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Characterizing human microbiota in host-dominated samples is crucial for understanding host-
microbe interactions, yet is challenged by the high host DNA context (HoC). Current depletion
strategies are limited by DNA loss and require immediate processing. In this paper, we introduce
2bRAD-M, a reduced metagenomic sequencing method that enables efficient host-microbe analysis
without prior host depletion. Validated onmock samples with >90%human DNA, 2bRAD-M achieved
over 93% in AUPR and L2 similarity. In both saliva and oral cancer samples, 2bRAD-M closely
matchedWMSprofiles; in the former, it captured diurnal and host-specificpatternswith only 5–10%of
the sequencing effort. In an early childhood caries (ECC) study, 2bRAD-M identified key bacterial
indicators and distinguished ECC from healthy subjects (AUC = 0.92). By providing high-resolution
microbial profiles without host depletion, 2bRAD-M offers a practical and efficient solution for HoC-
challenged microbiome research.

Sequencing-based microbiome methodologies have notably expanded our
understanding of microbial communities across various human body sites,
enabling a progressively nuanced comprehension of host-microbe inter-
actions in health and disease. However, unlike the extensively studied gut
microbiota, research onmicrobial communities in high-host context (HoC)
niches, such as saliva and cancer tissues, which typically yield over 90–99%
human genome-aligned reads1,2, is insufficiently understood, highlighting
the urgent need to address the limitations of conventional metagenomic
sequencing strategies.

The primary sequencing methods used to establish the taxonomic
composition of the microbiome mainly fall into two categories: (i) targeted
sequencing of phylogenetic “marker genes” (such as 16S rRNA sequencing)
and (ii) whole metagenomic shotgun sequencing (WMS). Although
marker-gene-based sequencing is widely employed for characterizing
microbial populations in various environmental and host systems, it has
several limitations, including (ⅰ) limited taxonomic resolution; (ⅱ) primer
bias affecting bacterial clade representation; (ⅲ) PCR bias causing mis-
identification and inaccurate abundance estimation; and (ⅳ) off-target

amplification in HoC samples, where host DNA sequences can be falsely
assigned to bacterial taxa3. WMS overcomes these hurdles because it ana-
lyzes the total DNA content of a sample and doesn’t rely on target-specific
primers. However,WMS requires a substantial amount of startingDNA (at
least 20–50 ng) and extensive sequencing effort to achieve adequate cov-
erage of microbial genomes in HoC samples4. Increasing sequencing depth
could improve performance, but is limited by several factors: (i) higher costs
from more human reads; (ii) difficulty in detecting low-abundance phe-
notype-associated microbes in HoC samples; (iii) the prohibitive compu-
tational costs of ultra-deep sequencing for many laboratories.

Several strategies have been developed to reduce host DNA in samples,
including pre-extraction methods that lyse human cells followed by host
DNA degradation, and post-extraction methods that separate microbial
DNA based onmethylation differences5. Pre-extraction techniques, such as
lyPMA and MEM, employ a dual-step process that leverages the physical
differences between prokaryotic microbial cells and eukaryotic host cells or
utilizes selective lysis agents like saponin, complemented by enzymatic or
chemical DNA degradation methods (e.g., Benzonase nuclease, propidium
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monoazide (PMA))1,6. These methods, however, confront challenges in
maintainingmicrobial recovery neutrality and preventingDNA loss during
processing, which hinders their effectiveness in low-biomass samples7.
Notably, pre-extraction methods require fresh samples and immediate
treatment after collection for effectivehost depletion.However, theymay fail
with frozen samples, a more widely accepted and feasible sample type for
large-scale clinical microbiome studies6. Regarding post-extraction meth-
ods, DNA-binding proteins (e.g., methyl-CpG binding protein) and
methylation-sensitive endonucleases (e.g., MspJI) are used to enrich
microbial sequences anddeplete hostDNA, respectively8,9. The effectiveness
of these strategies heavily depends on the methylation status of the target
genomes, which may lead to uneven recovery of microbial reads, thus
skewing the representation of different microbial lineages10; Furthermore,
completely excluding host DNA from samples may not be entirely favor-
able, given that the retention of human DNA yields invaluable insights into
the intricate dynamics ofmicrobiome evolution driven by the host factors11.

To address host DNA contamination issues, we developed 2bRAD-
M12—a reduced-representation sequencing method that leverages differ-
ences in restriction enzyme site distribution between microbial and human
genomes. Microbial genomes encode approximately 150 times more genes
than humans13, resulting in a higher enzyme site density that preferentially
generates microbial-derived 2bRAD-M tags. This selective amplification
enhancesmicrobial signal representation inHoC samples (for details, please
refer to the sections titled “2bRAD-M sequencing” and “Computational
workflow of 2bRAD-M” in the “Methods” section).

While our priorwork tested thefirst versionof 2bRAD-M in fecal, skin,
and environmental samples, etc.12, its performance inprevalent clinicalHoC
samples—such as fresh saliva and cancer specimens—remained unad-
dressed, leaving a gap in understanding its utility for high-impact diagnostic
applications. Salivarymicrobiome analysis demonstrates significant clinical
value for detecting major oral diseases (e.g., periodontal disease, dental
caries14) and is linked to systemic conditions, including diabetes, cancers,
and neurodegenerative disorder15–18. Notably, in oral cancer tissue, micro-
bial signatures can critically influence oral cancer development, response to
immunotherapy, and chemotherapy efficacy19,20. However, high host DNA
levels hide these microbial signals, significantly reducing the detection
sensitivity, resolution, and increasing the detection cost. Furthermore,
2bRAD-M’s analytical power critically relies on the quality of the reference
database, where the RefSeq database limits its annotation capabilities, i.e.,
detection and profiling of previously inaccessiblemicrobial “darkmatter” in
these critical sample types.

In this study, we first employed mock communities to simulate high-
host background conditions for assessing the microbial identification and
abundance estimation abilities of 2bRAD-M compared to traditional
sequencingmethods, namelyWMSand16S rRNAsequencing.Notably, the
2bRAD-M Tag database was significantly expanded with GTDB (r202)21

and EnsemblFungi22 genomes to enhance taxonomic coverage. Subse-
quently, we evaluated the performance of these three methodologies with
real saliva samples and oral cancer specimens, highlighting the high con-
cordancebetween2bRAD-Mand the current gold-standardmethod,WMS,
and identifying several species whose relative abundance fluctuated diur-
nally in saliva. Finally, we validated the ability of 2bRAD-M, alongside 16S
short-readand long-read sequencing, indistinguishingpatientswithECC—
a prevalent form of severe dental decay affecting primary teeth in young
children—from healthy individuals. Utilizing 2bRAD-M, we identified
several key species that significantly enhanced the predictive performanceof
the ECC model cost-effectively.

Results
Thepracticality of using2bRAD-Mtodetect theHoCmicrobiome
through in vitro simulation
The performance of 2bRAD-M in microbial identification and abundance
estimation was benchmarked against 16S rRNA sequencing and WMS
sequencing methods. The conventional 16S method targeting the V4-V5
region was applied to generate genus-level taxonomic profiles, while a

recently developed 16S rDNA sequencing protocol, the “5R 16S method”,
was employed to predict taxonomic profiles at the species level23. Both 16S
methods were analyzed using the QIIME224 platform. For WMS sequen-
cing, widely recognized bioinformatic tools, like MetaPhlAn425 and
Bracken26, were utilized to derive taxonomic profiles down to the genus and
species levels (Fig. 1). To critically assess the performance of the profiling
tools, the precision-recall curve was used as the primary indicator for
microbial identification27. It graphically represents precision and recall
scores at distinct abundance thresholds. By comparing the generated
taxonomicprofileswith the ground truth, the areaunder theprecision-recall
curve (AUPR) was calculated, providing a single metric for consolidating
precision and recall scores and effectively evaluating the presence or absence
patterns of microbes28. Abundance estimation was assessed based on
L2 similarity for a more thorough analysis.

To assess the efficacy of the aforementioned methods in profiling
microbial communities amid substantial interference from host DNA, we
employed a mock microbial community comprising evenly mixed DNA
from 20 bacterial species (across 18 genera)29. This composite served as the
basis for preparing stocks spiked with 90% and 99% human DNA,
respectively. For each type of stock, two technical replicates were generated
and subjected to 2bRAD-M, 16S rRNA sequencing, and WMS sequencing
methods. Subsequently, the profiles obtained by each method, along with
the AUPR and L2 similarity metrics, were then compared to the ground
truth across the taxonomic ranks, encompassing the genus and species
levels.

2bRAD-M exhibited robust microbial identification and abundance
estimation abilities, coupled with commendable technical reproducibility
across replicates. In the scenario where host DNA comprises 90% of the
sample, the AUPR and L2 similarity scores for 2bRAD-M exhibited
exemplary performance, attaining notably high percentages at both the
genus and species levels. Conversely, 16S rRNA sequencing yielded lower
AUPR and L2 similarity scores across taxonomic levels, whereas WMS
demonstrated metric values similar to those of 2bRAD-M. Once the host
DNA proportion in the sample reached 99%, the AUPR and L2 similarity
scores for 2bRAD-M significantly surpassed those of 16S rRNA sequencing
at both the genus and species levels. This highlighted its superior ability in
delineating the taxonomic composition of the microbial community, even
under HoC conditions. WMS achieved high AUPR but showed reduced
L2 similarity, revealing bias in abundance estimation. Notably, significant
challenges have been observed in 16S rRNA sequencing, characterized by a
pronounced false-positive issue (Fig. 1a, b). The elevated false-positive rate
and diminished accuracy in abundance estimationwere likely driven by off-
target amplification, which exacerbated profile distortion at higher levels of
host DNA.

Benchmarking the taxonomicprofilingperformanceof2bRAD-M
with diurnal saliva samples
Elucidating the dynamical changes of the salivary microbiota may reveal
mechanisms underlying its association with oral and systemic diseases. To
scrutinize the intricate temporal dynamics of salivary microbiota and
evaluate the performance of 2bRAD-M on actual HoC samples, a cohort of
eight participants was enlisted to provide saliva specimens at four time
points: 9 AM, 11 AM, 1 PM, and 5 PM, resulting in a total of 32 samples
(referred to as diurnal saliva samples). Each sample was partitioned into
three aliquots for analysis using WMS, 2bRAD-M, and 16S rRNA
sequencing, respectively (Fig. 2b).

Disparate reference databases across metagenomic profilers may
introduce confounding variables when comparing the classification per-
formance of differentmethods. Therefore, it is imperative to standardize the
database before initiating comparative analyses. 16S data analysis depends
on using 16S rRNA databases, such as Greengenes and the SILVA
database30. In contrast, 2bRAD-M relies on GTDB+ EnsemblFungi; WMS
data analysis is conducted using MetaPhlAn4, which provides a script to
facilitate convertingprofiles toGTDB-basedoutcomes. It is noteworthy that
the SILVA and GTDB databases do not share a common data universe for
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microbiome investigations. To enable a more rigorous comparison, we
trained a taxonomic classifier utilizing the GTDB within the QIIME2 fra-
mework (refer to the code provided in ourGitHubRepository). Because real
samples lack ground truth,method concordancewas assessedusingPearson
correlation coefficients (R) and L2 similarity metrics (L2) of taxonomic
profiles between WMS and other methods.

After standardization, we compared the taxonomic profiles generated
by 2bRAD-M, WMS, and 16S rRNA sequencing at the genus level (Fig.
3a–c). The taxonomic profiles obtained from 2bRAD-M and WMS
exhibited high concordance, with an average R of 92.7% and L2 of 94.7%
(Fig. 3a; Fig. S1). Conversely, a notable disparity is observed when com-
paringprofiles to those generatedusing16S rRNAsequencing: the averageR
and L2 are 87.4% and 83.9% between 2bRAD-M and 16S, as well as 82.5%
and 85.1% betweenWMS and 16S (Fig. 3b, c; Figs. S2 and S3).

We next scrutinize the effectiveness of 2bRAD-M in species-level
taxonomic profiling. Given the inherent limitations in accurately classifying
species of 16S data, we chose to exclusively benchmark 2bRAD-Malongside
WMS (Fig. 3d–f). Initially, the two approaches were quite dissimilar
(average R = 52.0% and average L2 = 69.9%) (Fig. 3d; Fig. S4). Although
comparing the shared species could enhance the average R to 71.1%, the
outcome remained suboptimal (Fig. S5). We postulated that the disparity
was attributed to variations in both the sequencing techniques and the
subsequent computational pipelines. The combination of variances from
these two factors might have contributed to the high heterogeneity evident
in the overall taxonomic profiles.

To assess the disparity in sequencing techniques, we compared the
species-level profiling results fromWMSdataprocessedwith the 2bRAD-M
computational framework, denoted as the (WMS) 2bRAD-Mcombination,
with those from2bRAD-Msequencing data processed through the 2bRAD-
Mpipeline, referred to as the (2b) 2bRAD-Mcombination. Remarkably, the
paired results exhibitedhighdegreesof similarity,with anaverageR = 96.7%

and L2 = 96.7% (Fig. 3e, Fig. S6). While either data processing combination
detected certain unique species, the shared species identified by both
combinations represented 98.65% and 99.76% of all reads in the 2bRAD-M
data and theWMS data, respectively. This indicates that technique-specific
taxa constituted trace biomass fractions. Additionally, correlation analysis
conducted on the shared species revealed marginally enhanced metrics in
the taxonomic profiling outcomes, with both average R and average L2
96.9% (Fig. S7). Furthermore, the discrepancy between computational
pipelines was compared. We juxtaposed the taxonomic profiles derived
fromWMS data analyzed with MetaPhlAn4, denoted as the (WMS) MPA
combination, with those from the (WMS) 2bRAD-M combination,
revealing a notable discrepancy (Figs. 3f, S8). These findings demonstrate
high concordance between the sequencing techniques of 2bRAD-M and
WMS, with disparities in taxonomic profiles primarily caused by distinct
computational pipelines.

2bRAD-M showed strong agreement with WMS when conduct-
ing diversity analyses
To substantiate the capability of 2bRAD-M in yielding biologically
equivalent results to othermethodologies, particularlyWMS, we conducted
diversity analyses of these profiles. All saliva samples (n = 32)were stratified
into the gingivitis group (n = 16) and the healthy group (n = 16) based on
participants’ oral health status, with four individuals diagnosed with gin-
givitis and four without. Both 2bRAD-M and WMS exhibited significant
differences between the two groups in alpha diversity, with Shannon
diversities of 7.36 and 12.28, respectively (p < 0.05). In contrast, 16S data did
not reveal any significant difference between groups (p = 0.1) (Fig. 4a). We
further performed beta diversity analysis using four distance matrices
(Jaccard distance, Bray–Curtis dissimilarity, unweighted UniFrac distance,
and weighted UniFrac distance) for the taxonomic profiles generated by
each sequencing method. Based on the pseudo-F statistic from the Adonis
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Fig. 1 | Schematic illustration of the benchmarking workflow in HoC samples.
aHoCmock communitieswere created bymixing the standardMSA1002 (synthetic
community) with 90% and 99% human DNA. Sequencing was performed using
2bRAD-M, 16S, andWMSmethods. Obtained profiles were evaluated for microbial
identification and abundance estimation usingAUPR andL2 similarity, respectively.
AUPR: Area under the precision-recall curve, a metric that measures the average
performance of a classification model in terms of precision and recall across all
possible thresholds, particularly suitable for imbalanced datasets; L2 similarity: a
metric that measures how close two data points are in space by calculating the
reciprocal of the Euclidean distance between them. b, c For diurnal saliva and oral
cancer samples, we employed 2bRAD-M, 16S, and WMS, with WMS results

considered as the gold standard. The acquired feature tables underwent L2 similarity
analysis for abundance estimation, followed by diversity analysis. Rarefaction ana-
lysis was applied to WMS and 2bRAD-M profiles. Furthermore, the temporal
dynamics of oscillating species were examined. dEarly childhood caries (ECC) saliva
samples were analyzed using 2bRAD-M, short- and long-read 16S sequencing
methods. Diagnostic models of ECC were developed employing Random Forest
algorithms on sequencing datasets. The efficacy of these models was evaluated with
ROC curves. Indicative species for the 2bRAD-M-derived diagnostic model were
visualized on a scatter plot, highlighting their importance scores and corresponding
AUC values. This figure was created using BioRender.com.
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test, all methods distinguished between gingivitis and healthy individuals.
Remarkably, the statistical power of 2bRAD-M closely matched that of
WMS and significantly surpassed that of the 16S method (Fig. S9). Both
2bRAD-M and WMS methods demonstrated high effectiveness in dis-
cerning microbial diversity variances between gingivitis and health states.
Conversely, the 16S method had slightly lower sensitivity to inter-group
differences due to its limited resolution.

To evaluate the technical consistency across methods, we per-
formed theMantel test to assess the similarity betweenmethod-specific
distance matrices (Fig. 4b). We observed a robust correlation (Pear-
son’s R = 0.97) between the genus-level Bray–Curtis dissimilarity
matrices for 2bRAD-M andWMS. However, the similarity between the
16S and WMS matrices was notably lower (R = 0.49). At the species
level, the Bray–Curtis and weighted UniFrac distance matrices derived

from 2bRAD-M and WMS demonstrated strong consistency, with
outstanding R of 0.97 and 0.95, respectively. The performance of the
16S method was considerably less satisfactory, as indicated by R values
of 0.39 and 0.25 for WMS, corresponding to the respective distance
matrices. These suggested that 16S yielded less correlated distance
matrices compared to WMS and 2bRAD-M. 2bRAD-M and WMS
exhibited high concordance in beta diversity analysis in terms of
Bray–Curtis and weighted UniFrac distances. While 2bRAD-M and
WMS identified unique species, the species identified by both methods
were dominant andmade upmost of the sequencing reads. The identity
and relative abundance of shared species exhibited an ultra-high degree
of similarity. Collectively, 2bRAD-M technology demonstrates both
biological and methodological robustness comparable to WMS when
sequencing HoC samples, such as saliva specimens in this study.
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Fig. 2 | 2bRAD-Mrevealed highly accuratemicrobiota composition inHoCmock
samples. In both (a) and (b), the left panel shows the taxonomic profiling results of
MSA 1002 mixed with 90% human DNA, while the right panel shows results from
MSA 1002 mixed with 99% human DNA. In the stacked bar plots, the colored bars
indicate bacteria taxa present in the ground truth, while the white bars indicate false
positives identified in the profiling results of a given method. AUPR measures the

accuracy of microbial identification, and L2 similarity measures the similarity
between the ground truth and predicted taxonomic profiles. a Genus-level profiling
results of the three sequencing methods (16S, 2bRAD-M, WMS) on the same DNA
mock community (MSA 1002). b Species-level profiling results of the three meta-
genomics methods.
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2bRAD-Mcan capture similar biological signals toWMSwith just
5–10% of the sequencing effort from host-rich samples
The effectiveness of WMS is highly dependent on sequencing depth31. To
evaluate the minimal sequencing depth for elucidating microbial compo-
sition and studying HoC community ecology in 2bRAD-M and WMS
sequencing, a series of analyses was performed across a range of increasing
sequencing depths. Notably, initial sequencing outputs differed sig-
nificantly: 32 saliva samples averaged 20 million reads per sample with
2bRAD-M versus 207 million reads with WMS (10 times higher). Both
methods showed strong concordance in host DNA quantification. 2bRAD-
M demonstrated superior microbial enrichment (mean host reads: 79.56%
vs. WMS’s 93.35%; p < 0.001), yet yielded biologically consistent host cell
proportion estimates (3.28% vs. 3.07%; Table S1). Critically, per-sample
human read percentages showed near-perfect inter-method agreement
(Pearson’s R = 0.93, p < 0.001; Fig. S10a), reflecting 2bRAD-M’s enhanced
specificity for unbiased microbial DNA enrichment. This systematic
reduction in host contamination underscores the method’s dual advantage:
(i) minimizing sequencing bias toward host DNA, and (ii) improving cost-
efficiency, particularly valuable for large-scalemicrobiome studies requiring
high microbial resolution. Furthermore, the significant correlation in esti-
mated human cell proportions between techniques (Pearson’s R = 0.81,
p < 0.001; Fig. S10b) validates their mutual robustness in distinguishing
host-microbial biological signals.

Given 2bRAD-M’s reduced host contamination and lower baseline
depth, we next assessed its robustness under depth constraints. We boot-
strapped samples down to 0.1, 1, 2, 5, 7.5, 10, 12.5, 15, 17.5, 20, and 22.5
million reads for 2bRAD-M (bootstrapwas not conducted if the sequencing
depth did not meet the corresponding threshold, totaling 256 samples).
WMS data were subsampled to 1, 10, 20, 50, 75, 100, 125, 150, 175, 200, and
225 million sequences per sample (totaling 308 samples). We aimed to

determine the sequencing depth necessary for accurate quantification of
crucial ecological indicators, including alpha diversity (Shannon index) and
beta diversity (Bray–Curtis dissimilarity andweightedUniFrac distance), in
both 2bRAD-M and WMS datasets. Notably, at a sequencing depth of 5
million reads per sample, which equals to 609 megabases (Mb) of data, the
rarefaction curve of 2bRAD-M reaches saturation and attains Shannon
index, Bray–Curtis dissimilarity, and weightedUniFrac distance values that
are highly congruent with its deepest read-depth (similarity >99%) (Fig. 4c).
This efficiency stems from the ~150-fold higher density of Type IIB
restriction sites in microbial vs. host genomes, enabling 2bRAD-M to
recover two orders of magnitude more microbial reads per sequencing unit
thanWMS at equivalent depths (Fig. S11). Consequently, 2bRAD-Mneeds
merely 5–10% of the sequencing data required by WMS to generate the
species-resolved taxonomic profile with comparable accuracy. These
reductions are especially significant in studies requiring deep sequencing,
such as revealing true microbial composition or detecting scarce but eco-
logically important species in high-host communities, establishing 2bRAD-
M as an optimized solution for HoC sample analysis.

Benchmarking on oral cancer specimens confirms 2bRAD-M’s
capability to address HoC challenges
To further demonstrate the generalizability of 2bRAD-M across otherHoC
sample types, we extended our validation to oral squamous cell carcinoma
(OSCC) tissues—a commonHoC sample—using four tumor samples from
our cohort (IRB approval No.: UW 15-239). Consistent with our analytical
approaches for saliva, these tissues underwent 16S rRNA sequencing,
2bRAD sequencing, and WMS, respectively. Similarly, pairwise compar-
isons (Pearson’s R and L2 scores) revealed that 2bRAD-M profiles showed
exceptional concordance withWMS-derived profiles (Fig. 5a, b). Critically,
when computational pipelines were aligned (2bRAD-M vs. (WMS)
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Fig. 3 | The correlation of microbial abundance at the genus or species level
between each pair of three sequencing methods (2bRAD-M, 16S, and WMS) in
diurnal saliva samples. Within each group, three out of the total 32 samples were
selected to illustrate the correlation between different methodologies. “Average R”
and “Average L2” labeled in the figure represent the respective average indices for all
32 samples. The gray box on top of each scatter plot displays the sample ID. Points on
the coordinate axis represent unique features identified by the corresponding
method, while shared features are indicated by light blue points in the white area of
the plot. a–c Comparative analysis of genus-level taxonomic profiling results

obtained from2bRAD-M,WMS, and 16S rRNA sequencing. The profiles of 2bRAD-
M and WMS are highly concordant. d–f Comparative analysis of species-level
taxonomic profiling results of 2bRAD-M and WMS based on overall divergence,
sequencing method disparity, and computational pipeline variance. 2bRAD-M and
WMS are highly similar in sequencing methods, but significant differences were
observed in their corresponding computational pipelines. (WMS) MPA analyzing
WMS data using MetaPhlAn4, (WMS) 2bRAD-M analyzing WMS data using the
2bRAD-M computational pipeline, (2b) 2bRAD-M analyzing 2bRAD-M sequen-
cing data with the 2bRAD-M computational pipeline.
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2bRAD-M), species correlations approachednear-perfect agreement (R and
L2 > 96.9%), greatly exceeding correlations between 16S and any other
sequencing method (p < 0.05, paired t-test). Differences in pipelines per-
sisted ((WMS) 2bRAD-Mvs. (WMS)MPA), indicating that computational
methods, not sequencing strategies, are the main drivers of profiling
variations.

Furthermore, we measured the similarity of species-level Bray–Curtis
dissimilarity matrices between 16S and WMS profiles or 2bRAD-M and
WMS profiles. Strikingly, 2bRAD-M and WMS profiles showed near-
perfect concordance (Pearson’sR = 0.93), while 16S andWMScomparisons
yielded markedly lower agreement (R = 0.63, Fig. 5c). Phylogeny-aware
UniFrac distance-based analysis further validated this conclusion. 2bRAD-
M and WMS profiles still showed near-perfect concordance (R = 0.97),
while 16S and WMS comparisons yielded no agreement (R =−0.16, Fig.
5c). Collectively, these results demonstrate that 2bRAD-M achieves
exceptional biologicalfidelity togold-standardWMSprofiling. Importantly,
this high accuracy extends to oral cancer tissues—a challenging host-rich
(HoC) sample type—substantially bolstering the method’s clinical applic-
ability beyond saliva-based studies.

2bRAD-M captured the subtle changes over time in the saliva
microbial communities
Studies have reported the diurnal oscillation patterns of the oral
microbiome32,33, but further investigation is needed to elucidate the
dynamics of microbial communities at high taxonomic resolution over
shorter time frames, such as during thedaytime.Tobenchmark the ability of
2bRAD-M in capturing subtle oscillations within the microbiome of HoC
samples, we partitioned the diurnal saliva dataset into four groups based on
sampling times (11AM, 1 PM, and 5 PMcompared to their baseline: 9AM)
and computed the Bray–Curtis dissimilarities. Both 2bRAD-M andWMS-
based profiles captured the diurnal fluctuations in microbial community
structure at the genus level (p < 0.01 and p = 0.02, respectively), in contrast
to 16S rRNA gene sequencing, which showed no significant temporal var-
iation (p = 0.10) (Fig. S12). Notably, this temporal patternwasmore evident
at the species level, where both 2bRAD-M andWMS identified substantial

microbial compositional differences between the 9AM–5PMand9AM–11
AM sampling intervals (Fig. 6a, p = 0.02). This observation aligns with
previous literature, showing that rhythmicmicrobial community variations
can be detected over the daytime32. In contrast, the results from 16S
sequencing showed no significant changes in microbial communities at
different time points compared to the baseline (p = 0.20). These results
suggest that 2bRAD-M exhibits high sensitivity in capturing the temporal
oscillations in HoC microbial communities.

We further clustered the microbiotas using the principal coordinate
analysis (PCoA) plot and identified microbial taxa driving diurnal patterns
in the salivary microbiome. In the PCoA plot (Fig. 6b), 5 PM samples
consistently localized to the left of their paired 9 AM samples along the PC1
axis, demonstrating unidirectional temporal shifts in community structure
(Fig. 6b). Since that PC1 appeared to be the primary descriptor and a good
proxy of temporal changes, the relative abundance data of each of key
species was projected onto a PCoA plot, visualizing the microbial gradient
along PC1 (Fig. 6c).We identified 58 PC1-associated bacterial species using
2bRAD-M and 19 inWMS profiles showing diurnal abundance shifts, with
eight species common tobothprofiles. These shared species-Filifactor alocis,
Desulfobulbus oralis, Eubacterium M brachy, Tannerella forsythia, Trepo-
nema B denticola, Porphyromonas endodontalis, F0058 sp000163695, and
Campylobacter A rectus-exhibited consistent diurnal depletion from 9:00
AM to 5:00 PM, showing negative correlation with PC1 (Spearman rho >
0.7, p < 0.01, Fig. S13). In previous literature, the genus Porphyromonas has
been shown to exhibit a notable decreasing trend in the saliva of one or
multiple individuals in the daytime32, consistent with our observations in
this study (Fig. 6c). Notably, this trend was confirmed by qPCR measure-
ment of P. endodontalis and overall bacteria load in eight samples from four
subjects at 9 AM/5 PM time points (selected based on sufficient residual
DNA). We demonstrated a strong correlation between qPCR-derived
relative abundance and 2bRAD-M measurements (Pearson’s R = 0.99,
p < 0.01; Fig. S14 andTable S2). Therefore, 2bRAD-Mprovides a promising
avenue for studying the subtle dynamics of themicrobiome inHoC samples
and holds potential applications in assessing the relationship between this
variation and the host’s physiological state.
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2bRAD-M demonstrates a stronger discriminatory power in
classifying ECC than amplicon-based metagenomics
Understanding the human microbiome is essential for improving disease
classification, treatment, and prevention by leveraging insights from
microbiota profiles. The use of oral microbiota to predict disease states, as
demonstrated in studies analyzing saliva and plaque samples for diseases
like ECC34 and gingivitis35, is a burgeoning area of research. ECC, affecting
nearly half of children worldwide, results in considerable social and eco-
nomic burdens36. It causes permanent dental damage, increasing the risk of
further decay and tooth loss over a child’s life. Therefore, timely diagnosis
and prevention of ECC are critically important. Recent studies have shown
the effectiveness of using species-level taxonomic profiles generated from
16S short-read sequencing of saliva and plaque to predict ECC34. However,
models based on 16S sequencing data showed limited effectiveness
(AUC = 0.68), likely due to the inherent resolution constraints of the
technique. Implementing high-resolution sequencing techniques, like
2bRAD-M, could enhance model performance by providing species-
resolved and more accurate taxonomic profiles.

To evaluate the performance of 2bRAD-M against conventional
sequencingmethods in diagnosing ECC, we initiated our study by selecting

19 high-quality saliva samples from each of the ECC and healthy control
groups in the study above. These selections were based on the integrity and
completeness of data from previous 16S short-read sequencing efforts,
which specifically targeted the V3V4 regions. Subsequently, these samples
were analyzed using both 2bRAD-M and 16S long-read sequencing. To
ensure a consistent and fair comparison across all three methods, we used
the GTDB r202 as our reference database.

We performed diversity analyses and developed machine learning
models to compare the effectiveness of three sequencing methods in
differentiating ECC from healthy oral microbiomes. Our analyses
revealed that both 2bRAD-M and 16S short-read sequencing effectively
distinguish between the ECC-affected and healthy groups. Conversely,
the long-read sequencing method was less successful at making this
distinction. Specifically, alpha diversity analysis indicates a significant
difference in the Shannon index between the two groups for both
2bRAD-M and 16S short-read sequencing, as confirmed by the
Kruskal–Wallis test (p < 0.05) (Fig. 7a). Notably, the Shannon index was
higher with 2bRAD-M, suggesting it may detect a broader array of
species compared to the 16S method. We then performed beta diversity
analysis to examine the ecological differences between oral microbiotas
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of ECC and healthy groups. 2bRAD-M outperforms other methods, as
evidenced by significant between-sample disparities using both
unweighted UniFrac distances and Bray–Curtis dissimilarities (Fig. 7b).
16S short-read data performed moderately well, distinguishing the two
groups based on Bray–Curtis dissimilarities but not in unweighted
UniFrac distances. In contrast, 16S long-read sequencing data exhibits
poor performance. These findings highlight the superior ability of
2bRAD-M to capture the complexity of oral microbiomes, emphasizing
its potential for enhancing ECC diagnostics.

Random forest models built from microbial abundance profiles were
evaluated for the diagnosis of ECC.We measured the models’ effectiveness
by the area under the receiver operating characteristic curve (AUC), which
quantifies their ability to distinguish between ECC and ECC-free cases. The
2bRAD-M sequencing approach yielded the most accurate results
(AUC = 0.92), surpassing 16S short-read sequencing (AUC= 0.83) and
significantly outperforming 16S long-read sequencing, which showed
minimal discrimination (AUC = 0.52) (Fig. 7c). Both the 2bRAD-M and
16S short-read sequencing models identified Streptococcus mutans as a key
indicator for ECC. Notably, the 2bRAD-M model identified additional
biomarkers, underscoring its ability to reveal more nuanced disease state
indicators (Fig. 7d). The 2bRAD-M model achieved peak performance
using only the four most discriminative bacterial species as predictors,
validated by rigorous 10-fold cross-validation that highlights their excep-
tional diagnostic power (Fig. 7e). Alongside Streptococcus mutans, this
cohort includes Propionibacterium acidifaciens, Mitsuokella sp000469545,
and Bifidobacterium dentium. Notably, the genus Mitsuokella, along with
the other three species, has been independently associatedwith dental caries
pathogenesis37–40 (Fig. 7F). Although 2bRAD-M further extended this
analysis to fungi, identifying species such as Candida albicans, Malassezia
restricta, and Vanrija humicola across multiple hosts, none exhibited sig-
nificant differential abundance (Fig. S15). Collectively, the high-precision
profiling results providedby2bRAD-Mare crucial for constructing accurate

machine learning models and identifying species-resolved markers related
to ECC.

Discussion
Our study underscored the robust capabilities of 2bRAD-M sequencing
in the precise delineation of microbial communities within HoC sam-
ples. We implemented 2bRAD-M sequencing and benchmarked its
performance against conventional metagenomic methods using mock
communities, saliva samples, and oral cancer specimens. The outcomes
highlighted the effectiveness of 2bRAD-M in the precise microbial
identification and abundance estimation within samples containing
more than 90% host DNA. In the examination of salivary microbiome
oscillations, 2bRAD-Mdemonstrated not only its ability to yield profiles
congruent with those obtained viaWMSwith reduced sequencing effort
but also its ability to discern minor temporal alterations in microbial
communities. A cohort analysis effectively distinguished the dis-
criminative microbiota of individuals afflicted with ECC from that of
healthy counterparts, underscoring its utility in identifying critical
microbial indicators in HoC samples. The study concludes that 2bRAD-
M is a high-performance, cost-effective sequencing method for ana-
lyzing microbial communities in HoC samples, offering profound
insights into the intricate dynamics of host-microbe interactions. These
advantages position 2bRAD-M as a powerful tool for large-scale studies
of chronic diseases and microbial dynamics, paving the way for the
discovery of biomarkers for disease risk stratification and prevention
through the profiling of thousands of samples.

Host depletion strategies remain a challenge for analyzing HoC sam-
ples, highlighting the importance of the rational development of 2bRAD-M
in this study.Current host depletion strategies generally exploit structural or
genomic differences between host and microbial cells; however, each
approach has its limitations5. Pre-extraction methods employ selective cell
lysis buffers toprocess host cells in the sample, followedby thebreakdownof
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between the 9 AM–5 PM combination and the 9 AM–11 AM combination.

b Gradient-like changes in microbial beta diversity over two sampling times, 9 AM
(red) and 5 PM (blue). A PCoA plot was used to visualize the distribution of samples
collected at the two time points. Gray lines connected samples from the same host.
c The relative abundance of Porphyromonas endodontalis increased along the PC1
axis. Each graph includes a color gradient in the bottom left corner indicating relative
abundance, from low (dark blue) to high (brown). Rho represents the Spearman
correlation coefficient, and p.adj stands for the p-value adjusted by Bonferroni
correction.
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host DNA using DNase or PMA. Nonetheless, systematic evaluations
indicate that PMA’s efficacy is considerably constrained by factors such as
initial biomass, sample type, and chemical environment, which can
potentially distort the true profile of microbial communities in complex
setting samples41. Moreover, almost all pre-extraction methods, including
thosemodified schemes based on PMA and other newly proposedmethods

like MEM, require immediate processing of fresh samples to prevent mul-
tiple freeze-thaw cycles that significantly damage microbial integrity in
clinical samples6. These protocols also involve multiple lysis and cen-
trifugation steps, which inevitably lead to DNA loss of both host and
microbial cells, thus reducing their effectiveness in processing HoC
samples7,42.
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Post-extraction methods aim to separate microbial DNA from host
contamination, for instance, by employing selective amplification with
DNA probes that specifically bind to microbial or host DNA43, or by
exploiting differences in DNA methylation between eukaryotes and pro-
karyotes through the use ofDNA-binding proteins ormethylation-sensitive
restriction enzymes to enrich microbial DNA44. The application conditions
for post-extraction methods are even more stringent: One limitation of
using DNA probes is the prerequisite knowledge of the microbial DNA
sequences to be enriched. Methods employing hybridization of probes to
host DNA are not suitable for HoC samples because their effectiveness is
greatly reduced by the vast and complex nature of host DNA; Moreover,
only a few microbial methylomes are well-defined, and some prokaryotic
methylation patterns are highly similar to those of eukaryotes, severely
restricting the application of methylation-based separation methods45. In
contrast, the 2bRAD-M method offers several advantages over these
approaches, including being pretreatment-free and requiring minimal
processing while simultaneously producing species-level bacterial, archaeal,
and fungal profiles. Unlike host depletion strategies, 2bRAD-M also retains
host DNA information in the profile, which can help studies on host-
microbe interactions in clinical samples.

The benchmarking analysis of the mock samples revealed that 16S
rRNA sequencing exhibited pronounced false-positive rates, erroneously
identifying a substantial array of microbial taxa absent from the empirical
ground truth. Notably, even the deployment of the advanced 5R 16S tech-
nique fell short in providing dependable species-level profiles against a
backdrop of high host DNA content. This phenomenon may be attributed
to “off-target amplification” when sequencing HoC samples with the 16S
method, resulting frommarker-gene primers binding to the hostDNA(e.g.,
mitochondrial DNA in humans). It was reported that amplified human or
mouseDNA sequenceswere erroneously clustered and assigned to bacterial
taxa3. In our study, the relative abundance of E. flexneri significantly
increases with the augmented proportion of host DNA, potentially indi-
cating a proclivity for amplification of Escherichia.

Regarding theECCsaliva samples in our study, the long-read 16S rRNA
sequencing failed to differentiate between disease and health. A recent study
highlighted that full-length 16S rRNA gene sequencing with PacBio, com-
pared to Illumina short-read sequencing, enhanced the taxonomic resolution
in human microbiome samples46. Despite nominally detecting more species
than short-read 16S (191 vs. 146), long-read 16S sequencing failed to dif-
ferentiate ECC disease states. This diagnostic limitation arises from a fun-
damental constraint of third-generation sequencing: inherently higher error
rates under low-biomass conditions. These random errors cause false contigs
during assembly and significantly reduce the recovery of high-quality reads
after denoising procedures47. Consequently, only 38.4% of raw reads passed
through the denoising pipeline. In comparison, 2bRAD-M’s non-amplicon
design inherently bypasses these limitations, delivering robust and artifact-
free microbial profiling in host-rich diagnostic applications.

We acknowledge the limitations of this study. The validation of
2bRAD-M’s performance in HoC samples was primarily based on saliva
and tumor specimens. Large-scale validation across broader anatomical
sites with high host DNA content—such as cervicovaginal swabs, intestinal
biopsies, blood, and other tissue types—remains essential to solidify the
generalizability of these preliminary findings in diverse host-dominated
ecosystems. For widespread implementation, key challenges remain,

including the need for continued expansion of reference databases to
enhance taxonomic resolution and rigorous validation in each new sample
matrix to establish clinical utility. Additionally, as a reference-dependent
method, 2bRAD-M’s performance is highly contingent on database selec-
tion. In this study,GTDBwas uniformly applied to both 2bRAD-Mand 16S
data types. By contrast, WMS profiling tools (e.g., MetaPhlAn4) typically
utilize distinct reference databases that are not customized for GTDB
alignment, leading to potential discrepancies during cross-method com-
parisons. To minimize such confounders, we processed all sequencing data
through the 2bRAD-M pipeline with GTDB, ensuring consistent bioin-
formatic benchmarking.

Methods
Mock samples preparation
The mock sample employed for evaluating the efficacy of the 2bRAD-M
sequencing approach, in comparisonwith other sequencing techniques,was
a 20-species uniform genomic mix, designated MSA 1002 (ATCC). The
selected mock comprises genomic DNA prepared from fully sequenced,
characterized, and authenticated “ATCCGenuineCultures”. These cultures
were judiciously chosen to represent a spectrum of pertinent phenotypic
and genotypic characteristics, including Gram staining reaction, guanine-
cytosine (G+C) content, genome size, and spore-forming capability. Sub-
sequently, experimental conditions weremeticulously devised tomimic the
high complexity human microbiome samples, which were formulated to
contain either 90% or 99% human DNA, with two replicates generated for
each mixture.

Diurnal saliva sample characteristics
For this experiment, 16 participants were randomly recruited from the
Qingdao branch of Shanghai OE Biotech Co., Ltd. This study received
ethical approval from the EthicsCommittee ofQingdaoMunicipalHospital
of Stomatology (certificate number: 2022KQYX030). The sameprofessional
dentist performed all sample collections to minimize exogenous con-
tamination in the samples. To this end, participants were instructed not to
eat or drink for two hours before the sampling time. The exclusion criteria
for participants included the use of antibiotics ormedication in the previous
month. Samples fromeight participants, forwhom the clean data accounted
formore than70%of the rawdataaccording to the 2bRAD-Manalysis,were
selected for further WMS and 16S rRNA sequencing.

Description of oral cancer specimens
Oral cancer specimens were obtained from a southern Chinese cohort at
Queen Mary Hospital under IRB approval UW 15-239 (The University of
Hong Kong/Hospital Authority Hong Kong West Cluster). Before enroll-
ment, all participants provided written informed consent using IRB-
approved documentation (dated 21 March 2015). Specimen collection and
handling protocols were strictly adhered to the Declaration of Helsinki and
ICH-GCP guidelines. Clinicopathological and follow-up data were retro-
spectively collected from hospital records. Fresh tumor tissues were snap-
frozen in liquid nitrogen and stored at −80 °C until extraction.

ECC saliva sample characteristics
Between March and June 2019, an oral epidemiological survey was con-
ducted among 5-year-old children across 13 randomly selected

Fig. 7 | Sequencing of ECC saliva samples using 2bRAD-M, long-read 16S
sequencing, and short-read 16S sequencing, with diversity analysis and disease
classification results based on species-level profiles. Diversity analysis encom-
passes a alpha diversity indices and b beta diversity disparities discerned between
healthy (blue) and ECC-affected (red) samples. The Kruskal–Wallis test was used to
evaluate alpha diversity differences, and PERMANOVA was used for beta diversity.
The H and F values represent the test statistics, indicating the magnitude of the
differences. c Classification performance of the Random Forest model using species
profiles of the three sequencing strategies, assessed by the area under the ROC curve
(AUC). dThe scatter plot displays the relationship between the importance scores of

different microbial species and their respective AUC values. Red dots indicate an
increase in ECC, blue dots signify a decrease, and gray dots represent a neutral status.
The size of the dots represents the mean abundance of these species. e Relationship
between the number of variables in the 2bRAD-M model and its predictive per-
formance (the error bar of each dot denotes the standard deviation). fThe fourmost
discriminant species in the predictive model are shown using a box plot. The left side
of the graph shows the log10-transformed relative abundance of each species in the
healthy or ECC group. AUC assesses the utility of each taxon as a potential ECC
marker on the right side of the graph.
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kindergartens inQingdao, China. This study received ethical approval from
the Ethics Committee of Qingdao Municipal Hospital of Stomatology
(certificate number: 2022KQYX031), and informed consent was obtained
from all participants or their guardians, detailing oral examination proce-
dures, sample collection, environmental factor gathering, and the use of data
in subsequent research and publications. Informed consent was obtained
from the participants. All participants gave written consent for their clinical
details to be published. A total of 63 children participated in the study,
comprising 34 males and 29 females. Based on the decayed, missing, and
filled surfaces (dmfs) index, participants were classified into two groups: a
high-caries group (n = 32) with severe early childhood caries (dmfs ≥6) and
a healthy group (n = 31) with no caries (dmfs = 0). Eligibility criteria
included no antibiotic use within three months before the examination, a
dentition consisting entirely of primary teeth with at least 20 teeth present,
normal oral mucosa in color and texture, no congenital malformations or
systemic diseases, and no orthodontic appliances or accessories worn.

Saliva sample collection
Participantswere instructed to tilt their heads downward, slightly open their
mouths, and rest their lower lip against the opening of a 15mL sterile
centrifuge tube, facilitating the collection of unstimulated saliva. The col-
lection period lasted approximately 5min, during which participants were
asked to expectorate saliva into the collection tube. Approximately 5ml of
saliva was collected from each participant per session.

DNA extraction, whole metagenomic shotgun sequencing, 16S
rRNA short-read and long-read sequencing
Sample collection tubes were thawed on ice and then centrifuged thor-
oughly. Adhering to themanufacturer’s guidelines withminor adjustments,
bacterial genomic DNAwas extracted from saliva samples using the Tissue
and Blood DNA Isolation kit (Qiagen). Tumor DNA was extracted from
fresh frozen tumor samples using Cetyltrimethylammonium Bromide
(CTAB). The tissue block was ground with liquid nitrogen, and 50mg was
transferred to a 2.0mL centrifuge tube containing 1mL of CTAB lysis
buffer. The mixture was incubated at 65 °C with occasional mixing until
fully lysed. The lysate was then centrifuged, and the supernatant was
extracted with phenol (pH 8.0): chloroform: isoamyl alcohol (25:24:1),
followed by chloroform: isoamyl alcohol (24:1). DNAwas precipitated with
isopropanol at−20 °C, centrifuged,washed twicewith 75%ethanol, andair-
dried. The DNA was dissolved in ddH2O, incubated at 55–60 °C if neces-
sary, and treated with RNase A at 37 °C for 15min.

For themock samples, we attempted to sequence the 16S rRNA gene’s
highly variable regions V2-V3, V4-V5, and five regions from V2 to V8
(termed 5R 16S) and compared the results. The 5R 16S rRNA sequencing
approach amplifies regions covering approximately 68%of the full length of
the 16S sequence, significantly enhancing the coverage and resolution of
bacterial species detection, making it particularly suitable for low-biomass
microbial sample analysis.

qPCR was performed on a Roche LightCycler 480 instrument. Reac-
tions (10 μL total volume) contained: 5 μL 2× TB Green II (Takara), 0.2 μL
each forward/reverse primer (10 μM), 0.2 μL 50× ROX, and 1 μL template
DNA.Bacterial abundancewasquantifiedusing theV4-V5 regionof the16S
rRNA gene with universal primers 515F/907R. Porphyromonas endo-
dontalis abundance was quantified using species-specific primers (Forward:
5’-CTATATTCTTCTTTCTCCGCATGGAGGAGG-3’; Reverse: 5’-GCA-
TACCTTCGGTCTCCTCTAGCATAT-3’). Thermal cycling: 95 °C for 30 s
(initial denaturation); 40 cycles of 95 °C for 5 s, 55 °C for 30 s, 72 °C for 30 s;
followed by melting curve analysis. Standard curves were generated from
10-fold serial dilutions of plasmid DNA.

For the diurnal saliva samples, considering cost issues and the current
state of 16S rRNA technology application, we employed the most com-
monly used sequencing approach by amplifying the V3V4 highly variable
regions of the 16S rRNA gene using the primer pair (338F/806R). PCR
amplification for each sample was performed in triplicate, using 15 μl of
Phusion®High-Fidelity PCRMasterMix (NewEngland Biolabs), 0.2 μMof

both forward and reverse primers, and approximately 10 ng of
template DNA.

For long-read 16S rRNA sequencing, total DNA was extracted from
the ECC saliva samples. Using the full-length 16S primers (i.e., 27F and
1492R), barcode-tagged specific primers were synthesized for PCR ampli-
fication. The PCR products were then purified, quantified, and normalized
to prepare the sequencing library (SMRT Bell). Once the library was con-
structed, it underwent quality control checks. Libraries that passedQCwere
sequenced using the PacBio Sequel system. The PacBio Sequel generates
data in BAM format, which is then exported as CCS files using the SMRT
Link analysis software. The data for different samples, identified by barcode
sequences, are converted into FASTQ format for further analysis. All
sequences were processed according to the standard QIIME2 (2023.2)
pipeline for preprocessing and downstream bioinformatics analysis. The
clustering of ASVs was performed using the DADA2 plugin provided by
QIIME2.

Both mock community samples (N = 6) and diurnal saliva samples
(N = 32)were analyzedwithwholemetagenomics sequencing (WMS)using
the MGI DNBSEQ-T7RS platform. Clean reads were produced and tax-
onomically characterized using MetaPhlAn4 and Bracken2 with standard
settings.

2bRAD-M sequencing
The 2bRAD-M library preparation, with minor modifications from the
originalmethod48, was initiated by digesting genomicDNA (1 pg to 200 ng)
with 4 U BcgI (NEB) in a 15-μl reaction at 37 °C for three hours. 5 μl of the
product was assessed on a 1% agarose gel for complete digestion. The
ligation reaction, conducted at 16 °C overnight, consisted of a 20-μl reaction
mixture comprising enzyme-digested DNA, 2 μl of 1× T4 ligase buffer, 1 μl
of adapters, and 800 U of T4 DNA ligase (NEB).

Ligation products underwent PCR amplification in a 40-μl reaction
including 7 μl of DNA, 0.1 μM of each Illumina-specific primer (Primer1
and Primer2), 0.3 mM dNTPs, 1× Phusion HF buffer, and 0.4 U Phusion
DNA polymerase (NEB). The PCR, using a DNA Engine Tetrad 2 thermal
cycler (Bio-Rad), involved 16–28 cycles at 98 °C for 5 s, 60 °C for 20 s, and
72 °C for 10 s, with a final extension at 72 °C for 10min. The desired band
(~100 bp)was excised from an 8%polyacrylamide gel, andDNAwas eluted
into nuclease-free water for 12 h at 4 °C. Barcode introduction was per-
formed in a secondary 40-μl PCR containing 50 ng of extracted DNA,
0.2 μM of each barcode-bearing primer (Primer1 and Primer3), 0.6mM
dNTPs, 1× Phusion HF buffer, and 0.8 U Phusion DNA polymerase for
seven cycles. The amplified productswere purified using theQIAquickPCR
Purification Kit (Qiagen) and sequenced on the Illumina HiSeq platform.

Update of the 2bRAD-M Tag database
To identify taxa-specific molecular tags, we constructed an updated
2bRAD-M tag database (2b-Tag-DB) through in silico restriction digestion
of microbial genomes sourced from the Genome Taxonomy Database
(GTDB; release r202) and EnsemblFungi (https://fungi.ensembl.org/index.
html). This comprehensive genome dataset comprised 259,388 microbial
genomes (254,090 bacteria, 982 fungi, and 4316 archaea), collectively
representing 48,475 distinct species. Using the type IIB restriction enzyme
BcgI, we generated iso-length (32 bp) 2bRAD tags from these genomic
sequences. The final database contained 361,631,938 unique BcgI-digested
tags (averaging 1,395.4 tags per species genome), providing a high-
resolution reference for taxonomic assignment.

Computational workflow of 2bRAD-M
The 2bRAD-M computational pipeline aims to reconstruct high-resolution
taxonomic profiles from iso-length restriction fragments while tackling
challenges caused by high levels of host DNA contamination12. First,
sequencing reads are mapped to a precomputed 2b-Tag-DB—a reference
database of species-specific 2bRADmarkers created from259,388microbial
genomes (including bacteria, archaea, and fungi) using Type IIB restriction
enzymes (e.g., BcgI). Raw sequencing reads undergo quality control and are

https://doi.org/10.1038/s41522-025-00851-2 Article

npj Biofilms and Microbiomes |          (2025) 11:223 11

https://fungi.ensembl.org/index.html
https://fungi.ensembl.org/index.html
www.nature.com/npjbiofilms


aligned to this database, with initial taxonomic assignments based on
species-specificmarkermatches. Residual hostDNAinterference is reduced
by excluding reads that match precomputed host-derived motifs. To miti-
gate the impact of potential contamination, a bioinformatic decontamina-
tion step is applied utilizing sequencing data from negative controls. This
involves calculating and subtracting a normalized proportion of con-
taminating reads (D ¼ T × T

N, where T and N are the total reads in the
sample and negative control, respectively) that are likely attributable to the
laboratory background. Additionally, a G-score threshold (G ¼ ffiffiffiffiffiffiffiffiffi

S× t
p

,
where S= coverage and t =marker specificity) is applied, discarding taxa
below a certain threshold (Default G < 5). To improve resolution, a
dynamic, sample-specific database is created by addingmoremarkers from
candidate taxa identified in the sample, which increases resolution and
decreases false positives. Species abundance is then calculated as the mean
coverage of taxon-specific markers normalized by their expected genome-
wide count, adjusting for differences in genome size and marker density.
Detailed methodological information, including computational scripts,
parameter settings, and implementation instructions, is available in the
2bRAD-M GitHub repository (https://github.com/shihuang047/
2bRAD-M).

Metagenomic profiling workflow
For comprehensive taxonomic characterization of shotgun metagenomic
datasets, we employed analytical approaches that integrated three methods:
MetaPhlAn4, Kraken249, and Bracken. In the future, such analysis will be
developed into a version that can be incorporated in our EasyMetagenome
pipeline50,51.

MetaPhlAn4 (v4.0.6) uses a clade-specific marker-gene alignment
strategy, employing a precompiled database of genetic markers curated for
microbial clade discrimination. Reads were aligned to these marker
sequences using Bowtie2 (v2.5.0) for accurate taxonomic assignment and
abundance estimation. Analyses were performed with the mpa_-
vOct22_CHOCOPhlAnSGB_202212database,which includes species-level
genomic bins (SGBs) for better resolution of uncultivated microbes. The
following command-line implementation was used:

metaphlan ./clean.fq.gz --bowtie2out genome.bz2 --nproc 16
--input_type fastq -o genome.txt --bowtie2db /lustre1/g/aos_shihuang/
databases/metaphlan4_db

Kraken2 (v2.1.2) functions as a k-mer-based taxonomic classifier,
employing exact 35-bp k-mer matches to assign sequences to the lowest
common ancestor (LCA) within a hierarchically organized reference data-
base. This database was assembled from all complete bacterial genomes
stored in the Kraken database (minikraken2_v1_8GB), ensuring broad
coverage of microbial diversity. To improve specificity, a minimum abun-
dance threshold of 0.01 (default) was applied to filter out low-confidence
taxa. The following command-line implementation was executed:

kraken2 --db /lustre1/g/aos_shihuang/tools/kraken2-standard-db/
kraken_database/ --threads 12 --report genome.report --output geno-
me.output --paired ../genome_1.clean.fq.gz ../genome_2.clean.fq.gz

Bracken (v2.5.0) employs the read classification results from standard
Kraken to performaBayesian re-estimation of taxonomic abundances. This
process effectively addresses common false-positive issues associated with
Kraken andnaturally accounts for variations in genome length. The kraken-
filter tool was applied to filter raw classifications at a threshold of 0.01. The
specific Bracken command used is provided below:

bracken -d /lustre1/g/aos_shihuang/tools/kraken2-standard-db/kra-
ken_database/ -i genome.report -o genome.bracken -w genome.brack-
en.report -r 150 -l S -t 10

Evaluation metrics: precision, recall, AUPR, L2 similarity, and
Pearson coefficient
To gauge overall performance, we employed precision and recall for the
accuracy of microbial identification and L2 distance to assess the
effectiveness of abundance estimations in samples. Precision is deter-
mined by the ratio of correctly identified species to the overall species

identified by the technique, and recall measures the proportion of cor-
rectly identified species relative to all species present in the sample.
Adjusting the threshold for classifying a species as a true positive varies
the precision and recall outcomes. Plotting these metrics, with recall on
the x-axis and precision on the y-axis, creates the Precision–Recall (PR)
curve. The area under this curve, known as the Area Under the
Precision–Recall Curve (AUPR), quantifies the average performance of
the model across various decision thresholds in terms of precision and
recall. To assess the effectiveness of the abundance estimation, the L2
distance was calculated between the abundance profile of the ground
truth and those produced by various metagenomic sequencing methods
at specific taxonomic levels (species and genus). For a clearer perfor-
mance comparison, L2 similarity was determined by one minus the L2
distance. Furthermore, in the Pearson correlation analysis, when a
species was uniquely identified by one method, its abundance was set to
zero in the computation of the Pearson correlation coefficient.

Diagnosis model of ECC samples
A random forest model was trained to determine disease status based on
taxonomicprofiles andwas then evaluatedusing the area under theReceiver
Operating Characteristic (ROC) curve. The model was implemented using
default parameters from the R package “randomForest” (ntree = 5000,
errortype = “oob”, n.oob = 10, nfolds = 10). The performance of the
microbiome-based model was further assessed through 10-fold cross-vali-
dationusing species profiles.According to the “rfcv” function in the random
forest package, the top four ranked important taxa facilitated a considerably
accurate classification of ECC status. A comprehensive method description
is provided in the supplementary information.

Data availability
The sequencing data of 2bRAD-M, WMS, next-generation 16S, and third-
generation sequencing forMock samples (ATCCMSA1002 combinedwith
90% and 99% human DNA) and real HoC samples (diurnal saliva samples,
oral cancer specimens, andECCsaliva samples) were stored at the Sequence
Read Archive (SRA): https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA1131785.

Code availability
The 2bRAD-M computational pipeline and its associated database files are
publicly accessible on GitHub at https://github.com/shihuang047/2bRAD-
M. The 2bRAD-M computational pipeline is distributed under the MIT
license. All source data and codes for the generation of figures and tables in
the manuscript can be downloaded from: https://github.com/jiangys30/
HoC_project.git.
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