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Segatella clades adopt distinct roles
within a single individual’s gut
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Segatella is a prevalent genus within individuals’ gut microbiomes worldwide, especially in non-
Western populations. Although metagenomic assembly and genome isolation have shed light on its
genetic diversity, the lack of available isolates from this genus has resulted in a limited understanding
of howmembers’ genetic diversity translates into phenotypic diversity. Within the confines of a single
gut microbiome, we have isolated 63 strains from diverse lineages of Segatella. We performed
comparative analyses that exposed differences in cellular morphologies, preferences in
polysaccharide utilization, yield of short-chain fatty acids, and antibiotic resistance across isolates.
We further show that exposure to Segatella isolates either evokes strong or muted transcriptional
responses in human intestinal epithelial cells. Our study exposes large phenotypic differences within
related Segatella isolates, extending this to host-microbe interactions.

Themicrobiomes of individuals residing innon-industrialized countries are
dominated by a single clade within the Bacteroidota phylum, members of
the Segatella complex1,2. The most abundant and prevalent gut Segatella
species, S. copri (formerly known as Prevotella copri3,4), has been associated
with various health outcomes, such as glucose intolerance, rheumatoid
arthritis and low-grade systemic inflammation with HIV infection5–9.
However, these associations often conflict, prompting debates regarding the
specific role S. copriplayswithin thehost intestinal environment.Difficulties
in culturing this organismhave impeded further exploration into the impact
of Segatella on the gut ecosystem and host health. It is an obligate anaerobe
with understudied nutritional preferences, and, despite the tremendous
amount of genetic diversity reported within this clade1,3,10,11, until recently,
there has been only one strain available from public strain collections.
Furthermore, this strain has been recalcitrant to geneticmodification and to
colonization in mice12,13. Overall, these constraints have led to large gaps in
experimental evidence supporting these purported roles.

Within the human gut microbiome, each species is often represented
by numerous strains exhibiting genomic and functional diversity14–17.
Lineages of S. copri have been identified throughout the world and assem-
bled into metagenomic assembled genomes (MAGs). Using these and
available genomes, Blanco-Míguez et al. have expanded the S. copri complex
into 13 distinct species1,3,18. Against this backdrop, we asked to what extent
the genomic diversity translates into functional and phenotypical variation,
relevant both for the bacterium itself and for human health.

In contrast to certain related oral Segatella species, Segatellawithin the
gut poses challenges in cultivation and manipulation. It was not until very
recently that people have successfully engineered a small subset of S. copri
complex12. Effortshave alsobeenmade tousemousemodels to study S. copri

complex, but due to limited understanding of its growth preferences and
the absence of S. copri complex as a natural member of the mouse gut
microbiome, colonization has posed challenges. Gellman et al. found that
supplementing the mice with plant-derived microbiota-accessible carbo-
hydrates enables colonizationandmaintenanceofSegatella strains inmice13.
In practice, this complicates experimental setups andmaynot be universally
applicable for all research purposes.

Given the challenges of genetic modification andmurine colonization,
comparative genomics and phenotypic characterization offer an alternative
approach to study diverse Segatella clades belong to S. copri complex. In this
study, we obtained63 isolates froma fecal sample of Fijian origin. Therewas
considerable genomic diversity among the set of clades inhabiting this single
individual. Considering that these clades may co-exist because of niche
separation, the set of closely related clades provides an interesting vantage
point to study the phenotypic diversity across clades. Additionally, we find
significant differences in their metabolic preferences and production of
short-chain fatty acids (SCFAs), in addition to their overall effects on host
intestinal cells.

Results
Diverse Segatella clades isolated from a single individual’s gut
microbiome
To explore the diversity of Segatella, we employed a refined culturing
method on samples enriched in Segatella, as determined by metagenomic
sequencing. Study participants of the Fiji Microbiome Community Project
(FijiCOMP)hadhigh overall burdens of Segatella (roughly thirty percent on
average)19. We selected a 40-year-old female whose microbiome had the
highest abundance of Segatella (73.9% of the known taxa, as determined by
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MetaPhlAn220) (Supplementary Fig. 1A). By applying our isolation proce-
dures followed by whole genome sequencing, we obtained 63 isolates with
high-quality genomes, perfield standards21, barring 12 isolates that lack full-
length 16S rRNA sequences.

The isolates derived from this single individual were remarkably
diverse. Despite possessing nearly identical 16S rRNA sequences, the isolate
genomeswere clustered into six large clades, basedon their genomic content
and average nucleotide identity (ANI) (Fig. 1A, Supplementary Fig. 1B).
Phylogenetic analysis yielded the same results (Supplementary Fig. 1C). The
core genome, defined as those genes represented by over 95% of the isolate
genomes, makes up only 423 genes, or 16.8% of each genome on average.
Inter-clade ANIs fall below 95%, indicating higher-order relationships
beyond the species level (Supplementary Fig. 1D). Whereas the isolates
obtained fromClade I are likely isogenic (average ANI over 0.999) andmay
includemutations that occurred during culture, isolates fromClades III and
IVwere sparser and showed high intra-clade diversity. Interestingly, Clade I
isolates were the easiest to isolate, despite their relatively low abundance
within the metagenomic sample, 40% of which consists of Clade IV isolates
(Fig. 1B). The discrepancy between relative abundance and our ability to
culture members of each clade hints at different traits regarding oxygen
tolerance and nutritional preferences, resulting in the enrichment of certain
clades over the others during isolation. Based on the comparative phylo-
genetic analysis with isolates from Blanco-Míguez et al. (2023), the clades
were identified as: Clade I (S. sanihominis), Clade II (S. sinica), Clade III (S.
sinensis), Clade IV (S. copri), Clade V (S. brunsvicensis), Clade VI (S. bra-
siliensis) (Supplementary Fig. 1A, Supplementary Table 1).

Given that these clades were derived from a single individual living in
the Fiji Islands, we sought to explore how representative these clades were of
strains found globally. We examined both core and clade-specific genes in
publicly available fecal metagenomic datasets from diverse geographical
regions1,12. As expected, all six clades have higher prevalence in non-Western
countries thanWestern countries (Fig. 1C, SupplementaryFig. 2A).Whereas
a substantial number of gut microbiomes from non-Western populations
comprise members from all six clades, the majority of gut microbiomes
from Western countries contain only one clade, Clade IV (Fig. 1D).
The prevalence of most clades decreases gradually with increasing income
levels with the notable exceptions of Clade I (S. sanihominis) and Clade V
(S. brunsvicensis), which have considerable prevalence in some populations
with upper middle income (Supplementary Fig. 2B). We also checked
whether the presence of specific clades was enriched in 17 specific diseases22,
but no obvious associations were observed (see “Methods”).

Limitations of metagenomic assembly in distinguishing clades
Metagenomic assemblymethods are not often benchmarked against isolate
genomes derived from the same microbiome, but rather synthetic micro-
biomes or assembly statistics. Leveraging the unique opportunity of having
both metagenomes and numerous isolates and the extensive use of S. copri
metagenomic assembled genomes (MAGs), we assessed whether standard
pipelines accurately capture genomic content. We applied four established
metagenomic assembly pipelines on the fecal sample from which we
obtained the Segatella isolates: (1) assembly with MEGAHIT23, followed by
contig-binning by MetaBAT224; (2) assembly with MEGAHIT23, followed
by multiple contig binning tools (MetaBAT225, CONCOCT26 and MaxBin
2.027) and bin refinement using DAS Tool28; (3) the same as pipeline (2) but
usingmetaSPAdes for assembly29,30; and (4) assemblywithmetaSPAdes and
IDBA-UD, then binning with MetaBAT230–32. These yielded few if any
MAGs (1, 5, 3, and 0, respectively) annotated as Segatella, and, despite
removing contaminating DNA usingMAGpurify28, none of these methods
produced MAGs meeting field standards (>90% completeness, <5% con-
tamination, as determinedbyCheckM33) (Supplementary Fig. 2C).Wewere
not able to determine whether co-assembly produces higher fidelity gen-
omes, yet most of these methods utilize the initial assembly steps above as
starting points.

Although the average genome size was similar between the isolate
genomes and MAGs, there was greater variability in MAG size and gene

content (Supplementary Fig. 2D, E), likely indicating incomplete assembly
or contamination. The MAGs overall had poor recovery of the Segatella
genomes: on average, 51.7%of the core genes and 20%of all 11,885 Segatella
genes were absent from any MAG (Fig. 1E, F). The pangenome analysis
incorporating bothMAGs and isolate genomes showed that themajority of
MAGs did not cluster with the isolate clades (Supplementary Fig. 2E).
Rather, they formed into a distinct cluster, closer to Clade IV, the most
abundant clade in thismetagenome.Examinationof genes identified inboth
isolate genomes and MAGs revealed that, on average, the isolate gene pool
exhibited higher coverage of MAG genes than vice versa. Particularly, bin 8
displayed notably low coverage for all the isolate clades regardless of its high
completeness and low contamination compared to otherMAGs (Fig. 1E, F).
These findings underscore the importance of obtaining whole genome
sequencing for identifying novel clades of Segatella and obtaining a more
complete depiction of the Segatella pangenome.

Segatella clades exhibit different cell morphologies
When cultured under the same conditions, the clades exhibit distinct cell
morphologies, as observed by scanning electron microscopy (SEM), and
varied in size (Fig. 2A, Supplementary Fig. 3A). While most of the selected
isolates grew as rod shapes at stationary phase in Schaedler Broth, sub-
stantialfilamentation repeatedly occurred inCladeVI (C6-F5) cells (Fig. 2A,
Supplementary Fig. 3B). Filamentationof bacterial cells canbe considered as
a stress response and has been reported in several intestinal Bacteroides
species, albeit not in Segatella34,35. Filamentation was observed exclusively in
Clade VI (C6-F5) cells, but not in other isolates, highlighting another
instance of clade-specific responses, even within identical environmental
conditions.

Surprisingly, Clade II (S6-D2), even after going through a series of
fixation and dehydration steps, retained a considerable amount of extra-
cellular substance observablewith (Fig. 2A).This observationalignswith the
findings of a crystal violet assay, which supports the idea that S6-D2 pro-
duces significantly higher amounts of biofilm than the other isolates tested
(Fig. 2B). Biofilm formation often involves self-aggregation in a secreted
extracellular polymeric substance that provide metabolic advantages, in
addition to antibiotic resistance36,37. While oral Segatella species have been
documented to produce biofilms38, such behavior is not observed in gut
variants.

The genetic mechanisms regulating biofilm formation in the Bacter-
oidota phylum, including Segatella species, are poorly understood. Type IX
secretion systems (T9SS) were previously reported to be involved in biofilm
formation of the oral species Prevotella intermedia39. Using TXSscan, we
found T9SSs in isolate genomes belonging to Clade III, IV, V, and VI40.
Isolates detected with T9SS had significant higher readings after crystal
violet staining, further suggesting involvement of T9SS in regulating biofilm
formation in S. copri even though it may not be the sole contributing factor
as isolate S6-D2, which does not harbor T9SS, exhibited high readings
compared with other tested isolates (Fig. 2C).

Segatella clades differ in their intrinsic antibiotic susceptibilities
Biofilm formation is often considered one tactic bacteria use to counter
the effects of antibiotics. Upon inspection, overall, the Segatella gen-
omes we isolated harbor few annotated antibiotic resistance genes.
Fourteen of the isolates, the ones belonging to Clade III, IV, V, and VI,
harbor the cfxA6 beta-lactamase gene and the type strain S. copri
DSM18205 carries a tetQ gene providing resistance to tetracycline, both
of whichwere confirmed by higherminimum inhibitory concentrations
(MICs) to ampicillin and tetracycline, respectively (Fig. 2D, Supple-
mentary Fig. 3C). Yet, most of the tested isolates showed low suscept-
ibilities tomultiple antibiotics, including gentamicin, chloramphenicol,
ampicillin, and vancomycin. In addition, none of the isolates tested was
susceptible to kanamycin. Interestingly, a few Segatella isolates proved
susceptible to gentamicin, which is supposed to be ineffective against
anaerobic bacteria due to its oxygen-dependent mechanism of cell
membrane penetration41. These unexpected results suggest that
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Fig. 1 | Segatella isolates from a single FijiCOMP participant’s gut microbiome
cluster into six clades. AA cluster map of the genes within the 63 genomes isolated
from the Fiji_W2.48.ST FijiCOMP gut microbiome, the genome of S. copri
DSM18205 downloaded from RefSeq, and the 94 isolate genomes from previous
studies. Core genes are defined as those genes appearing in >95% of all isolate
genomes. The source of each genome (this study or others’) is indicated in red and
gray. The 63 genomes from this study and 94 fromothers’ studies are indicated in red
and gray, respectively.BThe proportion of isolates from our isolate collection (63 in
total) belong to each clade is plotted, in addition to the estimated relative abundance
of each clade in the metagenome, as estimated using DiTASiC, which is showed as
the percentage of total Segatella abundance. C Prevalence of Segatella clades in fecal

metagenomes fromWesternized and non-Westernized countries. Each dot denotes
the prevalence of the Segatella clade in sample from each country. Error bars
showing the standard errors. Categorization of the populations in (C) and (D) were
provided by curatedMetagenomicData (cMD)22. D Probability distribution of the
numbers of Segatella clades present in samples from Westernized or non-
Westernized countries. The y-axis denotes the percentage of samples from each
country. Error bars showing the standard errors. E A bar plot showing the per-
centages of each/all MAG genes identified in each isolate genome according to clade
or all clades. F A bar plot showing the percentages of genes in each/all clade(s) that
can be found in the MAGs.
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Segatella may possess additional uncharacterized mechanisms of anti-
biotic resistance. Furthermore, in some cases, isolates from the same
clade, even those with high ANI, exhibited different multi-drug resis-
tance profiles, implicating mutations in metabolic genes that can alter
antibiotic susceptibilities and/or acquired antimicrobial resistances
from the environment or other bacteria species (Fig. 2D).

Antimicrobial resistance can be mediated through the acquisition of
mobile genetic elements (MGEs). Our isolates harbored various types of

MGEs, including transposons, conjugative elements, phage-like elements
(lacking phage structural genes), integrons, and mobility islands. Trans-
posable elements were found across all clades, although significantly less in
Clade I isolate genomes.OtherMGE typeswere restricted toClade II, III, IV,
and V (Supplementary Fig. 3D). MGEs play pivotal roles in bacterial evo-
lution by enabling bacteria to acquire fitness advantages from their envir-
onment, although many of the genes within MGEs are poorly annotated.
Being equippedwith variousMGEs likely facilitates the rapid and divergent

A
Clade I (F2-D6) Clade II (S6-D2) Clade III (F2-H8)

Clade IV (S6-C12) Clade V (F2-C11) Clade VI (C6-F5) Clade IV (S. copri DSM18205)

1 µm

C

I II III IV V VI

I II III IV V VI

T9SS- T9SS+
-2

0

2

4

6

8

C
ry

st
al

 v
io

le
t s

ta
in

in
g 

(O
D

59
0)

B

F2-D
6
S6-G

7
F2-E

7

F2-D
11
F2-D

2
F2-C

1
F2-D

5
S6-D

2

F2-A
12
F2-H

9
F2-B

5
F2-H

5
C6-B

1
F2-H

8
F2-B

8
F2-C

9
F2-F

6

F2-H
10
C6-B

8

DSM18
20

5

S6-C
12
F2-A

2
F2-H

3

F2-C
11
S6-F

9
C6-F

5

0

2

4

6

8

10
T9SS present

C
ry

st
al

 v
io

le
t s

ta
in

in
g 

(O
D

59
0)

T9SS absent

S6
-G

7
F2

-D
6

F2
-C

1
S6

-D
2

F2
-A

12
F2

-B
5

F2
-H

8
F2

-F
6

F2
-B

8
S6

-C
12

DS
M

18
20

5
F2

-C
11

S6
-F

9
C6

-F
5

Gentamicin

Chloramphenicol

Tetracycline

Ampicillin

Kanamycin

Vancomycin

Inhibition concentration (µg/mL)

D

Values above the tested range

100-200
50-100
25-50
10-25
5-10
2.5-5
0-1

Clade

Predicted antibiotic resistance

>

>

> >> > >

> >

>>

>

> > > >

> > > > > > > > >> > > > >

Fig. 2 | Phenotypic diversity of Segatella isolates. A Scanning electron microscopy
(SEM) images of select Segatella isolates, cultured in Schaedler broth until early
stationary phase. Isolates names and corresponding clades are labeled on the top.
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evolution of Segatella clades within the extensive gene pool maintained by
intestinal bacteria.

Clades harbor distinct sets of carbohydrate utilization
machineries
As diet has been cited as a main contributor in the colonization of S.
copri2,13,42,43, we directed our focus towards the utilization of dietary fibers as
these are a key metabolic feature of members of the Bacteroidota phylum.
Polysaccharide utilization loci (PULs), involved in the sensing, transpor-
tation, and digestion of available polysaccharides in the environment44, have
been reported to be differentially distributed among S. copri isolates,
enabling their digestion of different sets of polysaccharides10. We predicted
PULs fromour isolate genomes by examining loci containing both susC and
susD genes, known to be involved in carbohydrate transfer, and at least one
known gene belonging to any carbohydrate active enzyme (CAZyme)45

family. The FijiCOMP isolates were rich in PULs, averaging 16 PULs per
genome, albeit lower than what was reported in Bacteroides species but
similar to previous reports in S. copri10,44 (Supplementary Fig. 4A). This
amounted to a large number of CAZymes identified within the isolate
genomes (Fig. 3A), with surprisingly few consistencies across all Segatella
isolates; only three PUL-associated CAZymes were present in all isolates
(GH2, GH3, and GH10). Some PULs are predicted to hydrolyze specific
polysaccharides, for instance, the α-mannan-cleaving GH99 exclusively
presents in Clade V, which may underlie colonization niches in the gut46.
Others have enzymes capable of hydrolyzing animal-derived poly-
saccharides, such as those from sialidase family GH33, which can cleave
N-glycolylneuraminic acid (Neu5Gc), a polysaccharide rich in redmeat47,48.

To test carbohydrate preferences empirically, we performed growth
experiments using different polysaccharides as the sole carbon source. We
specifically chose six plant-derived polysaccharides, including starch, xylan,
and inulin,whichare commonly found in the typical Fijiandiet, such as taro.
Additionally, substrates identified through genomic analysis of PULs, such
as xyloglucan, were also included (Fig. 3B). To broaden the comparison, we
also added a group ofmixedmono-/di-saccharides and one animal-derived
polysaccharide, heparin. Overall, Segatella isolates exhibited more robust
growth inmedia containing the plant-derived polysaccharides compared to
the two animal-derived polysaccharides, in accordance with previously
reported diet correlations2,43.

Segatella isolates showed distinct preferences and abilities in utilizing
different polysaccharides (Fig. 3B), consistent with the variation observed in
PUL content. Five subfamilies of GH5, which is thought to facilitate the
degradation of xyloglucan10,49, were detected from Segatella isolate genomes,
whose presence correlated with the growth on xyloglucan (Fig. 3B, Sup-
plementary Fig. 4B). Clades achieving moderate to high biomass all had
more than three of the five subfamilies including at least one of GH5_2 and
GH5_7 subfamilies (Supplementary Fig. 4B, C). Multiple subfamilies of
CAZyme family GH13, classified as pullulan degrading CAZymes50,51, were
detected from isolate genomes, and, specifically, subfamily GH13_7, anno-
tated as α-amylase, was present in all isolates capable of utilizing pullulan
(final OD600 > 0.1) and was absent from those unable to grow on pullulan.
Additionally, Clade IV (S6-C12), which had the highest number of detected
CAZymes, was able to grow on all plant-derived polysaccharides, albeit with
varying maximum OD600. The highest OD600, observed with xyloglucan as
the carbon source, was 5.5 times higher than the lowest value, observed with
pullulan.On the contrary, despite a high number of PULs, Clade III (F2-H8)
exhibited mild growth on all of the selected polysaccharides, with the
exception of pectin. Surprisingly, none of the isolates preferred the mono/
disaccharides mixture (GMC) over the plant-derived polysaccharide
options, despite cellobiose and glucose being the major carbon sources in
M10, the rich medium for the cultivation of S. copri complex.

Segatella isolates produce short-chain fatty acids as a result of
polysaccharide degradation
Dietaryfibers are degradedbygutbacteria intodifferent typesof short-chain
fatty acids (SCFAs), which compose up to 10% of the host’s energy budget

and confer numerous health benefits, including regulation of host meta-
bolism, immunity, and anti-inflammatory responses48,52–54. Bacteroides
species predominantly produce propionate and acetate55–57, whereas
intestinal Firmicutes are the main producers of butyrate58. Other important
fermentation products also include lactate and succinate, the latter of which
is reported to benefit the host glucose metabolism by activating intestinal
gluconeogenesis54. To identify the fermentation products of Segatella iso-
lates from different clades, we conducted high-performance liquid chro-
matography (HPLC) analysis on the spent media of seven diverse isolates
inoculated with different polysaccharides.

Segatella isolates showed the ability to produce a variety of SCFAs
including formate, lactate, succinate, propionate, and acetate. Butyrate and
valerate were also detected from some samples even though at low con-
centrations. Despite differences in growth of the isolates in different carbon
sources, isolates produced similar ratios of SCFAs (Fig. 3B), with some
notable differences. Clade I (F2-D6), Clade II (S6-D2), and Clade IV (S6-
C12) had similar SCFA profiles. Although Clade III (F2-H8) was unable to
grow to a large extent in any of the supplied carbon sources, this isolate was
able to produce a considerable amount of propionic acid (18.92mM) from
pectin utilization, a feat unmatched by the other isolates, despite their higher
growth. Interestingly, although S6-C12 and S. copriDSM18205, two strains
within Clade IV, are genetically very similar (Fig. 1A), they exhibited
markedly different carbohydrate preferences and SCFA production
(Fig. 3B). This suggests that the metabolism of SCFAs may be governed by
specific sets of enzymes whose presences do not necessarily align with
genome clustering.

Only some Segatella isolates induced strong transcriptional
responses from intestinal epithelial cells
Given the challenge in colonizing murine models with Segatella, especially
in light of their highly variable carbohydrate preferences, we chose to ana-
lyze host transcriptional responses to Segatella clades using cultured human
Caco-2 cells, an intestinal carcinomacell line. Two-hour incubationwith the
selected Segatella isolates did not induce significantmortality ofCaco-2 cells
(Supplementary Fig. 5A). There were a large number of differentially
expressed genes (DEGs) that were clade-specific. However, Caco-2
responses to Segatella isolates’ transcriptomes clustered into two groups,
with one largely reminiscent of the untreated cells (“hypo-stimulating”),
with fewer DEGs compared to the second group (“hyper-stimulating”)
(Fig. 4A, B). Interestingly, the type strain S. copri DSM18205 resulted in
few differentially expressed genes (DEGs), despite being reported as
pro-inflammatory in previous studies7,59.

Among the DEGs with the largest effect sizes between the Hypo and
Hyper groups were genes with known association with gastro-intestinal
disease. For instance, G protein-coupled receptor 55 (GPR55), a gene
associated with intestinal inflammation, was found among the DEGs
upregulated in the Hyper group60. Regulated expression of many long non-
coding RNAs (lncRNAs) was also observed including those correlated to
gastric cancer and colorectal cancer. For example, DLGAP1 and pcsk2-2:1
(or RPS27AP2) showed highly increased expression in the Hyper group as
well61,62. Curiously, among the genes with increased expression in the Hypo
group compared to Hyper group (Fig. 4B) was SEMA3E, a gene whose
expression is significantly reduced in ulcerative colitis patients63. The reg-
ulation of these genes leads to the hypothesis that isolates classified into the
Hyper and Hypo groups could potentially be disease-promoting or -pre-
venting, respectively. However, further study will be required to understand
the full regulatory networks of these genes in vivo.

Functional enrichment analyses on the DEGs between the Hyper and
Hypo groups identifiednearly half of the 19 significantly up-regulated genes
in the Hyper group were associated with actin production, implying
potential changes in cell morphology, including cell migration or inter-
nalization of bacterial cells. (Fig. 4C). Hypothesizing that this may con-
tribute to barrier defects, we tested whether exposure to Segatella isolates
causes hyperpermeability of Caco-2 cell layers. Fluorescein isothiocyanate-
labeled dextran (FITC-dextran) of various sizes is used to measure
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permeability. Yet, no significant changes in cell layer permeability were
observed, except for a slight increase in permeability seen for one of the
Clade IV isolates (S6-C12) (Supplementary Fig. 5B).

Among all microbiome-derived Segatella clades, Clade II and V
exhibited the most different gene expression profiles (Supplementary
Fig. 5C, Fig. 4A). Among the 2972 DEGs identified between Clade II- and
Clade V-treated groups, 6 of the top 20 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways with significantly reduced expression in the
Clade II-treated group were associated with immune signaling pathways,

including IL-17, NF-kB, Nod-like receptor, C-type lectin receptors,
mTOR, and TNF signaling pathway (Supplementary Fig. 5D). These
findings highlight significant differences of Clade II in modulating the
host immune responses. We further annotated the DEGs according to
their associations with disease. We observed that, in comparison to the
non-treated group, only the treatment with Clade VI bacteria led to ele-
vated expression of numerous genes that are correlated with intestinal/
colorectal cancers, amounting to a total of 59 genes (Supplementary
Fig. 6A).
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Interactions between different isolates led to the changes in
relative abundances in co-culture communities
Despite the realization that humans harbor closely related strains with
dynamic strain replacement happening occasionally, there is a surprising
lack of understanding regarding how closely-related consortia persist14,64,65.
Within diverse communities, complex competitive interactions are thought
to provide stability66. Acknowledging the distinct metabolisms and nutri-
tional preferences of different Segatella clades, we performed co-culture
experiments to decipher pairwise interactions. To identify individual iso-
lates, we designed primers to themarker gene, rplN, which spanned a region
of sufficient genetic diversity to distinguish between isolates. Employing
amplicon sequencing, we were able to track the relative abundances of
isolates in the co-culture community (Fig. 5). In the time frame, most of the
pairwise cocultures reached relative abundance ratios different from the
starting point (0.5:0.5). Some co-cultures resulted in reduced growth overall,
including a strain cocktail involving five isolates, suggesting competitive
interactions (Supplementary Fig. 6B). Clade IV isolate S6-C12 dominated in
all combinations, often reaching higher relative abundances than any other
co-cultured isolate (Fig. 5 upper left), whereas Clade V isolate F2-C11 was
uncompetitive with all the other isolates. These results are in accordance
with the estimated clade relative abundances in the fecal metagenomes, of
which Clade IV and V presented the highest and lowest abundances,
respectively. (Note that Clade VI was not included in the coculture
experiment, although its abundance in its sourcemetagenome is below 5%,
Fig. 1B).

We performed a second assay to explore whether any metabolites or
proteins produced by one organism could promote or inhibit the growth of

another, to further probe the interactions between the isolates. Segatella
isolates cultured in the spent medium of other isolates showed growth
inhibition to different extents. The results are consistent with what was
observed in the coculture experiment, with Clade IV isolate S6-C12 spent
medium showing stronger inhibition of all other isolates. Clade I isolate F2-
D6 was inhibited by all other isolates (Supplementary Fig. 6C). The results
indicated that the interactions between cocultured Segatella isolates are, at
least partially, achieved by secreted small molecule metabolites or proteins
during bacteria growth.

Discussion
S. copri was first isolated in 2007, and its genome was made available in
200967. Whereas the study of Bacteroides species has been facilitated by the
ease at which they can be cultured, since the first S. copri isolates were
obtained, only one S. copri genome has been made available, that from the
gut microbiome of a healthy Indian male68, and until recently, only one
strain was publicly available through commercial strain catalogs. Therefore,
most of our knowledge about the role of S. copri in the gut microbiome has
come from correlative data from case-control metagenomic studies. The
diversity within the gut commensal S. copri complex has gained attention in
recent years. Tett et al. assembled thousands of MAGs from fecal meta-
genomes in 2019, clustering them into four distinct lineages1.Most recently,
Blanco-Míguez and colleagues further expanded the S. copri complex into
13 distinct species3.

We performed whole genome sequencing on 63 of our Fijian S. copri
complex isolates clustered into six clades based on their gene content, which
were classified into six of the new species identified byBlanco-Míguez et al.3.
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The detected differences in functional gene content are likely reflective of
deeper evolutionary relationships rather than recent gene transfer events, as
gene clustering largely matches the isolates’ phylogeny. The data presented
here, regarding the nutritional preferences, production of metabolites, and
interactions with host cells, supports the notion that genomic diversity-
driven variations in metabolism and phenotypes provide a possible expla-
nation to the conflicting correlations between S. copri complex and host
health. As S. copri is being considered to serve as a diagnostic indicator69,70 or
even a putative therapeutic target71, it is critical to understand the potential
effects driven by the genetic diversity between S. copri and closely related
Segatella species within the gut microbiome.

The two prominent genera within the Bacteroidota phylum, Bacter-
oides and Segatella, are thought to play a major role in carbohydrate
degradation in the gut. Bacteroides and Segatella species harbor numerous
diverse PULs and consistently make up a large portion of individuals’
microbiome composition72,73. Segatella species are pervasive in developing
countriesworldwide,whereBacteroidesdominate inWesternized countries,
and it is suspected that diets higher in fiber drive this difference4,19. There are
some major similarities, including the production of propionate. Bacter-
oides-produced propionate has been reported to play a beneficial role in
intestinal immunity and homeostasis56,57. Mapping of the central carbon
metabolismof S. copriDSM18205 (Clade IV) indicated that it is equipped to
produce succinate, formate, and acetate with glucose9,67,74. Our results using
more complex carbohydrates reveal lowproductionof SCFAsby this isolate.
On the contrary, our in vitro experiments reveal that Segatella clades isolated
from the Fijian individual broadly produce propionate as a result of
degrading plant-derived polysaccharides, among other SCFAs.Our analysis
of the PUL-associatedCAZymeswhich have knownor predicted substrates,
correlates to large extent with the growth observed in each fiber. However,
the majority of the CAZymes identified are poorly characterized. Although
Segatella isolates have universal abilities to produce propionate, preliminary
searching of known enzymes responsible of propionate synthesis in Bac-
teroides yielded no homologous genes, suggesting unique, or sufficiently
diverged, mechanisms in Segatella.

In addition to SCFAs, we previously reported that members of these
Segatella clades produce diverse and novel sphingolipids, which serve both
as important structural components of the cell membrane as well as sig-
naling molecules11,75. Due to the structural conservation between bacteria
and mammalian sphingolipids, microbiota-produced sphingolipids were
reported to be involved in host metabolism and immune homeostasis75–79.
The production of sphingolipids and SCFAs may underlie some of the
transcriptional differences we observed within the Segatella-Caco-2 cell
coculture experiment presented here. Progress in genetic engineering and/
or colonization of Segatella inmicemodels is required to further investigate
their roles in host metabolism and immunity. The observed multidrug
resistance in Segatella clades warrants attention, given the opportunistic
pathogenicity of S. copri, which has been implicated in bloodstream infec-
tions as reported in a prior case study80.

Members of the genus Segatella have been associated with inflamma-
tion in respiratory mucosa and the oral cavity, as well as the vaginal tract7.
Only recently has their colonizationwithin the gut been associatedwith gut-
associated inflammation and chronic inflammation7,81. Given that Segatella
are highly prevalent worldwide1,82, understanding whether or not all clades
of S. copri complex contribute equally to inflammation is of high impor-
tance. Confusingly, case-control studies have both implicated and absolved
S. copri in inflammation-associated metabolic disorders. S. copri has been
associated with insulin resistance8, but not type 2 diabetes83–85; with both
obesity86–88 and leanness89; and yet is found elevated in patients with rheu-
matoid arthritis59, hypertension90, non-alcoholic fatty liver disease
(NAFLD)87,91 and inflammatory bowel disease92. However, these observa-
tionsmay be confounded by previously unrecognized diversity within the S.
copri complex. Our study did not find any strong correlation between S.
copri presence and disease occurrence at the strain-level. Mouse models are
often used as a way to examine host-microbe interactions, providing some
advantages that cell culture does not such as the effects of long-term

colonization.A few studies have incorporatedmousemodels in studying the
impacts of S. copri on the host, however, thosewere limited to the type strain
S. copriDSM18205,whichhas also been shown to induce pro-inflammatory
cytokines IL-6 and IL-23 in vitro, thereby promoting Th17-mediated
immune responses recapitulating responses seen in rheumatoid arthritis7,93.
The colonization of various clades remains challenging as it requires the
supplement of plant-derived polysaccharides. Our analysis of nutritional
preferences provides more guidance on the practice of facilitating coloni-
zation of Segatella in murine models by polysaccharides supplementation
that can further understanding of the role of Segatella in human popula-
tions. We expect that the growing availability of strains and associated
genomes will further research into the roles of individual strains in disease
and multi-strain consortia that may co-exist in individual’s microbiomes.

Methods
Human subject and stool sample collection
Human stool samples used in this study were collected as part of the Fiji
Community Microbiome Project (FijiCOMP)19. This study was initially
approved by the Institutional Review Boards at Columbia University, the
Massachusetts Institute of Technology, and the Broad Institute and ethics
approvalswere received from theResearchEthicsReviewCommittees at the
Fiji National University and the Ministry of Health in the Fiji Islands. The
Cornell University Institute Review Board additionally approved this study
(#1608006528). Human subjects were consented prior to participation in
the study. Stool samples were collected into PBS with 20% glycerol within
30minof voiding, preserved inRNALater (QIAGEN), and stored at−80 °C
prior to metagenomic library preparation. The prepared library was
sequenced on the Illumina HiSeq2000 platform, 2 × 250 bp paired end
reads19. The quality of the metagenomic sequencing reads were assessed by
FastQC94.

Segatella genomes included in this study
The type strain used in this study, Segatella copriDSM18205,was purchased
from DSMZ. Its genome was downloaded from NCBI RefSeq
(GCF_000157935.1). The 63 S. copri isolates used in this study were
obtained as described in the METHODDETAILS section. Apart from our
own isolate genomes, we included in part of our analysis the isolates from
previous publications available at the time this study was conducted. This
includes 83 genomes fromTett et al., 11 genomes from Li et al. and 32 from
Blanco-Míguez et al1,3,12. The reference genomes of all other Segatella species
(named as Prevotella by NCBI) used in phylogenetic analysis were down-
loaded from NCBI RefSeq database.

Bacteria isolation and cultivation
The formula of Modified Medium 10 (M10) agar was modified from a
previous study and is prepared as described in Supplementary Note 1,
degassed overnight, and used to obtain Segatella isolates from human gut
microbiomes67,95. Stool samples were diluted with PBS (10−1 to 10−8), plated
onto M10 agar, and incubated in the anaerobic chamber (3%H2, 20% CO2,
remainder N2. Coy Lab Products.) for up to 48 h. To further identify
Segatella isolates, we performed Polymerase chain reactions (PCR) using
previously developed Segatella 16S rRNA-specific primers96 (primers: g-
Prevo-F, g-Prevo-R. Supplementary Table 2). Colonies yielded bands with
correct sizes were streaked and individual isolates were further verified by
Sanger sequencing of the full-length 16S rRNA gene (primers: 27 F, 1042 R.
Supplementary Table 2).

When needed, the frozen stocks were inoculated and cultured for 24 h
at 37 °C in the anaerobic chamber. In order to get the best revival, the
glycerol stockswerefirst inoculated ontodegassedM10 agar plates and then
subculture to either BBL™ Schaedler Broth (BD Biosciences or HiMedia) or
M10 plates, depending on the requirements of the following experiments.
Solid and liquid media were freshly made and stored in the anaerobic
chamber overnight to degas before use.

The liquid medium was prepared by dissolving Schaedler Broth
powder with water inside anaerobic chamber, adding in 0.05% resazurin,
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aliquoting desired amount into sample tubes or serum bottles, sealing and
autoclaving at 121 °C for 15min. Schaedler Broth from two different
manufacturer were used throughout the study as indicated due to the dis-
continuation of BBL™ Schaedler Broth by BD Biosciences.

Whole-genome sequencing
S. copri DSM18205 and 63 Segatella isolates obtained from previous steps
were anaerobically cultured onM10plates for 24 h and then resuspended in
PBS. Genomic DNA was isolated using E.Z.N.A.® Bacterial DNA Kit
(Omega). Libraries were prepared using the NEBNext® Ultra™ II DNA
Library Prep Kit (Illumina). Libraries were sequenced on the Illumina
MiSeq 2 × 250 bp platform.

Computational methods
Fecal metagenome processing and analysis. The Fijian fecal sample
metagenome was processed using three different pipelines used in pre-
vious studies and one pipeline used in the lab to get the MAGs for
following analysis.

(1) First method was adopted from the study of Pasolli et al24. Contigs
shorter than 1000 nucleotides were filtered out after assembling with
MEGAHIT22. The reads were mapped using bowtie2 (--very-sensitive-
local), followed by binning with MetaBAT2 (-m 1500)25,97.

(2) In the pipeline from Nayfach et al.28, the metagenome was
assembled using MEGAHIT followed by contig binning with MaxBin,
MetaBAT2 and CONCOCT23,25–27. The obtained bins were then refined
using DAS Tool and cleaned using MAGpurify28,98.

(3) The third method is a pipeline established in the lab combining
several previously used and proved pipelines29. Briefly, the reads were
assembled with metaSPAdes30 followed by contig binning MaxBin27,
MetaBAT225 and CONCOCT26 binning and bin refinement using DAS
Tool30.

(4) The last method was used by Chen et al.31. BBTools was used to
remove the adapter sequences, contamination from PhiX, and other illu-
mine trace contaminants from the raw reads (bbduk.sh ktrim = r
k = 23 mink = 11 hdist = 1 tbo = t)99. Low-quality bases and reads were
removed using Sickle100. The filtered reads were then assembled using
metaSPAdes30 and IDBA-UD32, followed by read mapping using bowtie2
with default parameters97. Scaffolds longer than 2.5 kb went through bin-
ning byMetaBAT2 with default parameters25. The original pipeline used in
Chen et al.’s research includes manual cleaning and curation of the MAGs
obtained from steps above, which we skipped in order to compare the
performance of pipelines without manual processing.

The qualities of the bins were assessed with and the taxonomic clas-
sifications of theMAGswere acquired fromCheckM33. The composition of
the fecal metagenome was profiled by MetaPhlAn220.

Isolate genome assembly and annotation
The paired-end raw reads were trimmed by Trimmomatic and assembled
into genomes using SPAdes v3.10.1101,102. Any contigs that are less than
500 bp in length were filtered out. The completeness and quality of
assembled genomes were checked with QUAST v4.0 and CheckM v1.0.11
with a contamination cutoff of 5% and completeness cutoff of 95%33,103.
Open reading frameswerepredictedby runningProdigal v2.6.3 onobtained
genomes104. Proteins were annotated from the KEGG (Kyoto Encyclopedia
of Genes and Genomes) prokaryotic protein database using DIAMOND
v0.9.21 blastx105. Sequences were then filtered based on e-value and percent
identity. Hits with e-values higher than 1e-5 or less than 30% identity to the
reference sequences were removed.

Phylogenic analysis
16S rRNA gene. The 16S rRNA sequences were identified from the
genome of each Segatella isolate using rnammer v1.2106. For the twelve
isolates from which we failed to get 16S genes by rnammer, amplification
and sequencing of full-length 16S rRNA genes were performed with
primers 27 F and 1492 R (Supplementary Table 2) and Phusion® Hot

Start Flex DNA Polymerase (NEB). Cycles were performed as: 98 °C for
3 min, then 30 cycles of 98 °C for 10 s, 60 °C for 30 s, and 72 °C for 30 s.
The PCR products were cleaned using Agencourt AMPure XP Beads
(Beckman Coulter) before Sanger sequencing.

The ANI values were calculated using FastANI between each two
isolates including the type strain S. copri DSM18205, of which the genome
was downloaded fromNCBI RefSeq107. Genome based-phylogenomic trees
of all Segatella isolate genomes and reference genomes of other Segatella
species were constructed by PhyloPhlAn3 using the default library con-
taining more than 400 marker genes with following options108: --diversity
low, --tree raxml. The tree was annotated and visualized using GraPhlAn109.

Presence of Segatella clades in cMD
Geneswere called from Segatella isolate genomes using prodigal 2.6.3104 and
blasted against Uniref90 database (September 2023 release) using DIA-
MOND 2.1.8105,110. Genes mapped to the same Uniref90 ID with identity
≥90%were clustered together. If a cluster had genes from ≥95% of genomes
of particular clade andhas no genes from the other clades, the centroid gene,
the gene with longest sequence, was considered as a marker gene for that
particular clade1. This resulted in 1393 genes forClade I, 622 genes forClade
II, 437 genes for Clade III, 580 genes for Clade IV, 1206 genes for Clade V,
and 490 genes for Clade VI.

cMD22 were filtered for fecal metagenomes and only countries with
more than 5 samples and samples with ≥20M reads, resulting in
10,400 samples. Read files were adapter trimmed using following para-
meters with BBTools99: ktrim = r k = 23 mink = 11 hdist = 1 tpe tbo. To
estimate presence of Segatella clades in cMD, the database of clade-specific
genes was indexed using default parameters in KMA111 and concatenated
paired-end clean reads from cMD were mapped to it with default para-
meters andfiltered for geneswith≥90% identity and≥95%coverage.A clade
was considered present in the metagenome if ≥75% of the clade marker
genes were present. The relative abundance of Segatella clades in each
sample was calculated as:

mean clade marker KMA coverage �mean genome size in clade bp
� �

total number of reads bp
� �

ð1Þ
Western and non-western classification was used as provided in cMD

and countries were assigned different income-class based onWorld Bank’s
classification downloaded in March 2024 (https://datahelpdesk.worldbank.
org/knowledgebase/articles/906519-world-bank-country-and-lending-
groups). To assess correlation of disease with prevalence and abundance of
Segatella clades, we only considered studies with both control and disease
samples and performed Fisher’s exact test and Mann-Whitney test
respectively.

Estimation of clade relative abundance
The relative abundance of each Segatella clade in the fecal metagenomewas
estimated using DiTASiC with the default parameters112. One isolate gen-
ome was picked from each clade as the reference genome. Due to the lower
similarity of F2-F6 to other isolates in Clade III, two genomes were picked
from this clade as reference genomes (C6-B8 and F2-F6). The proportion of
clade in isolate collection was calculated by dividing the total number of
isolates by the number of isolates belong to each clade.

Antibiotic resistance prediction and test
Antimicrobial resistance genes were predicted in the Segatella isolate gen-
omes usingABRicate113 combining following databases: CARD114, EcOH115,
ARG-ANNOT116, Ecoli_VF, VFDB117, MEGARES 2.00118, Resfinder119,
PlasmidFinder120.

Resistance against various antibiotics were tested using Minimum
InhibitoryConcentration (MIC) assayswithbrothmicrodilutionmethod121.
To ensure sufficient growth of Segatella isolates, Schaedler brothwas used in
theMIC tests. Briefly, selectSegatella isolateswere inoculatedontoM10 agar
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plates and cultured for 24 h. Colonies were collected and resuspended in
sterile PBS to 5 × 105 CFU/mL. Schaedler broth with concentration gra-
dients of select antibiotics were prepared in polystyrene 96 well plates
(Costar) and degassed overnight. In the anaerobic chamber, 10 μL of bac-
teria cell suspension was inoculated into 200 μL of medium per well.
Microplateswere incubated for 48 h anaerobically and the optical density at
600 nm was read on Biotek Cytation 5 multimode reader with necessary
dilutions. The interpretation of the results referred to the Reading guide for
brothmicrodilution and theBreakpoint tables for interpretation ofMICs and
zone diameters and from the European Committee on Antimicrobial Sus-
ceptibility Testing (EUCAST)122.

Identification of MGEs from isolate genomes
The MGEs were identified from the isolate genomes following the method
provided by by Khedkar et al.123. Briefly, HMM profiles were built for
recombinases using known protein sequences and additional HMMs from
Pfam124. The recombinaseswithin the isolate genomeswere annotatedusing
these HMMs and were mapped to the accessory gene regions to identify
recombinase islands. Then the annotated phage structural genes from
EggNOGand genes involved in conjugation fromTXSscanweremapped to
the recombinase islands to assign potential MGEs40,125.

SEM and TEM imaging
For SEM imaging, the bacteria cells were fixed with 2% Glutaraldehyde
and 1% OsO4 and transferred to a filter paper after dehydration with
serial gradients of ethanol. After overnight critical point drying, the filter
papers were sputter-coated with approximately 10 nm gold-palladium
particles (ratio 60:40) for 60 s at 30 mA of current and the images were
acquired from the Zeiss Sigma 500 SEM. For S. copri DSM18205 and
isolate F2-D6, the samples were imaged at 0.5 kv with a working distance
of 2.0 mm and 1.7 mm, respectively. For the rest of the samples, imaging
was performed at 1.0 kv with 5.0 mm working distance. Images were
acquired with a secondary electron signal using a side angle Everhart-
Thornley detector. For TEM imaging, after the same fixation procedures
as used for SEM, the pellets were resuspended in 1.5% uranyl acetate and
incubated in dark for 1 h. After dehydration with serial gradients of
ethanol, samples were infiltrated and embedded with Quetol 651 for
overnight. The samples were viewed on a JEM-1400 transmission elec-
tron microscope (JEOL, USA, Inc., Peabody, MA) operated at 100 kV
and images were captured on a Veleta 2 K × 2 K CCD camera (EM-SIS,
Germany).

Biofilm quantification
The biofilm formation by Segatella isolates was quantified using crystal
violet staining assay126. Select Segatella isolates were cultured anaerobi-
cally in 200 μL of Schaedler Broth on a polystyrene 96-well plate (Costar)
for 48 h. Wells with broth incubated at the same time were used as
blanks. The liquid cultures were then aspirated, and plates were dried at
60 °C for one hour. Each well was added with 150 μL 0.1% crystal violet
solution and stained at room temperature for 15 min. After washing
three times with water to remove excess staining, the residual liquid was
removed and the plates were dried at 60 °C for 10 min. Finally, the
biofilm was solubilized and destained with 150 μL 33% acetic acid per
well. Absorbance at 590 nm was read on Biotek Cytation 5 multimode
reader to quantify biofilm formation. Dilutions were made when
necessary.

Polysaccharides utilization
CAZyme and PUL predictions. The CAZyme genes in each Segatella
isolate were predicted and annotated from dbCAN-HMMdb-V1145

database using hmmscan (version 3.3)filteredwith recommended cutoffs
(e-value < 1e-18, coverage > 0.35)127. The detected CAZymes were cate-
gorized based on the correlated polysaccharide substrates referring to the
information in previous studies128,129. PULs were predicted from the
isolate genomes using PULpy130.

Bacteria cultivation and sample preparation for HPLC
Segatella Defined Medium (SDM) was adopted from Defined Minimal
Medium Glucose (DMMG) and optimized for the growth of different
Segatella clades (Supplementary Note 2)131,132. Select Segatella isolates were
first inoculated ontoM10plates and cultured anaerobically at 37 °C for 24 h.
Colonieswere then collected and resuspended in sterile PBS.After adjusting
the OD600 to 1.0, 200 uL of the bacteria cell suspension was inoculated into
5mL SDM with 0.5% (w/v) different carbon sources and cultured anaero-
bically at 37 °C for 48 h. Blank cultures were inoculated with same amount
of PBS. The final optical density at 600 nm (OD600) of liquid cultures was
measured on Biotek Cytation 5 and was calculated by subtracting the blank
readings of medium with corresponding carbon sources.

The rest of the liquid cultureswas centrifuged at 5000 g, 4 °C for 15min
to pellet the bacteria cells. The supernatants were collected and filtered
through 0.45 um filters. To prepare samples for HPLC, 1mL of filtered
supernatantwas transferred to anautosampler vial and thenmixedwellwith
100 uL of concentrated HCl.

HPLC settings
TheHPLCmeasurement protocolwasmodified fromaprevious study133. The
Shimadzu HPLC–UV system used consisted of the following modules: a LC-
20AD pump, a LC-10AD-VP pump, a DGU-14A degasser, a CBM-20A
controlling module, a SIL-20A Auto-sampler, a CTO-20AC oven, an SPD-
10A UV detector, and a RF-10A Fluorescence detector. Chromatographic
separation was performed using the Hypersil GOLD aQ C18 column
(150mm×4.6mm i.d, particle size = 3 µm.ThermoFisher.). The columnwas
thermostatized at 30 °C while running. Twomobile phases were used for the
optimal separation of different organic acids: mobile phase A was 20mM
NaH2PO4 with pH adjusted to 2.2 using phosphoric acid and filtered with a
0.2 µm filter.Mobile phase Bwasmobile phaseAmixedwith acetonitrile (6:4,
v/v). The washing buffer was acetonitrile in HPLC water (6:4, v/v). The pro-
gramof the bi-gradient elutionperformed is shown in SupplementaryTable 3.
Tenmicroliters of the prepared samples were injected intoHPLC and theUV
detector read at a wavelength of 210 nm. The heights of peaks and baselines
were acquired from the chromatography and the concentrations of each acid
in the samples were calculated from the standard curves described below.

Calibration and standard curve acquisition
HPLConcalibrator solutions. Stock solutions (SS) of select SCFAswere
prepared in eitherHPLCwater or 1:1mix (v/v) of water andHPLC-grade
methanol with the concentrations indicated in Supplementary Table 3
For the acquisition of calibration curves, blank SDM was filter sterilized
using a 0.45 µm filter and was used to prepare calibrator solutions con-
taining following concentrations of all SCFAs: 50 mM, 25 mM, 10 mM,
5 mM, 2.5 mM, 1 mM, 0.5 mM, 0.25 mM, 0.1 mM, 0 mM. Acids with
similar elution times were assigned to two different calibration groups (A
and B) to better separate the peaks. To run calibrators on HPLC, 1 mL of
each calibrator solution was added into an autosampler vial with 100 uL
concentrated HCl and vortexed for 15 s to fully mix. Ten microliters of
the prepared solution were injected and each calibrator solution was run
for three times as biological replicates.

Calculationof limits of detection andquantification. Linear regression
was performed on the peak heights of each SCFAwhich were acquired as
described in the HPLC data analysis section below. The Limit of Detec-
tion (LOD) and Limit and Quantification (LOQ) were calculated as
suggested by the International Conference on Harmonisation (ICH) as
followswhere σ is the standard deviation of the response and S is the slope
of the calibration curve134:

LOD ¼ 3:3σ
S

ð2Þ

LOQ ¼ 10σ
S

ð3Þ
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Bacteria-human cells co-culture experiment
Co-culture experiment was performed with human Caco-2 cell line at
passage 9. Dulbecco’s Modified Eagle Medium (DMEM, Corning) sup-
plemented with 10% Fetal Bovine Serum (FBS) was used as the culture
medium. Caco-2 cells were cultured in 6-well Transwell inserts (Corning,
0.4 uM pore size, Polycarbon membrane) for 4 weeks for differentiation
before experiment. On the day of experiment, medium was changed from
DMEM supplemented with 10% FBS to pure DMEM.

Seven Segatella isolates including the type strain S. copri DSM18205
were selected to represent different clades. Bacteria cells were collected from
overnight-cultured M10 plates and washed with sterile PBS twice. Bacteria
pellets were then resuspended in sterile DMEM medium with OD600

adjusted to 1.0. The bacteria suspensions were diluted 1: 50 with sterile
DMEMand added into the Transwell inserts at anMOI of 1: 25. Plates were
cultured at 37°C aerobically with 5% CO2 for two hours. Based on our test,
all Segatella isolates can maintain good viability after two-hour aerobic
incubation in DMEM and the viability dropped dramatically afterwards
(Supplementary Fig. 6D).

Total RNA extraction and sample quality control
After two-hour incubation,mediumwas removed from the plates and 1mL
of TRIzol reagent (Invitrogen) was added into each well immediately to
collect cells. The total RNAs of Caco-2 cells was extracted by using TRIzol
method. Before library preparation, the concentrations of obtained RNA
samples weremeasured usingQubit Fluorometer and the sample integrities
and purities were examined using Agilent RNA Sample Quality Control
Analysis and agarose gel electrophoresis. Samples with an RNA integrity
number (RIN) higher than 8.0 were qualified for library construction.

Library construction and RNA sequencing
Messenger RNA was purified from total RNA using poly-T oligo-attached
magnetic beads.After fragmentation, thefirst strand cDNAwas synthesized
using random hexamer primers, followed by the second strand cDNA
synthesis usingdTTP fornon-directional library.After end repair,A-tailing,
adapter ligation, size selection, amplification, andpurification, librarieswere
ready for sequencing. The library was checked with Qubit and real-time
PCR for quantification and bioanalyzer for size distribution detection.
Quantified libraries were pooled and sequenced on Illumina NovaSeq
150 bp Paired-end platform, according to effective library concentration
and data amount.

RNA-sequencing data analysis
Part of the RNA-sequencing data analysis was performed by Novogene.

Quality control. The raw data in fastq format was first processed using
the fastp software. This step involved extracting clean data (clean reads)
by filtering out reads containing adapters, ploy-N sequences, and low-
quality reads from the raw dataset. Concurrently, metrics such as Q20,
Q30, and GC content were calculated for the clean data. Subsequent
analyses were conducted exclusively using this cleaned high-quality
dataset.

Readmapping. Reference genome and genemodel annotation files were
downloaded from genome website directly. Index of the reference gen-
ome was built and paired-end clean reads were aligned to the reference
genomeusingHisat2 v2.0.5135.Hisat2was selected as themapping tool for
that it can generate a database of splice junctions based on the genemodel
annotation file, leading to more accurate mapping results compared to
other tools that do not account for splice junctions.

Gene expression level quantification. featureCounts v1.5.0-p3 was
used to count the numbers of reads mapped to each gene136. Then we
calculated the Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) for each gene based on the gene length and mapped read
counts.

Differential gene expression analysis. Pairwise differential expression
analysis of the treatment conditions (three biological replicates per
condition for the eight treatment conditions) was performed using the
DESeq2 R package (1.20.0)137. The same analysis was also performed
between the hyper and hypo group using all samples clustered into each
group. The resulting p-values were adjusted using the Benjamini and
Hochberg’s approach for controlling the false discovery rate. Genes with
an adjusted p-value <= 0.05 identified by DESeq2 were assigned as dif-
ferentially expressed.

Functional enrichment analysis.We performed enrichment analyses of
Gene Ontology (GO), KEGG pathways, DO (Disease Ontology), and
disease related genes with DisGeNET database of differentially expressed
genes using the clusterProfiler R package138, in which gene length bias was
corrected. Functional terms with corrected p-value <= 0.05 were con-
sidered significantly enriched by differential expressed genes.

Cell permeability assay
Caco-2 cells (Passage13)were cultured in6-wellTranswell inserts (Corning,
0.4 uM pore size, Polycarbon membrane) for four weeks to differentiate.
The same Bacteria-Human cells co-culture experiment was performed
following the protocol above. After two hours incubation, the medium was
removed from both the inserts and the basolateral compartments. The cells
werewashedwithPBS and1.5 mLFITC-Dextran solutions (1mg/mL)were
added to the apical side of the cell layers. Thewellswere refilledwithDMEM
and cultured at 37 °C with 5% CO2. At 1 h, 2 h, and 4 h, 1mL of samples
were collected from the basolateral compartments and refilled with 1mL
freshDMEM. The concentration of FITC-Dextranwasmeasured on Biotek
Cytation 5 (excitation: 490 nm, emission: 520 nm, Bandwidth: 10).

Primer design and testing for the co-culture interaction
experiment
Five isolates fromdifferent phylogenetic clades and S. copriDSM18205were
selected for the co-culture interaction experiment. Marker genes were
identified using AMPHORA2 (e-value cutoff = 1e-7) from each isolate
genome139. A region of rplN gene was found to provided sufficient variation
to distinguish between each two isolates while a single pair of primers can be
used to amplify this region from all select isolates (Supplementary Table 2).

To test ourmethod, qPCRwas performedonQuantStudio3Real-Time
PCR System using Luna® Universal qPCR Master Mix (NEB) with the
following program and different amount of input genomic DNAs were
tested: 95 °C for 1min, then40cycles of 95 °C for 15 s and60 °C for 30 s.The
qPCR results confirmed equal amplification of targeting regions from the
select isolates, and the differences in input genomic DNAs can be main-
tained during amplification. Based on the amplification curves, 1 μg of
sample DNA was used in library preparation.

Co-culture interaction experiment
Selected Segatella isolateswerefirst inoculated ontoM10plates and cultured
anaerobically at 37 °C for 24 h.Colonieswere resuspended in sterile PBSand
adjusted to have an optical density at 600 nm (OD600) of ~1.0. For each pair
of organisms, 250 μL suspension of each isolate was mixed and inoculated
into 15mL of warm degassed Schaedler broth. In parallel, 500 μL cultures
were set up for each individual organism. Liquid medium inoculated with
the same volumeof sterile PBSwas used as a negative control. For the isolate
cocktail group, equal amount of each isolate suspension except the type
strainwasmix together and1.5mLof the cocktailwas inoculated into 50mL
freshlymade prewarmed Schaedler broth in serum bottle. OnemL of liquid
culturewasdrawnat each timepoint (0 h, 5 h, 7 h, 9 h, 11 h, 13 h, 25 h).Cells
were collected by centrifuging at 10,000 g for 5min. After removing the
supernatant, cell pellets were flash-frozen and stored at −80 °C.

Co-culture interaction library preparation and data processing
Genomic DNA extraction. 1 mL of co-culture samples were spun
down by centrifuging at 10,000 g for 5 min, and the cell pellets were
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used for genomic DNA extraction using Mag-Bind® Bacterial DNA
96 Kit (Omega, Bio-Tek). The DNA extraction was performed fol-
lowing the protocol and automated by epMotion 5075vtc robot
(Eppendorf). The concentration of yielded DNAs was measured
using Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen) in 96-
well plates.

Library preparation. The obtained genomic DNAs were prepared into
sequencing libraries and sequenced on Illumina MiSeq 2 × 250 bp plat-
form. The amplicon region of the rplN genewas first amplifiedwith a pair
of primers containing adapter sequences (rplN-adp-fw, rplN-adp-rev,
Supplementary Table 2) using the following cycle: 98 °C for 30 s, then 22
cycles of 98 °C for 10 s, 63 °C for 30 s, and 72 °C for 10 s, followed by final
extension 72 °C for 5 min. The PCR products was purified using AMPure
XP beads. After clean-up, the DNA concentration was measured using
PicoGreen assay as described above, and the yield DNA was diluted to
0.2 ug/ul. In the second PCR, amplicons from different samples were
indexed with a set of unique barcodes designed by Diebold et al.140. One
microgram of DNA yielded from the first PCR was input as the template
and the cycles were performed as follows: 98 °C for 30 min, then 8 cycles
of 98 °C for 10 s, 64 °C for 30 s, and 72 °C for 10 s, followed by final
extension 72 °C for 5 min. Both PCRs used Phusion®Hot Start Flex DNA
Polymerase in a 30 μL reaction. Each sample was run as two 15 μL
reactions in the second PCR and were pooled together afterwards. The
products of the second PCR were again cleaned up by AMPure XP beads
purification and the concentrations were determined using PicoGreen
assays. Two nanomolar of each sample were pooled together, and the
sample purity and fragment size were checked with Fragment Analyzer.
The pooled sample was then sequenced on Illumina MiSeq 2 × 250 bp
platform. Set-up of PCR reactions, AMPure beads purification, sample
dilution and pooling steps were performed on the Eppendorf epMotion
5075vtc robot. PCR reactions were performed on Eppendorf
Mastercycler® nexus.

Cleaning and merging of sequencing reads. After barcode trimming,
the paired-end reads were merged and filtered using USEARCH
v11.0.667141. The sequencing reads were first merged with the following
parameters: length range = expected length of the amplicon ± 20 bp,
maximum differences allowed = 22 bases, percent identity ≥ 85%. The
merged reads were then passed through the filter with the maximum
error threshold of 1.0. Unique sequences were then detected from the
filtered reads and the count of each unique sequence was calculated.

Relative abundances calculation. The unique sequences from each
sample were aligned to the rplN genes extracted from isolate genomes to
determine the corresponding source strain of each unique sequence. The
percentage of unaligned reads or reads fromunexpected source strainwas
calculated to test the quality and purity of the samples. Three samples
were found with either inadequate merged reads or overabundant reads
from unexpected source strains and therefore were removed from the
following analyses. Then the counts of the unique sequences provided by
USEARCH were used to calculate the relative abundances of the two
isolates in each co-culture sample.

Isolate supernatants inhibitory assay
Supernatant collection. To collect culture supernatants, S. copri
DSM18205 strain and eight select isolates representing different clades
were first inoculated onto fresh-made M10 plates and cultured anaero-
bically at 37 °C for 24 h. Colonies were collected from the plates and
resuspended in sterile PBS with OD600 readings adjusted to ~1.0. Three
milliliter of cell suspension of each isolate was inoculated into 100 mL
warm degassed Schaedler broth in a serum bottle and anaerobically
cultured for 18 h until they have reached the early stationary phase.
Medium inoculated with sterile PBS was processed and used as the
negative control in the experiments. TheOD600 readings of samples at the

time of collection were measured using a SpectraMax M3 microplate
reader. Liquid cultures were centrifuged at 7000 g for 10 min to spin
down the bacteria cells. The supernatants were collected and passed
through 0.22 μm filter cups to sterilize. The supernatant filtrates were
flash-frozen and stored at −80 °C for future use.

Inhibitory assay. Before inoculation of the Segatella isolates, 5 mL of
each sterile supernatant was combinedwith 5 mLof autoclaved Schaedler
broth in a sample tube and degassed in the anaerobic chamber overnight.
The nine select isolates were streaked onto fresh-made M10 plates and
cultured anaerobically at 37 °C for 24 h. Colonies were collected from the
plates and resuspended in sterile PBS with OD600 readings adjusted to
~1.0. Three hundred microliters of cells suspension of each isolate was
inoculated into culture tubes containing different supernatants and fresh
medium and cultured anaerobically at 37 °C. The OD600 values were
measured 24 h after inoculation using the SpectraMax M3 microplate
reader.

Statistical analysis
Statistical analyses of Figs. 2C and 5C were performed in GraphPad Prism.
The differences of two groups were compared using two-tailed Mann-
Whitney test and multiple t-test with Bonferroni correction, respectively.
Themethods, sample sizes, and significance levels are indicated in the figure
legends.

Data availability
The Whole-genome sequencing data of Segatella isolates passed filtering
were deposited to NCBI BioProject PRJNA217052. The metagenome data
of Fijian sample Fiji_W2.48.ST was obtained in a previous work and is
available under the same BioProject. The accession numbers of all corre-
sponding SRAs are listed in Supplementary Table 4.

Materials availability
Segatella fecal isolates acquired in this study can be provided upon request.
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