
npj | biofilms and microbiomes Article
Published in partnership with Nanyang Technological University

https://doi.org/10.1038/s41522-025-00674-1

Prophages in the infantgutarepervasively
induced and may modulate the
functionality of their hosts
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Gut microbiome (GM) composition and function is pivotal for human health and disease, of which the
virome’s importance is increasingly recognised. However, prophages and their induction patterns in
the infant gut remain understudied. Here, we identified 10645 putative prophages in 662
metagenomes from 1-year-old children in the COPSAC2010 mother-child cohort and investigated
their potential functions. No core provirome was found as the most prevalent vOTU was identified in
only ~70% of the samples. The most dominant cluster of vOTUs in the cohort was related to
Bacteroides phage Hanky p00’, and it carried both diversity generating retroelements and genes
involved in capsular polysaccharide synthesis. Paired analysis of viromes andmetagenomes from the
samesamples revealed thatmost prophageswithin the infant gutwere induced and that inductionwas
unaffected by a range of environmental perturbers. In summary, prophages are major components of
the infant gut that may have far reaching influences on the microbiome and its host.

The human gut microbiome is a complex and diverse ecosystem that is
established at birth and becomes increasingly diverse over the following few
years, until a stable ‘adult-like’ composition is reached during preschool
years1–5. Within this period of maturation, several factors have been asso-
ciated with differential development of the gut microbiome. The most well
studied of these is birthmode6,7, but factors such asmedication use8, diet2,9,10,
growing up in rural or urban environments11–13, and the influence of siblings
and pets have also been found to influence bacterial composition14,15. Early
life bacterial gut microbiome dysbiosis has been associated with a range of
disease outcomes in later life including asthma16,17, allergy18–20, and inflam-
matory bowel disease21. Whilst much work has been done on the bacterial
component, recent studies have also shown the gut viral community to be
altered in certain diseases22–26, suggesting that they may also play a role in
disease etiology. Viruses make up a large proportion (up to 5–6% of total
DNA)27 of the gut microbiome and are collectively referred to as the ‘gut
virome’. Their role in the gut microbiome is a research area of growing
interest although much less is yet known about them compared to their
bacterial counterparts.

Although a healthy human gut virome does contain some eukaryotic
viruses, here we consider only bacteriophages (phages) that infect the bac-
teria in the gut and make up the vast majority of the human gut virome.
Shifts in the phage composition of the gut have been associated with an
increasing numberof diseases such asCrohn’s disease,UlcerativeColitis22,28,
and arthritis29. These phages are thought to be virulent, but previous work
has shown that the gut virome contains a significant proportion of tem-
perate phages as well30–32. Temperate phages can integrate into the genomes
of their bacterial hosts and be maintained through generations either as a
part of the host genomes or as a plasmid-like genetic element; but can also
return to the lytic cycle if the bacterial host is stressed by external factors33.
While less than 20% of the phages found in faecal samples from adults were
predicted to be temperate31, they appear to be dominant in the infant gut
virome32 and carry a specific associationwith later risk of asthma34. Previous
studies have also found thatmultiple strains of bacteria from the gut contain
prophages, suggesting that lysogeny is a widespread phenomenon35. Whilst
virulent phages infect andkill their host cell, temperate phagesmaybe under
a selective pressure to provide useful functions to their bacterial hosts.
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Prophages can influence the metabolism and function of their
bacterial hosts by harbouring morons – genes that are not essential for
the phage itself, but may benefit the bacterial host by providing addi-
tional functions that increase its fitness36. These can include antibiotic
resistance genes37–39, and toxins or virulence genes that increase the
fitness of pathogenic bacteria during infection40–42. The presence of a
prophage within a bacterium also has the added benefit of being pro-
tective from infections from other phages. Superinfection exclusion is a
method by which prophages prevent infection of their host by related or
more distant phages43–45. This is achieved by a variety of methods
including alterations to the cell membrane46,47, repressor-based
immunity48, and inhibition of DNA translocation into the cell
cytoplasm49,50, amongst others. Whilst there are several potential bene-
fits to the bacterium from carrying a prophage, negative effects have also
been identified in some cases. For example, in a monoxenic mouse
model system the carriage of lambda prophage in Escherichia coli was
detrimental to the host bacterium due to frequent reactivation of the
prophage51. Additionally, in Streptococcus pneumoniae the carriage and
expression of prophage element Spn1 has been shown to be detrimental
to the fitness of the pathogen, by reducing its ability to colonise the
nasopharynx52. Whether their effects are positive or negative, a growing
body of evidence points to temperate phages being key components of
the gut microbiome that can influence the bacterial host assemblage
diversity and functional potential31,35,53,54.

Since most phages within the human gut are still uncharacterised,
cataloguing and quantifying them within sequenced virome samples has
been challenging. Recently however, huge catalogues of human gut phages
have been published, e.g. the Metagenomic Gut Virus (MGV) catalogue55

and the Gut Phage Database (GPD)56, and these aid researchers in catalo-
guing and tallying their samples by simply mapping virome reads, or even
shotgunmetagenomics reads against them.However, as these databases are
based primarily on assembled bulk metagenomics data, it is still unclear if
the genomes they contain originate from actively blooming viral popula-
tions or whether they comprise fragments of chromosomally integrated
prophages that might even be inactive. Likewise, numerous major human
virome studies have relied on bulk metagenomics for profiling the gut
virome57,58. Again, here it is uncertain to what extent such profiling covers
propagating viruses or integrated prophages.

One approach to resolving this is combining shotgun metagenomics
data in addition to bonafide virome sequencing data for the same samples,
making it possible to distinguish actively induced prophages from dormant
ones. It is thought that temperate phages spend most of their lives as pro-
phages, and this is supported by experimental models where induction is
only triggered following strong chemical stress59. However, within natural
environments, little is known about the overall extent of prophage induc-
tion, and analysing pairedmetagenomic and viromics for the same samples
could answer that question systematically. In this work we utilised a set of
662 previously sequenced infant gut metagenomes60 to identify prophages
and explore their role by analysing their accessory genes. The samples
originate from children of the Copenhagen Prospective Studies on Asthma
in Childhood 2010 (COPSAC2010) cohort, an ongoingmother-child cohort
study followed since pregnancy and throughout early life with exhaustive
phenotyping and sample collection. This allows for statistical testing of
hypotheses about the biology of gut prophage composition during infancy
and its potential link to later disease. Moreover, viral metagenomes (vir-
omes) have previously been deeply sequenced for the same samples32. This
configuration of deep metagenomics and viromics for the same samples
allowed us to distinguish active prophages from dormant ones. By using the
paired metagenome and virome data we were able to estimate if the pro-
phages were actively induced and whether this was affected by external
variables such as antibiotic usage. While our work is consistent with the
current hypothesis that the high virome diversity in early life stems from
induced prophages, it goes on to show that this induction is pervasive and
constitutive, such thatmost prophages in the infant gut are inducedmost of
the time.

Methods
Study design and workflow
Anoutline of the studydesign summarising theworkflowdescribedbelow is
shown in Supplementary Fig 1.

Sample collection
The COPSAC2010 cohort is an ongoing mother-child cohort study of 738
pregnant women and 700 children that have been followed fromweek 24 of
pregnancy, in a protocol designed from the first COPSAC birth cohort
(COPSAC2000)

61. The infant faecal samples studied here were collected at 1
year of age either at the research clinic or at home by the parents following
detailed instructions. All samples were mixed with 1mL of 10% vol/vol
glycerol broth (Statens Serum Institut, Copenhagen, Denmark) and stored
at −80 °C until use16.

Metagenome and virome sequencing and assembly
The same samples were used for bothmetagenome and virome sequencing,
and both datasets have been published previously32,34,60. Below, we have
reproduced the relevant methodology descriptions from the original
publications.

DNA extraction for metagenomic sequencing, taken from Sto-
kholm et al.16

Genomic DNA was extracted from the infants’ samples using the Power-
Mag® Soil DNA Isolation Kit optimized for epMotion® (MO-BIO
Laboratories, Inc., Carlsberg, CA, USA) using the epMotion® robotic plat-
form model 5075 (Eppendorf) according to the manufacturer’s protocol
with the following alterations to the workflow: 150–250 μL of the samples
were added to the 96-well bead plate containing 750 μL bead/RNase A
Solution and 60 μL lysis solution. Centrifugation steps were performed at
3220xRCF for 9min. Removal of enzymatic inhibitors and DNA purifica-
tionwas performed as described by themanufacturer. Finally, theDNAwas
eluted with 100 μL Tris buffer (10mM, pH 7.5). DNA concentrations were
determined using the Quant-iT™ PicoGreen® quantification system (Life
Technologies, CA, USA). Extracted DNA was stored at −20 °C.

Metagenomic sequencing for 1-year fecal samples and data
processing, adapted from Li et al.60

Samples were prepared with the KapaHyper Prep kit (for Illumina) (KAPA
Biosystems,Wilmington,MA,USA). Paired-end (150 bp) sequencing of the
663 samples in the DNA library (1-year samples) was performed with the
Illumina NovaSeq apparatus by Admera Health (USA). Out of these
663 samples, only one failed to produce a library. In total, 662 gut samples at
1 year of age were sequenced for this study, generating between 32.6 and 215
million 150-bp paired-end reads per sample (mean ± SD: 48 ± 15.5 million
reads). The samples were sequenced in a single batch to avoid any batch
effect. Bioinformatic preprocessing was parallelized using GNU Parallel
version 2018072262. Sequencing adapters were removed using BBDuk, from
BBTools version 38.19 (https://sourceforge.net/projects/bbmap/), using the
default options with the following exceptions: “ktrim = r k = 23 mink = 11
hdist = 1 hdist2 = 0 ptpe tbo”. Low-quality sequences and reads shorter than
50 bases were filtered out using Sickle version 1.3363. Human contamination
wasfilteredoutusing theBBMap featureofBBTools,withdefault values.The
final dataset contained between 14 and 211 million clean reads per sample
(mean ± SD: 46.7 ± 15.5 million reads). Clean reads were assembled with
SPAdes version 3.12.0 using defaultmetagenomics settings64.Metagenomics
diversity was analysed using Nonpareil version 3.30, in kmer mode65.

Virome extraction for 1-year fecal samples, adapted from Deng
et al.66

Virome Isolation fromFeces. After spikingwith knownphages, samples
were poured into a stomacher filter bag (Interscience BagPage, 100 mL,
Saint-Nom-la-Bretèche, France). The mixture was homogenized (Sto-
macher 80, Seward, UK) for 120 s at the high level setting. Homogenized
samples, from the other side of the filter in the bag, were transferred to
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50 mL tubes and centrifuged at 5000 × g for 30 min at 4 °C. After cen-
trifugation, the supernatant was filtered through a 0.45 μm PES filter
(Minisart® High Flow Syringe Filter, Sartorius, Göttingen, Germany)
into the bottom of the outer tube of a Centriprep 50 K device (Millipore,
Burlington, MA, USA). Afterwards, the filtrate was purified and con-
centrated using the Centriprep 50 K device by centrifuging at 1500× g
three times in a row, first time for 30 min, second time for 10 min, and
third time for 3 min. Extra centrifugation time was sometimes applied to
allow the liquid level in the inner tube to be similar to the outer tube. The
liquid filtered into the inner tube was poured off after each centrifugation
step. A volume of 200 μL SMbuffer was added to the inner tube at the end
and centrifuged for 3 min. After the final centrifugation, 140 μL of the
concentrated virome solution remaining in the outer tube was collected.
The Centriprep filter membrane was cut out and added to the virome
solution before storing at −80 °C until nucleic acids extraction. The
remaining volume was stored at 4 °C for plaque assays.

Nucleic acid extraction of virome from feces. The concentrated vir-
ome solution and the cut filter membrane was first treated with 1 μL of
100 time diluted Pierce™ Universal Nuclease (Thermofisher Scientific,
Waltham, MA, USA) for 5 min at room temperature, then the QIAmp
viral RNA mini kit (Qiagen, Hilden, Germany) was used for viral DNA/
RNA extraction following the procedures described by the manufacturer
with modifications as described in ref. 67. Next, 10 μL of the extracted
nucleic acids were amplified through Multiple Displacement Amplifi-
cation (MDA) using theGenomephi V3 kit (GEHealthcare Life Sciences,
Marlborough, MA, USA) following the instructions of the manufacturer,
but the amplification time was shortened to 30 min (from 90 min).
Finally, the amplified DNA was cleaned using a Genomic DNA Clean &
Concentrator™ Kit (Zymo Research, Irvine, CA, USA) following the
manufacturer’s protocol.

Virome sequencing and QC, adapted from Shah et al.32

Virome libraries were sequenced on the Illumina HiSeq X platform to an
average depth of 3 Gb per sample with paired-end 2× 150 bp reads. Satis-
factory sequencing resultswere obtained for 647 out of 660 samples.Virome
reads were quality filtered and trimmed using FastqQuality Trimmer/Filter
v0.0.14 (options -Q33 -t 13 -l 32 -p 90 -q 13), and residual Illumina adaptors
were removed using cutadapt (v2.0). Trimmed reads were de-replicated
using the VSEARCH68 (v2.4.3) derep_prefix.

Putative prophage contig identification and classification
Putative prophage sequences were identified using a combination of two
methods:DeepVirFinder (v1.0)69 andVIBRANT(v1.0.1)70.Assemblies from
all 662 metagenomes were concatenated into a single pool and filtered to
those above a minimum length of 4 kb. These assemblies were run through
DeepVirFinder (v1.0) using default parameters after creating models from
all known phage genomes, downloaded from the Millardlab database in
September 201971. Resulting contigs were filtered to include only those with
a p-value of <0.05 after FDR correction. The assemblies were also run
through VIBRANT (v1.0) setting the nucleotide input and parallelisation
options only (VIBRANT_run.py -i assemlies.fna -t 16 …). Only those
predicted phages of ‘mediumquality’ and abovewere used further. Both sets
of output were compared to the Refseq+plasmid database (available at
https://mash.readthedocs.io/en/latest/tutorials.html) with a cut off of 95%
identity using MASH (v2.2)72 and any contigs with matches that might be
contamination were removed. Resulting contigs from both methods were
thencombined anddereplicated at 95%ANIwithdedupe2.sh73. This setwas
also run through CheckV(v0.7.0)55 to give the details required for the
minimum information about uncultivated viral genomes (MIUViG)74.

Whilst measures have been taken to remove potential bacterial con-
tamination in these sequences by applying appropriate cut-offs with the
tools used, there is always the possibility that some bacterial traces still
remain and this should be considered in any future analysis. Additionally,
whilst the phages identified in this work are referred to as prophages, it is

important to remember that this assignment is putative, as their lifestyle has
not been experimentally validated and thatDNA fromphage particles could
also contribute to themetagenomic assemblies in addition to theDNAfrom
bacterial chromosomes.

Predicted prophages were clustered using a network analysis per-
formed with vCONTACT2 (v0.9.8)75, using the RefSeq release 88 database,
with all other sequenced bacteriophages included using the Millardlab
database as of January 202171. The resulting network was visualised in
Graphia (v2.1)76.

Prophage annotation and functional analysis
Sequences were annotated using prokka (v1.14.5)77 and a custom database
made from all phage genes using the Millardlab database from September
2019. The –add-genes and –locus-tags options were also used. Resulting
amino acid files were clustered at 90% identity using CD-Hit (v4.8.1)78 and
representative sequences from each cluster were analysed using EggNOG-
mapper(v2.0)79 and default parameters. Phage lifestyle prediction was cal-
culated in the sameway asCooket al.80 usingHMMprofiles for proteins that
indicate a temperate lifestyle, and hmmscan (v3.3)81.

Identification of previously isolated temperate phages
The genome sequences of a set of E. coli temperate phages that were isolated
from the same infant faecal samples used here82, were used to evaluate how
well the temperate phage identification methods worked, and as reference
genomes for comparison. To identify if any of the predicted sequences were
those of the previously identified coliphages the reference genomes were
dereplicated at 95% ANI to match that of the predicted contigs. The dere-
plicated contigs and the prophage contigs were then mapped against each
other with minimap2 using the -asm20 option83. The sequences of any hits
with >70% of the target contig covered was then extracted and clustered
using Cluster_genomes.pl (v5.1)84 to agglomerate contigs that were >95%
similar over 90% of the genome. A cut-off previously accepted as the same
genome85, and the longest representative of the cluster was kept as the
representative sequence.

Distribution of prophages in individuals
A set of reference contigs was constructed using the vOTUs identified from
the metagenomes. The genomes of any remaining temperate coliphages
isolated from the samples that had not been identified as vOTUs using the
methoddescribed abovewere also added.Additionally, a set of 249 reference
crAss phage genomes were downloaded from the dataset constructed by
Guerin et al.86,with the aimof capturing thediversity of the crAss-like family
of viruses that are abundant in the gut. This set of predicted phages, coli-
phages and crAss phages were then dereplicated at 95% ANI using dedu-
pe2.sh to remove any remaining redundancy73.

TrimmedandQC’d reads from individualmetagenomesweremapped
against the set of reference contigs using bbsplit.shwith randommapping of
ambiguous reads, and a minimum identity of 0.95 with the covstats option
implemented73. A contig was considered present in a metagenome if there
was coverage of >=1X across >=70% as used by Roux et al.85. Abundances
were then calculated as counts per million (CPM). To determine how often
the prophages are present in the metagenomes a binary presence/absence
matrix was used so that extreme outliers in abundance would not skew
results. The sumof thepresence for eachprophagewas calculated and sorted
to identify theprophagespresent in themostmetagenomes.Alternatively, to
determinehowmanyprophages appeared in each child, the sumofpresence
in each metagenome was calculated.

When characterising thedistributionof crAssphages in the samples the
reference genomes alongwith any vOTUs that clustered togetherwith them
in vCONTACTwere considered crAss-like prophages. The sumof presence
of this subset of prophageswas calculated fromthepresence/absencematrix.

Host prediction
Bacterial hosts of the prophages were predicted using CrisprOpenDB
(v1.0)87 with 1 mismatch allowed, and the host with the most prophages

https://doi.org/10.1038/s41522-025-00674-1 Article

npj Biofilms and Microbiomes |           (2025) 11:46 3

https://mash.readthedocs.io/en/latest/tutorials.html
www.nature.com/npjbiofilms


predicted to infect themwere identified inRand thehostwithmore than1%
of the prophages predicted to infect them were visualised.

Functional analysis of the most abundant prophage cluster
Proteins from all members of cluster1819 (the most abundant prophage
cluster)were extracted andclustered at 90%amino acid identity (AAI)using
CD-Hit78 to remove redundancy. These were then analysed with EggNOG-
mapper(v2.0)79 as previously described to assign Clusters of Orthologous
Groups (COG)categories (SupplementaryTable S2).Additionally, resulting
Kegg Orthology (KO) codes were mapped onto metabolic pathways using
KEGGmapper88.

Phylogenetic analysis of the most abundant prophage cluster
An initial blast search showed that Bacteroides phage Hanky p00’ (Han-
kyphage) was the only phage with significant sequence similarity to the
members of cluster1819: the high quality vOTU_03578 was used as a
representative of the cluster and had 99.90% identity and 74% query cov-
erage with Bacteroides phage Hanky p00’; therefore, putative terminase
genes from all cluster members were identified through analysis of the
Hankyphage p00’ genome. The terminase protein sequence ofHankyphage
p00’ was downloaded and used to identify the same protein in the cluster
members using HMMsearch66, as no protein had been annotated as such.
Theprotein sequenceswere alignedwithClustalW inMEGA(v10.1.8) and a
maximum likelihood treewas also produced inMEGAusing the JTTmodel
and 100 bootstraps89. The tree was visualised and manually coloured in
iTOL90.

Identification of diversity generating retroelements in the most
abundant prophage cluster
Diversity generating retroelements were identified in members of clus-
ter1819 byusing both themyDGRweb server91 andMetaCSST(v1.0)92 tools.
To predict whether the target genes identified were putative tail fibre genes,
as has previously been suggested93, the proteins from all members were
analysed with PhANNs(v1.0.0)94 and the most significant hit to a tail fibre
gene was carried forward. These were then compared with the results from
the previous tools.

Determining active prophages
Thepairednature of themetagenomeandvirome sequencingof the samples
allowed for a novel exploration of whether the predicted prophages were
induced at the time of sampling. Individual virome sample reads were
mapped against the original metagenome assemblies containing the pro-
phages that had been excised by the prediction tool VIBRANT70 using
bbsplit.sh with a minimum identity of 0.95 and random mapping of
ambiguous reads73. A total of 4291 prophages were eligible for this analysis.
Using the predicted coordinates of the prophages, the coverage of each
background bacterial and predicted prophage region of an assembly was
extracted fromabamfile that had been sortedand indexed using samtools95.
For this analysis it was assumed that therewas only a single prophage region
per contig; there were only a minority of cases where multiple prophage
regions had been predicted for a contig and had passed the quality cut-offs
used in this work. Of note, the assumption of a single prophage regionmay
lead to a small number of false negatives in the induction analysis. A small
number of virome samples were also mapped against three large chromo-
somal contigs thatwerenot predicted to contain anyprophages as anegative
control. The number of readsmapped to sections of 40 kb (themean size of
prophages in this work) were extracted from different regions of the
assembly, in the same way as described above to mimic the presence of a
prophage and allow us to test for induction in these negative controls.

To determine statistically if prophages were induced, the number of
reads mapped to the bacterial part of the assembly and the number of reads
mapped against the predicted prophage part were tested for a binomial
distribution using pbinom in R(version 3.6.1), and the resulting p-values
were corrected formultiple testing using the Bonferronimethod. Frequency
of significant induction across sampleswas tested against predicted host and

mean RPK per prophage using linearmodels. Induction patterns of vOTUs
were derived from a binary matrix of vOTUs vs samples (Bonferroni-sig-
nificant induction yes/no) using principal component analysis (PCA) with
vOTUs as observations and samples as features to visualise similarities
between vOTUs regarding which samples they were induced in. In parallel,
the same matrix was transformed to a euclidean distance matrix and ana-
lysed with PERMANOVA (adonis2 from the R-package ‘vegan’ v. 2.6-4;
with option by = “margin”) to quantify similarities in induction patterns
associated with predicted host (top hosts, genus level, vs others as shown in
Fig. 5A) and viral cluster (each top cluster vs others as shown in Fig. 5C).

Environmental and clinical factors
To study factors potentially influencing prophage induction, we compared
children according to key factors associated with microbiome composition:
Antibiotics (yes/no), delivery mode(c-section/vaginal), furred pets(yes/no),
gastrointestinal infection (yes/no), living environment(urban/rural), and
siblings(any/none). Antibiotic exposure was defined as any prescription of
ATC code starting with J01 (Antibacterials for systemic use) recorded at the
1-year visit in the Danish prescription register. Delivery mode, furred pets,
birth address, and any siblings in the home was assessed by parental
interview at theplanned 1week and1 year visits to the research clinic. Living
environment was defined by converting addresses to coordinates and
mapping to 100x100mrastermaps from theCORINEdatabase of European
land cover (https://land.copernicus.eu/) in a 3 km radius and performing
PAM clustering on the composition of 5 major land cover types, as pre-
viously described in detail13. Gastrointestinal infectionswere assessed froma
prospective symptom diary as any diarrhoea or vomiting within 7 days of
the sample collection. Associations between these factors and induction
rates were assessed using Wilcoxon tests of sample-wise induction per-
centages (within-sample matched vs non-matched virome-contig pairs
analysed separately) and multiple testing was controlled using false dis-
covery rate (FDR) adjustment and expressed as q-values.

Results
Identification and classification of novel prophages in the
infant gut
From the 662 infant metagenomes obtained at age 1 year, we identified
10645 vOTUs after dereplication (Supplementary Table 1).

We grouped these viral contigs into approximate genus or subfamily-
level classifications using vCONTACT2 and included the genomes of all
sequenced bacteriophages as references, resulting in 2934 clusters. Of these,
364 were singletons and 2221 were outliers. Of all the clusters identified 953
were comprised solely of vOTUs identified in this work and of these 953
clusters, 177 were made up of a single member (Fig. 1). The hosts of 65% of
the vOTUs could be predicted; the most common assignment at the genus
level was Bacteroides (12.2%), followed by Salmonella/E. coli (6.3%) and
Bifidobacterium (5.8%) (Fig. 2A)

Previous work using these samples resulted in isolation of 35 Escher-
ichia temperate phages and sequencing of their genomes82. There were five
vOTUs that shared significant similaritywith these isolatedphages (Table 1).
The longest sequence from each cluster was kept as representative, resulting
in four predicted sequences being replacedwith the isolated phage genomes
and one isolated phage genome replaced by a predicted prophage genome.
The ability to identify five vOTUs with similarity to previously isolated
phages may reflect a level of microdiversity within this group of closely
related phages. Bothmicrodiversity and close similarity of sequences within
a sample are known to cause problems with assembly andmay explain why
more were not found96,97. It may also reflect the fact that the isolated phages
may not be abundant enough in the metagenomic sequence data to
assemble fully.

Abundance analysis suggests no core provirome is established
in infants
The distribution of the number of prophage vOTUs in each sample shows a
mean of ~100, with values as lowas four and as high as 400.No single vOTU

https://doi.org/10.1038/s41522-025-00674-1 Article

npj Biofilms and Microbiomes |           (2025) 11:46 4

https://land.copernicus.eu/
www.nature.com/npjbiofilms


was found in all children.ThemostwidespreadvOTUwas found in~70%of
the children (Fig. 2B), which is below the 95% cut off used in this work to
designate a prophage as core. Using a 50% cut off that has been used in
previous work for the same designation34,98 results in one additional vOTU.
Whilst no individual prophage could be found in all samples, the top 50
most prevalent prophages were spread between only eight viral clusters
(excluding those without an assigned cluster) (Fig. 2B), showing more
conservationof the genus/subfamily level thanof individual viral contigs.To
further examine this, we compared the prevalences of each viral cluster
analogously to Fig. 2B and found no evidence of a core provirome at the
cluster level either (supplementary Fig 2), with only one viral cluster present
in more than 50% of the samples, excluding singletons and outliers.

CrAss-like prophages were present in 195 (29%) of the samples
sequenced, and if a sample had crAss-like prophages identified, it was likely
to possess only one type, as only 38% of the crAss-positive subjects con-
tained two or more types. The identification of 109 vOTUs that clustered
together with the reference crAssphage genomes has also expanded our
knowledge of crAssphage and crAss-like phages, particularly those of the
infant gut: an environment where they are thought to be present much less
frequently than in adults86.

The functional potential of viral OTUs showed no significant
patterns on the individual phage level
The percentage of all proteins involved in the different COG categories
showed that the majority (64.9%) of proteins were assigned to category S –
those of Unknown Function. Followed by categories reflecting viral repli-
cation – Replication, Recombination, and Repair (12.9%); Transcription
(6.6%), and Cell Wall/Membrane Biogenesis (3%). Other categories were
present in very small percentages of the total protein amount.

Cluster1819 is themost abundant phage cluster and contains an
abundance of DGRs and morons
Cluster1819, containing 82members, was found to be themost abundant in
the samples (Fig. 3A) and is the secondmost prevalent cluster in the children
(Supplementary Fig 2) so was characterized in more detail. Phylogenetic
analysis of the large terminase gene revealed a single relative: Bacteroides
Hankyphage p00’ (Accession BK010646) (Fig. 3B). The bacterial host for
Hankyphage was previously identified as a Bacteroideswhich is the same as
the predicted host for manymembers of this cluster81. However, there were
variations on this with some vOTUs predicted to infect Prevotella and
Butyricimonas.

Fig. 1 | vCONTACT2 network analysis of vOTUs from this study and a database
of phage genomes extracted from millardlab.org in January 2021. Each node
represents a viral genome: vOTUs identified in this work are coloured in blue and
reference genomes are grey. The largest and key viral families have been annotated,

and viral clusters characterised in this work (VC_1819 and additional crAss-like
prophages) have also been annotated. The number of clusters highlighted in blue,
and their distribution throughout the network reflects the diversity of vOTUs
identified.
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The combination of MetaCSST and MyDGR identified 53 diversity-
generating retroelements (DGRs) in the cluster, an element that is present in
Hankyphage.Of the clustermembers 49/82were found to contain aDGR, as
some contained multiple, and the target sequences were used to predict the
gene it would generate diversity in. PhaNNs was used to predict the struc-
tural genes for the clustermembers including the tail fibre genes, commonly
a target for DGRs; when the target gene sequences were compared to the
structural gene predictions all target genes were predicted to be tail fibres.

Themajority of identified proteins in cluster 1819 belong to category S
– those of unknown function (Fig. 3C). This is followed by category L and
represents proteins involved in replication, recombination, and repair;
categories O and V are equally abundant and represent those proteins
involved in post-translational modification, and defence mechanisms
respectively. Cell cycle control and nucleotide transport andmetabolism are
also categories of note. Combining these COG codes with the KEGG
pathway database gave a clearer overview of what host pathways could be
affected by these phages. These pathways included dTDP-L-rhamnose
biosynthesis and menaquinone biosynthesis amongst others (Supplemen-
tary Table S2).

Estimation of the proportion of putative active prophages
Previously, we have shown that the mean relative abundances of both
virulent and temperate phages in the virome are highly positively correlated

with the corresponding abundances of their cognate host bacteria in the
metagenome, at least at the host genus level and study-wide32. However,
differences could still exist between different prophage clusters or even
between samples, holding important clues about their biology.

Here we used the results of the virome reads mapped against the large
metagenome contigs containingprophages, todiscover prophages thatwere
potentially induced and present in the samples as actively propagating viral
particles. A subset comprising 4291 of the predicted prophages were able to
be tested for induction via a read mapping approach, as they had been
excised from a larger assembly in the prediction process, thus allowing for a
comparison against the bacterial background on the same contig. We
quantified and tested induction as a degree of preferential mapping of
virome reads inside the predicted bounds of the prophage compared with
the rest of the contig; for examples seeFig. 4A,B.This showed that induction
is a widespread phenomenon; 4041 (94.2%) of the prophages were induced
in at least one sample and remained significantly so (p = <0.05) after Bon-
ferroni correction, resulting in 4.59% significant virome-prophage contig
pairs, see Fig. 4C. Only 250 prophages were never found to be significantly
induced in any sample, see Fig. 4D.When only considering contigswith 100
reads or more mapping in a sample, 83,418 out of 321,232 pairs (26.0%)
were found to be significant.

Comparing prophages across different predicted hosts, we found dif-
ferences in the fraction of induced samples (Fig. 5A, log linear model p < 2e

Table 1 | Percent identity of vOTUs identified bioinformatically in this work, and Escherichia coli temperate phages isolated in
previous work82

Sequence kept Length (bp) Sequence replaced Length (bp) % Identity

Escherichia coli phage Lambda ev017 50126 vOTU_10421 43620 99.2

Escherichia phage mEp460 ev081 45865 vOTU_01494 44384 99.6

Escherichia coli phage P2 2H1 32662 vOTU_09503 32101 99.9

vOTU_05922 32386 Escherichia coli phage P2 4C9 32150 99.9

Escherichia coli phage ESSI2 ev015 30584 vOTU_03208 26975 88.8

The E.coli temperate phages had been isolated from the same samples used for metagenomic and virome sequencing, but sequenced independently. Five vOTUs were found to share sufficient percent
identity to be classified as the same phage.

Fig. 2 | Characterising putative prophages. A Host prediction for the putative
prophages. Only those that make up greater than 1% of the predicted hosts are
shown. Salmonella andEscherichia have been grouped together, asCrisprOpenDB is

known to not be able to differentiate between the two, due to the high number of
Salmonella spacers available in the database. This is likely to be an overprediction of
Salmonella. B Top 50 most prevalent vOTUs coloured by their viral cluster.
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−16). Among the genera with highest rates of induction were Blautia,
Bifidobacterium, and Erysipelatoclostridium. The most abundant group of
prophages in the metagenomes, cluster1819, was among the most com-
monly induced (Fig. 5B, C). Comparing the cluster against the rest of the
predicted Bacteroides phages showed that the phages belonging to clus-
ter1819weremoreoften significantly induced than the rest of the group, and
to all prophages with different predicted hosts.

We found similar patterns of induction across prophages belonging to
the same viral cluster (Fig. 5C), ie. which samples they were significantly
induced in, suggesting that specific clusters of prophages are induced
together within a sample (PERMANOVA, F = 85.1, R2 = 13.7%, p < 0.001).
A similar phenomenon was seen when comparing induction patterns
between vOTUs according to predicted host (F = 20.2, R2 = 7.0%, p < 0.001).
This only attenuated slightly after including both viral cluster and predicted
host in the model; both had significant contributions to the variation in
induction patterns (Viral cluster, F = 75.7, R2 = 11.5%, p < 0.001; Predicted
host, F = 16.0, R2 = 4.9%, p < 0.001).

The frequency of significant induction was also associated with the
mean RPK of the prophages (log linear model, Supplementary Fig 3),
however adjusting for this did not change the conclusions above.

Next, we examined induction among virome-prophage contig pairs
originating from the same sample, compared with those from different
samples. For matched virome-prophage contig pairs, a much higher rate of
induction was seen (Fig. 6A) than for non-matched pairs. However, the
mapping rate was also much higher among these pairs (Fig. 6B, C), which
also influenced induction rates. Therefore, we considered both factors
simultaneously and saw that in matched pairs, higher mapping rates were

associated with higher rates of induction, up to around 75% in contigs
attracting many reads. This was only partially seen for non-matched pairs,
which increased until 100–200 reads and thereafter declined slightly
(Fig. 6D).

Finally, we examined whether induction rates differed between sam-
ples according to environmental and clinical factors known to be associated
with microbiome composition. We analysed matched vs non-matched
virome-contig pairs separately, summarising per child to allow a fair
comparison.We found no association to induction rate according to recent
antibiotic treatment, deliverymode, having furred pets, or an urban vs rural
living environment. Children who had siblings had a slightly lower induc-
tion rate than thosewithout siblings, but this did not remain significant after
FDR correction (Wilcoxon test, p = 0.00495, q = 0.059).

Discussion
This work sought to deeply characterise prophages in the infant gut, and to
highlight novel aspects of the associated phage biology. By combining
machine learning based identificationmethods wemaximised our ability to
identify integrated prophages from metagenomic assemblies. Of those
identified, no single prophage could be found in more than 70% of the
samples suggesting that there is no core set of prophages in the infant gut.
Much debate has taken place previously over the existence of a core virome
with early work on the topic identifying 23 phage contigs shared by at least
50% of samples from 62 individuals98; however, more recent studies with a
larger sample size found that themost ubiquitous viral population was only
present in 39% of themetagenomes used, andmost of the populations were
only sporadically detected at all.99. These results suggest that infant viral

Fig. 3 | Characterisation of cluster1819. A Cumulative abundance of the top 10
most abundant viral clusters. B Phylogenetic tree based on a terminase protein
alignment for members of cluster1819 and including the Bacteroides phage Han-
kyp00’. Only bootstrap values > 70% are shown as circles. The next most closely

related phages were used as an outgroup due to their limited genome similarity. Any
known taxonomy has been highlighted in red. C COG Category assignments for
proteins belonging tomembers of cluster1819. The ‘other’ group is made up of those
categories that comprised less than 1% of the total assignments.
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communities are more unique to the individual than they are commonly
shared. Considering the dynamic nature of the infant gut microbiome, it
maynot be surprising tofindprophages distributed sporadically throughout
the samples as they adapt to changing bacterial host abundances100,101.

We were able to assign predicted hosts to ~65% of the prophages
identified here with Bacteroides, Salmonella/Escherichia, and Bifidobacter-
ium the most common hosts; all key members of the infant gut
microbiome1,16. Salmonella and Escherichia predictions were grouped
together as the tool used has difficulty distinguishing between them87. Thus,
these are likely tobeEscherichia infectingphages rather thanSalmonella. It is

important to remember that these are predictions and putative hosts have
not been experimentally validated. We included some experimentally
validated coliphages from the same samples with very high sequence
similarity. While the detection of phages with complementing methods is a
strength of the study, there is also a potential for bias from increased sen-
sitivity to those coliphages.

We also specifically looked at the prevalence of crAssphages, a well-
known and large family of phages that are widespread in gut viromes86. In
addition to the reference crAss-like phages that were used we also identified
109 additional vOTUs that clustered togetherand sowere consideredpart of
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the crAss-like group. Our results strongly support previous work that has
suggested that crAssphages are not abundant or prevalent in infants. Initial
reports on crAss-phages demonstrated an indeterminate infection strategy,
showing no clear signs of lysogeny and unusual lytic infection behaviour102.
Our results support the suggestion that at least someof the crAss-like phages
are temperate103.

Classificationof theputative phages combinedwith the sequences of all
sequenced bacteriophage genomes resulted in the creation of 2934 clusters
with 364 singletons. Of all the clusters identified, 953 were comprised solely
of vOTUs identified in thiswork andof these 953 clusters, 177weremadeup
of a single member.

A more in-depth analysis of the most abundant cluster of prophages
revealed an interesting perspective into their potential role in the infant gut.
The most abundant group, Cluster1819, falls within the proposed Han-
nahviridae family32 and is comprised of 82 prophages closely related (genus
or sub-family level) to Bacteroides phage Hanky p00’. This phage was ori-
ginally identified as an integrated prophage of Bacteroides dorei from
metagenomic data93. Hankyphage has been predicted tobe present in half of
the human population from geographically distant regions, found to lyso-
genize at least 13 different species ofBacteroides93, and now abundant in this
young age group.

The broad host range of these phages is due to the possession of
diversity generating retroelements (DGRs) that target tail fibres93, which
were also found in the present study. Over half of the members of the viral
cluster identified here were found to contain at least one DGR, all of which
were predicted to target tail fibres. This adaptation to infect different Bac-
teroides may be vital for their success in this dynamic environment. The
cluster was predicted to infect a few different hosts; which could be an
artefact of the host prediction method used or due to changing tail fibres.
Without experimental evidence this cannot be validated but remains
intriguing. Importantly, CRISPR-Cas systems are subject to horizontal gene
transfer between related host genera, making CRISPR-based host predic-
tions inherently uncertain, and especially insensitive for bacteria that do not
normally carry them.

In addition to harbouringDGRs,members of the cluster also possessed
several morons, or auxiliary metabolic genes, that may prove beneficial to
their host or influence bacterialmetabolism.We found genes involved in the
dTDP-L-rhamnose biosynthesis pathway, which is responsible for bio-
synthesis of the O-antigen of lipopolysaccharides in Gram negative
bacteria104–106. Bacteroides in particular are known to produce a number of
phase-variable capsular polysaccharides (CPS)107,108, which are involved in
host-tropism of Bacteroides-targeting phages107. The phase-variable expres-
sion of these CPS creates diversity that may help to ensure host infection
resilience by maintaining differentially susceptible subpopulations107 and
help the phage by superinfection exclusion of other phages46,47. This echoes
the piggy-back-the-winner model proposed for the crAss-like phage
crAss001 and its Bacteroides host109. Finally, the O-antigen is of importance
for recognition of the human immune system and the pathogenicity of the
bacterium110,111, as well as the bacteria’s ability to bind to and infect epithelial
cells112.

Another gene of interest found in the cluster wasmenA: a component
of the menaquinone (vitamin K2) biosynthesis pathway, an important part
of the electron transfer pathway in prokaryotes and vital to humans in the
blood clotting process, and bone and nervous system health113–117. The
importance of microbially synthesised vitamin K is debated due to the low
amount of total vitamin K it would be contributing118–120, which may be
more significant in infants121.

Further work is needed to characterise other families of prophages in
the infant gut.

Our induction analysis shows that out of the subset of phages we were
able to test, most prophages that were identified in a sample were also
induced. This suggests that these prophages are an active part of the com-
munity and may play a prominent role in the shaping of the bacterial
community in the gut. Previous work has suggested that the infant gut in
particularmay be dominated by temperate phages that may be induced due

to the high turnover rate/constant maturation of the bacterial community
during the first few years of life30,31,35. However, whether pervasive prophage
induction is also characteristic of more mature gut microbial compositions
is still not known. One study of mice colonised with the Oligo Mouse
Microbiota community (OMM12) also found widespread prophage
induction, but this could aswell be attributed to their gnotobiosis, known for
the stress it causes hosts122.

Environmental conditions can lead to the induction of prophages from
their bacterial hosts, leading to lytic replication and the production of
progeny phages. A number of factors have been shown to induce prophages
such as certain chemicals (mitomycin c) and antibiotics such as
fluoroquinolones123–125. More recently, the use of common oral medications
such as nonsteroidal anti-inflammatory drug diclofenac, and other anti-
biotics including ampicillin, norfloxacin, and ciprofloxacin were shown to
induce prophages from bacterial isolates of the human gut126. Our work
showed nomajor effects of the clinical and environmental factors tested on
the proportion of induced prophages. A priori, wewould have assumed that
especially antibiotics could have potential for influencing the overall
induction level, but no differenceswere seen. Thismay be due to the specific
antibiotics used asmost children received regular penicillins whichmay not
have the same induction potential as the specific aforementioned drugs. It
could also be due to time limitations of the method; evidence of induction
may have already been turned over in the 4 weeks preceding sampling, and
this may be why we cannot see it here. Furthermore, we only had one time
point per child; sampling before and after treatment may better uncover
changes in induction. We found a significant reduction in the overall
induction level in children with siblings. However, this did not remain
significant after FDR adjustment. Future clinical studies should examine the
potential effect of siblings further.

Sequence composition and genomic structure may influence sequen-
cing efficiency which can lead to uncertainty or noise in the mapping.
Together, this highlights theneed to be careful of interpreting the ‘snapshot in
time’of a population froma single timepoint and indicates the need formore
longitudinal data to characterise the biology of prophages in the infant gut.

In summary, our results show that prophages of the infant gut form a
diverse community that is different in each individual; no conserved core
provirome of temperate phages was apparent at the vOTU level. Our work
utilises a large infant cohort to support the previous observation that crAss-
like phages are present in small numbers early in life. We also identified a
novel cluster of prophages that are themost abundant in the metagenomes,
which fall within the newly proposed Hannahviridae and are related to
Bacteroides phage Hanky p00’. The possession of DGRs targeting tail fibres
in members of this cluster suggest they may be able to infect a range of
bacterial hosts. We also found evidence that they may modify host LPS
through possession of components of the dTDP-L-Rhamnose pathway.
Therefore, this group of phages possess elements that may allow them to
maintain differentially susceptible subpopulations of their host bacterium,
whilst also containingDGRs that could expand their host range. By utilising
the paired metagenome and virome sequencing we were able to show that
out of the identified prophages we were able to test, the majority of them
were induced.However, testing induction against antibiotic usage and other
factors revealed no significant associations, although thismay be a reflection
of the speed at which the evidence of induction is turned over in the gut,
highlighting the need for more longitudinal data in the field.

Data availability
Original raw sequence data and metadata for all metagenomic samples has
been previously reported under project PRJNA715601. Assembled and
filtered prophages were submitted under accession ERZ2947210. Virome
reads are available under project PRJEB46943. Participant-level personally
identifiable data are protected under the Danish Data Protection Act and
European Regulation 2016/679 of the European Parliament and of the
Council (GDPR) that prohibit distribution even in pseudo-anonymized
form, but can be made available under a data transfer agreement as a
collaboration effort.
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