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Gut microbiome profiling of a migratory
Anser serrirostris population reveals two
groups with distinct pathogen and ARG
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Migratory birds are key vectors of pathogens and antibiotic-resistance genes (ARGs), yet
intrapopulation variation and its microbiome-mediated basis remain poorly understood. Here, we
characterized the gut microbiome of 70 individuals from a migratory Anser serrirostris population using
full-length 16S rDNA sequencing, followed by metagenomic analysis of 25 representative samples.
Both approaches consistently identified two distinct groups (E1 and E2). Network analysis revealed
impaired microbial interactions in E1 compared to E2. E1 exhibited higher abundances of
opportunistic pathogens (e.g., Pseudomonas, Erwinia) and enriched functions related to pathogenicity
and ARGs, predominantly driven by these taxa. Conversely, E2 showed function enrichment in short-
chain fatty acid biosynthesis and plant metabolite degradation, mediated mainly by Bradyrhizobium
and Ligilactobacillus. Genome-centric analysis identified several pathogenic genomes (e.g.,
Salmonella, Vibrio parahaemolyticus) harboring critical virulence factors and ARGs predominantly in
E1. These results provide valuable insights into microbiome-driven variation in pathogen/ARG loads

within migratory bird populations.

The gut microbiome has been demonstrated to significantly influence host
growth, health, and fitness at both single-individual and population scales
through various mechanisms, including food digestion, nutrient absorption,
modulation of the immune system, determination of consequences of
antibiotic treatment, and transmission of certain important strains and
functional genes such as those conferring antibiotic resistance' ™. Given the
importance of the gut microbiome, there has been a significant increase in
the number of studies aimed at understanding the structure and function of
the gut microbiome as well as how the composition of the gut microbiome is
influenced by intrinsic and extrinsic factors in humans and several animal
species™’. Previous studies of the microbiome composition of humans’ and

several animal species, such as wild mice’, pandas’, and broilers', have
demonstrated that gut microbiome samples from the same host species
could naturally form clusters. The formation of such clusters has been
attributed to several factors, including diet and variation in the host’s genetic
background'"'”. However, recent studies have demonstrated that indivi-
duals in the same broiler population with identical genetic backgrounds and
farming conditions exhibited distinct gut microbiome compositions,
resulting in the separation of these individuals into different clusters'®".
Although the causal factors of variation in the gut microbiome within the
same population remain elusive, pivotal bacterial taxa or bacterial guilds that
exhibited distinct differences in relative abundance among clusters have
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been identified through taxonomic decomposition analysis”'". The identi-
fication of such pivotal bacterial taxa or guilds has provided valuable insight
into the roles of the identified differentially abundant taxa, ranging from
diagnosis and correlation to causation, in relation to the specific traits or
diseases of the host. For example, the role of Prevotella in chronic inflam-
matory diseases in humans has been identified, as well as the influence of
Ochrobactrum and Rhodococcus on the growth and meat quality of
broilers'*"”.

Although significant progress has been made toward the character-
ization of the gut microbiome of humans and several agriculturally
important animals, such as pigs'®, cows”, and chickens", those of wild
animals, particularly migratory birds, remain largely unexplored'®”.
Migratory birds have been demonstrated to play an important role in the
transmission of pathogens and antibiotic-resistance genes (ARGs) during
their migration'**"”, and individuals of the same species frequently carry
distinct abundances of pathogens and ARGs’"*. However, our under-
standing of the microbiome basis of such variation remains limited, possibly
due to the small sampling sizes for a given species from the same population
and the consequent interference of several other factors, including diet'****.

Anser serrirostris is a migratory bird species that breeds across the
Russian Arctic tundra, ranging from northeastern Siberia to Kamchatka,
and winters primarily in China, Korea, and Japan, with China being the
major wintering destination (accounting for >71.5% of the total estimated
wintering population in East Asia)**”’. The wintering population of A.
serrirostris in China was estimated to exceed 229,000 individuals in 2020,
and the population continues to growz’—. However, the structure, function,
and associated pathogen and ARG contents of the A. serrirostris gut
microbiome have not yet been investigated. The migrations of many bird
species, including A. serrirostris, are performed by large social populations,
where individuals within the same population have access to nearly identical
food sources””’. Consequently, this uniformity in diet can minimize the
effect of dietary variation on the gut microbiome®. Hence, conducting a
comprehensive sampling of a specific population of migratory bird species,
such as A. serrirostris, and thoroughly investigating the structure, function,
and associated pathogens and ARG contents in the gut microbiome will
enhance our understanding of the extent of variation and the underlying
microbiome basis of this variation. Such insights will inform mitigation
strategies-for example, targeted probiotic interventions to suppress ARG-
harboring taxa and pathogens in wild bird populations®. To this end, we
conducted comprehensive sampling and performed full-length 16S rDNA
amplicon and metagenomic sequencing analyses of an A. serrirostris
population.

Fecal samples are widely used as a proxy for gut microbiome com-
position analysis because they can be collected non-invasively and are
particularly suitable for studying species with strong migratory tendencies.
However, fecal sample-based analyses provide a less comprehensive profile
of the gut microbiome compared with intestinal content-based analyses,
which, although more informative, require euthanasia and are therefore not
feasible for protected animal species™. Here, we collected fresh fecal samples
of various individuals in an A. serrirostris population from Jiangsu Yan-
cheng Wetland National Nature Reserve, Rare Birds, an important stopover
wintering site for A. serrirostris located in lower Yangtze River floodplain®’
(Supplementary Figs. 1 and 2), for characterizing and comparing their gut
microbiomes as well as estimating the pathogen and ARG contents using
full-length 16S rDNA amplicon and deep metagenomic sequencing.

Results

The A. serrirostris population was stratified into two groups
through microbiome profiling analysis

Seventy fresh fecal samples were collected from an A. serrirostris population
and subjected to full-length 16S rRNA gene sequencing (PacBio ccs). Read
processing, OTU clustering at 97% similarity, and taxonomic annotation
against SILVA v132.99 were performed as described in Methods. Twenty-
two bacterial phyla were identified in the gut microbiota of these 70 indi-
viduals, with Bacillota, Pseudomonadota, Actinomycetota, and Bacteroidota

being the predominant phyla (average relative abundance >1%) (Supple-
mentary Fig. 3). Ward linkage hierarchical clustering analysis based on
genus-level profiles partitioned these 70 individuals into two distinct groups,
namely group 1 (E1), containing 27 samples, and E2, containing 43 samples
(Fig. 1A). Alpha-diversity metrics showed no significant difference in
Shannon index between the two groups, whereas E1 exhibited a significantly
lower number of observed genera (richness) but markedly higher evenness
(Fig. 1B and Supplementary Fig. 6). Beta-diversity analysis indicated that the
overall bacterial community composition of E1 differed significantly from
that of E2 (PERMANOVA, F=15.99, P<0.001) (Supplementary Fig. 5).
Compared with E2, The E1 group was found to harbor a significantly higher
relative abundance of Pseudomonadota and a significantly lower relative
abundance of Bacillota, Bacteroidota, and Actinomycetota (all P <0.001,
Mann-Whitney U-test, two-tailed) (Fig. 1C and Supplementary Fig. 4).
When compared at the genus level, 77 genera were identified to exhibit
significantly differential relative abundance between the two groups
(DESeq2, False Discovery Rate, FDR <0.05) (Supplementary Data 1).
Among them, 19 genera were substantially differentially abundant (inter-
group relative abundance difference >1%) between the two groups, with
Erwinia (8.99% vs. 0.49%), Pseudomonas (11.89% vs 3.21%), Enterobacter
(6.86% vs 0.14%) and four others exhibiting significantly higher relative
abundances in E1 and Lactobacillus (6.04% vs. 39.54%) and eleven others
showing a significantly higher relative abundance in E2 (Fig. 1D).

To elucidate the functional repertoire underlying the E1/E2 stratifi-
cation, 25 representative samples (11 E1, 14 E2) were selected for metage-
nomic sequencing. The clean reads were co-assembled, and metagenes were
subsequently predicted from the resulting contigs. By filtering out genes
belonging to eukaryotes (except fungi), we built an integrated gut microbial
gene catalog containing 3,121,626 nonredundant genes, of which 1,917,880
(61.43%) were complete genes with an average length of 632 bp. The rar-
efaction curve clearly suggested that the gene catalog comprehensively
represented the gut microbiome of the sampled A. serrirostris population
(Fig. 2A). Metagene abundance-based analysis of gut microbiome compo-
sition yielded consistent grouping results for E1 and E2 (with 11 samples
forming E1 and 14 samples forming E2) (Fig. 2B), and permutational
multivariate analysis of variance (PERMANOVA) confirmed that group
membership explained a significant portion of variance in microbiome
structure (F=40.64, P=0.001). The observed differences in microbiome
composition between the two groups were unlikely attributable to genomic
background variation among the 25 individuals, as the samples were col-
lected under a rigorous protocol (see “Methods”) and their mitochondrial
sequences were highly conserved and showed no differentiation between the
groups (Supplementary Fig. 7). The metagenome-based analysis revealed
distinct variations in term of microbial community diversity and complexity
between the groups at the whole microbiome level (Fig. 2C). In detail, E2
exhibited significantly higher Shannon index and evenness than El
(Mann-Whitney U-test, two-tailed, both P < 0.001) (Fig. 2C and Supple-
mentary Fig. 6). Furthermore, molecular ecological networks (MEN) ana-
lysis revealed that the network topological properties of E2 were significantly
different from those of E1, in that the E2 network exhibited significantly
higher values of average clustering coefficient (Avgcc), connectedness
(Con), density (D), and geodesic efficiency (E), and significantly lower
values of average path distance (GD) (Student’s t-test, all P < 0.0001) (Fig.
2D). These indices suggest that the microbial members in E2 were closely
connected with their neighbors and formed a more complex bacterial
community network compared with E1. Notably, the microbiome of E2 was
suggested to form a modular structure (modularity score 0.682), and the
microbiome structure of E1 was nonmodular (modularity score 0.625)
based on the modularity score threshold of 0.634, as described by
Newman.

Consistent with the full-length 16S rDNA amplicon-based analysis, the
metagenome-based analysis also identified a significantly higher relative
abundance of Pseudomonadota and a significantly lower relative abundance
of Bacillota and Bacteroidota in E1 compared with E2 (all P<0.05,
Mann-Whitney U-test, two-tailed) (Fig. 2E and Supplementary Fig. 4).
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Fig. 1 | Differences in bacterial community diversity and taxonomic composition
between E1 and E2 revealed by full-length 16S rDNA sequencing. A The clus-
tering result of 70 samples based on the bacterial community composition data
determined at the genus level using STAMP. B Alpha-diversity (Shannon index)
differences between E1 and E2 groups revealed by 16S-based analysis. C Relative
abundance comparison between E1 and E2 at phylum levels revealed by the 16S

Difference in mean proportions (%)

rDNA amplicon data (two-tailed Mann-Whitney U-test). D The extended error bar
plot of genera differentially abundant between E1 and E2 (>1% difference in
abundance) revealed by the 16S rDNA amplicon data (DESeq2, FDR < 0.05).
*denotes <0.05, **denotes <0.01, ***denotes <0.001, and n.s. denotes not sig-
nificant. The Numerical p-values are shown in Supplementary Data 15.

Further comparative analysis at the genus level identified 1201 differentially
abundant genera between the two groups (DESeq2, FDR < 0.05), including
23 genera exhibiting substantially differential abundance (Fig. 2F and
Supplementary Data 2). Among them, Pseudomonas (35.13% in E1 and
1.08% in E2), Erwinia (16.79% vs. 0.18%), Enterobacter (3.23% vs. 0.24%),
and several others exhibiting significantly higher relative abundances in E1,
as well as Bradyrhizobium (1.05% vs. 13.09%), Asinibacterium (1.98% vs.

14.06%), and two genera classified under the Lactobacillus group in the 16S
rDNA Silva database, Levilactobacillus (0.11% vs. 9.45%) and Ligilactoba-
cillus (0.64% vs. 13.28%), and several others showing a significantly higher
relative abundance in E2. Notably, significantly higher abundance of
Pseudomonas, Erwinia, and Enterobacter in E1, and significant enrichment
of Lactobacillus in E2 were also identified through full-length 16S rDNA
amplicon analysis (Fig. 1D).
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Fig. 2 | Differences in gut microbiome diversity, community structure, and
interaction networks between E1 and E2 revealed by metagenomic analysis.

A Rarefaction curve of detected genes in A. serrirostris microbiomes based on 100-
fold permuted sampling orders, and the ratios of complete and partial genes in the
gene catalog are shown. B PCoA plot exhibiting that the 25 samples were separated
into two distinct groups. C Alpha-diversity (Shannon index) differences between E1

and E2 groups. D Network structure and property differences between E1 and E2.
Relative abundance comparison between E1 and E2 at the phylum (E) and genus (F)

levels. Mann-Whitney U-test was used for statistical analysis in (C, E), and DESeq2
was used for statistical analysis in (F). * denotes <0.05, ** denotes <0.01, *** denotes
<0.001, and n.s. denotes not significant. The Numerical p-values are shown in

Supplementary Data 15.
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Fig. 3 | Distinct functional potentials of the gut microbiome between E1 and E2.
A Phyletic distribution of KOs among individuals. B Venn plot depicting the
number of core E1 and E2 KOs based on their presence rate (>75%). The abundance
difference of (C) plant-derived secondary metabolites (PSMs) degradation-, E short-
chain fatty acids (SCFAs) synthesis-, and G pathogenicity-associated functions

between E1 and E2, and D, F, H, the top contributors of these functions at the genus
level. Mann-Whitney U-test was used for statistical analysis. *denotes <0.05,
**denotes <0.01, ¥**denotes <0.001, and n.s. denotes not significant. The
Numerical p-values are shown in Supplementary Data 15.

The beneficial, pathogenicity-associated genes and ARGs dif-
fered between the two groups

KEGG orthology (KO) annotations were assigned to the A. serrirostris gut
microbial gene catalog based on the eggNOG database, and 33.28% of the
nonredundant genes obtained KO annotations with 10,458 KOs identified.
We identified significantly more predominant KOs (i.e., KOs with abun-
dance >1 TPM [transcripts per million]) in E1 (6,182.9 +226.7 KOs,
mean + SD, n=11) than in E2 (5,150.8 + 540.2 KOs, n = 14) (Student’s ¢-
test, P = 3.7e-7), indicating that E1 harbored a relatively diverse functional
microbiome. The phyletic distribution patterns of these predominant KOs
separated the samples belonging to E1 group from those belonging to group

E2 (Fig. 3A). Although 3,862 KOs were shared between the two groups, E1
was found to harbor 1,819 group-unique KOs, and this number for E2 was
405 (Fig. 3B). Through DESeq?2 analysis, we identified 3,985 differentially
abundant KOs, including 2,201 higher abundant KOs in E1 (E1HKSs) and
1,784 higher abundant KOs in E2 (E2HKs) (False Discovery Rate, FDR <
0.01) (Supplementary Data 3). The E1IHKs were mainly enriched in path-
ways involved in microbe-microbe and microbe-host interactions, while
E2HKSs were mainly enriched in metabolism-associated pathways, respec-
tively (Fisher’s exact test, P < 0.05) (Table 1).

Multiple genes involved in microbe-microbe competition were iden-
tified in E1HKSs. For example, the complete T6SS machinery system (hcp, lip,
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Table 1 | The enriched KEGG pathways in the E1HKs and E2HKSs as revealed by Fisher’s exact test

KEGG pathway Background E1HKs P value* E1HKs E2HKs P value* E2HKs
Biofilm formation 206 115 2.47E-19 - -
Two-component system 462 171 5.38E-14 - -

ABC transporters 431 160 2.97E-13 - -
Phosphotransferase system (PTS) 91 53 4.26E-10 = =
Transcription factors 508 154 1.40E-07 - -
Bacterial motility proteins 129 55) 9.77E-07 - -
Lipopolysaccharide biosynthesis proteins 110 48 2.57E-06 - -
Cationic antimicrobial peptide (CAMP) resistance 50 28 1.10E-05 - -
beta-Lactam resistance 73 27 3.37E-03 - -
Biosynthesis of siderophore group nonribosomal peptides 29 13 0.02 - -
Bacterial secretion system 73 24 0.02 - -

Sulfur relay system 23 10 0.03 - -
Ubiquinone and other terpenoid-quinone biosynthesis 44 16 0.03 - -
Bacterial chemotaxis 26 11 0.04 - -

Valine, leucine, and isoleucine degradation 52 - - 29 8.79E-06
Phenylalanine metabolism 58 - - 29 4.30E-05
Benzoate degradation 86 - - 35 2.24E-04
Aminobenzoate degradation 65 - - 29 2.78E-04
Methane metabolism 127 - - 45 4.39E-04
Glyoxylate and dicarboxylate metabolism 83 - - 33 4.65E-04
Tryptophan metabolism 48 = = 22 8.71E-04
Nitrogen metabolism 51 = = 22 1.84E-03
Cell cycle Caulobacter 31 - - 16 1.87E-03
Synthesis and degradation of ketone bodies 8 - - 7 4.79E-03
Butanoate metabolism 81 - - 28 7.63E-03
Fluorobenzoate degradation 12 - - 8 8.00E-03
Propanoate metabolism 92 - - 30 0.01
Xylene degradation 32 - - 14 0.01
Tyrosine metabolism 51 - - 19 0.01
Fatty acid degradation 39 - - 16 0.01
Geraniol degradation 14 - - 8 0.02
Oxidative phosphorylation 125 - - 37 0.02
Glucosinolate biosynthesis 6 - - 5 0.02
Vitamin B6 metabolism 21 - - 10 0.02
Caprolactam degradation 18 - - 9 0.03
Styrene degradation 20 - - 9 0.04
Isoquinoline alkaloid biosynthesis 11 - - 6 0.04
Limonene and pinene degradation 8 - - 5 0.04
Chlorocyclohexane and chlorobenzene degradation 29 - - 11 0.05

*P values were calculated using Fisher’s exact test by comparing the distribution of KOs in E1HKs or E2HKs against the background (All KOs in the gene catalog) dataset.

icmF, dot], clpV, impA, fhaL, and pppA) and several T6SS effector-encoding
genes, such as pld1_2 and vgrG, were identified in the EIHKs (Fig. 4A). In
addition, several ABC transporter-encoding genes dedicated to the uptake
of essential but gut-limiting metals—iron, zinc, and manganese—including
troBCD, sitABCD, mtsAB, and znuBC, were identified in the E1IHKSs (Fig.
4A). Furthermore, the pathway “biosynthesis of siderophore group non-
ribosomal peptides” was enriched in the EIHKs (Table 1), and almost all of
the genes involved in the synthesis of two important siderophores, enter-
ochelin (entABCDEF), and pyochelin (pchADFG), were identified in EIHKSs
(Fig. 4A). Pseudomonas and Erwinia, which were highly abundant in E1 but
exhibited very low relative abundance in E2 (Fig. 2F), were the main

contributors to inter-microbial competition-associated genes in the El
group (Fig. 4B-D).

Interestingly, the E1 group harbored a significantly higher relative
abundance of pathogenicity-associated genes, and Pseudomonas and
Erwinia were the main genera harboring these genes in the E1 group (Fig.
3G, H, and Supplementary Fig. 6). In detail, GacA-GacS, which is recog-
nized as a global regulatory two-component system (TCS) of virulence-
associated traits in many bacterial pathogens, including Pseudomonas spp.
and several pathogenic Enterobacteriaceae species such as Erwinia’, was
identified in E1HKs, with 64.64- and 73.25-fold higher average relative
abundances in E1 than in E2 for gacA and gac§, respectively (Supplementary
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Fig. 8). Multiple KOs associated with inflammatory excitation and patho-
genicity, such as those involved in lipopolysaccharide (LPS) synthesis (e.g.,
waaBEOPQ and IpxMT), the T3SS machinery system and associated
effectors (e.g, bopN, sspH2, ipaH9.8, pipB3, and exoU), cationic anti-
microbial peptide (CAMP) resistance (e.g., phoPQ and pagP), and RTX
toxins (e.g., cyaC, ptxA, rtxA, and exIA), were identified in EIHKSs (Fig. 3G).

Several pathways involved in the degradation of phenolic compounds,
such as “benzoate degradation”, “aminobenzoate degradation”, “fluor-
obenzoate degradation”, “xylene degradation”, and “styrene degradation”,
were enriched in E2HKs (Table 1), and Bradyrhizobium was the main
contributor of the functional properties involved in phenolic compound
degradation in the E2 group, accounting for 62.12 + 11.68% (mean + SD) of
the normalized total relative contribution (Fig. 3C, D). However, in addition
to the relative decrease in the functional properties involved in phenolic
compound degradation, the contribution of Bradyrhizobium to these
functions was also significantly decreased in E1 (21.71 + 17.01%) compared
with E2 (62.12 £ 11.68%) (P = 0.0014, Mann-Whitney U-test, two-tailed).

The pathways “propanoate metabolism” and “butanoate metabolism” were

also enriched in E2HKSs (Fig. 3E and Table 1). Propanoate and butanoate are
two major short-chain fatty acids (SCFAs) produced by the gut microbiome
that play essential roles in maintaining intestinal health”. Multiple KOs
involved in SCFAs synthesis were identified in E2HKSs (Fig. 3E). Escherichia,
Bradyrhizobium, Asinibacterium, Levilactobacillus, and Ligilactobacillus
were the main contributors to the KOs in E2 (Fig. 3F). However, the con-
tribution of these genera to SCFAs biosynthesis-related functions was
decreased in the E1 group.

Intriguingly, the pathway “beta-lactam resistance” was found to be
overrepresented in the E1HKs (Table 1), with beta-lactamase-encoding
genes, such as blacrx.ap, blaZ, blacars.1» blaspc blappc, and blaoxa 213
exhibiting a significantly higher relative abundance in the E1 group than in
E2. We then analyzed the overall ARG prevalence in the A. serrirostris gut
microbiome, and 1,505 of the 3,121,626 nonredundant genes were identified
as ARGs. These 1,505 ARGs were further grouped into 224 antibiotic
resistance ontologies (AROs) that conferred resistance to various drug
classes (Fig. 5A and Supplementary Data 4). Notably, the E1 group harbored
a significantly higher abundance of ARGs (on average 32.44 folds higher)
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compared with that of E2 (Mann-Whitney U-test, two-tailed, P <0.001)
(Fig. 5B). Erwinia, Enterobacter, Leclercia, and Pseudomonas were the main
contributors to ARGs in the E1 group (Fig. 5C). Of the 1,505 ARGs, 270
were predicted to be located in mobile genetic elements (MGEs) associated
contigs, including 254 plasmid- and 16 phage-derived contigs (Supple-
mentary Data 4), and these ARGs accounted for an average of 19.82%
(ranging from 9.10 to 39.38%) of the total abundance of ARGs, with sig-
nificantly higher relative abundance in the E1 group compared with E2
(Fig. 5B).

Genome-centric analysis identified several bacterial pathogens
with different prevalence levels

Through metagenome-assembled genomes (MAGs) extraction analysis
using the metaWRAP pipeline, 91 MAGs (>70% completeness and <10%
contamination) were recovered from the gut microbiome of A. serrirostris
(Supplementary Data 5). Among these MAGs, we selected several prevalent
potential pathogens carrying VFs and ARGs for further in-depth investi-
gation. For example, a high-quality MAG affiliated with Pseudomonas
designated bin58 (completeness 82.63% and contamination rate 3.51%) was
identified. GacAS (the key global regulatory TCS required for virulence, also
identified in E1HKs) and several other pathogenicity-associated genes, such
as type IV pili and flagellum synthesis-associated genes (responsible for

adhering to the host cells), the alg gene cluster (responsible for forming
biofilms and overcoming host defense), and exIA (critical for cytotoxicity),
and several ARGs, were identified in the bin58 genome (Supplementary
Data 6 and 7). Bin58 exhibited a significantly higher abundance in E1
(average genome coverage 45.25 folds) than in E2 (0.10 folds) (Fig. 6A). Of
note, compared with the available genomes in the NCBI RefSeq database,
bin58 exhibited relatively high similarity (ANIm > 97%) with two strains
isolated from the Lake Erie region, North America, Pseudomonas sp. 02C 26
(isolated from a water sample) and Pseudomonas sp. SO7E 245 (isolated
from a soil sample), and exhibited low relatedness (ANIm < 85%) to other
available Pseudomonas genomes.

Notably, we identified several high-quality MAGs as important
pathogens that can infect humans and cause severe diseases of the infected,
such as Vibrio parahaemolyticus™ (bin35, completeness 95.69% and con-
tamination rate 1.80%), Salmonella enterica™ (bin89, completeness 95.81%
and contamination rate 5.15%), and Acinetobacter baumannii’® (bin59,
completeness 95.06% and contamination rate 3.97%). Bin89 was assigned to
S. enterica by GTDB-Tk” using 120 conserved marker genes. Comparison
against a collection of >10,000 high-quality Salmonella genomes from NCBI
RefSeq showed that the nearest RefSeq matches were affiliated with serotype
Saintpaul (Supplementary Data 8). However, the phylogenetic tree in Fig. 6B
indicates that bin89 exhibits a relatively low degree of genome similarity to
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parahaemolyticus bin35 (C), the top 100 genomes were selected, then near-identical
(clonal) top hits with identical metadata (isolation source, location, date, and sub-
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to tree building.

those Saintpaul genomes. To further investigate its taxonomic status, we
applied SeqSero2 for in silico serotyping™; SeqSero2 predicted an antigenic
formula of 4:g,m:1,2 for bin89, a result that does not clearly match common
reference serovars. In the phylogenetic tree, a strain affiliated with serotype
Enteritidis (S. Enteritidis NCCP 16206; GCF_009884355) was included and,
after midpoint rooting, formed a separate clade that effectively acted as an
outgroup. Taken together, the GTDB assignment, RefSeq comparisons, and
SeqSero2 serotyping support classifying bin89 as a Salmonella genome that
is genomically divergent from well-represented reference strains, potentially
reflecting an under-sampled wild-animal lineage. We identified a total of
300 virulence factors (VFs), including many well-known pathogenicity
genes, such as those involved in host cell adhesion and invasion (T3SS
machinery and associated effectors), hemolytic activity (slyA), and cytotoxin
(spvB) (Supplementary Data 9). Moreover, 52 ARGs were identified in
bin89, including several ARGs conferring multidrug resistance

(Supplementary Data 10). Bin89 was detected in 10 of the 11 samples in the
El group and 4 of the 14 samples in the E2 group, and it exhibited sig-
nificantly higher abundance in E1 than in E2 (Mann-Whitney U-test, two-
tailed, P < 0.01) (Fig. 6B).

Vibrio parahaemolyticus bin35 exhibited very high genome similarity
(ANIm >99.9%) with several human patient-originated V. para-
haemolyticus genomes in the NCBI Refseq database (Supplementary Data
11), and harbored thermostable direct hemolysin (tdh), which is a key VF for
V. parahaemolyticus that invades the human body, as well as several other
genes and genomic islands that are critical for pathogenicity” (Supple-
mentary Fig. 9). Notably, the phylogenetic relationship and distribution of
VFs further suggested that bin35 was more closely related to human patient-
originated strains than to those isolated from environmental samples and
animals (Fig. 6C and Supplementary Fig. 9). Bin35 was highly abundant in
sample S12 affiliated with the E1 group (genome coverage 7.8 folds) and was
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detected in three more samples with relatively low abundance (genome
coverage <0.2-fold) (Fig. 6C).

Acinetobacter baumannii is one of the most intractable pathogens in
the clinic, mainly because of its resistance to the majority of the antibiotics
currently used, besides its virulence, thus leading to the prevalence of
infections and outbreaks™. Bin59 exhibited high genome similarity
(ANIm > 99.8%) to more than 100 A. baumannii strains available in the
NCBI RefSeq database, and 98 strains out of the 100 top-hit strains were
isolated from human patients with missing isolation source information for
the other 2 strains (Supplementary Data 12). We also identified several
important genes that were critical for host infection and virulence, such as
omp33, bfmR/S TSC, and trimeric autotransporter adhesin encoding gene
ata, in bin59 (Supplementary Data 13). Furthermore, several ARGs that are
resistant to widely used antibiotics in the clinic, including p-lactam anti-
biotics (OXA-23, OXA-66, and ADC-73), chloramphenicol (craA), fosfo-
mycin (abaF), colistin (emrABEKY), aminoglycoside (aac and armA), as
well as efflux pumps (adeABCFGHIJKLNRS), were identified in bin59
(Supplementary Data 14). Bin59 was highly prevalent in the A. serrirostris
population and was detected in 24 of the 25 samples with the highest
genome coverage of 2.3-fold (Fig. 6D). Similar as S. enterica bin89, under-
representation of wild animal-derived A. baumannii strains in the public
genome database was also suggested by the phylogenic analysis (Fig. 6D).

Discussion

In this study, we investigated the structure and function of the gut micro-
biome of A. serrirostris by conducting full-length 16S rDNA amplicon
analysis on 70 individuals, followed by deep metagenomic sequencing of 25
representative individuals from a population wintering in the Yancheng
National Rare Birds Nature Reserve, China. Based on these analyses, we
constructed a comprehensive gene catalog that accurately represents the A.
serrirostris gut microbiome (Fig. 2A). Although the structure and function
of the gut microbiome have been investigated in several wild bird
species'”*"”, this study provides, to the best of our knowledge, the first gene
catalog comprehensively representing the gut microbiome of a migratory
wild bird species. Only 56.70 and 33.28% of the gene catalog obtained
taxonomy and function annotation, supporting the notion that our
understanding of wild animal microbiomes, including that of A. serrirostris,
is at an early stage, with there being little knowledge of the composition of
the microbiome. The predominance of bacterial annotations (98.85% of
annotated genes) indicates that bacteria likely contribute a broader reper-
toire of functions within the gut microbiome of A. serrirostris than the less-
represented fungi, archaea, and viruses. However, because public reference
databases are heavily biased toward bacterial genomes, the representation
and inferred functional contributions of fungal, archaeal, and viral genes
may be systematically underestimated®. Future studies using expanded
domain-specific databases may help elucidate the actual abundance and
functional roles of these underrepresented microbial domains. The order of
abundance of the phyla Pseudomonadota, Bacillota, Bacteroidota, and
Actinomycetota was similar to that observed in a previous study on the gut
microbiome of five sympatric flycatchers (Ficedula strophiata, Phoenicurus
auroreus, Niltava sundara, Phoenicurus frontalis, and Tarsiger ruﬁlatus)“,
but was different from another study with 17 species of migratory birds in
which Bacillota was most abundant (47.8%), followed by Pseudomonadota,
Fusobacteriota, and Bacteroidota™. These differences may be related to the
bird species and their dietary habits™.

One of the most interesting findings in the present study is the defi-
nition of two groups among the individuals within the same population,
according to the abundance-based gut microbiome composition obtained
by both 16S rDNA amplicon analysis and metagenome-based analysis (Figs.
1A, 2B, and Supplementary Figs. 4-6). In both wild and domestic birds, the
host diet, genetics, age, sex, social contact, behavioral habits, and environ-
mental factors play major roles in shaping the gut microbiome™, and even
different bird species that live in the same geographic environments and
consume shared food sources tend to have similar gut microbiome struc-
tures and functions™”". In the present study, the division of two A. serrirostris

groups could not be explained by the effects of diet or host genetic back-
ground, since all of the involved individuals had the same feeding envir-
onments and shared nearly identical genetic backgrounds (Supplementary
Fig. 7). However, important metadata—including age, sex, and health status
—were unavailable in this study due to the logistical challenges of capturing
and assessing these parameters in large populations of this protected
migratory species. These missing variables likely play a role in explaining the
observed variations in microbiome structure. Future research should
prioritize developing non-invasive metadata collection methods that com-
ply with international migratory bird protection agreements, which may
help identify the key drivers of group differentiation within the same bird
population.

A high number of functional genes identified in the gut microbiome of
A. serrirostris were involved in the degradation of plant-derived secondary
metabolites (PSMs) (Fig. 3B and Table 1), which may be related to the
herbivorous behavior of this bird species. Secondary metabolites are
important compounds produced by plants to protect themselves from being
foraged by herbivores through several means, including direct toxicity and
digestion impairment. However, certain herbivores have evolved strategies
to mitigate the negative effects of plant secondary metabolites and even
benefit from these compounds, mainly with the help of the gut
microbiome**. Bradyrhizobium was identified as the main contributor to
PSM degradation, and this genus was also predominant and over-
represented in E2 (Figs. 2F and 3D). Bradyrhizobium is well known as a
symbiotic nitrogen-fixing bacteria associated with diverse legume species”’;
meanwhile, both diazotrophic and non-diazotrophic Bradyrhizobium spp.
colonize the root endophytic compartment of a wide variety of plant species,
including the model species Arabidopsis*® and rice”. In association with
both the symbiotic and endophytic traits, Bradyrhizobium serves as the
mutualistic taxon in plant microbiomes and is capable of metabolizing a
large number of phenolic acids derived from plant hosts***’. Bradyrhizo-
bium is also predominant in the gut microbiome of several migratory bird
species that frequently consume plant material (Supplementary Fig. 10). We
inspected the full-length 16S OT'U table and identified one OTU annotated
as Bradyrhizobium. BLASTn of the OTU representative sequence against
the NCBI rRNA/ITS database returned Bradyrhizobium murdochii
CNPSO:4020—a plant-derived strain®’—as the top hit, with 98.23% identity
over the full-length 16S alignment. Therefore, it is possible that Bradyrhi-
zobium is recruited from the plant microbiomes by herbivorous birds, as it is
in the case of Pseudomonas, as the dominant endophyte group in arrow
bamboo (Fargesia nitida) and in the microbiome of arrow bamboo-feeding
pandas’”, to alleviate the negative effects of PSMs during their evolution.
These results suggest how the gut microbiome contributes to the avian hosts’
fresh plant material feeding cycle. Moreover, the functional genes in the A.
serrirostris gut microbiome could serve as an important source for the
discovery of novel enzymes, such as those involved in plant material
utilization.

The formation of a complex and modular bacterial community net-
work with relatively high alpha-diversity (Shannon index) in the micro-
biome of E2 (Fig. 2C, D) could increase the robustness of the microbiome
against perturbations, and in turn, benefit the host by several means, such as
enhancing the normal physiological functions and the ability to resist
external interference of the host™. Several highly abundant genera,
including Levilactobacillus, Ligilactobacillus, Escherichia, Bradyrhizobium,
and Asinibacterium, exhibited in E2 (Fig. 2F), are known as SCFA producers
in the gut microbiome™ *, and these genera were indeed found to be the
main contributors of the SCFA biosynthesis-associated genes identified in
this study (Fig. 3F). SCFAs produced by the microbiome can benefit the host
by modulating the immune system and physiology, as well as by other
means”’. Compared with E2, the microbiome of E1 exhibited a significantly
decreased a-diversity with significantly attenuated positive inter-microbial
connections, collectively resulting in a nonmodular structure (Fig. 2D).
Several opportunistic pathogens that could cause human infections, such as
Pseudomonas and Erwinia™®, exhibited significantly higher relative
abundance in the E1 group than in E2, and these genera were also found to
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be the main contributors to the abundant inter-microbial competition-
associated functions, such as T6SS as well as the ABC transporters and
siderophores responsible for absorbing essential metals into the bacterial
cells (Figs. 3G and 4A). T6SS plays an important role in the inter-bacterial
competition in the gut microbiome®. Several metal elements, including
iron, zinc, and manganese, are critical for the growth and metabolism of
bacteria that colonize the intestinal environment®’. However, the availability
of these metals in the gut is limited. Sequestration of essential metal nutrients
in the immediate vicinity, which is primarily mediated by the siderophores
and associated ABC transporters, is an important strategy adopted by cer-
tain microbial members to repress the growth of competitive microbes®.
The relative abundance of genera involved in PSM degradation and SCFA
production, including Ligilactobacillus and several other genera, was sig-
nificantly lower in E1. In contrast, the opportunistic pathogens that were the
major contributors to the inter-microbial competition-associated functions,
such as Pseudomonas and Erwinia, were also the main contributors to the
El-abundant pathogenicity-associated genes (Figs. 3H and 4B-D). Thus,
the high abundance of potential pathogenic genera in the E1 group probably
resulted in the enrichment of pathogenicity-associated genes, including
those involved in LPS synthesis, T3SS effectors, and RTX toxin production,
in the gut microbiome (Fig. 3G). LPS is a component of the cell wall of
Gram-negative bacteria and induces inflammatory responses in the host™.
The T3SS effectors play important roles in triggering host inflammatory
responses””. RTX toxins are present in a broad range of Gram-negative
mammalian pathogens and function to block phagocytosis and the bac-
tericidal production of reactive oxygen species in host cells”. Furthermore,
among the E1HKSs affiliated with “CAMP resistance” pathway, we identified
the TCS phoPQ and the downstream pagP that endow the bacteria with
resistance against the CAMPs produced by host neutrophils by increasing
the acylation level of lipid A. It is important to note that the detection of
functions such as GacS/GacA, T6SS, and LPS biosynthesis, which are mainly
contributed by several potential pathogenic genera (e.g., Pseudomonas and
Erwinia), should not be taken as definitive evidence of pathogenicity. These
loci are present in both pathogenic and non-pathogenic lineages within a
given genus and can mediate either mutually beneficial interactions or inter-
microbial competition, depending on the genetic context” . Therefore,
species- or even strain-level annotations are required to draw conclusive
inferences. In this study, however, only genus-level annotations could be
reliably assigned using the metagene-centric approach, which nevertheless
enabled us to quantify the contributions of different taxa to specific path-
ways or functions (i, contributional profiling)”®”". Thus, although the
higher abundance of these taxa and functions in E1 suggests a greater
pathogenic potential in that group, confirmation will require high-
throughput cultivation, genome sequencing, and experimental infection
or functional assays in future work to determine the species- and strain-level
attribution of virulence traits.

Multiple ARGs that can confer resistance for several important classes
of clinical antibiotics, including beta-lactam antibiotics, were identified in
the A. serrirostris microbiome (Fig. 5A). Notably, although the relative
abundance of ARGs in E2 was very low and even reached a level below the
detection ability, we identified highly abundant ARGs in El. The pre-
dominant pathogenic bacterial taxa identified in E1 were also the main
contributors to the ARG contents (Fig. 5C). Furthermore, given that a large
fraction of these ARGs were located in MGE regions that could facilitate
inter-microbial transmission of the ARGs, these ARGs could pose severe
threats to public health. Previous studies have demonstrated that the gut
microbiomes of wild birds are reservoirs for ARGs, and that the abundance
of ARGs varies among bird species”””. Our results further demonstrated
that individuals belonging to the same species and living in the same habitat
could harbor distinct abundances of ARGs. These results suggest that
extensive and comprehensive sampling of individuals in a migratory bird
population is required in such surveys to obtain solid conclusions, as the
abundances of pathogens and ARGs may be undetectable in certain indi-
viduals, whereas some members may harbor a high abundance of pathogens
and ARGs (Figs. 3H, 4B, and 5C).

Several high-quality MAGs of known pathogenic bacteria that
could cause human infections were recovered from the A. serrirostris
microbiome. We further analyzed four representative MAGs with
distinct prevalence patterns in the A. serrirostris population (Fig. 6). A.
baumannii bin59 was widely distributed in the studied A. serrirostris
population and was closely related to those patient-originated strains
(Fig. 6D). Despite the frequent identification of A. baumannii in clinical
settings and the significant attention it has garnered, the natural
reservoir of A. baumannii remains undefined”. The high prevalence of
bin59 in the A. serrirostris population suggests that this migratory bird
species could serve as a reservoir for A. baumannii, posing a risk to
public health. S. enterica bin89 exhibited a significantly higher abun-
dance in E1 compared to E2 (Fig. 6B), which was closely related to
several genomes affiliated with serotype Saintpaul (Supplementary
Data 8). Many members affiliated with Salmonella, including S.
Saintpaul, are zoonotic pathogens’”, and the impacts of bin89 on the
fitness of A. serrirostris need to be further determined. Of note, S.
Saintpaul was recently identified frequently in animals and human
patients in China”’. Compared to the highly prevalent bin89 and bin59,
V. parahaemolyticus bin35 was relatively less prevalent in the A. ser-
rirostris population (Fig. 6C), suggesting that it was only occasionally
acquired by certain individuals from environments containing water.
However, considering that bin35 was closely related to V. para-
haemolyticus strains originating from human patients and also har-
bored critical pathogenicity genes and islands for human infection,
there is a potential risk for this strain to contaminate water and other
environments impacted by A. serrirostris, and the risk to public health
should not be overlooked. Furthermore, Pseudomonas sp. bin58 was
suggested to be distinctly related to currently known genomes, but here
the bacterium harbored several pathogenicity-associated genes and
exhibited relatively high abundance in the E1 group. Thus, the potential
risk of this strain also needs to be monitored.

This study has provided a comprehensive analysis of the compo-
sition and variation of gut microbiome structure and function, as well as
the pathogen and ARG contents of an important migratory wild bird
species, A. serrirostris. Although the E1 group was enriched for genera
that include opportunistic pathogens (e.g., Salmonella, Pseudomonas),
the consequences for individual- and population-level bird health
remain uncertain. These taxa have been isolated from wild and
migratory birds and have been linked to clinical disease in some avian
hosts””*; however, detection in fecal metagenomes alone does not
demonstrate active infection, which is also shaped by host condition,
environmental stressors, and exposure dose. Recent advances in animal
tracking and identification technologies, such as GPS biologgers and
drone imagery with automated re-identification, now enable repeated
health monitoring and sampling of individual animals across stopover
sites. These approaches are both feasible and ethically sound; inte-
grating them with environmental sampling (e.g., water, plants, soil)
along migratory flyways in future studies could provide valuable
insights into the impacts of pathogens and ARGs on hosts as well as
their environmental sources. Given that A. serrirostris frequently grazes
grass crops and defecates in farmed agricultural land, including winter
wheat, barley, and cabbage at stopover sites’®, the notorious pathogens
and ARGs carried by A. serrirostris could be transmitted to local ani-
mals and humans through direct contact, bioaerosols, food chains, and
other means””®, and thus pose a risk to public health. The factors
contributing to the observed differentiation in the gut microbiome of
the A. serrirostris population remain unclear. Further studies are nee-
ded to develop non-invasive, field-deployable methods for protected
wildlife that can capture individual-level metadata (e.g., age, sex, and
health status) to uncover the drivers of intrapopulation microbiome
divergence. A better understanding of the microbiome basis of
pathogen and ARG contents in migratory birds will contribute to the
management of migratory bird-mediated pathogens and ARG
transmission.
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Methods

Sampling collection

In this study, we selected an A. serrirostris population that contained several
hundred individuals in the Jiangsu Yancheng Wetland National Nature
Reserve, Rare Birds, for sampling and analysis. This reserve is located in the
lower Yangtze River floodplain and covers an area of 247,260 hectares,
ranging from 119°53'45” to 121°18” 12” E and 32°48'47” to 34°29'28” N, and
is recognized as an important stopover or wintering site for A. serrirostris as
well as several other migratory bird species such as red-crowned cranes
(Supplementary Fig. 1). This A. serrirostris population had arrived to the
reserve more than 2 weeks before the sampling date as confirmed by our
continuous monitoring.

Fecal sampling was performed during the morning of 9 December
2020 in a barley seedling field (approximately 800 x 400 m) that was
exclusively occupied by a foraging A. serrirostris flock (>300 indivi-
duals; see Supplementary Fig. 2). Ambient temperature during sam-
pling remained stable at 7 °C. Prior to collection, binocular monitoring
confirmed the absence of non-target avian species within a 500-m
radius over a continuous 60-min observation period. Sampling was
focused on a 100 x 100-m quadrat exhibiting the highest population
density, as determined through the binocular monitoring. Fresh fecal
specimens were identified using species-specific morphological mar-
kers, including cylindrical morphology (length: 8-10 cm; diameter:
~0.5cm) and greenish-brown pigmentation correlating with
chlorophyll-rich dietary intake. These diagnostic criteria were cross-
verified by two independent ornithologists during the sample collec-
tion. To avoid environmental contamination during sampling, an
aseptic stick was inserted into the central inner layer of the feces,
rotated, and withdrawn to ensure that samples were obtained from
inside the feces to avoid soil-derived contamination. Notably, we col-
lected samples from various sites at least 1 m away from each other to
avoid the collection of samples from the same individual. To prevent
microbial DNA degradation, fresh fecal samples were immediately
transported to the laboratory on dry ice and stored at —80 °C until DNA
extraction.

DNA extraction and full-length 16S rDNA amplicon sequencing
and analysis

Total microbial genomic DNA was extracted from fecal samples using the
QIAamp® PowerFecal® DNA Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol. The DNA concentration and purity of all
samples were measured by NanoDrop (ThermoFisher Scientific, Waltham,
MA, USA), and their quality was verified on a 1.0% agarose gel electro-
phoresis. Subsequently, the DNA concentrations were determined using
Qubit 4.0 (ThermoFisher Scientific) to ensure satisfactory library prepara-
tion. A total of 70 samples were sequenced. Full-length 16S rRNA genes
were amplified using the primer set 27 F and 1492 R with barcodes”. The
PCR products were sequenced using a PacBio HiFi sequencing platform
(Guangzhou, China), and high-quality circular consensus sequence (CCS)
reads were generated.

In this study, an operational taxonomic unit (OTU)-based approach
was selected for processing CCS reads. This choice was made due to the
recognized advantages of OTU-based methods over amplicon sequence
variant-based pipelines when analyzing gut microbiome data characterized
by high inter-individual variability, such as that of wild birds***. Following
primer removal and length/quality filtering (retaining CCS reads between
1.0 and 1.6 kb), the remaining high-quality reads were processed using the
CLC Microbial Genomics Module (CLC Genomics Workbench v21,
QIAGEN, Hilden, Germany). OTU clustering was performed using the
module’s reference-based OTU clustering workflow with a 97% sequence
identity threshold against the SILVA 132.99 16S rRNA database imple-
mented in the module. Representative OTU sequences were taxonomically
annotated by mapping to the reference database; where multiple equally
good matches existed, the taxonomy was assigned to the lowest common
ancestor.

Metagenomic sequencing and bioinformatics analysis

A subset of 25 fecal samples was subjected to metagenome sequencing by
Shanghai BIOZERON Co., Ltd. using an Illumina NovaSeq platform, and
2x150bp paired reads were generated. Raw reads from metagenome
sequencing were filtered, trimmed, and quality-controlled to generate clean
reads using Sickle (ver. 1.33) with parameters pe, -t sanger, and -1 80'. In
total, 339.8 Gbp of 150 bp high-quality reads were generated with an
average sequencing depth of 13.6 Gbp per sample. The mitochondrial
genomes of two related bird species, including Anser albifrons frontalis
(NC_039888.1) and A. albifrons (AF363031.1), were downloaded from the
NCBI database; then, the mitochondria-originated reads were identified
from the metagenomic reads of each sample by aligning the reads to the
mitochondrial genomes of the aforementioned species using bowtie2** (ver.
2.2.5) with parameters --no-unal and -t. The mapped reads in each sample
were assembled into mitochondrial sequences using mitoZ with parameters
all, --clade Chordata, --genetic_code 2, --assembler mitoassemble, and
--requiring_taxa Chordata®, and the phylogenetic relationships between
each sample and relevant reference genomes were determined using pyani
v0.2.12 with default settings™.

Clean reads, after removing mitochondrial sequences, were co-
assembled using MEGAHIT (ver. 1.2.9) with the “meta-large”
parameter””. Taxonomic annotations were assigned to the assembled con-
tigs using MMseqs2 easy-taxonomy module with uniref90 database as
ref. 86, and the plant- and aves-derived contigs were identified and then
discarded using SeqKit (ver. 0.15.0) accordingly”’. Then, the contigs origi-
nating from the bird host and plants (i.e., undigested contents in the gut)
were identified and removed, generating an assembly containing 1,593,935
contigs with a total length of 3.56 G bp. Subsequently, the remaining contigs
were used for gene prediction using Prodigal (ver. 2.6.3) with parameters -p
meta and -q**. The predicted genes were clustered using CD-HIT-est (ver.
4.8.1)* with an identity cutoff of 0.95 (-c 0.95), and the taxonomic anno-
tations were assigned to these genes using MMseqs2 easy-taxonomy module
as mentioned above. The genes belonging to eukaryotes (except fungi) were
removed using Seqkit (ver. 0.15.0)”, and the final nonredundant gene set
was generated. The reads from each sample were aligned to nonredundant
genes using bowtie2 (ver. 2.2.5) with parameters --no-unal and -t*, and read
count tables were generated using Samtools (ver. 1.11) idxstats command”™.
Rarefaction curve of detected genes was generated based on a 100-fold
permuted sampling order, center value represents the median of
detected genes.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology
(KO) annotations were derived based on the eggNOG database by eggnog-
mapper (ver. 5.0.2) with parameters --itype proteins and -m diamond with
the implemented eggNOG orthology database (v5.0.2) as ref. 91. The ARGs
were annotated based on the Comprehensive Antibiotic Resistance Data-
base (CARD) using Resistance Gene Identifier (RGI, ver. 5.1.0)” main
module with parameters --include_loose, --local, --clean, and sequence
identity and coverage thresholds 80%. We identified gene-encoding VFs by
aligning with the VF Database (VFDB) using blastn (v2.5.0+) with para-
meters -evalue le-5 and sequence identity and coverage thresholds 60%™.
Only the best hits were retained for aligned VFs. The bacteriophage- and
plasmid-derived ARG-carrying contigs were identified using MobileOG-db
software (v1.6) with parameters -k 15, -e le-5, -p 80, and -q 80™.

Metagenomic binning

We constructed metagenomic bins (or MAGs) using metaWRAP (ver.
1.3.2)” Binning module with parameters --metabat2, --maxbin2, and
--concoct. We performed the refinement of MAGs using the bin-refinement
module in metaWRAP with default settings. The completeness and con-
tamination of the final MAGs were estimated using CheckM (ver. 1.1.3)
with default parameters™. Representative MAGs (>70% completeness and
<10% potential contamination) were classified using the Genome Tax-
onomy Database Toolkit (GTDB-tk) classify_wf module with default
parameters”’. The selected bins were manually curated using medusa” and
gapfiller” as described by Zhang et al.””. The abundance of each MAG in
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each sample was determined using CoverM with parameters --min-read-
percent-identity 95 and -m trimmed_mean'"’. MAGs were annotated using
PROKKA'" with default parameters, and VFs and ARGs were identified
using the previously described methods. Genomes closely related to the
MAGs were retrieved from the NCBI database using the datasets software'”
based on the taxonomic identifiers associated with each MAG. Genome-
wide average nucleotide identity (ANI) between the MAGs and the
downloaded genomes was calculated using FastANI'”. The top-hit gen-
omes based on ANI values were selected for subsequent phylogenetic
analysis. All downloaded genomes were uniformly annotated using
PROKKA with the same parameters applied to the MAGs. The phylogenetic
tree (Neighbor-Joining tree) was constructed using CVtree'”, and the
Prokka-generated faa files were used as inputs in the analysis. The phylo-
genetic tree was rooted using the midpoint method and visualized using
iTOL (https://itol.embl.de/)'*.

Statistical analysis

The 70 samples were clustered using the ward-linkage algorithm in Statis-
tical Analysis of Metagenomic Profiles (STAMP) software (v2.1.3)"*, based
on genus-level read count profiles derived from full-length 16S rDNA
amplicon analysis. Differentially abundant genera were identified using the
DESeq2"” method applied to the read count matrix. Prior to analysis, genera
detected in fewer than 10% of samples (i.e., 7 samples for 16S rDNA dataand
2 samples for metagenomic data) were excluded. The filtered count matrix
was then analyzed using DESeq?2 with a significance threshold of |log2(fold
change)|>1 and an FDR < 0.05. For inter-group comparisons at the phylum
level, the relative abundance-based analyses were performed using a two-
tailed Mann-Whitney U-test (P <0.05). Principal Co-ordinates analysis
plot was generated based on the Bray-Curtis distance metrics calculated
using the genus-level read count matrix derived from 16S rDNA and
metagenome data as inputs, and permutational multivariate analysis of
variance (PERMANOVA) was performed to analyze the effect of stratifi-
cation on the microbial composition via the adonis2 function in the vegan
package'”. The differentially abundant KOs were identified using the
DESeq2'” method with the following thresholds: |log2(fold change)|>1,
FDR <0.01, and average relative intragroup abundance >1 TPM (tran-
scripts per million). Pathway enrichment among the differentially abundant
KOs was evaluated using a two-tailed Fisher’s exact test (P < 0.05). Com-
parisons of taxonomic origins of selected KOs between E1 and E2 were
performed using a two-tailed Mann-Whitney U-test (P < 0.05).

MENSs were constructed based on the random matrix theory (RMT)
model using the iNAP pipeline'”. The correlation matrices were con-
structed based on RMT with Spearman correlations of the non-log-
transformed genera read count matrix, and only genera present in >50% of
the samples were retained in the matrixes. We applied a series of cutoff
thresholds from 0.01 to 1.0 with 0.01 intervals to the matrix and used an
appropriate threshold value of 0.94 to construct the networks based on the
RMT x’ result. For each generated empirical network, the corresponding
random network was generated by rewiring all nodes and links 100 times
using the greedy modularity optimization method implemented in the
iNAP. We compared the network topological properties, including the
average clustering coefficient (avgCC), average path distance (GD), geodesic
efficiency (E), density (D), connectedness (Con), and modularity, between
MENSs using Student’s t-test as suggested by the INAP pipeline with the
property values from the empirical networks and standard deviation values
from the random network as inputs.

Data availability

The full-length 16S rDNA sequencing and metagenomic data have been
deposited in the China National GenBank database (CNGBdb) under
project ID CNP0003865. The 91 MAGs and metagenes have been deposited
in Figshare (https://figshare.com/account/home#/projects/185836).
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