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The neglected role of micronutrients in predicting soil
microbial structure
Ziheng Peng 1, Chunling Liang1, Min Gao1, Yu Qiu1, Yanjing Pan1, Hang Gao1, Yu Liu1, Xiaomeng Li1, Gehong Wei 1✉ and
Shuo Jiao 1✉

Predicting the distribution patterns of soil microbial communities requires consideration of more environmental drivers. The effects
of soil micronutrients on composition of microbial communities are largely unknown despite micronutrients closely relating to soil
fertility and plant communities. Here we used data from 228 agricultural fields to identify the importance of micronutrients (iron,
zinc, copper and manganese) in shaping structure of soil microbial communities (bacteria, fungi and protist) along latitudinal
gradient over 3400 km, across diverse edaphic conditions and climatic gradients. We found that micronutrients explained more
variations in the structure of microbial communities than macronutrients in maize soils. Moreover, micronutrients, particularly iron
and copper, explained a unique percentage of the variation in structure of microbial communities in maize soils even after
controlling for climate, soil physicochemical properties and macronutrients, but these effects were stronger for fungi and protist
than for bacteria. The ability of micronutrients to predict the structure of soil microbial communities declined greatly in paddy soils.
Machine learning approach showed that the addition of micronutrients substantially increased the predictive power by 9–17% in
predicting the structure of soil microbial communities with up to 69–78% accuracy. These results highlighted the considerable
contributions of soil micronutrients to microbial community structure, and advocated that soil micronutrients should be considered
when predicting the structure of microbial communities in a changing world.
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INTRODUCTION
One of the urgent transitions in microbial ecology is progressing
from the descriptive records of patterns in microbial composition
towards a predictive understanding of the shifts in microbial
communities in response to environmental changes1,2. The
composition of these communities is sensitive to surrounding
environmental changes, and such shifts would affect their
functioning3,4. Understanding how the composition of soil
communities respond to environment changes is critical for
predicting future changes in ecosystem functioning. Unfortu-
nately, the enormous diversity of soil organisms and the
complexity of environmental properties create obstacles for our
understanding of the underlying dynamics in microbial commu-
nities5. Over the past decades, a growing number of survey and
experimental studies have focused on the effects of climate, plant,
soil properties on soil microbial communities across continental
and global scale6–10. However, a large fraction of variation in soil
microbial community’s composition remains unexplained. Unra-
veling the complexities of the relationship between soil microbial
communities and environment requires consideration of more
environmental drivers.
In soils, most research has focused on the role of soil pH and

macronutrients (e.g., nitrogen, phosphorus and potassium) in
explaining the structure of soil microbial communities11–14. In
contrast, soil metal micronutrients (e.g., Fe, Cu, Mn, Zn) supporting
essential biological functions remain poorly investigated in terms
of their effects on the structure of soil microbes. Although
micronutrients concentrations are as low as milligrams per
kilogram or even lower, they are indispensable to plants and play
a vital role in cell growth and redox homeostasis15,16. They engage
in the formation of enzyme-substrate complexes and act as

enzyme cofactors in common biochemical pathways, such as the
synthesis of protein and biomolecules17,18. This points to a
potentially significant role of micronutrients in affecting microbial
communities’ structure, which had been overlooked in the past.
However, comprehensively examining the role of micronutrients
in explaining the structure of microbial communities is challen-
ging, not only because the concentrations of many micronutrients
have not been systematically investigated, but also because the
availability of micronutrients are affected by climate and soil
physicochemical properties such as aridity, temperature, pH,
organic matter and soil cation exchange capacity16. In other
words, we have not determined whether micronutrients itself
directly shape community structure, or whether other environ-
mental factors that co-vary with soil micronutrients might be
indirectly linked with the change in community structure via
micronutrients15. Therefore, unraveling the unique fraction of the
effects of soil micronutrients on microbial communities’ structure
will advance our understanding of the complex relationships
between microbial communities and the environment.
Different groups of soil organisms respond differently to

environmental factors. Climatic variables are recently reported to
influence the diversity and composition of fungal communities on
global scale10. The diversity patterns in fungi are found to be
decoupled from bacterial patterns in forest ecosystems, with
temperature and primary productivity as the major factors in
predicting fungal communities but soil properties such as pH and
N:P ratio for bacterial communities19. Moreover, the largest
proportion of the variance in soil bacterial communities reported
in recent study is explained by differences in soil chemistry,
particularly soil pH, which is confirmed robust across different
spatial scales and land-use types11,12. Most bacterial taxa exhibit
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relatively narrow growth tolerances in soil pH perhaps due to the
evolutionary history and life history traits12. Protists, which are
dominated by consumers, are primarily affected by precipitation20.
In addition, protistan communities are also associated with
bacterial and fungal communities, potentially driven by interac-
tions between them21,22. Identifying the relative importance of
micronutrients to different groups of soil organisms (such as
protists, bacteria and fungi) is crucial to advancing our under-
standing of soil communities and associated ecosystem functions.
Here, we evaluated the relative contribution of soil micronu-

trients (total and available iron, zinc, copper, manganese) to the
composition (relative abundance of phylotypes) of soil bacterial,
fungal and protistan communities across latitudinal gradient over
3400 km. The importance of micronutrients was estimated after
accounting for climate, soil properties and macronutrients. We
used data from 114 parallel agricultural fields (maize and rice) in
eastern China, covering diverse climatic and edaphic gradients.
This data contained a set of 30 environmental variables-climate
(annual mean temperature and precipitation), soil properties (soil
pH, cation exchange capacity, sand, silt, clay, dissolved and total
organic matter), macronutrients (total and available nitrogen,
phosphorus, potassium and sulfur, nitrate and ammonia nitrogen,
C/N, C/P and N/P) and micronutrients (total and available iron,
zinc, copper, manganese). These variables were major predictors
of soil organisms reported in previous study9,10,20. Microbial
information on the structure of bacterial, fungal and protistan
communities were assessed by 16 S rRNA, ITS and 18 S rRNA gene,
respectively. We first tested whether micronutrients could explain
a unique portion of the variation in the composition of soil
bacterial, fungal and protistan communities after controlling for
climate, soil physicochemical properties and macronutrients. Then,
we identified the microbial taxa that were driven by micronu-
trients. Finally, we used machine learning approach to examine
whether environmental factors provide markedly better prediction
of microbial communities after micronutrients were added.

RESULTS
The contribution of micronutrients on microbial communities
We first used partial mantel analysis to quantify the relative
contribution of climate, soil physiochemical properties, macro-
nutrients and micronutrients on the structure of bacterial, fungal,
and protistan communities. This approach allowed us to estimate
the unique contribution of micronutrients on the structure of soil
communities by controlling other predictors. Most microbial
communities showed strong responses to climate and soil
physiochemical properties, explaining 27%, 23%, 34% variance
of bacteria, fungi and protists in maize soils, and 51%, 53%, 42%
variance in paddy soils, respectively (Fig. 1 and Supplementary
Table 1). Most importantly, we found that micronutrients
predicted a unique part of the variation in the structure of soil
bacterial, fungal and protistan communities in maize soils,
accounting for 11%, 18%, and 17% of the variation, respectively
(Fig. 1). However, micronutrients had little contribution to
predicting the structure of microbial communities in paddy soils,
suggesting that land-use change would influence the effects of
micronutrients on microbial communities’ composition. Macronu-
trients, with only significant influence on protist in maize soils and
fungi in paddy soils, had a lower ability to predict the structure of
microbial communities than micronutrients (Fig. 1). This sug-
gested that micronutrients were better predictor of soil microbial
structure than macronutrients. Consistent results were observed
when we used multiple regression on matrices (Supplementary
Fig. 2 and Supplementary Table 1).
The relationship between the distances in each environmental

predictor and microbial communities was then assessed to
identity the major environmental factors in structuring bacterial,

fungal and protistan communities. The concentrations of several
different micronutrients were found to be correlated with the
structure of microbial communities, together with climate and soil
properties such as mean annual temperature and precipitation,
and soil pH (Fig. 2 and Supplementary Figs. 3–8). Specially,
bacterial communities were associated with available iron
(Pearson: R= 0.258, P < 0.001), total copper (Pearson: R= 0.101,
P < 0.05), total zinc (Pearson: R= 0.091, P < 0.05), total manganese
(Pearson: R= 0.120, P < 0.01), and available manganese (Pearson:
R= 0.197, P < 0.001) in maize soils. Fungal communities were
associated with total iron (Pearson: R= 0.159, P < 0.01), available
iron (Pearson: R= 0.168, P < 0.001), total copper (Pearson:
R= 0.105, P < 0.05), available copper (Pearson: R= 0.086,
P < 0.05), total zinc (Pearson: R= 0.090, P < 0.05), total manganese
(Pearson: R= 0.120, P < 0.01), and available manganese (Pearson:
R= 0.118, P < 0.01) in maize soils. Protistan communities were
associated with total iron (Pearson: R= 0.141, P < 0.01), available
iron (Pearson: R= 0.269, P < 0.001), total copper (Pearson:
R= 0.089, P < 0.05), available copper (Pearson: R= 0.104,
P < 0.05), total manganese (Pearson: R= 0.190, P < 0.01), and
available manganese (Pearson: R= 0.189, P < 0.001) in maize soils.
These results suggested the considerable role of these micro-
nutrients in explaining microbial structure in maize soils. More-
over, available iron showed the strongest relationship with
microbial communities among all micronutrients in maize soils
(Supplementary Table 2), suggesting the potential importance of
iron to influence microbial community structure. For paddy soils,
available zinc was correlated with the structure of bacterial, fungal
and protistan communities (Supplementary Table 3).
We further used structural equation modeling to disentangle

the direct effect of micronutrients and indirect role of other
environmental predictors via micronutrients on the changes in
microbial communities. To rigorously determine the unique
importance of micronutrients, SEM model was constructed
representing the effects of different environmental variables in
three steps (Supplementary Fig. 9). Soil physicochemical and
climatic properties were reported as main predictors for the
structure of bacterial, fungal and protistan communities, and thus
their effects were tested first as SEM model I. In addition, the
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Fig. 1 Explained variance of bacterial, fungal and protistan
communities in maize and paddy soils by environmental
parameters using partial mantel test analysis. Input matrices with
variables: climate (mean annual temperature, mean annual pre-
cipitation), soil physicochemical properties (soil pH, CEC, sand, silt,
clay, dissolved and total organic matter), macronutrients (total and
available nitrogen, phosphorus, potassium and sulfur, nitrate and
ammonia nitrogen) and micronutrients (total and available iron,
zinc, copper, manganese). The significance of statistical test was
conducted by partial mantel test analysis based on pearson
correlation. Similar results were obtained using multiple regression
on matrices (Supplementary Fig. 1). ***p < 0.001; **p < 0.01; *p < 0.05.
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influence of macronutrients (e.g., N, P, K, S) on microbial
communities have also been widely studied and considered to
be important predictors, and their effects were therefore added as
SEM model II. Finally, micronutrients were added into SEM model
III. To match the SEM model, we used non-metric multidimen-
sional scaling (NMDS) to transform ASVs abundance data into low-
dimensional space and kept the first two axes for bacterial, fungal
and protistan communities, respectively. The micronutrients were
correlated with the NMDS axis scores of bacterial, fungal, and
protistan communities (Supplementary Fig. 10).
Our final SEM analyses showed that micronutrients had direct

effects on the first and second axis of bacteria (iron and copper),
the first and second axis of fungi (iron and copper), and the first
axis of protists communities (iron) in maize soils after accounting
for other predicting factors simultaneously, with the sole
exception of protistan second axis (Fig. 3). These results indicated
that micronutrients explained a unique proportion of the variation
in the structure of microbial communities, although climate and
soil physicochemical properties showed the largest total effects on
microbial structure. Moreover, climate and soil physicochemical
properties also indirectly affected the microbial communities
through their effects on the composition and concentration of
micronutrients, suggesting the mediating role of micronutrients
between climate, soil and microbial structure (Fig. 3). For example,
indirect effects of soil pH on microbial structure were largely
driven by micronutrients such as iron (negative and positive effect
of pH in bacterial and fungal axis one, respectively). Climate such
as MAP indirectly drove microbial communities’ structure through
its effect on soil micronutrient concentrations (positive effects on

copper in bacterial and fungal second axis). When SEM analyses
were repeated using data from paddy soils (Supplementary Fig.
11), we found that a unique part of the variance of microbial
communities was still predicted by micronutrients. However,
micronutrients had a lower ability to predict the structure of
microbial communities in paddy soils than that in maize soils (two
of six axis scores), with iron for fungal axis one and manganese for
protistan second axis.

Microbial phylotypes influenced by micronutrients
Random forest analyses were conducted to identify microbial
phylotypes at ASV (Supplementary Figs. 12 and 13) and genera
(Fig. 4 and Supplementary Figs. 14–20) levels that were primarily
affected by micronutrients. For example, genus Gibberella as plant
pathogens was found to be an indicator of changes in
micronutrients and the relative abundance decreased with the
concentrations of available iron, zinc, copper and manganese
(Supplementary Fig. 21). Of the environmental factors, micronu-
trients accounted for more than 25% of variability over half of the
phylotypes (Fig. 4). Across bacterial, fungal and protistan
communities, the random forest models were sensitive to multiple
micronutrients abundance, such as available manganese for
bacteria and protist in maize soils and available copper for fungi
in paddy soils (Supplementary Fig. 22).

The importance of micronutrients by machine learning
To validate importance of micronutrients, we further used
machine learning approach to evaluate whether the inclusion of
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Fig. 2 Relationships between soil bacterial, fungal, protistan communities and environmental distance in maize and paddy soils. a maize
soils, (b), paddy soils. Differences among environment and communities were estimated using mantel test base on Bray–Curtis distances.
Lines represent fitted linear regressions between environmental distance and associated bacterial, fungal or protistan communities. Only
environmental factors with significant relationship with the communities are shown in figure (the number in the upper left). A full version of
this figure showing each environmental factor can be found in Supplementary Figs. 2–7 and Supplementary Tables 2–4.
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micronutrients could provide a better, higher accuracy in
predicting the structure of microbial communities in agricultural
fields (Fig. 5 and Supplementary Fig. 23). Machine learning (ML)
algorithms provided powerful tools for explaining multivariate,
nonlinear, and non-monotonic relationships23,24. Ten classic ML
algorithms - Bagged Regression Tree (BaRT), Cubist, Fast Nearest
Neighbor (FNN), Gradient Boosting Machines (GBM), Weighted
k-Nearest Neighbor (KKNN), Kernel Support Vector Machine
(KSVM), Random Forest (RF), Ranger, Rpart and Support Vector
Machine (SVM) were employed to assess the prediction perfor-
mance of microbial communities’ models. As expected, we found
that the models including micronutrients had a lower mean
absolute error (median of 0.483), mean squared error (median of
0.415) and root mean squared error (median of 0.633) than those
obtained from the model excluding micronutrients in predicting
the structure of bacterial, fungal and protistan communities (Fig. 5
and Supplementary Tables 4–6), suggesting that the addition of

micronutrients substantially increased the predictive power of
environmental variables. Moreover, ensemble machine learning
methods such as BaRT and RF showed a lower mean absolute
error (BaRT: 0.445; RF: 0.446) and root mean squared error (BaRT:
0.593; RF: 0.584), yielding better prediction accuracy compared to
other methods. The observed vs. predicted the structure of
bacterial, fungal and protistan communities in test dataset
matched well for RF and BaRT with values aligned close to the
1:1 line in models including micronutrients than those values in
models excluding micronutrients (Fig. 5).

DISCUSSION
Together, our results provided empirical evidence that micronu-
trients could leave a considerable effect on the structure of soil
bacterial, fungal and protistan communities. Our work highlighted
that micronutrients explained a unique and significant portion in
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Fig. 3 Structural equation models identifying the direct (full lines) and indirect (dotted lines) influence of different predictors on the
structure of bacteria, fungi and protistan communities in maize soils. a bacteria, (b) fungi, (c), protist. Black lines indicate significant and
numbers adjacent to lines were indicative of the effect size of the relationship. We grouped the climatic and edaphic properties into the same
box in the model for graphical simplicity, which did not represent latent variables. R2 denotes the proportion of variance explained. Red
arrows represented positive paths, and green arrows represented negative paths. Significance levels were as follows: *p < 0.05, **p < 0.01, and
***p < 0.001. The total standardized effects on SEM on the structure of microbial communities were calculated as sum of the direct and
indirect effects. Information about our a priori model was provided in Supplementary Fig. 8. TZn total zinc, AZn available zinc, TFe total iron,
AFe available iron, TCu total copper, ACu available copper, TMn total manganese, AMn available manganese, CEC cation exchange capacity.
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variation in soil microbial communities beyond what could be
predicted from climate, soil physicochemical properties or
macronutrients. These results emphasized the fact that micro-
nutrients could be used to gain a better and more accurate
understanding and predicting in the composition of soil commu-
nities, which was helpful to understanding mechanisms of
microbial communities to the surrounding environment, including
micronutrients gain and loss, and fertilization strategies. For
example, our results suggested that concentrations of iron and
copper might directly affect bacterial, fungal and protistan
communities independent of the climate, soil physicochemical
properties and macronutrients in maize soils. This result was
consistent with previous study demonstrating that iron and its
complexes affected microbial community structure, with increas-
ing bacterial interactions and the number of mutually beneficial
taxa in soils25. Moreover, experimental studies dedicating to the
study of organic fertilizers mainly focused on the effects of organic
carbon and macronutrients (N, P and K) on microbial communities
while ignoring micronutrients26,27. However, the applications of
organic fertilizers were also linked with soil micronutrients status
in soils28. A recent global grassland study showed that nitrogen
and phosphorus fertilization favored fungal pathogens29, in
contrast to our study that Gibberella decreased with abundance
of micronutrients. These results suggest that the effects of organic

fertilizers on microbial communities are complex, and the
combined effects of both macro- and micronutrients should be
considered.
In the present study, the structure of fungal and protistan

communities showed stronger relationships with micronutrients
than the bacterial communities, which might attribute to
physiological and ecological differences among these groups.
Bacterial communities composition was reported to be primarily
determined by soil physicochemical properties such as soil pH11,
consistent with our results. The effects of other environmental
variables on bacterial communities were far weaker than those of
soil properties. In addition, the concentration of available iron was
closely linked with bacterial communities, which might be
associated with ubiquitous iron-reducing and oxidizing bacteria
that determined bioavailability of iron30. Fungal communities are
key decomposers of plant necromass and symbionts of plant
growth involving soil micronutrient cycles, and tend to be largely
driven by plant communities and the climate associated with
plant distribution10,31. Arbuscular mycorrhizal fungi increases ferric
chelate reductase activity as well as Fe, Zn, S and P in plant under
Fe-deficiency, which is related to the bioavailability of Fe at
rhizosphere zone32. Fungi are more effective than acidophilic
autotrophic and heterotrophic bacteria for bioremediation of
heavy metals (Zn and Cu) in sediments33. Unlike bacteria and
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fungi, the composition of protists is dominated by consumers and
is found to be jointly structured by climate, soil physicochemical
properties, macronutrients, micronutrients and its prey20,34.
As reported, palaeoclimate, current climate, soil development,

soil chemistry, topography, and vegetation account for a large
variation in the structure of microbial communities9,10,35–37.
However, micronutrients were demonstrated to explain a unique
and significant part of variation in our study. In addition, climate
and soil properties could also indirectly alter microbial commu-
nities’ structure by regulating micronutrients, suggesting that
climate and soil properties cannot account solely (via direct
effects) for soil microbial communities. For example, the SEM
models showed that, besides the direct effect, soil properties had
an indirect effect on fungal and protistan communities through
their negative effect on soil iron concentrations. Linkages of
micronutrients to microbial communities advance our under-
standing of the pathways by which climatic and soil properties
affect microbial communities and how microbial communities
respond to ongoing global changes. Nevertheless, there was still a
large proportion of unexplained variations in microbial commu-
nities structure, which might be attributed to stochastic processes

such as homogenizing dispersal and ecological drift and
unconsidered factors such as crop genotypes38.
Moreover, micronutrients had a lower ability to predict the

structure of microbial communities in paddy soils than in maize
soils. This suggested that different agricultural practices and crop
types had distinct effects on the unique contribution of
micronutrients as a predictor of microbial structure. Compared
to maize soils, paddy fields are subject to more agricultural
disturbances, such as experiencing more human-driven physical
practices and suffering larger fluctuations in soil moisture. Soil
moisture is one of major drivers on microbial communities
structure39,40, and drought-rewetting events might attenuate the
direct contribution of micronutrients on soil microbial commu-
nities by directionally promoting moisture-insensitive taxa41,42.
Overall, our work provides fundamental insights into the

complexities of relationships between environment and soil
microbial communities, and quantifies the relative contribution
of micronutrients in predicting the structure of bacterial, fungal
and protistan communities. We show that soil micronutrients
explain a unique proportion of the variation in microbial
communities’ structure even after controlling for climate, soil
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physicochemical properties and macronutrients. Our results from
machine learning indicate that the inclusion of micronutrients in
the model increases our ability to predict the structure of soil
microbial communities. Thus, given the important role of
micronutrients in predicting microbial communities, information
on micronutrients is essential to fully unravel the complexity
relationships between environment and microbial communities
and the impact of global changes on belowground communities.

METHODS
Data collection and soil analysis
We used data from agricultural fields under long-term cultivation
with maize and paddy soils across eastern China43,44. The dataset
included 114 paired sites, amounting to 114 maize and 114 paddy
soil samples along a wide latitudinal gradient over 3400 km, across
diverse edaphic conditions and climate gradient. Collected paddy
soils are around maize soils (within 5 km) in each paired site
(Supplementary Fig. 1). The soil samples were collected during the
growing season (July–September 2017). In each site, a composite
soil sample were composed of 15 soil cores taken at a depth of
0–15 cm from three plots (each 100 m2) and was separated into
two portions. One portion was air-dried and used for soil
physicochemical properties, macronutrients and micronutrients
analyses, and the other was stored at − 80 °C until DNA extraction.
For all soil samples, we measured soil physicochemical proper-

ties (soil pH, CEC, sand, silt, clay, dissolved and total organic
matter), macronutrients (total and available nitrogen, phosphorus,
potassium and sulfur, nitrate and ammonia nitrogen, C/N, C/P and
N/P) and micronutrients (total and available iron, zinc, copper,
manganese). Soil properties were determined using standardized
protocols45,46. Briefly, soil texture was determined using a simple
sifting and sedimentation-based approach47, and the pH of the
soil was assessed in a 1:5 suspension (soil to distilled water).
Organic matter was determined colorimetrically following oxida-
tion with a combination of potassium dichromate and sulfuric
acid48. Dissolved organic carbon (DOC) was measured by high-
temperature combustion, the high temperature (110 °C) conver-
sion of inorganic carbon to dissolved CO2, and purging this from
the sample, the remaining (organic) carbon is then oxidized at a
high temperature to CO2 which can be detected by the
instrument’s nondispersive infrared (NDIR) sensor49. Cation
exchange capacity (CEC) of the soil was measured by a modified
ammonium-acetate compulsory displacement50. Total nitrogen
(TN) was determined using a Flash 2000 NC Analyzers (Thermo
Scientific, MA, USA). Ammonium (NH4

+) and nitrate (NO3
−)

concentrations in extracts were determined colorimetrically by
automated segmented flow analysis (AAIII; Bran and Luebbe,
Germany). Determination of total phosphorus (TP) and total
potassium (TK) were used potassium dichromate-sulfuric acid
digestion and ammonium acetate-flame photometry method,
respectively51. Available phosphorus (AP) was extracted by 0.5 M
NaHCO3 and determined using the molybdenum blue method.
Available potassium (AK) was determined in 1 M ammonium
acetate extracts by flame photometry (FP640, INASA, China). After
digestion with HNO3/H2O2 mixture and extraction with DTPA52,
we measured total and available metal concentrations using
inductively coupled plasma atomic emission spectroscopy (Iris
Intrepid II XDL; Thermo Fisher Scientific). Because the DTPA
method is widely utilized in neutral to basic soils, as is the case for
most of the soils investigated, and the DTPA extraction for copper,
iron, manganese, and zinc is standardized, so we used it as an
indication of the accessible pool of metals in soils and limited our
analysis to them. We obtained climatic data including mean
annual temperature (MAT) and mean annual precipitation (MAP)
based on the sampling sites from the Worldclim database
(www.worldclim.org).

Molecular analysis
Soil bacterial, fungal and protistan communities were analyzed using
high-throughput sequencing. Total genomic DNA was extracted
from soil samples using a FastDNA SPIN Kit for Soil (MP
Biochemicals, Solon, OH, USA). Microbial communities were profiled
by targeting the V4-V5 region of 16 S rRNA gene for bacteria, a
region of the internal transcribed spacer 1 gene for fungi, and the V4
region of 18 S rRNA in protists. Corresponding polymerase chain
reaction assays were performed with the 515 F/907 R (~450 bp)53,
ITS5-1737F/ITS2-2043R (~300 bp)54 and TAReuk454FWD1/TAReuk-
REV3 (~380 bp)55 primer pairs, respectively44. PCR amplification was
performed in a 50 μl volume: 25 μl 2x Premix Taq (Takara
Biotechnology, Dalian Co. Ltd., China), 1 μl each primer (10 μM)
and 3 μl DNA (20 ng/μl) template. The PCR thermal cycling
conditions were performed by thermocycling: 5min at 94 °C for
initialization, followed by 30 cycles of 30 s denaturation at 94 °C, 30 s
annealing at 52 °C, 30 s extension at 72 °C, and 10min final
elongation at 72 °C. The length and concentration of the PCR
product were detected by 1% agarose gel electrophoresis.
Sequencing libraries were generated using NEBNext® Ultra™ II
DNA Library Prep Kit for Illumina® (New England Biolabs, MA, USA)
following manufacturer’s recommendations and index codes were
added. Sequencing was performed on the Illumina HiSeq2500
platform (Illumina Inc., San Diego, CA, USA). Bioinformatics
processing, including filtering, dereplication, sample inference,
chimera identification, and merging of paired-end reads, was
performed using the Divisive Amplicon Denoising Algorithm 2
(DADA2)56, a model-based approach for correcting Illumina
amplicon errors without constructing OTUs. Compared to other
methods, DADA2 identified more real variants and output fewer
spurious sequences. Taxonomical annotation of the representative
sequences of amplicon sequence variants (ASVs) was performed
with a naïve Bayesian classifier using the Silva v. 138 for bacteria57,
UNITE+ INSD v. 8.3 for fungi58, and Protist Ribosomal Reference
database v. 4.13.0 for protist59. Bacteria and protists were defined as
all prokaryotic and eukaryotic taxa, except Archaea, chloroplasts,
mitochondria in 16 S gene and Rhodophyta, Streptophyta, Metazoa
and fungi in 18 S gene for subsequent analyses20,60.

Correlation and regression analyses
We first examined the relationship between environmental variables
and the bacterial, fungal and protistan communities through partial
Mantel test and multiple regression on distance matrices using the
“ecodist” package in R61,62, as shown Supplementary Table 1. To
quantify dissimilarity in bacterial, fungal and protistan communities
across sampling sites, dissimilarity matrices based on Bray–Curtis
dissimilarities of ASVs were calculated. Here we used four
environmental explanatory matrices: climate variables (annual mean
temperature and precipitation), (2) soil physicochemical properties
(soil pH, cation exchange capacity, sand, silt, clay, dissolved and total
organic matter), (3) macronutrients (total and available nitrogen,
phosphorus, potassium and sulfur, nitrate and ammonia nitrogen)
and (4) micronutrients (total and available iron, zinc, copper,
manganese). To quantify dissimilarity in climate, soil properties,
macronutrients and micronutrients across sampling sites, we
calculated Euclidean dissimilarities. Four distance matrices were
calculated that represent climate, soil properties, macronutrients and
micronutrients. Each environmental matrix was individually asso-
ciated with the microbial communities based on Pearson’s
correlations, leaving three environmental variables as controlling
distance matrix in partial Mantel test, as shown in Fig. 1. Multiple
regression analysis was performed on the four distance matrices and
microbial communities, as shown Supplementary Fig. 2. Mantel test
was further used to assess the significance of the association
between each environmental predictor of 30 variables and bacterial,
fungal and protistan communities, respectively, as shown in (Fig. 2).
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SEM analyses
We used structural equation modeling that synthesized prior
knowledge in model to disentangle the direct and indirect role of
the complex relationships among climate, soil physicochemical
properties, macronutrients, micronutrients and microbial commu-
nity. Structural equation modeling allowed us to partition causal
influences among multiple predictors and separated the direct
and indirect effects of model predictors on the structure of
microbial community. Variables were log-transformed and stan-
dardized prior to improve normality and linearity.
To rigorously evaluate the relative effects of micronutrients on

the structure of microbial community, three SEMs representing
the effects of different variables were constructed stepwise
(Supplementary Fig. 9), as shown in previous study that
micronutrients have important role on global biomass produc-
tion15. First, climatic and soil physicochemical properties were
incorporated in model and tested, as temperature, precipitation
and soil properties were expected to be the important drivers of
the composition of microbial communities11,63. Second, the effects
of macronutrients (such as N, P, and K) on microbial communities
had also been extensively studied and were thus incorporated
into the model64,65. Finally, we tested whether micronutrients
explained additional variation in microbial communities due to
their important role in life chemistry and ecosystem function-
ing16,66. Specifically, MAT and MAP were firstly used to build the
model together with soil physicochemical properties SOM, DOC,
CEC, pH and texture. Each of the soil physicochemical properties
was added separately to the model including climatic factors. All
those that significantly contributed (p < 0.05) to explaining
additional variation were retained, as following a similar approach
in15,67. In the following steps, nitrogen, phosphorus, potassium
and sulfur were separately added to the previous model and those
that had a significant contribution were retained. The same
procedure was applied in the next step for micronutrients (iron,
zinc, copper, and manganese). When both total and available
metal were retained, the metal was grouped into one composite
variable by summing the product of total and available metal with
their coefficient in the full SEM model. The model was then
reconstructed substituting the individual metal with the compo-
site variable. We grouped the different categories of predictors
(climate, soil physicochemical properties, macronutrients and
micronutrients) in the same box in the model for graphical
simplicity, but these boxes did not represent latent variables.
Three metrics were used to quantify the goodness of fit of SEM

models: the χ2 test, the Root Mean Square Error of Approximation
(RMSEA), and Comparative Fit Index (CFI). Specially, the closer to 1
CFI value, closer to 0 RMSEA values, and higher χ2 and RMSEA P
values, the better model perform. With a good model fit, we were
able to interpret the path coefficients of the model and their
associated P values. A path coefficient was analogous to the
partial correlation coefficient, and described the strength and sign
of the relationship between two variables. Structural equation
models were constructed using the “lavaan” package in R68.

Randomforest modeling
To explore the environmental predictors of microbial phylotypes
and genera, we modeled distribution of each phylotype or genus
by Random Forest69. Many of the predictor variables used in
ecological studies were either naturally (e.g., the availability of
metal with total metal) or functionally (e.g., soil moisture was
calculated as a function of precipitation and evapotranspiration)
correlated. While some of these predictors may determine species
distribution or abundance other collinear predictors may not. The
random subset approach for fitting predictor variables at each
node could result in a correlated but less in influential predictor
standing in for more highly in influential predictors in the early
splits of an individual tree depending upon which predictor is

selected in the subset. The overall predictive ability of the forest
for each phylotype or genus was calculated as the average
proportion of out-of-bag data variance explained by the fitted
forest. In model, the accuracy importance of predictor was
quantified as the decrease in performance when each predictor
was randomly permuted but other predictors are not modified. To
show variable importance across all modeled phylotypes or
genera, the relative importance of each predictor was calculated
as a sum of predictor relative importances of all Random Forests
for individual phylotype or genus weighted by Random Forest
predictive ability (out-of-bag R2)10,70,71. Monotonic function of
each predictor that delineates where the compositional change
points occurred along the gradient of the predictor was obtained.

Modeling techniques
Machine learning (ML) algorithms were powerful tools for explaining
multivariate, nonlinear, and non-monotonic relationships. We further
used machine learning approach to test whether environmental
factors provide markedly better prediction accuracies of microbial
communities when micronutrients were added. Ten classic ML
algorithms (i.e., Bagged Regression Tree (BaRT), Cubist, Fast Nearest
Neighbor (FNN), Gradient Boosting Machines (GBM), Weighted
k-Nearest Neighbor (KKNN), Kernel Support Vector Machine (KSVM),
Random Forest (RF), Ranger, Rpart and Support Vector Machine
(SVM)) were selected for regression prediction to assess the
prediction performance of microbial communities’ models. Our
aim was to assess whether environmental factors including
micronutrients provided better prediction accuracies than environ-
mental factors excluding micronutrients, and thus environment
factors was divided into two group: including micronutrients
(climate, soil physicochemical properties, macronutrients and
micronutrients) and excluding micronutrients. Five-fold cross-valida-
tion was calculated to estimate test errors of the models. For each
model, 80% of the dataset was randomly separated into a training
set, with the remaining 20% used as a testing set. Three
performance parameters were calculated simultaneously to evaluate
the machine learning models, including mean absolute error (MAE),
mean squared error (MSE), and root mean squared error (RMSE)
obtained from the test data set. Lower value represented better the
prediction performance of models. Machine learning methods were
conducted using the “mlr3” package in R72.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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