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Targeted metabolomics reveals bioactive
inflammatory mediators from gut into
blood circulation in children with NAFLD
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Haixiang Zhou3 & Xiongfeng Pan4,5

Altered gutmetabolites are important for the inflammatory progression in children with NAFLD. Fecal and
plasma samples were collected from 145 subjects including 53 non-alcoholic fatty liver (NAFL), 39
nonalcoholic steatohepatitis (NASH) and 53 obese controls. We performed G350 targeted integrative
metabolomics using high performance liquid chromatography mass spectrometry for fecal and plasma
analysis of NAFL, NASH, and obese children. We found 9 metabolites involved in metabolic
reprogramming of inflammation in NAFLD, such as lipid, carbohydrate, amino acid metabolism, and TCA
cycle pathway. Moreover, 7 inflammation-related metabolites could discriminate NAFLD severity by
machine learning model. This study identified three novel elevated inflammatory pathogenic metabolites
and the relationship between increased inflammation, may be involved in TLR5/MYD88/NFκB pathway.
Thesefindings reveal that specific inflammatorymetabolites entering thebloodcirculation from thegut are
associated with disease severity and inflammatory pathogenesis in children with NAFLD.

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic
liver disease worldwide in childhood1,2. Children with non-alcoholic fatty
liver simple steatosis (NAFL) may develop nonalcoholic steatohepatitis
(NASH), which is characterized by hepatic inflammation and cell injury,
and increases the risk of hepatocellular carcinoma in adulthood3. The
pathogenesis ofNAFLD is poorly characterized, emerging evidence suggests
that the gut microbiome influences the severity and inflammatory pro-
gression of NAFLD4,5.

Although some studies have demonstrated that the microbiota influ-
ence on inflammatory progression by gut metabolites, and identified some
inflammatory gut metabolites for NAFLD, such as ursodeoxycholic acid,
arachidonic acid, phenylacetic acid, branched-chain amino acids, and
indolic6–11. However, in view of the diversity and magnitude of the gut
metabolites network, there are many unknown metabolites that have not
been explored. Identifying inflammatory gut metabolites using low
through-put targeted analyses is limited to a certain class ofmetabolites, and
cannot systematically explore the phenotypes of gutmetabolite profiles. The
identification and validation of inflammatory gut metabolites in gut-liver
axis requires “high-throughput omics” approach, such as fatty acids, amino
acids, bile acids, benzenoids, carbohydrates, indoles, andpurine nucleotides.

It is also noteworthy that the gut metabolites species from gut into blood
circulation in children with NAFLD are still not fully understood. Fur-
thermore, specific significant gutmetabolite pathways that may be involved
in the inflammatory progression of NAFLD remain unexplored.

The aims of this study were as follows: (i) to perform a “G350 high-
throughput omics” approach to reveal potential metabolic alterations in
feces and plasma of children with NAFLD; (ii) to reveal potential metabolic
alterations from the gut into blood circulation, then evaluate the potential
inflammatory pathogenesis pathways and inflammatory changes related to
thesemetabolites; and (iii) to applymultiple validations of the inflammatory
effect for these metabolites, such as machine learning and in vitro cell
experiment. The findings of this study would provide insights into the gut-
liver axis, evaluation of potential inflammatory pathogenesis, and the search
for immunotherapeutic biomarkers for children with NAFLD.

Results
Participant characteristics
The baseline demographics and laboratory parameters are shown in Sup-
plementary Table 1 and Supplementary Table 2. According to the
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distribution of characteristics data, there was good comparability between
the case and control groups.

Distinct distribution of gut metabolites in children with NAFLD
and control in fecal samples
The principal components analysis of fecal (Supplementary Fig. 1a) and
plasma (Supplementary Fig. 1b) results shown that QC samples are closely
gathered, indicating that the data quality was stable and accurate. The TIC
plots showing the results of the differential fecal and plasmametabolites on
Amide column and C18 columns (Supplementary Fig. 2). A total of 266
annotated metabolites were detected in fecal samples (Fig. 1A). Distinct
clusters of gutmetaboliteswere demonstrated in fecal samples (R2Y = 0.802
and Q2Y= 0.841) in children with NAFL compared with control children
by OPLS-DA score plots (Fig. 1B). Significant differences were also found
for the following groups: NASH children compared with control children
(R2Y = 0.742 andQ2Y = 0.834); andNASH children comparedwithNAFL
children (R2Y = 0.659 and Q2Y = 0.698). Moreover, the intercepts for
goodness-of-prediction (Q2) and goodness-of-fit (R2) indicated that the
OPLS-DA model containing metabolomics information was reliable and
not overfitting (Fig. 1C).

The volcano plots showed that 16 metabolites were significantly
increased and 12 metabolites were significantly decreased in the NAFL
group compared with the control children, whereas 62 metabolites were
significantly increased and17metaboliteswere significantlydecreased in the
NASH children compared with the control children. Compared with the
NAFL children, 34 metabolites were significantly increased and 12 meta-
bolites were significantly decreased in the NASH children (Fig. 1D).

Distinct distribution of gut metabolites in children with NAFLD
and control in plasma samples
A total of 212 annotated metabolites were detected in plasma samples
(Fig. 2A). Distinct clusters of gut metabolites in NAFL children compared
with control children were demonstrated in plasma samples (R2Y = 0.629
andQ2Y = 0.871) byOPLS-DA score plots (Fig. 2B). Significant differences
were also found for the following groups: NASH children compared with
control children (R2Y = 0.609 and Q2Y = 0.923); and NASH children
compared with NAFL children (R2Y = 0.639 and Q2Y = 0.886). Further-
more, the intercepts of goodness-of-prediction (Q2) and goodness-of-fit
(R2) indicated that the OPLS-DA model containing metabolomics infor-
mation was reliable and not overfitting (Fig. 2C).

The volcano plots showed that 33 metabolites were significantly
increased and 32 metabolites were significantly decreased in the NAFL
group compared with the control children, whereas 52 metabolites were
significantly increased and41metaboliteswere significantlydecreased in the
NASH children compared with the control children. Compared to the
NAFL children, 38 metabolites were significantly increased and 31 meta-
bolites were significantly decreased in the NASH children (Fig. 2D).

Identification of signature metabolites for NAFLD from gut into
blood circulation
We further selected the differential inflammation-relatedmetabolites in the
correlation analysis as independent variables, and established a machine
learningmodel to distinguish different states of NAFLD. Themetabolite, 2-
Hydroxy-3-methylbutyric acid, could distinguish, using machine learning,
NAFL children from the controls in feces and plasma. Also, the 2-Hydroxy-
3-methylbutyric acid was significantly correlated withmarkers of glycolipid
metabolism, and liver function. Furthermore, the threemetabolites, namely
2-Hydroxy-3-methylbutyric acid, L-Thyronine, and L-Alanine could dis-
tinguish NASH children from the NAFL children by machine learning in
feces and plasma. These metabolites were also significantly correlated with
markers of inflammation, gut microbiota, glycolipid metabolism, and liver
function. The six metabolites, 2-Hydroxy-3-methylbutyric acid, Indole, L-
Thyronine, w-TMCA, cis-Aconitic acid and Ribonolactone could also dis-
tinguishNASH children from the controls bymachine learning in feces and
plasma (Supplementary Table 3).

The key metabolic pathways in the inflammatory pathogenesis
of NAFLD
We further utilized the differential metabolites for pathway enrichment
analysis and functional annotation tofind themetabolic pathways related to
inflammation. Pathway analysis of these different gut metabolites between
children with NAFL and controls revealed that several processes were sig-
nificantly enriched. Pathway analysis identified significant differences in
amino acid metabolism, carbohydrate metabolism, digestive system, and
energy metabolism as the most enriched pathways in fecal and plasma
samples (Fig. 3A, B and Supplementary Table 4). These different gut
metabolites, between NASH children and controls, are involved in several
processes, such as amino acid metabolism, carbohydrate metabolism,
digestive system, energy metabolism and metabolism of cofactors and
vitamins; andwere themost enriched pathways in fecal and plasma samples
(Fig. 3A, B and Supplementary Table 5). We compared the metabolomic
profiling of NAFL to the NASH to identify metabolic pathways involved in
the progression of NASH. We identified significant differences in amino
acid metabolism, digestive system, and metabolism of cofactors, with
vitamins being the most enriched pathways in fecal and plasma samples
(Fig. 3A, B and Supplementary Table 6).

These metabolites were significantly changed in the cases, and were
associated with impaired inflammation, gut microbiota, glycolipid meta-
bolism, and liver function through critical metabolic pathways such as
amino acidmetabolism, carbohydratemetabolism, digestive system, energy
metabolism and metabolism of cofactors and vitamins. Metabolites asso-
ciatedwith thesemetabolic pathwayshavebeen reported to contribute to the
pathogenesis of systemic gut inflammation and liver inflammation in
NAFLD patients (Fig. 3C and Table 1). After adjusting the major con-
founding factors such as age, gender and BMI, we found that metabolites
such as 2-Hydroxy-3-methylbutyric acid, Indole-3-lactic Acid, 2-Furoic
acid, cis-Aconitic acid, and L-Isoleucine in plasma may be risk factors for
children with NAFLD, while L-Thyronine may be a protective factor for
children with NAFLD (Supplementary Table 7).

The correlation between selected metabolites with NAFLD indi-
ces in plasma samples
Considering the 24 differential metabolites, all of them were significantly
associated with at least one inflammatory factor, with 22 of them positively
correlated with inflammatory factors. Specifically, 6 metabolites (Beta-
Alanine, cis-Aconitic-acid, L-Alanine, L-Valine, Sarcosine, Alpha-ketoiso-
valeric-acid) had a positive correlation with the levels of 8 inflammatory
factors; 5 metabolites (L-Alloisoleucine, L-Isoleucine, L-Leucine, L-Nor-
leucine, and 2-Hydroxy-3-methylbutyric-acid) had a positive correlation
with the levels of 7 inflammatory factors; 2 metabolites (L-Homoserine and
L-Phenylalanine) had a positive correlation with the levels of 6 inflamma-
tory factors; w-TMCA had a positive correlation with the levels of 5
inflammatory factors; 4 metabolites (Indole-3-lactic-Acid, N-acetyl-
tryptophan, w-MCA, and 2-Furoic-acid) had a positive correlation with the
levels of 4 inflammatory factors; ribonolactone had a positive correlation
with the levels of 3 inflammatory factors; 2 metabolites (a-TMCA and b-
TMCA) had a positive correlation with the levels of 2 inflammatory factors;
arachidonic acid had a positive correlation with the level of 1 inflammatory
factor; whereas indole had a negative correlation with the levels of 8
inflammatory factors; and L-Thyronine had a negative correlation with the
levels of 5 inflammatory factors. Moreover, we compared these selected
significant metabolites in plasma samples with gut microbiota, glycolipid
metabolism, and liver function (Supplementary Table 8 and Fig. 4A).

qRT-PCR verification of differentially expressed mRNAs of liver
function and inflammation
The mRNA relative expression levels of ALT, CXCL8, IL6, IL17, IL21 and
TNFα genes in THLE-3 were significantly upregulated after exposure to 2-
Hydroxy-3-methylbutyric acid. In terms of related receptors, the level of
TLR5 gene relative expression was significantly increased. Moreover, the
IL1β relative expression was significantly suppressed after exposure to
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Fig. 1 | Gut metabolic alterations in NAFLD. Chemical class metabolite sets plots
(A) shown the chemical class metabolite of metabolites. BOPLS-DA score plots for
differential metabolites in fecal samples. X axis and Y axis represent contributions of
persons to the first two principal components (PC1 and PC2). C Cross-validation
plot with a permutation test repeated 200 times. The intercepts of R2 andQ2 suggest
that the OPLS-DA model is not overfitting. D Volcano plots shown the results of
pairwise comparisons ofmetabolites in each case sample’s group relative to controls.
The abscissa represents the variation of variationmultiple of metabolites in different

groups (log2 Fold Change), and the ordinate represents the significance level
(−log10 p-value). The vertical dashed lines indicate the threshold for the abundance
difference. The horizontal dashed line indicates the p = 0.05 threshold. Each point in
the graph represents metabolites, the up-regulated metabolite red dot, the down
regulated metabolite green dot. Between-group comparisons were performed using
empirical Bayes hierarchical model and Kruskal-Wallis rank sum test. OPLS-DA
Orthogonal Partial Least Squares Discrimination Analysis, NAFL nonalcoholic fatty
liver, NASH non-alcoholic steatohepatitis.
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Fig. 2 | Plasma metabolic alterations in NAFLD. Chemical class metabolite sets
plots (A) shown the chemical class metabolite of metabolites. B OPLS-DA score
plots for differential metabolites in Plasma samples. X axis and Y axis represent
contributions of persons to the first two principal components (PC1 and PC2).
CCross-validation plot with a permutation test repeated 200 times. The intercepts of
R2 and Q2 suggest that the OPLS-DA model is not overfitting. D Volcano plots
shown the results of pairwise comparisons ofmetabolites in each case sample’s group
relative to controls. The abscissa represents the variation of variation multiple of

metabolites in different groups (log2 Fold Change), and the ordinate represents the
significance level (−log10 p-value). The vertical dashed lines indicate the threshold
for the abundance difference. The horizontal dashed line indicates the p = 0.05
threshold. Each point in the graph represents metabolites, the up-regulated meta-
bolite red dot, the down regulated metabolite green dot. Between-group compar-
isons were performed using empirical Bayes hierarchical model and Kruskal-Wallis
rank sum test. OPLS-DAOrthogonal Partial Least Squares Discrimination Analysis,
NAFL nonalcoholic fatty liver, NASH non-alcoholic steatohepatitis.
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Fig. 3 | Overview of the key gut metabolic pathways in the pathogenesis
of NAFLD. Pathway enrichment plots of fecal (A) and plasma (B) shown the
pathway enrichment analysis by KEGG for metabolites. The pathway enrichment
analysis result takes KEGG pathway as the unit, and the hypergeometric test is
applied to find the pathway that is enriched in the differentialmetabolites against the
background of all identified metabolites. Pathway enrichment analysis can deter-
mine the most important metabolic pathways and signal transduction pathways
involved in the differential metabolites. An overview plot shown the key metabolic

pathways in the pathogenesis of NAFLD (C). Boxplots show levels of these meta-
bolites in the plasma samples at different stages. AAs amino acids, PCs Phospha-
tidylcholines, BCAAs branched-chain amino acids, ChoE cholesterol esters, CoA
coenzyme A, G3P glyceraldehyde 3-phosphate, GNG gluconeogenesis, CKs
Inflammatory cytokines, ROS reactive oxygen species, SFA saturated fatty acid, TCA
tricarboxylic acid. NAFL nonalcoholic fatty liver, NASH non-alcoholic
steatohepatitis.
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Indole, the FXR relative expression was significantly increased. The relative
expression level of IL-6 gene was significantly upregulated exposure to
Ribonolactone, relative expression level of NFκB gene was significantly
upregulated. The relative expression levels of IL-6 and IL-17 genes were
significantly upregulated exposure to cis-Aconitic acid, MYD88, NFκB and
TLR5 genes were also significantly upregulated (Fig. 4B). There was no
significant difference in the expression level of inflammatory factor genes in
THLE-3 after exposure to Tauro-w-muricholic acid, L-Thyronine and
L-Alanine (Supplementary Fig. 3).

Molecular docking of metabolites to binding domain of inflam-
matory receptor protein
List ofmetabolites included in themolecular docking analysiswere shown in
Supplementary Table 9. The S value for the TLR5 binding cis-Aconitic
acid and 2-Hydroxy-3-methylbutyric acid were −5.41 kcal/mol and
−4.71 kcal/mol. The S value for the NFκB binding Ribonolactone and cis-
Aconitic acid were−4.61 kcal/mol and−4.68 kcal/mol. The S value for the
MyD88 binding cis-Aconitic acid was −5.39 kcal/mol. The S value for the
FXR binding Indole was−4.68 kcal/mol (Supplementary Table 10). Many
hydrophobic amino acid residues surrounded the metabolites (Fig. 5A, B).
These data indicated that the binding pocket of inflammatory receptor
protein is suitable for molecule interactions and metabolites may serve as a
ligand specifically bound to this ligand-binding domain for modulation of
inflammatory receptor activity. This study identified three inflammatory
pathogenic metabolites (2-Hydroxy-3-methylbutyric acid, Ribonolactone,
and cis-Aconitic acid), may be involved in TLR5/MYD88/NFκB pathway.

Discussion
For the first time in this study, we systematically performed an in-depth and
comprehensive gut targeted metabolomic profiling of plasma and fecal

samples to identifyNAFLD-associatedmetabolites in childrenwith obesity,
NAFL, and NASH. Targeted metabolomics revealed extensive inflamma-
torymediators from gut into plasma in childrenwithNAFLD.We found 22
significantly increasedmetabolites and 2 significantly decreasedmetabolites
in fecal and plasma samples of the NAFL or NASH children than in the
controls. Moreover, 9 metabolites (2-Hydroxy-3-methylbutyric acid, cis-
Aconitic acid, w-TMCA, w-MCA, indole, Ribonolactone, L-Isoleucine,
L-Alanine and L-Thyronine) were significantly correlated with inflamma-
tory factors and associated with inflammatory metabolic pathways. These
metabolites were also involved in amino acid metabolism, carbohydrate
metabolism, digestive system, tricarboxylic acid (TCA) cycle, energy
metabolism and metabolism of cofactors and vitamins. Regarding disease
status,metabolitefingerprinting bymachine learning revealed7metabolites
(2-Hydroxy-3-methylbutyric acid, w-TMCA, indole, Ribonolactone, cis-
Aconitic acid, L-Alanine and L-Thyronine) that discriminated different
stage of NAFLD.Meanwhile, one of the advantages of our researchwas that
targetedmetabolomics, could beused for absolutequantification rather than
relative quantification. Moreover, by analyzing the 24 differentially
expressedmetabolites screenedbymachine learning,we found that 95.8%of
themetabolites had fecal concentrationshigher thanplasmaconcentrations,
except for cis-Aconitic acid, which may be due to its involvement in energy
metabolism leading to higher endogenous production concentrations than
in fecal. Future animal experiments are needed to compare the concentra-
tions of metabolites in the gut, liver and circulation to further determine
whether they are produced by liver metabolism.

Although the inflammatory metabolite, indole, was previously reported
in NAFLD, the following inflammatory metabolites in NAFLD are being
reported for the first time: 2-Hydroxy-3-methylbutyric acid, L-Alanine, cis-
Aconitic acid, Ribonolactone, L-Thyronine, and w-TMCA. Gut microbiota
andmetabolites have been considered to be key factors affecting hepatic lipid

Table 1 | Dysregulation of the significantly pathway ofmetabolitesmight be involved in the inflammatory progression of NAFLD

Metabolites Carbohydrate metabolism Lipid metabolism Amino acid metabolism Inflammatory pathway

2-Furoic acid

2-Hydroxy-3-methylbutyric acid * * ✰

Alpha-ketoisovaleric acid

Arachidonic acid

Beta-Alanine * *

Cis-Aconitic acid * * ✰

Indole * ✰

Indole-3-lactic Acid *

L-Alanine * * ✰

L-Alloisoleucine *

L-Homoserine *

L-Isoleucine * * ✰

L-Leucine *

L-Norleucine *

L-Phenylalanine * *

L-Thyronine * ✰

L-Valine *

N-acetyltryptophan * *

Omega-muricholic acid * ✰

Ribonolactone * ✰

Sarcosine * *

Tauro-a-muricholic acid

Tauro-b-muricholic acid *

Tauro-w-muricholic acid * * ✰

*significantly metabolism pathway of metabolites;✰, metabolites involved in the inflammatory pathway.
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Fig. 4 | Metabolites discriminates disease severity and association of mediators
with markers of inflammation, glycolipid metabolism and liver function. A
heatmap of plasma (A) shown the correlation between selected gut metabolites with
glycolipid metabolism, liver function and inflammatory factors indices. Red color
represents positive correlation, blue color represents negative correlation. Bar chart

(B) show the qRT-PCR of differentially relative expressed mRNAs of liver function
and inflammation produced by THLE-3 under different treatments, C control
group, NAFL nonalcoholic fatty liver, NASH non-alcoholic steatohepatitis. p < 0.05
was considered statistically significant. *p < 0.05; **p < 0.01.
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accumulation and inflammation during the development of liver diseases,
such as NAFLD and hepatocellular carcinoma12,13. The following discussion
focuses on how the metabolites, found by machine learning in this study,
produce inflammatory effects through different metabolic pathways. Overall,

thesemetabolites seem to formaTCAcyclemetabolic network in amino acid,
lipid, and carbohydrate metabolism. First, in amino acid metabolism,
branched-chain amino acids are used to synthesize glutathione in response to
oxidative stress and inflammation14,15. L-Thyronine seems to have similar

Fig. 5 | Metabolites docks to the ligand-binding domain of inflammatory
receptor. The superposition of these metabolites bound to the ligand-binding
domain pocket of inflammatory receptor (A). Two-dimensional interaction map of

inflammatory receptor with metabolites (B). Hypothesis map of inflammatory
mechanism pathway is shown in (C).
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functions with branched-chain amino acids, which can inhibit inflammation.
However, in this study, L-Alanine, L-Valine, Sarcosine and L-Isoleucine seem
to have antagonistic effects with branched-chain amino acids. These amino
acid metabolites may inhibit glutathione production and activate inflamma-
tory response. Second, in lipidmetabolism, liver steatosis is an important part
of NAFL andNASH, which is mainly caused by the imbalance of triglyceride
production and secretion in the liver16. Hepatic de novo lipogenesis is sti-
mulated by carbohydrate and insulin, and the metabolism of fatty acids
produces oxylipins, which usually increase the risk of inflammatory-related
diseases such as insulin resistance, diabetes, and obesity17,18. In this study,
Hydroxy-3-methylbutyric acid, a lipid metabolite, may be involved in the
metabolism of fatty acids and oxylipins, thus promoting inflammation and
NASH.Bile acids are secreted in response to themeal to facilitate the digestion
of fats19. Disturbance of bile acid metabolism leads to underactivation of bile
acid receptors FXR and TGR5, causal for decreased energy expenditure,
increased lipogenesis, bile acid synthesis and hepatic inflammation20. This
phenomenon was also observed in this study. The levels of bile acid meta-
bolites w-MCA and w-TMCA were significantly increased in NASH group,
which may promote the occurrence and development of inflammation and
NASH. Finally, in carbohydrate metabolism, excessive hepatic mitochondrial
TCA cycle and gluconeogenesis in patients with NAFLD21,22. In this study,
Ribonolactone, a metabolite of carbohydrates, and cis-Aconitic acid, an
intermediate of TCA cycle, may participate in the energy metabolism in the
occurrence and development of NASH, and may promote inflammation.
These findings raise the possibility that dysregulated TCA cyclemetabolism is
central in the NAFLD, providing a potential link between amino acid, lipid,
and carbohydrate metabolism.

Specifically, among these inflammatory mediators, 2-Hydroxy-3-
methylbutyric acid belongs to the class of hydroxy fatty acids and is mainly
involved in lipid metabolism pathways. The 2-Hydroxy-3-methylbutyric
acid showed good ability to distinguish NAFL/NASH from controls in a
machine learning model, and it has been identified in the urine of patients
with maple syrup urine disease and lactic acidosis23,24. In another study,
altered 2-Hydroxy-3-methylbutyric acid was correlated with severity of
inflammation, which has important diagnostic value for community-
acquired pneumonia25. These findings are particularly consistent with our
finding that the level of 2-Hydroxy-3-methylbutyric acid was significantly
upregulated in NAFLD patients, and associated with impaired inflamma-
tion (IL1β, IL6, IL17, IL21, IL32, TNFα, and CXCL8), glycolipid metabo-
lism, and liver function.

Lipid metabolism in the liver is mainly involved in the occurrence and
development of NAFLD through two metabolic pathways, one of which is
oxidized to produce energy and ketones, such as acetoacetate and
β-hydroxybutyric acid26. The other metabolic pathway is re-esterified to
glycerol esters, such as diglycerides and triglycerides. Primary bile acids and
cholesterol esters are synthesized from cholesterol. Bile acid metabolism is
involved in the progression of NAFLD’s response to a high-fat diet to
facilitate the digestion of fats27,28. Glyceraldehyde 3-phosphate, serine and
diglycerides are also involved in the synthesis of sphingomyelins and
ceramides29,30. Newly synthesized triglycerides can be secreted as VLDL or
stored as lipid droplets. These metabolic pathways have the effect of pro-
moting liver inflammation and oxidative stress4.

Cis-Aconitic acid belongs to the class of tricarboxylic acids (TCA) and
derivatives, and is mainly involved in the TCA cycle pathway. In a machine
learningmodel, cis-Aconitic acid showed good ability in the discrimination
of theNASHpatients from the controls.Also, cis-Aconitic acidwas found to
be significantly correlatedwith inflammatory response in an animal study31.
The pathogenesis of NAFLD metabolism has been reported to be accom-
panied by these functional and phenotypic changes in liver pro-
inflammatory macrophages. Pro-inflammatory M1 macrophages rely pri-
marily on glycolysis and experience disruption in the mitochondrial TCA
cycle, leading to the accumulation of itaconic acid, cis-Aconitic acid, and
succinic acid32. Upregulation of glycolysis and disruption of the TCA cycle
underpin this switch to activated liver pro-inflammatory macrophages.
Moreover, excess cis-Aconitic acid may lead to the accumulation of HIF1α

and activate the transcription of glycolytic genes, thus sustaining the gly-
colytic metabolism of liver pro-inflammatory M1 macrophages32,33. Our
findings also indicated that cis-Aconitic acid was associated with impaired
inflammation (IL1β, IL6, IL21, IL12, TNFα and CXCL8) and glycolipid
metabolism.

Ribonolactone belongs to the class of carbohydrates, peptides, and
analogues, and ismainly involved in the carbohydratemetabolismpathway.
In the machine learning model, Ribonolactone showed good ability to
discriminate theNASHpatients from the controls. Recent evidence suggests
that carbohydrate metabolism and TCA cycle metabolic pathway may be
closely combined to play a synergistic role in the pathogenesis of
NAFLD32,34. Specifically, concerning carbohydrate metabolism, glucose of
amino acids, lactate, or glycerol is produced by glycogenolysis or gluco-
neogenesis, and De novo lipogenesis (DNL) is stimulated by carbohydrate
and Acetyl-CoA35. Amino acid metabolism and carbohydrate metabolism
are connected through the key metabolite pyruvate and participate in the
progression of NAFLD through TCA cycle, a key signal pathway32,34. TCA
cycle intermediates (Acetyl-CoAandSuccinyl-CoA) are also involved in the
progression of NAFLD34,36.

This study identified three novel elevated inflammatory pathogenic
metabolites (2-Hydroxy-3-methylbutyric acid, Ribonolactone, and cis-
Aconitic acid) and the relationship between increased inflammation
(CXCL8, IL17, IL6 and TNFα), may be involved in TLR5/MYD88/NFκB
pathway, as shown inFig. 5C. Specifically, 2-Hydroxy-3-methylbutyric acid,
Ribonolactone, and cis-Aconitic acid mediated TLR5 signaling induces
MYD88/IRAK4/TRAF6 by TAB1/TAB2/TAK1, and activation of NFκB by
IKKs complex, and promoted the secretion of IL6 and TNFα37,38.

Indole belongs to the class of aromatic heterocyclic organic compound,
and is mainly involved in amino acid metabolism pathway. In the machine
learning model, indole showed good ability in discriminating NASH
patients from the controls. Indole and its derivatives have been indicated to
have beneficial effects in mitigating liver inflammatory responses and pre-
serving tight junctions of epithelial integrity7,39. An animal study showed
that mice receiving indole displayed resistance to metabolic alternations of
cholesterol and liver inflammation induced by lipopolysaccharide40. Some
evidence also suggests that a certain dose of indole and its derivatives exert a
protective effect, as it reduces the induction of pro-inflammatory cytokines
including MCP-1, TNFα, and IL1β; and indole and its derivatives can be
stimulated by ligand for pregnane X receptor and toll-like receptor 4 to act
on both macrophages and hepatocytes against NAFLD41,42. These findings
are consistent with our finding that the level of indole was significantly
downregulated in NAFLD patients and associated with the effect of anti-
inflammation (IL1β, IL6, IL17, TNFα, and CXCL8). The increase in indole-
3-lactic acid consumes indole, leading to pro-inflammatory effects (IL1β,
IL6, IL17, and IL21).

Collectively, our results capture a specific gutmetabolitefingerprints in
the clinical course of the NAFLD, and thesemetabolic reprogrammingmay
provide potential insights and drivers into the pathogenesis of NAFLD in
children. Pathway analysis of these differential gut metabolites in children
with NAFLD demonstrated significant enrichment of several processes
including amino acid metabolism, carbohydrate metabolism, digestive
system, TCA cycle, energy metabolism and metabolism of cofactors and
vitamins. These pathways have been reported to contribute to oxidative
stress and systemic inflammation, which further lead to disorder in liver
function and glycolipid metabolism15,43,44. The binding coefficients of the
docking of metabolites to the ligand-binding regions of inflammatory
receptors has the following practical significance. Firstly, by combining
spatial and energy matching, the interaction force between inflammatory
receptors and metabolites was qualitatively represented by the coefficient S
value.When the S value is close to 0, it indicates thatmetabolitewas unstable
in combination with inflammatory receptor. In that case, this pair of
inflammatory receptor and metabolite will not be considered for future
in vitro experiments. This will greatly enhance the true positive rate of
in vitro animal experiments, and optimize the efficiency of the use of
research funds, especially when there are many metabolites that need to be
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screened. The S value of the six receptors andmetabolites in this study were
all <−4 kcal/mol, indicating thatmetabolites were unstable in combination
with inflammatory receptors in this study. Secondly, the smaller the binding
coefficient S value, the more stable the conformation, indicating a stronger
binding between the receptor and the metabolite. In the future vitro
experimental validation, we will prioritize selecting pair of inflammatory
receptor and metabolite with lower binding coefficients S value for animal
experiments, such as pair of TLR5 and cis-Aconitic acid, pair ofMyD88 and
cis-Aconitic acid, and pair of TLR5 and 2-Hydroxy-3-methylbutyric
acid, et al.

This study has a few limitations. First, some confounding factors, such
as dietary habit and ethnicity, may influence the gut microbiota and
metabolomic profiles. Second, although we successfully recruited 145
patients, the relatively small sample size may limit the generalizability and
statistical significance of the results. However, high consistency of the gut
and blood circulation results consolidated our findings. Future multicenter
studies should consider expanding the sample size to enhance the robust-
ness and external validity of these findings. Third, our studymay not reflect
changes in liver metabolites due to the poor accessibility of liver biopsy.
Future studies inpatientswith liverbiopsy areneeded. Fourth, samples from
the case cohort were collected after diagnosis of NAFLD, although most of
them were collected closer to the date of diagnosis. Future studies of
metabolomic profiles from more time points are required to explore
molecular dynamics during temporal analysis of NAFLD progression.
Finally, the investigation into the underlying mechanisms is still in its early
stages. Future studies of in-depth in vitro experiments can better elucidate
these mechanisms are needed, such as through the knockout or over-
expression of TLR5 signaling pathway genes. Moreover, future studies need
to consider incorporating animal or liver organoid model studies, which
would greatly enhance the credibility and scientific rigorof thefindings.This
combined approach would provide a solid foundation for future drug
development and clinical application.

We identified 9 metabolites that played a key role in metabolic
reprogramming of lipids, carbohydrates, amino acidmetabolism andTCA
cycle, hence signifying their critical role in the inflammation pathogenesis
of NAFLD, especially NASH. Machine learning analysis found that 7
metabolites play an important role in identifying disease states and verified
by cell experiments in vitro and molecular-docking analysis. Last, this
study identified three novel elevated inflammatory pathogenicmetabolites
(2-Hydroxy-3-methylbutyric acid, Ribonolactone, and cis-Aconitic acid)
and the relationship between increased inflammation (CXCL8, IL17, IL6,
and TNFα), may be involved in TLR5/MYD88/NFκB pathway.

Methods
Study population
This study was performed in 290 fecal samples and 290 plasma samples
from 92 children with NAFLD (53 NAFL patients and 39 NASH patients)
and53 control children from the Institute ofChildHealth,Hunan children’s
Hospital (Changsha, China). All legal guardians of these children and the
Hospital Ethics Research Committee (XYGW-2018-04) gave informed and
written consent to the clinical and biomaterial omics investigations. The
study was undertaken according to Helsinki Declaration II from January
2020 to September 2021. We recruited children with/without NAFLD with
strict inclusion and exclusion criteria to avoid the influence on the targeted
metabolites. A detailed selection flow chart of the children with/without
NAFLD included in this study is shown in Fig. 6. According to the standard
of “Screening for overweight and obesity among school-age children and
adolescents” (WS/T586-2018), theBMI status of childrenwas classified into
3 categories, normal, overweight and obesity (Supplementary Table 11).
Demographic, clinical data and inflammatory factors for each child were
obtained at the Institute of Child Health, Hunan children’s Hospital.

Analysis of gut metabolites by targeted metabolomics
Fecal and plasma levels of gut metabolites were determined by G350 Kit,
measured using the liquid chromatography coupled to tandem mass

spectrometry (LC-MS/MS). The G350 Kit has coverage of up to 346
metabolites and 40 biochemical classes, including the differential metabo-
lites detected by our research group using untargeted screening and key
metabolic pathways involved in the pathogenesis of NAFLD such as fatty
acids, amino acids, and carbohydrates, as well as other metabolites such as
indoles, bile acids and benzenoids45–47. Common nomenclature and bio-
chemical classes of these gut metabolites are detailed in Supplementary
Table 12.

Metabolite extractions
To extract metabolites from the fecal samples, 800 μL of cold methanol/
acetonitrile/water (2:2:1) extraction solvent was added to 100mg fecal
sample, and adequately vortexed. Moreover, to extract metabolites from
plasma samples, 400 μL of cold methanol/acetonitrile (1:1, v/v) extraction
solvent was added to 100 μL plasma sample remove the protein and extract
themetabolites, then adequately vortexed. For absolute quantification of the
metabolites, stock solutions of stable- isotope internal standardswere added
to the extraction solvent simultaneously, and then the elution was collected
and dried in a vacuum centrifuge at 4 °C. For LC-MS analysis, the samples
were re-dissolved in 100 μL acetonitrile/water (1:1) solvent and transferred
to LC vials.

LC-MS/MS analysis
Analyses were performed using an UHPLC (1290 Infinity LC, Agilent
Technologies, USA) coupled to a QTRAP MS (6500, Sciex, USA). The
analytes were separated on HILIC (Waters UPLC BEH Amide column,
2.1mm× 100mm, 1.7 µm) and C18 columns (Waters UPLC BEH C18-
2.1 × 100mm, 1.7 μm). ForHILIC separation, the column temperature was
set at 35 °C; and the injection volume was 2 μL. Mobile phase A: 100mM
ammoniumacetate and1.2%Ammoniumhydroxide inwater,mobile phase
B: acetonitrile. A gradient (85% B at 0–1min, 80% B at 3–4min, 70% B at
6min, 50% B at 10–12.5min, 85% B at 12.6–18min) was then initiated at a
flow rate of 300 μL/min. For RPLC separation, the column temperature was
set at 40 °C, and the injection volume was 2 μL. Mobile phase A: 50mM
ammonium formate and 0.4% formic acid in water, mobile phase B:
methanol. A gradient (5%B at 0min, 60%B at 5min, 100%B at 11–13min,
5% B at 13.1–16min) was then initiated at a flow rate of 400 μL/min. The
sample was placed at 4 °C during the whole analysis process. 6500 QTRAP
(ABSCIEX,USA)wasperformed inpositive andnegative switchmode.The
ESI positive source conditions were as follows: source temperature: 550 °C;
ion SourceGas1 (Gas1): 55; Ion SourceGas2 (Gas2): 55; Curtain gas (CUR):
40; ion Sapary Voltage Floating (ISVF): +4500 V; the ESI negative source
conditions were as follows: source temperature: 550 °C; Gas1: 55; Gas2: 55;
CUR: 40; ISVF: −4500 V. MRM method was used for mass spectrometry
quantitative data acquisition.Apolledquality control (QC) sampleswere set
in the sample queue to evaluate the stability and repeatability of the system.
MultiQuant (version 3.0) was used for quantitative data processing. The
ratio of the peak area (area of the peak for substance/area of the peak of the
internal standard) was used for obtaining the absolute quantitation for each
substance according to the calibration curve. Peakview (version 1.2) was
used for the metabolomic total ion chromatograms (TIC) analysis of feces
and plasma.

Cell lines
Human normal hepatocyte cell line hepatocytes (THLE-3) were obtained
from the American Type Culture Collection (Manassas, Virginia, USA),
which is non-tumorigenic and alpha fetoprotein expression negative. The
cells were cultured in RPMI-1640 medium (GE Health Life Sciences, USA)
supplemented with 10% (vol/ vol) fetal bovine serum (FBS) (Gibco, USA),
and 1% penicillin/streptomycin (100 IU/ml penicillin and 100mg/ml
streptomycin) (Gibco, USA) at 37 °C in a humidified atmosphere of 5%
CO2.We terminatedwith 0.25% trypsin-EDTA (Gibco, USA) and collected
logarithm growth cells. Onemillion of THLE-3 was seeded in each well of a
six-well culture plates. Then, cells were exposed towith orwithout indicated
metabolites-supplemented for 24 h.
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Quantitative RT-PCR (qRT-PCR) for liver function and
inflammation assay
Total cellular RNA was extracted using the RNA isolater Total RNA
ExtractionReagent Kit (Vazyme,NanJing, China). Reverse transcriptionwas
conducted using theHiScript ® II Q Select RT SuperMix cDNASynthesis Kit
(Vazyme,NanJing, China) on S1000TMThermalCycler (Bio-Rad,Hercules,
CA, USA). mRNAs were assayed qualitatively by ChamQ Universal SYBR
qPCRMasterMix (Vazyme, NanJing, China) on a LightCycler96 Real-Time
PCR System (Roche, Switzerland). All the procedures were repeated three
times. The mRNA relative expression levels were calculated by the 2−ΔΔCt

method using GAPDH as an internal reference, respectively. The sequences
of mRNA primer pairs used were in Supplementary Table 13.

Molecular docking of metabolites to binding domain of inflam-
matory receptor protein
The DOCK module of the MOE2019.01 software program was used to
predict the preferable binding sites between inflammatory receptor and the

respective metabolites. Water molecules in the crystal structure were
removed with the MOE software, and the energy was minimized before
molecular docking. The S value scoring function was based on GBVI/
WSAΔG, that estimates the binding free energy of a metabolites to an
inflammatory receptor.

Statistical analysis
All statistical tests were performed using R v3.5.1 statistical software. Non-
parametric statistical tests (Kruskal-Wallis test/Mann–Whitney test) were
used to assess the differences of demographic and clinical features between
cases and controls. Spearman correlation was used to assess correlation
between demographic and clinical features and gut metabolites. The hier-
archical cluster analysis was used to assess clustering algorithm, and the
Euclidean distance was used to assess the relationship between samples and
gut metabolites; and between demographic and clinical features.

Data of gut metabolites were log transformed and centered before
conducting the Orthogonal Partial least squares discriminant analysis

Fig. 6 | Flow chart showing the methods used for metabolomics analysis and
bioinformatics function prediction. Patient recruitment and inclusion and
exclusion criteria. Various clinical samples were obtained fromNAFLDpatients and
controls. Integrative analysis for potential harmful and beneficial gut metabolites.

Targeted metabolomics (LC-MS/MS) offers a plethora of information on metabo-
lites. NAFL, nonalcoholic fatty liver, NASH non-alcoholic steatohepatitis, LC-MS/
MS liquid chromatography coupled to tandem mass spectrometry, RF random
forest.
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(OPLS-DA), which was used to assess the metabolic alterations between
cases and controls. The Bonferroni correction was applied to correct for
multiple-testing. The 7-fold cross-validation and 200 times permutation
testing were used to assess the risk of overfitting and the robustness of the
OPLS-DAmodel. The functions of differential metabolites were performed
using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database.

Machine learning with random forest models was used to verify
whether the metabolite combinations were potential discriminators for
identifying children with NAFL or NASH. We selected important meta-
bolites with mean decrease accuracy using RF analysis. Combined with
important variables of machine learning screening, multivariate logistic
regression analysis was used to control confounding factors such as age,
BMI, and gender, and further account for the impact of these plasma
metabolites on the childrenwithNAFLorNASH.We further combined the
results of RF analysis and biological function annotation to select potential
inflammatory metabolites for the next in vitro cell experiment verification.
Unless otherwise stated, p < 0.05 was considered statistically significant.
Completed reporting checklist is shown in Supplementary Table 14.

Data availability
No datasets were generated or analysed during the current study.
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