signature, as well as the relationships between these metabolites

and the risk of CVD and its subtypes were illustrated in Supplementary Figure S3.

Associations of time since menopause, metabolomic signature with CVD risk

In the fully adjusted model, i.e., after TSM and metabolomic signature were mutually adjusted,
we observed that TSM per 1 unit (representing a 5-year interval) increment associated with an
increased risk of CVD (HR 1.14, 95% CI 1.11-1.16) and its subtypes of IHD (1.16, 1.12-1.21),
AF (1.15, 1.11-1.19), HF (1.18, 1.12-1.24), MI (1.18, 1.12-1.25) and stroke (1.12, 1.06-1.29)

(Table 2).The associations also behaved in a dose-response manner (Supplementary Figure



S4).

Metabolomic signature per 1-SD increment associated with increased risk of CVD (HR 1.18,
1.15-1.21) and its subtypes of IHD (1.21, 1.17-1.26), AF (1.15,1.11-1.20), HF (1.30, 1.23-1.36),
MI (1.21, 1.15-1.28) and stroke (1.18, 1.11-1.25) (Table 2). The dose-response curves depicted
an increased trend of CVD and its subtypes’ risk with increment of the metabolomic signature
(Supplementary Figure S5). In addition, a log-rank test indicated a significant difference
among individuals with low (Q1), intermediate (Q2-Q4), and high (Q5) metabolomic signature
in the probability of CVD and its subtypes at any time point in Kaplan—Meier analysis (Figure
3). Pathway-specific analyses also revealed consistent associations with CVD risk across all
five group-based metabolomic signatures (Supplementary Table S10). Replication analysis
using metabolites at first repeat assessment showed similar findings to the primary analysis

using metabolites at baseline (Supplementary Table S11).

Subgroup analyses and sensitivity analyses

After the analysis was stratified by baseline age (<60 years and >60 years) and MHT status
(ever used and never used), we observed consistent findings as the primary analysis
(Supplementary Table S12). In sensitivity analyses, the findings remained robust after
excluding participants who developed incident CVD within the first three years of follow-up
and with additional adjustment for medication use, including menopausal hormone therapy

(MHT), lipid-lowering agents, and aspirin (Supplementary Table S13-S14).

Proportion mediated by metabolomic signature between TSM and CVD

Mediation analysis showed that the metabolomic signature partially mediated the association
between TSM and CVD and its subtypes, accounting for 11.6% of CVD, 11.3% of ischemic
heart disease, 10.6% of myocardial infarction, 9.2% of atrial fibrillation, 13.8% of heart failure,
and 12.4% of stroke risk (Supplementary Figure S6). Further analyses of metabolite classes
showed that relative lipoprotein lipid concentrations, lipoprotein subclasses, fatty acids, amino

acids, and inflammation-related metabolites had higher mediation proportions



(Supplementary Figure S7). These proportions should be interpreted as indicative of potential
mechanistic pathways rather than definitive causal effects, given the assumptions required in

observational mediation analyses.

Mendelian randomization analyses

For the 95 metabolites identified as components of the metabolomic signature, we conducted
two-sample Mendelian randomization to assess the causal associations between each metabolite
and CVD as well as its subtypes. No evidence of horizontal pleiotropy and heterogeneity were
observed. We identified causal associations for 29 metabolites with CVD, 23 metabolites with
MI, 4 metabolites with AF, 6 metabolites with HF, 2 metabolites with IHD, and 7 metabolites
with stroke (Figure 4). For example, genetically elevated levels of clinical LDL cholesterol,
total lipids in medium LDL, saturated fatty acid were associated with a higher CVD risk and
genetically elevated levels of phospholipids to total lipids in medium LDL percentage and
cholesteryl esters to total lipids in small LDL percentage were found to be linked a lower risk

of CVD.

10-year cardiovascular risk prediction with TSM and metabolomic signature

The addition of the metabolomic signature to SCORE?2 significantly increased the AUC from
0.584 t0 0.660 (DeLong test P<0.001), and the addition of TSM increased the AUC from 0.584
to 0.657 (DeLong test P < 0.001). Net reclassification improvement (NRI) analysis further
indicated that SCORE2 plus metabolomic signature increased the total NRI by 1.043, and

SCORE2 plus TSM increased the total NRI by 0.027, relative to SCORE2 alone (Figure 5).

Discussion

This study identified 95 metabolites significantly associated with TSM using elastic net
regression, which were primarily involved in lipid metabolism, fatty acids metabolism, and
amino acid metabolism. A metabolomic signature was constructed based on these metabolites.
We found that each SD increase in the TSM-related metabolomic signature was significantly

associated with a higher risk of CVD. Additionally, the metabolomic signature mediated the



relationship between TSM and CVD risk, suggesting that it may be a critical mechanism
underlying the increased CVD risk observed in postmenopausal women. Mendelian
Randomization (MR) analysis further revealed that 37 of the 95 metabolites were potentially
causally associated with CVD, supporting the potential utility of the metabolomic signature in

assessing CVD risk among postmenopausal women.

Premature menopause (<40 years) has been recognized as a risk enhancer for atherosclerotic
cardiovascular disease due to the cardiometabolic changes that occur earlier’. While 1% of
women undergo premature menopause, up to 10% of women experience early menopause,
defined as <45 years’. A growing body of evidence has demonstrated that early menopause
(<45 years) significantly increases the risk of CVD. For instance, Honigberg et al. (2019)
reported in a study involving 144,260 women that early menopause was associated with an
increased risk of coronary heart disease (CHD) (HR: 1.32, 95% CI: 1.10-1.57) and stroke (HR:
1.23, 95% CI: 1.03-1.46)"°. Similarly, Zhu et al. (2019), in a pooled analysis of individual
patient data, found that each additional year of delay in menopause reduced CHD risk by 3%
(HR: 0.97, 95% CI: 0.96-0.98) and stroke risk by 2% (HR: 0.98, 95% CI: 0.97-0.99)'".
Moreover, time since menopause has been identified as a critical predictor of CVD risk. Muka
et al. (2016) reported that CVD risk significantly increased within the first 10 years post-
menopause (HR: 1.12, 95% CI: 1.05-1.20) and plateaued thereafter®. The associations between
age at menopause and CVD subtypes is not consistent. A nationwide cohort study of Korea
found that postmenopausal women with a history of premature menopause had 33% higher risk
of heart failure (HR 1.33, 95% CI 1.26—1.40) and 9% higher risk of Atrial fibrillation (HR 1.09,

95% CI 1.02—-1.16)".

While the menopause transition contributes to activation of the renin-angiotensin-aldosterone
system as a result of estrogen loss, the current analysis on MHT and CVD suggesting that the
mechanism underlying the increased risk cannot be attributed solely to estrogen. Instead,
estrogen deficiency may be just one component of the causal link between menopause and CVD.

Additional intermediate or mediating factors likely contribute to the relationship, warranting



further investigation’. Despite growing epidemiological evidence, the mechanistic link between
menopause and CVD remains unclear, with limited insights from omics, especially
metabolomics. Existing studies indicated that postmenopausal women experience significant
metabolic changes, including disruptions in lipid, amino acid, and glucose metabolism”'?,
which may underlie increased cardiovascular risk. These findings suggest that analyzing
postmenopausal metabolomic profiles could unveil the mechanisms bridging menopause and

CVD risk, offering insights for precision intervention strategies.

Menopause marks a key life transition for women, defined by significant endocrine changes,
particularly a decline in estrogen. These hormonal shifts lead to extensive remodeling of the
metabolomic profile. These metabolic disruptions not only elucidate the mechanisms
underlying the elevated CVD risk observed in postmenopausal women but also highlight

potential biomarkers and therapeutic targets for intervention.

First, menopause induces marked changes in lipid metabolism, evidenced by increased levels
of low-density lipoprotein cholesterol (LDL-C) and very-low-density lipoprotein (VLDL)
particles, as well as diminished functionality of high-density lipoprotein cholesterol (HDL-
C)"". Studies have demonstrated that HDL particles in postmenopausal women tend to shift
toward smaller, less functional subtypes, thereby impairing cholesterol efflux capacity and
contributing to atherogenesis'*‘. Concurrently, elevated triglyceride (TG) levels exacerbate
dyslipidemia, a key driver of heightened CVD risk, particularly atherosclerotic cardiovascular
disease (ASCVD)*'®. Our study also found that over 50% of postmenopausal altered
metabolites are lipid-related metabolites. Consistently, we observed more stable associations
among participants with a higher baseline lipid burden. In addition, the mediation analysis
indicated that lipoprotein lipids accounted for the largest proportion of the association between

TSM and CVD.

Second, menopause significantly impacts amino acid metabolism, particularly branched-chain
amino acids (BCAAs) such as leucine, isoleucine, and valine, as well as aromatic amino acids

(AAAs) like phenylalanine and tyrosine'”'®. Elevated BCAA levels have been strongly linked



to insulin resistance, chronic inflammation, and adipose tissue dysfunctionw’zo. Moreover,
BCAAs may exacerbate oxidative stress and endothelial dysfunction, further amplifying CVD
risk?'?2. Similarly, elevated AAA levels have been implicated in vascular damage and
atherogenesis through the activation of inflammatory signaling pathways, such as nuclear factor
kappa B (NF-xB)'®®. In the pathway-based analysis, our constructed amino acid signature
showed stronger associations with CVD and its subtypes than other pathway-based signatures,
indicating that postmenopausal amino acid metabolic changes are more closely associated with

CVD.

Third, glucose metabolism dysregulation represents another hallmark of postmenopausal
metabolic changes. Postmenopausal women frequently exhibit reduced insulin sensitivity and
elevated fasting glucose levels 2!, This insulin-resistant state not only directly promotes
atherogenesis but also interacts with lipid metabolism to accelerate cardiovascular
complications®*. Furthermore, estrogen deficiency has been shown to influence hepatic lipid
metabolism by modulating gene expression, indirectly disrupting fatty acid synthesis and

breakdown, thus compounding glucose-lipid metabolic dysfunction'**'.

Finally, menopause-associated metabolic changes are intricately linked to inflammatory and
oxidative stress pathways, which further exacerbate cardiovascular risk. Elevated levels of
advanced glycation end products (AGEs) and glycoprotein acetyls (GlycA), both inflammatory
markers strongly associated with CVD, have been observed in postmenopausal women'®%,
Additionally, the accumulation of lipid peroxidation products may activate the NF-«xB signaling

pathway, triggering inflammatory responses and vascular damage'”**.

A study revealed that the majority of metabolic alterations observed at the onset of menopause
persisted or intensified throughout the postmenopausal period. This suggests the persistence of
postmenopausal metabolomic changes and their potential cumulative impact on future
cardiovascular disease (CVD) risk**. We observed that the metabolomic signature accounted
for 12% of the association between TSM and CVD risk, highlighting the unique biological

pathways identified through metabolomics. This signature represents a comprehensive



depiction of overall metabolic homeostasis in response to TSM. Leveraging the metabolomic
signature allows for a more objective and direct understanding of the cumulative metabolic

effects associated with time since menopause.

The observed discrete effects (HRs 1.14—1.18) indicate small relative risk increases. Among
high baseline risk populations or over extended follow-up periods, these small relative risks
may accumulate into more appreciable absolute risk differences. Additionally, from a public
health perspective, even small relative risks can have significant implications for overall disease
burden when applied to large populations or prolonged exposures. Thus, these discrete effects
are better interpreted as incremental signals for risk stratification and predictive modeling rather

than standalone triggers for clinical intervention.

One strength of this study is its large-scale prospective cohort with long-term follow-up (~14
years) and standardized data collection, ensuring robust statistical power and reliable outcomes.
The use of untargeted metabolomics reveals diverse metabolic changes beyond predefined
pathways, aiding the discovery of novel biomarkers linked to postmenopausal aging. Its
longitudinal design captures cumulative metabolic effects across different durations since
menopause. Additionally, the well-characterized cohort and detailed clinical and biochemical
assessments allow for comprehensive adjustments for potential confounders, including lifestyle

factors, comorbidities, and MHT status. However, several limitations should be acknowledged.

First, our study was conducted in UK Biobank, a cohort that is predominantly White and
generally healthier than the broader population. These characteristics may limit generalizability,
especially for absolute risk predictions. Future work will focus on external validation and model
adjustment in more diverse cohorts and healthcare settings to assess transportability and utility.
Second, we observed sociodemographic differences between participants with and without
CVD. Although these variables were adjusted for in our analysis, residual confounding may
still exist due to unmeasured factors or their dynamic changes over time. Accordingly, the
reported hazard ratios are best interpreted as relative associations, not causal effects, and should

not be interpreted as direct evidence of biological mechanisms or intervention-responsive



causal impacts. Third, in this study, we used Cox proportional hazards models and treated non-
CVD death as independent censoring. This does not account for non-CVD death as a competing
event and may bias interpretation of cumulative incidence, particularly in populations with a
high incidence of non-CVD death. Fourth, one limitation of our mediation analysis is the
reliance on strong identification assumptions, including no unmeasured confounding among
TSM, the metabolomic signature, and CVD, and the correct model specification. These
assumptions cannot be fully verified in observational studies, and the reported mediated
proportions should be interpreted as indicative of potential mechanistic pathways rather than

definitive causal effects.

In this large-scale prospective cohort study of postmenopausal women, we demonstrated that
time since menopause is significantly associated with adverse alterations in the metabolomic
profile and increased cardiovascular disease (CVD) risk, independent of chronological age and
traditional risk factors. We identified a metabolomic signature linked to time since menopause
that not only predicted incident CVD but also partially mediated the association between
menopause duration and CVD risk. Mendelian randomization further supported the causal roles
of several metabolites in CVD development. These findings highlight the importance of
metabolic changes following menopause in shaping long-term cardiovascular health and
suggest that metabolomic profiling may provide novel biomarkers and mechanistic insights for

CVD risk stratification and prevention in postmenopausal women.

Methods

Study design and participants

The UK Biobank is a prospective population-based cohort, recruited over 500,000 volunteers
aged 40-69 years between 2006 and 2010. Individuals were invited to attend one of the 22
centers across England, Scotland, and Wales for baseline assessment. Written informed consent
was obtained for collection of questionnaire and biological data. UK Biobank has approval from
the North West Multicenter Research Ethics Committee (https://www.ukbiobank.ac.uk/learn-more-

about-uk-biobank/about-us/ethics). This research was conducted under UK Biobank application



number 227947. Women who were postmenopausal at baseline and had no missing key
covariates were included. A prospective design was adopted based on participants with no CVD
at baseline (Figure 6). This study is reported as per the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) guidelines (supplementary Table S1).
Age at natural menopause and time since menopause

Natural menopause was defined as the absence of menstruation for a consecutive 12-month period,
without a history of hysterectomy and/or oophorectomy prior to this time. The duration of the
postmenopausal period, measured in time since menopause (TSM), was calculated by subtracting
the age at natural menopause from the baseline age at enrollment. For analytical purposes, the
calculated time since menopause was standardized by dividing the value by 5, such that a single
unit corresponds to a 5-year interval. To limit misclassification from self-reported menopause, we
used a standardized definition, excluded uncertain cases (e.g., hysterectomy without bilateral
oophorectomy if <55 years), validated self-reports against age, reproductive/surgical history, and

medication records, and adjusted for menopausal hormone therapy (MHT).
Metabolomics profiling

This study employed a high-throughput nuclear magnetic resonance (NMR) metabolomics
platform (Nightingale Health Ltd, Finland) to analyze EDTA plasma samples from
approximately 280,000 participants in the UK Biobank. A total of 251 metabolic biomarkers
were measured, including 170 metabolites quantified in absolute levels and 81 composite ratio
indices (supplementary Table S2). These biomarkers represent a diverse array of metabolic
pathways, encompassing 14 subclasses of lipoprotein lipids, fatty acids and their compositions,
as well as low-molecular weight metabolites such as amino acids, ketone bodies, and
glycolysis-related metabolites®. To ensure data integrity, rigorous quality control measures
were implemented. Natural logarithm transformations and z-score standardization (mean 0, SD
1) were applied to the metabolite concentration data to mitigate systemic and technical

variability.



The data analyzed were derived from phase 1 and phase 2 of the UK Biobank study, with around
16,000 participants completing a repeat assessment visit. All metabolic biomarkers were
quantified in molar concentration units, providing a comprehensive characterization of the
metabolic profiles of the participants. Detailed methodologies regarding the measurement of
metabolic biomarkers and quality control procedures have been published in the relevant

literature.
Ascertainment of cardiovascular diseases

The primary endpoint of the study was the occurrence of incident CVD, defined as a composite
outcome encompassing myocardial infarction (MI), chronic ischemic heart disease (IHD), heart
failure (HF), atrial fibrillation (AF), and stroke. Among these, MI and stroke were identified
within category 47 of the UK Biobank, based on algorithmically defined outcomes derived from
linkage of baseline self-reported data, hospital admission records, and death registry data*’. IHD,
HF and AF were defined based on the first occurrence data assembled in category 1712 from the
UK Biobank. The data includes the first reported occurrence of a disease in either the linked
primary care data (cat. 3000), inpatient hospital admissions (cat. 2000), death registry (fields:
40001, 40002) or self-reported data through questionnaires (field: 20002). Detailed information

on field IDs and outcome cases was provided in the Supplementary Table S3.
Covariates

We included the following factors in the analyses as covariates according to evidence from
previous studies: age at baseline, race/ethnicity, years of education, income levels, Townsend
deprivation index, smoking status, alcohol intakes, BMI, sleep status, diet, family history of
CVD, and medications, including menopause hormone therapy status, aspirin use, and statins
use. Ethnicity was categorized as White, and non-white. Years of education was categorized as
<10, 11-12, >12. Annual household income level was divided into four categories as level 1
(Less than £18,000), level 2 (£18,000 to £30,999), level 3 (£31,000 to £51,999), and level 4
(greater than 52,000). Townsend deprivation index, which reflects the area-level socio-

economic status, was based on participants’ residential postcode at recruitment and categorized



based on quartile. Higher value indicates greater levels of deprivation. Smoking status was
categorized as current, former, or never smokers. Alcohol intake was categorized as current,
former, or never drinks. BMI was categorized according to the World Health Organization
criteria as < 18.5 kg/m?, 18.5-24.9 kg/m?, 25.0-29.9 kg/m* and >30 kg/m?. Diet consumption
was classified into ideal or poor according to whether adequate intake of at least half of 10 diet
components®. Sleep quality was defined by the criteria recommended by the National Sleep
Foundation, which integrate five sleep behaviors (sleep duration, chronotype preference,
insomnia, snoring, and daytime sleepiness)®’. Participants were divided into two groups: “good
sleep quality” and “poor sleep quality”. The family history of CVD was categorized as yes or

no. The status of medication usage was categorized into use and non-use. For detailed

information on covariate collection and definitions see Supplementary Table S4-S6.
Statistical analysis
Identification of the metabolomic signature reflecting menopause duration

We identified metabolites associated with TSM in postmenopausal women using baseline
metabolomics data from the UK Biobank. To exclude outliers, metabolite levels falling outside
of 4 interquartile ranges from the median were removed. Prior to conducting the planned
analyses, all 251 metabolites were log-transformed and standardized to the same scale using z-
scores, and correlations among them were examined using the Pearson correlation coefficient.
The associations of each metabolite with TSM were explored using multivariable linear
regression, with a false discovery rate (FDR) adjusted p-value of 0.05 considered statistically

significant.

To identify a metabolomic signature associated with TSM, we applied an elastic net regression
model. This regularized regression approach combines the strengths of both Lasso and Ridge
methods, effectively addressing multicollinearity, reducing overfitting, and selecting relevant
features. Specifically, we regressed TSM on 251 named and standardized plasma metabolites.
The optimal penalty parameter (lambda) was determined using a 10-fold cross-validation

procedure, selecting the largest lambda value that produced a mean squared error within one



standard error of the minimum. The resulting metabolomic signature was calculated as the
weighted sum of metabolites with nonzero coefficients, where the weights corresponded to the
coefficients estimated by the elastic net model. Finally, the metabolomic signature was
standardized using z-scores (mean 0, SD 1), with each unit change in the signature reflecting
the combined effect of the selected metabolites” weighted contributions®’. We evaluated the
Spearman correlation between TSM and the derived metabolomic signature at baseline (2006-

2010) and the first repeat assessment visit (2012-2013).

To further investigate the patterns of the metabolomic signature, we stratified it into three
categories based on quintiles: low (Ql), intermediate (Q2-Q4), and high (Q5). This
categorization allowed us to examine whether the metabolic alterations associated with post-
menopausal duration showed distinct patterns across different groups. Additionally, we built
pathway-based signatures. The 251 metabolites were grouped into five categories—amino
acids, fatty acids, lipoprotein subclasses, relative lipoprotein lipid concentrations, and other
metabolites. For each group, we used the same workflow to derive TSM-associated signatures

and assessed their associations with CVD.
Associations between time since menopause, the metabolomic signature and CVD risk

Cox proportional hazard models were also conducted to obtain HRs and 95% ClIs for the
associations of time since menopause and metabolomic signature with CVD risk. We first
assessed the proportional hazards assumption by analyzing the relationship between
standardized Schoenfeld residuals and time, confirming that the assumption was not violated.
Four nested models were developed, sequentially including four sets of covariates to account
for potential confounders. In model 1, age was adjusted; in model 2, ethnicity, socioeconomic
status variables of education, income and Townsend index of deprivation were further adjusted
based on model 1; in model 3, smoking status, alcohol intake, sleep status, diet status, BMI,
and family history of CVD were further adjusted based on model 2; in model 4 (full adjusted
model), we further included mutual adjustments for both TSM and metabolomic signature to

assess their independent associations. We also examined potential non-linear associations



between metabolomic signature, TSM, and CVD risk using restricted cubic spline analysis.
Meanwhile, Kaplan-Meier survival curves were plotted to estimate the CVD risk between low,

intermediate, and high levels of metabolomic signature groups.
Subgroup analysis and sensitivity analysis

To distinguish the effects of chronological age from postmenopausal duration, we conducted a
stratified analysis based on baseline age (<60 years and >60 years), as these two factors are
closely intertwined. We also examined whether the associations of TSM and metabolomic
signature with CVD varied by baseline MHT status. To assess the robustness of these findings,
several sensitivity analyses were performed, including: (1) exclusion of participants who
developed incident CVD within the first 3 years of follow-up; and (2) additional adjustment for
medication use, including menopausal hormone therapy (MHT), lipid-lowering drugs, and

aspirin.
Mediation analysis

We conducted mediation analyses to investigate whether the association between TSM and
CVD could be mediated by metabolomic signature. Using the ‘mediation’ packages of R
software, the proportion of mediation was determined by dividing the indirect effect by the total
effect, with 95% Cls estimated via bootstrapping. Covariates from the multivariate-adjusted
Cox model were included in the mediation analysis to account for potential confounders.
Furthermore, we evaluated the contribution of specific metabolite classes in mediating the

association between TSM and the risk of CVD, including its subtypes.
Mendelian randomization analyses

Two-sample MR analyses were performed to explore the potential causal associations between
the identified metabolites and risk of CVD. We obtained the genetic variants that were
considered as instrumental variables for MR from published genome-wide association study
summary statistics for each identified metabolite. Summary statistics for CVD and its subtypes

were derived from open genome wide association study projects (Supplementary Table S7).



To ensure independence, exposure and outcome GWAS were drawn from independent consortia

with non-overlapping cohorts.

We conducted stringent linkage disequilibrium (LD) clumping thresholds (10 000 kb clumping
window and r2 threshold = 0.1) to select independent single nucleotide polymorphisms. The
random-effects inverse-variance weighted (IVW) method was employed as the primary
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analysis® ™, as it yields a more precise Mendelian randomization estimate when all instruments

are valid®.
10-year cardiovascular risk prediction with TSM and metabolomic signature

To assess the potential improvement in 10-year cardiovascular risk prediction by incorporating
time since menopause (TSM) and a metabolomic signature, we added these variables to the
recently introduced SCORE2 model, which was developed in 2021 for European individuals
without prior cardiovascular disease’. Individuals with a 10-year cardiovascular risk of >7.5%
were considered to be at high risk. Model performance improvement was evaluated using the

area under the curve (AUC) and net reclassification improvement (NRI).

Two-sided P < 0.05 was considered statistically significant. P-values were corrected for
multiple comparison using the Benjamini-Hochberg FDR adjustment. The primary R packages

used in the analysis included ‘glmnet’ for elastic net regression and ‘survival’ for Cox regression.
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Figure legends

Figure 1. Overview of time since menopause (TSM), metabolomic signature and
cardiovascular diseases (CVD) prediction in women. MI, myocardial infarction; IHD, chronic
ischemic heart disease; HF, heart failure; AF, atrial fibrillation; MHT, menopausal hormone
therapy, AUC: area under the curve; NRI: net reclassification improvement.

Figure 2. Correlations between time since menopause and the metabolomic signature using
baseline data (a) and first repeat data (b)

Figure 3. Cumulative incidence of CVD according to metabolomic signature categorizes of
low, intermediate and high

Figure 4. Mendelian randomization analyses of associations between genetically determined
metabolites with CVD

Figure 5. Aera under the curve (AUC) and net reclassification improvement (NRI) index
relative to SCORE2 based on thel0-year CVD risk predicted. (A) AUC after adding time since
menopause and metabolomic signature to SCORE2; (B) NRI compared (SCORE2+Time since
menopause) to SCORE2 alone; (C) NRI compared (SCORE2+Metabolomic signature) to
SCORE?2 alone.

Figure 6. Flow chart of study design and analytical approach



Table 1. Characteristics of participants at baseline by CVD incidence

No incident CVD Incident CVD
Overall
participants N=59269 % N=8313 %
Age at baseline 59.8+5 4 59.5+5.4 62.045.0
Race/ethnicity
White 65141 57107 96.4 8034 96.6
Non-white 2441 2162 3.6 279 34
Education level (years)
<=10 34735 29876 50.4 4859 58.5
10-11 7766 6921 117 845 10.2
>12 25081 22472 379 2609 31.3
Income level (£)
Less than 18,000 18598 15607 26.3 2991 36.0
18,000 to 30,999 19032 16680 28.1 2352 28.3
31,000 to 51999 16486 14773  24.9 1713 20.6
Greater than 52,000 13466 12209 20.7 1257 15.1
Socioeconomic status
Q1 16781 14943 = 25.2 1838 22.1
Q2 16998 15025 25.3 1973 23.7
Q3 16897 14857  25.1 2040 245
Q4 16906 14444 24.4 2462 29.6
BMI level (kg/m?)
<185 513 449 0.7 64 0.8
18.5-24.9 26632 24045 40.6 2587 31.1
25.0-29.9 25834 22713 38.3 3121 375
>=30 14603 12062 20.4 2541 30.6
Smoking status
Never 39679 35230 59.4 4449 535
Former 22543 19603 33.1 2940 354
Current 5360 4436 7.5 924 11.1
Diet status
Poor 42435 37094 62.6 5341 64.3
Good 25147 22175 37.4 2972 35.7
Alcohol status
Never 3598 3021 5.1 577 7.0
Former 2216 1832 3.1 384 46
Current 61768 54416 91.8 7352 88.4
Sleep quality
Poor 45445 39517 66.7 5928 71.3
Good 22137 19752 333 2385 28.7
Family history of CVD
No 25819 22957 38.7 2862 344
Yes 41763 36312 61.3 5451 65.6
Statins use
No 59796 53068 89.5 6728 80.9
Yes 7786 6201 105 1585 19.1
Aspirin use
No 61872 54859 92.6 7013 844
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Table 2. Associations between time since menopause (TSM), metabolomic signature (at
baseline) and CVD risk

Metabolomic signature per

1 *
TSM per 1 increment 1-SD increment

HR (95%CIl) P HR (95%ClI) P
CVD
Model 1 1.17 (1.15,1.20) <0.001 1.25(1.22,1.28) <0.001
Model 2 1.15(1.13,1.18) <0.001 1.24 (1.21, 1.27) <0.001
Model 3 1.14 (1.12,1.17)  <0.001 1.19 (1.17, 1.22) <0.001
Model 4 1.14(1.11,1.16) <0.001 1.18 (1.15, 1.21) <0.001
Ml
Model 1 1.24(1.17,1.31) <0.001 1.30(1.23,1.37) <0.001
Model 2 1.21(1.15,1.28) <0.001 1.28(1.21,1.35) <0.001
Model 3 1.19(1.13,1.26) <0.001 1.23(1.17,1.30) <0.001
Model 4 1.18 (1.12,1.25) <0.001 1.21(1.15,1.28) <0.001
AF
Model 1 1.17(1.13,1.21) <0.001 1.22(1.18,1.26) <0.001
Model 2 1.16 (1.12,1.20) <0.001 1.21(1.17,1.25) <0.001
Model 3 1.15(1.12,1.20) <0.001 1.17(1.13,1.21) <0.001
Model 4 1.15(1.11,1.19) <0.001 1.15(1.11,1.20) <0.001
HF
Model 1 1.24 (1.18,1.31) <0.001 1.43(1.36,1.50) <0.001
Model 2 1.21 (1.15,1.27) <0.001 1.40(1.33,1.47) <0.001
Model 3 1.19(1.13,1.25) <0.001 1.31(1.25,1.38) <0.001
Model 4 1.18(1.12,1.24) <0.001 1.30(1.23,1.36) <0.001
IHD
Model 1 1.21(1.17,1.26) <0.001 1.30(1.25,1.34) <0.001
Model 2 1.19(1.14,1.23) <0.001 1.28(1.23,1.33) <0.001
Model 3 1.17 (1.13,1.21) <0.001 1.23(1.18,1.27) <0.001
Model 4 1.16 (1.12,1.21) <0.001 1.21(1.17,1.26) <0.001
Stroke
Model 1 1.16 (1.10,1.23) <0.001 1.23(1.16,1.30) <0.001
Model 2 1.14(1.08,1.21) <0.001 1.21(1.14,1.28) <0.001
Model 3 1.13(1.07,1.19) <0.001 1.19 (1.12,1.26) <0.001
Model 4 1.12(1.06,1.19) <0.001 1.18(1.11,1.25) <0.001

CI: confidence interval, HR: hazard ratio; CVD: cardiovascular diseases; MI: myocardial infarction;
AF: atrial fibrillation; HF: heart failure; IHD: ischemic heart disease. Model 1 adjusted for age.
Model 2 further adjusted for ethnicity, education, income and Townsend index of deprivation based
on model 1. Model 3 further adjusted for smoking status, alcohol intake, sleep status, diet status,
BMI, and family history of CVD based on model 2. Model 4 further adjusted for both time since
menopause and metabolomic signature to assess their independent associations. * One unit
representing a 5-year interval.
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