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The homologous recombination deficiency (HRD) score was developed using whole-genome copy number data derived from

arrays as a way to infer deficiency in the homologous recombination DNA damage repair pathway (in particular BRCAT or BRCA2
deficiency) in breast cancer samples. The score has utility in understanding tumour biology and may be indicative of response to
certain therapeutic strategies. Studies have used whole-exome sequencing to derive the HRD score, however, with increasing use of
whole-genome sequencing (WGS) to characterise tumour genomes, there has yet to be a comprehensive comparison between HRD
scores derived by array versus WGS. Here we demonstrate that there is both a high correlation and a good agreement between
array- and WGS-derived HRD scores and between the scores derived from WGS and downsampled WGS to represent shallow WGS.
For samples with an HRD score close to threshold for stratifying HR proficiency or deficiency there was however some disagreement
in the HR status between array and WGS data, highlighting the importance of not relying on a single method of ascertaining the

homologous recombination status of a tumour.
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INTRODUCTION

The identification of tumours that are deficient in the homologous
recombination (HR) DNA damage repair pathway is clinically
important, as these tumours have been shown to be sensitive to
DNA-damaging therapy, such as platinating chemotherapeutic
agents, and poly-(ADP-ribose) polymerase-inhibitors (PARP-i)'2.
HR deficient tumours have a higher degree of genomic instability
represented by a high number of point mutations, chromosomal
structural rearrangements and copy number changes. In an effort
to develop a biomarker of HR deficiency, Telli et al." derived the
homologous recombination deficiency (HRD) score, which consists
of the sum of three independent measures of genomic instability
reflecting structural aberrations: (i) the number of sub-
chromosomal regions with Loss Of Heterozygosity (LOH) regions
>15Mb (HRD-LOH)?; (ii) large scale state transitions (LST), which
represents the number of chromosomal breaks between flanking
regions of at least 10 Mb?* and, (iii) the number of sub-
chromosomal regions undergoing allelic imbalance extending to
the telomeres (NtAl)®>. Telli et al.' demonstrated that the
combination of the three scores performed best at distinguishing
HR deficient from proficient tumours and that high HRD scores
predicted HR deficiency and sensitivity to platinating agents.
Furthermore, Von Walhde et al.® reported that the HRD score was
highly consistent between samples from different areas of the
same tumour, making it a useful biomarker of HR deficiency, with
low sampling variability. The HRD score was used as an important
parameter in the HRDetect tool’, which was developed as a
predictor of HR status using multiple genomic parameters
including mutational signatures derived from whole-genome
sequencing (WGS) data.

Most of the work published to date using HRD scores is based
on single-nucleotide polymorphism (SNP) array-derived DNA copy
number data. Given the rising use of next-generation sequencing

(NGS) in the research and clinical context, it is important to
characterise how the HRD score derived from NGS-based
approaches compare to that derived using an array-based
platform. A good correlation between the array- and whole-
exome sequencing (WES)-derived overall HRD score (Pearson’s
correlation coefficient of 0.87) and the individual components of
the HRD score (Pearson’s correlation coefficient of 0.84 for the
NtAl, 0.79 for the LST and 0.73 for the HRD-LOH) was shown in a
cohort of 139 breast cancer patients®. Several other groups have
employed WES data to derive the HRD score as an indication of
the status of the HR pathway in tumours®™'". Here we compare
HRD scores calculated from DNA copy number data obtained from
arrays, WGS and in downsampled, low coverage WGS data from a
cohort of familial breast cancers.

RESULTS

Comparing array- and WGS-derived HRD score and HRD score
components
SNP array and WGS data was generated from 67 paired normal/
tumour samples from a familial breast cancer cohort, including
carriers of pathogenic germline mutations in BRCAT (n=19) or
BRCA2 (n=20) and 28 tumours from high risk individuals from
breast cancer families not attributed to BRCAT or BRCA2 germline
mutations (non-BRCA1/2)'%. Genome-wide DNA copy number data
was estimated using ASCAT'? for the arrays, and ascatNgs'* for
the WGS data, and the three components of the HRD score (HRD-
LOH, LST and NtAl) were derived according to Marquard et al.">.
The HRD score was calculated through the sum of the three
components.

Overall, we observed a high correlation between array- and
WGS-derived HRD score and HRD score components (Fig. 1,
Supplementary Table 1). The Pearson’s correlation coefficient
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Fig. 1 Correlation between the array- and WGS-derived HRD score and HRD score components. WGS data is on the X-axis and array data is
on the Y-axis. a array versus WGS-derived NtAl. b array versus WGS-derived HRD-LOH. c array versus WGS-derived LST. d array versus WGS-
derived HRD score. Results are for 67 samples and cases are labelled according to their germline BRCA status obtained from Nones et al.’?.
Note: grey shows the BRCA2 tumour which did not exhibit biallelic inactivation of the gene; purple denotes four non-BRCA1/2 tumours that
had a pattern of somatic mutations reflecting BRCA1 deficiency (three of which had somatic BRCAT LOH plus BRCAT methylation); brown
denotes a non-BRCA1/2 tumour from a patient carrying a BRCA2 unclassified variant (UV) plus LOH but with other mutational signatures that
suggest HR deficiency; and orange denotes a non-BRCA1/2 case from a patient with biallelic inactivation of PALB2 as previously presented'.
Blue dashed line represents fitted regression line and grey area represents the 95% confidence interval for the fitted regression line. The line
of equality (where array is equal to WGS data) is represented by a solid black line (for reference). The scatterplots demonstrate a strong linear
relationship between WGS- and array-derived HRD score and HRD score components, as evidenced by the high Pearson’s correlation
coefficient and R

(PCC) for the NtAl, HRD-LOH, LST and HRD score was 0.94, 0.84, variability of the mean bias between array- and WGS-derived
0.90 and 0.95, respectively (Fig. 1). When performing linear parameters to increase as the mean of the array- and WGS-derived
regression between the array- and WGS-derived data, we parameters increased (Fig. 2). These observations suggest that as
observed R? values ranging from 0.71 to 0.91, with relatively the amount of genomic instability increases (characterised by
small standard errors. (Supplementary Table 1). Taken together, increasing HRD-LOH, LST, NtAl and HRD score), the difference

these results suggest a strong linear association between array- observed between array- and WGS-derived LST and HRD score
and WGS-derived data. becomes more variable. Overall, the mean bias observed was

As correlation only measures the linear association between small and non-significant across all parameters. This is because the
two variables (which does not necessarily imply that two methods confidence interval of the mean bias included zero (line of

have good agreement), we complemented the correlation results  equality) within its interval. We noted a mean bias ranging from
using a Bland-Altman analysis'® (Fig. 2), which measures the  0.03 for the NTAI to 1.15 for the HRD score (Supplementary Table
extent of agreement between two methods of measurements'”. 1). Given the absence of significant bias across all the parameters,
The Bland-Altman analysis involves defining limits of agreement these results suggest a good agreement between the data derived
between two measurements, based on the mean and standard from array and WGS.

deviation of the differences between these two measurements. We then investigated how the contribution of HRD score
This analysis also provides us with the average difference between components varied between platforms and HR status (HR deficient
the two measurements (WGS and array), termed mean bias. v/s HR proficient samples). In both array and WGS, we noted that

In the Bland-Altman analysis, 95.52% of the samples (64/67) the NtAl (mean contribution: 38.92%, 95% confidence interval (Cl)
were within the limits of agreement for the NtAl, HRD-LOH and (36.75%—41.08%) for array; 37.81%, 95% Cl (35.47%—40.14%) for
HRD score. For the LST, we noted 97.01% samples within the limits WGS) and LST (34.38%, 95% Cl (32.04%—36.73%) for array; 34.79%,
of agreement (65/67) (Fig. 2). There was a tendency for the 95% Cl (32.46%—37.11%) for WGS) were the largest contributors
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Fig.2 There is a good agreement between the WGS- and array-derived HRD score and HRD score components. Bland-Altman plot for the
WGS- and array-derived NtAl (a), HRD-LOH (b), LST (c) and HRD score (d) for 67 samples. X-axis represents the mean of the two measurements
(from WGS and array data) and the Y-axis represents the difference between the paired measurements. Solid red line represents mean bias,
red dashed lines represent the 95% confidence intervals (Cl) of the mean bias. Solid green lines represent the upper and lower limits of
agreement and green dashed line represent the 95% Cl of the upper and lower limits of agreement. Blue line represents fitted regression line
between mean bias and the magnitude of measurements and grey area represents the 95% ClI for the fitted regression line. Tumours are
colour coded according to their germline BRCA status (see legend to Fig. 1).

to the HRD score, and the HRD-LOH was the smallest contributor
(26.70%, 95% Cl (24.70%—28.71%) for array; 27.41%, 95% Cl
(25.27%—29.54%) for WGS).

We observed no significant differences (Wilcoxon signed-rank
test, 2-sided p-value =0.80, 0.99 and 0.21 for the HRD-LOH, LST
and NtAl, respectively) when comparing the contribution of the
different HRD score components between array and WGS
(Supplementary Fig. 1). However, we did noticed that when
considering the HR status of the sample (using array-derived HRD
score) there was an increased contribution of the LST (Wilcoxon
signed-rank test, two-sided p-value =0.0096 (array) and 0.007
(WGS)) in the HR deficient samples when compared to the HR
proficient ones, and vice versa for the HRD-LOH (Wilcoxon signed-
rank test, two-sided p-value =0.0022 (array) and 0.0094 (WGS)),
while the NtAl showed no significant differences between the HR
status categories (Wilcoxon signed-rank test, two-sided p-value =
0.2705 (array) and 0.6217 (WGS)) (Supplementary Fig. 1). This
pattern was consistent across both platforms. Similarly, when
comparing the distribution of data generated from array and WGS
(Kolmogorov-Smirnov test) we noted no significant differences in
the NtAl (p=0.99, two-sided p-value), LST (p =0.99, two-sided
p-value), HRD-LOH (p = 0.99, two-sided p-value) and HRD score
(p =0.95, two-sided p-value). With respect to the variance in the
HRD score components, we noted that the LST had the highest
variance (115.81 for array; 124.23 for WGS), followed by the NtAl
(99.21; 101.93) and the HRD-LOH (57.13; 62.78), a pattern
consistent across both platforms (array and WGS).

To compare the reliability between the WGS- and array-derived
data, we computed the intraclass correlation coefficient (ICC),
which provides an indication of the consistency of measurements
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derived from multiple raters (methods). The ICC ranges from 0 to
1, with values between 0.75 and 0.90, and >0.90 indicative of good
and excellent reliability, respectively'®. We observed an ICC of
0.94, 0.84, 0.90 and 0.95 for the NtAl, HRD-LOH, LST and HRD score,
respectively (Supplementary Table 1). Taken together, these
results indicate a good consistency between WGS- and array-
derived scores.

The HRD score is mainly used as a dichotomous method to
categorise samples as either HR deficient (HRD score >42) or HR
proficient (HRD score <42)', therefore it is also important to assess
the degree of agreement in HR status classification between the
array- and WGS-derived HRD scores. To this end, Fleiss' kappa'®
was used as a statistical measure to assess the reliability of the
array- and WGS-derived HRD score in performing HR status
classification. Fleiss’ Kappa ranges from —1 to 1; a value of <0 is
indicative of poor agreement between methods, while a value
between 0.80 and 1.00 is indicative of good agreement. When
comparing the array to the WGS-derived scores, we observed a
92.54% (62/67 samples) agreement in HR status classification
between the array- and WGS-derived data (Fleiss kappa value =
0.83; two-sided P value = 1.17E'"). While the majority of tumours
were consistently classified, five samples (7.46%) were differen-
tially classified by the two methods. Three of these samples were
scored as HR deficient by array and as HR proficient by WGS (array
HRD scores/WGS HRD scores: 43/41, 42/38 and 44/39), while two
were scored as HR proficient by array and as HR deficient by WGS
(array HRD scores/WGS HRD scores: 36/44, 36/42); Supplementary
Tables 2 and 3). These cases highlight the limitation of using a
single genomic parameter to classify the tumours as HR deficient
or proficient.

npj Breast Cancer (2020) 33
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The differentially classified samples included four non-BRCA1/2
tumours (FBC050798, FBC020636, FBC060411 and FBC070086) and
one tumour from pathogenic BRCA2 mutation carrier (FBC013587)
(Fig. 3). The genomic architecture of these five tumours is shown
as circos plots (Fig. 3b) and copy number profiles (Supplementary
Fig. 2) and can be compared to tumours with low and high HRD
scores (Fig. 3c). Overall, the copy number profile observed
between the platforms were similar, apart from the expected
differences in ability to detect high-level copy number amplifica-
tions, due to differences in dynamic range. Case FBC013587 (HRD
=43 for array and 41 for WGS, Supplementary Table 2), harboured
biallelic inactivation of BRCA2 and exhibited several genomic
features suggestive of HR deficiency, such as a high number of
small deletions (>3 bp), with microhomology at the junction of the
deletions, prominent mutational signatures'? typical of BRCA1/2
deficient tumours’?® and hence an overall HRDetect score
indicative of HR deficiency.

To investigate potential reasons underlying the differential
classification of these samples between array and WGS data, we
analysed various variables and compared those between samples
which were consistently classified to those that were differentially
classified. The variables we considered included measures of Log2
ratio signal noise, such as the derivative Log Ratio Spread (dLRS),
which consists of the standard deviation of Log2 ratios for the
array and WGS data (tumour samples) and the Median of the
Absolute values of all Pairwise Differences (MAPD) for the array
and WGS data (tumour samples). Other variables we considered
included: deviation in the tumour segmented Log2 ratio data
between WGS and array; the correlation between the tumour
Log2 ratio data derived from array and WGS; tumour sample
purity (ACF) and sequencing coverage for the normal and tumour

npj Breast Cancer (2020) 33

data. We did not find evidence that these variables could explain
the discrepancies in HR classification for the five samples
(Supplementary Fig. 3).

We further generated a statistical model to investigate how
various specific quality metrics affect the relationship between the
array- and WGS-derived HRD scores. The model initially included
eight variables in the regression: purity of the tumour sample
(ACF), dLRS for the tumour (array and WGS), tumour coverage and
normal coverage, correlation in the tumour Log2 ratio data space,
the deviation in the tumour segmented Log2 ratio and the WGS-
derived HRD score. Overall, these analyses suggest that more
often than not, the variance in WGS-derived HRD score alone, is
sufficient to account for the variance in array-derived HRD score.
Further details of these analyses are found in the supplementary
material (Supplementary Note, Supplementary Figs. 4 and 5).

Comparing original and downsampled WGS-derived HRD scores

We then determined if low coverage WGS data could be used to
derive HRD scores and HR classification status consistent with the
original tumour coverage (~70x) WGS data. We performed an
incremental downsampling of normal and tumour original WGS
data on the cohort of 67 familial breast cancers to reach an
average coverage of approximately 30X, 15X and 10X for both
tumour and normal WGS data (Supplementary Table 2). During
the downsampling process, ascatNgs failed to run on three
samples for both the 15X and 10X downsampling. Therefore, the
results presented below include 64 samples, where ascatNgs
successfully generated data for all downsampling tiers (30X, 15X
and 10X). We discuss potential reasons why these three samples
failed ascatNgs copy number estimation in Supplementary Fig. 6.

Published in partnership with the Breast Cancer Research Foundation



We observed a high correlation between the original and the
downsampled WGS-derived HRD score and HRD score compo-
nents (Pearson’s correlation coefficient between 0.79 and 0.98;
Supplementary Table 4). Performing linear regression for the HRD
score components between the original and downsampled WGS
data (Supplementary Table 4), we noted small standard errors and
relatively high R? values (ranging from 0.62 to 0.96). Taken
together, these results indicate that there is a strong linear
relationship between the original and downsampled WGS data.
However, we noticed that the HRD-LOH component deteriorated
rapidly with downsampling, in comparison to other HRD score
parameters (R> of 0.90 at 30x, 0.63 at 15X and 0.62 at 10x),
suggesting a reduced capability at calling HRD-LOH in lower
coverage WGS. A Bland-Altman analysis revealed a relatively small
mean bias between the original and downsampled WGS-derived
HRD (ranging from —0.75 to 4.77), which is indicative of a good
agreement between original and downsampled WGS-derived
data. The results of these analyses are summarised in Supple-
mentary Table 4.

As before, we complemented our Bland-Altman analysis of
agreement by assessing the intraclass correlation coefficient and
the Fleiss Kappa. A Fleiss Kappa value of 0.93 (two-sided P value <
2E107"®) was obtained and the intraclass correlation coefficient
calculated ranged from 0.85 to 0.96 (Supplementary Table 4).
These results are indicative of good consistency between the
original and downsampled WGS data. We also noted an excellent
agreement between the original and downsampled WGS-derived
HR classification status: 93.75% (60/64) of tumours were consis-
tently classified for all coverages (original coverage, 30X, 15X and
10X), with a misclassification rate of 6.25% (4/64) when the WGS
data was downsampled to 30X, 15X and 10X (Supplementary
Tables 2 and 5).

Four samples (FBC013587, FBC020636, FBC050798 and
FBC050558) exhibited inconsistent classification between the
original WGS and downsampled WGS data, three were previously
differently classified when comparing their array- to WGS-derived
scores (FBC013587, FBC020636 and FBC050798; Supplementary
Table 2). The original WGS-derived HRD scores for these tumours
(FBC013587:41, FBC020636:38, FBC050798:39 and FBC050558:37)
were close to the threshold of 42, and in most cases the
downsampling led to an increased HRD score. In fact, for 48/64
cases, we observed an increased HRD score compared to the
original score, across at least two downsampling tiers. This could
arise through the downsampling process, as the noise in allele
frequency estimation increases in the lower coverage data. To
understand possible reasons underlying the non-congruent HR
classification for these samples, we looked at some of the factors
that could influence HRD score derivation. The first factor we
considered was tumour cellularity (ACF). The cellularity of these
four tumours were relatively high (69.40-73.53%), except for
sample FBC020636 which had a cellularity of 51.25% (Supple-
mentary Table 2).

Regions of high and low G+ C bases are challenging to
sequence, resulting in poor coverage; a phenomenon known as
GC bias. Hence, we derived various GC bias metrics to ascertain if
they could provide insight into why these four samples were not
congruously classified (Supplementary Fig. 7). We did not notice a
tendency for the four non-congruent samples to have worst GC
bias compared to the congruently classified samples. We also
derived WGS performance metrics and did not notice any
difference between the congruent and non-congruent samples
for these. However, because the downsampling performed was
random, it is possible that this process resulted in a non-uniform
genome coverage, which may have impacted the ability to
determine scores and ultimately affected our ability to accurately
calculate the HRD score. Also, because a non-uniform genome
coverage may artifactually result in an increased number of CN
breakpoints, this could ultimately increase the HRD score
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calculated; this could therefore explain the tendency for down-
sampled WGS-derived HRD score to be higher than its original
counterpart, as observed in the Bland-Altman analysis (Supple-
mentary Table 4).

DISCUSSION

Fundamental to calculating the HRD score is the robust
determination of copy number (CN) data, which can be obtained
using either SNP arrays, WES or WGS. Studies comparing WES- to
WGS-derived CN data have shown that WGS provides a much
more homogenous distribution of quality parameters (genotype
quality, coverage depth and minor read ratio) compared to
WES?"22, The challenges with using WES to determine CNs relate
to the non-adjoining nature of the captured exons and CNs
extending outside the capture regions®. Indeed, Zare et al**
demonstrated CN detection tools using WES data have relatively
limited performance, due to the presence of additional biases that
arise as part of the hybridisation process and uneven read
distribution in exonic regions®>. Nevertheless, WES has been
shown to reflect copy number data and HRD scores to that
obtained from array data'®2°.

In this study, we demonstrated with various statistical analyses
(Pearson’s correlation, Bland-Altman, interclass correlation coeffi-
cient and Fleiss’ Kappa) that HRD scores and individual parameters
of the HRD score derived from WGS closely reflect those obtained
by SNP array. Similarly, compared to Sztupinszki et al's® findings
comparing HRD scores derived from array and WES®, we report a
good correlation between the array and WGS-based HRD score.
However, in comparison to Sztupinszki et al's® findings, we report
a higher Pearson’s correlation between scores estimated from
arrays and WGS (HRD score: 0.95; NtAl: 0.94; HRD-LOH: 0.84; LST:
0.90) when compared to the correlation they reported for scores
estimated from WES (HRD score: 0.87; NtAl: 0.84; HRD-LOH: 0.73;
LST: 0.79)® Also, while Sztupinszki et al. reported that the
estimation of the HRD-LOH was lower in the WES- compared to
array-estimated data, for the WGS data, we reported no
differences across all the parameters, including the HRD-LOH,
both in terms of their contribution, but also in term of their
distribution between both platforms. The higher Pearson’s
correlation coefficient achieved using WGS over WES might be
expected, given the aforementioned advantages of WGS over WES
for calling CNVs*'™2>?7_ This demonstrable utility of WGS for
scoring HRD emphasises the powerful nature of WGS technology
over arrays and WES, given WGS yields a more detailed
characterisation of the patient's complete cancer genome,
including single-nucleotide variants (SNVs), structural variants
and collective mutational signatures, which in combination with
the HRD score, has better discriminating powers for predicting HR
status in tumours, such as used by HRDetect”'2.

Our analyses also establish that HRD scoring can be achieved
from lower coverage WGS data, based on our results from
downsampled genomes. We demonstrate a high correlation, a
good agreement, as well as good HR classification congruency
between the original and downsampled WGS. However, when
considering lower coverage genomes, the sensitivity to fully
characterise somatic mutations (e.g. SNVs, breakpoints and copy
number changes) becomes compromised, especially in tumours of
low cellularity or when sequencing data presents strong GC bias.
The cost savings therefore achieved through low coverage
sequencing has to be balanced with the sensitivity for robustly
calling somatic mutations.

The discrepancy observed here between HRD status classifica-
tion in a minority of tumours between either the array and WGS
comparison or between the original and downsampled WGS
comparison raises some concern with using only HRD scores for
therapy decision making (i.e. whether to give platinum-based
chemotherapy or PARPi or not). We found that several tumours
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with HRD scores close to the threshold of 42 switched between
being proficient or deficient in these comparisons, whereas with
the implementation of HRDetect’, that uses multiple lines of
evidence for the stratification of these tumours as proficient or
deficient, presented a more distinct separation'?. This highlights
the value of utilising multiple sources of genomic information,
where possible, to inform on the HR status of a tumour. This might
include germline/somatic mutation status of key HR genes (e.g.
BRCA1, BRCA2, PALB2), whether the second allele is affected by
somatic mutation or methylation, and critically, considering other
genomic patterns such as mutational signatures’”'% All of these
genomic parameters can be obtained through WGS, and so this
technology would be ideal for clinical service delivery, if available.
Array- and WES-derived genomic assessment of tumours appear
useful alternatives, with the associated limitations described being
important considerations in the treatment decision making
process.

METHODS

Cohort

The cohort and genomic data used herein was previously described in
detail’. In the current study we analysed a series of 67 patients that had
both array and WGS data for normal and tumour samples. The patients
harboured known pathogenic germline mutations in BRCAT or BRCA2 or
were from individuals in high risk, breast cancer families who were
negative for BRCAT or BRCA2 mutations (non-BRCA1/2) following germline
testing. Each tissue bank providing samples had received written informed
consent from all the patients involved. Work performed was covered by
Human Research Ethics Committee approval from the University of
Queensland (2005000785) and QIMR Berghofer Human Research Ethics
Committee (P3527).

SNP array and whole-genome sequencing data

The germline and tumour DNA were tested using lllumina Infinium arrays
(lumina, San Diego, CA, USA) according to manufacturer’s instructions.
DNA from tumour and matched normal underwent whole-genome paired-
end sequencing using an lllumina X-Ten. Sequence reads were trimmed
using Cutadapt (version 1.11)?® and aligned to GRCh37 using BWA-MEM
(version 0.7.12)%°. Duplicate alignments were marked with Picard (version
1.129, http://picard.sourceforge.net) and BAM files were coordinated-
sorted using Samtools (version 1.3)°°. Mean coverage was determined
using samtools and the following command: samtools depth -a bam_file |
awk ‘{sum + =$3} END { print “Average = “,sum/NR}’ > output_coverage.
Tumours were sequenced to an average read depth of ~70 X (range of
55X-104X) and normal to ~36 x (range of 28X-44X). The WGS data have
been deposited in the European Genome-phenome Archive (EGA)
repository under the accession code EGAS0000100330%".

Derivation of B-allele frequencies, logR ratios, HRD score and HRD
score components from array- and WGS-derived data

SNP arrays were scanned on an iScan (lllumina) and data was processed
using the Genotyping module (v1.9.4) in GenomeStudio v2011.1 (lllumina,
San Diego CA). Genomestudio calculates B-allele frequencies (BAF) and
LogR ratios (LRR) normalised against clusters file (reference data generated
from a large set of individuals provided by the manufacturer). BAF and LRR
data was used as an input to ASCAT copy number R package (https://
github.com/Crick-CancerGenomics/ascat)'®, which is an algorithm inferring
a sample’s allele-specific copy number profile. We used 1,855,219 SNP
positions in the arrays and 1,855,235 positions in the WGS data to derive
the copy number data. This data was then used as an input to the script
provided in the supplementary methods of Marquard et al.'® to derive the
score for the individual components (HRD-LOH, LST and NtAl) and the
overall HRD score.ascatNgs'® was used to generate allele-specific copy
number profile for the WGS data using the paired tumour/normal BAM files
as input. This data was then used to calculate the HRD score as
described above.
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Downsampling of WGS data

Downsampling of the original normal and tumour BAM files was
performed using the samtools (version 1.3)*° library function: samtools
view -h -s X, where x represents the desired percentage of downsampling
required (we used values that would result in an approximate coverage of
30X, 15X and 10X, depending on the coverage of the original data). After
downsampling, coverage of the downsampled data was calculated and the
downsampled BAM files were indexed using the library function samtools
index. Picard (http://broadinstitute.github.io/picard/) was used to generate
WGS performance metrics (CollectWgsMetrics) and GC bias metrics
(CollectGeBiasMetrics). Subsequently, paired tumour/normal downsampled
and indexed BAM files were used as input to ascatNgs that generated
allele-specific copy number profile for the paired tumour/normal BAM
files. This data was then used to calculate the HRD score, as
described above.

Derivation of dLRS, MAPD

The dLRS for array and WGS data was derived using an adaptation of the
dLRS function from the ADM3 version 1.3 package in R (https://cran.r-
project.org/src/contrib/Archive/ADM3/). The dLRS function was applied on
the ASCAT- and ascatNGS-derived Log2 ratio data. The MAPD for the array
and WGS tumour data was derived by computing the median value of all
absolute difference in Log2 ratio between genomically adjacent probes.

Derivation of deviation in segmented Log2 ratio and correlation in
Log2 ratio data

Because the ~1.8-M SNP positions used to derive the copy number were
not exactly the same for the array- and WGS- copy number data, we
created 288,113 bins of 10 kb each, representative of chromosome 1-22.
For each bin, we computed the median of the segmented Log2 ratios
mapping to this region and mapped this value to its matching 10 kb bin.
We then calculated the deviation in segmented Log2 ratios by taking the
median of absolute differences in Log?2 ratios, across all bins between the
array and WGS for the tumour samples.

To derive the correlation in Log2 ratio data, we applied a similar
approach, but instead of segmented Log2, we used the unsegmented
data. For each 10kb bin, we computed the median of the Log2 ratios
mapping to this particular region and mapped this value to its matching
10kb bin. As a measure of correlation between array and WGS-derived
Log2 ratios we used the Spearman correlation coefficient.

Measurement of agreement between array-, original-WGS- and
downsampled-WGS-derived HRD score and HRD score
components

The R package BlandAltmanLeh (https://cran.r-project.org/web/packages/
BlandAltmanLeh/vignettes/Intro.html) was used to determine the Bland-
Altman parameters required to generate the Bland-Altman plots, including
the mean bias and its 95% confidence intervals, the upper and lower limits
of agreement, together with their 95% confidence intervals.

To assess the agreement between array, original and downsampled
WGS-derived HR classification, we used Fleiss’ kappa and the intraclass
correlation coefficient (ICC3). The Fleiss kappa was computed using the irr
package (https://cran.r-project.org/web/packages/irr/index.html) and the
ICC3 was computed using the DescTools package (https://cran.r-project.
org/web/packages/DescTools/index.html).

Statistical analyses
All analyses were done in the R statistical environment®2,

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY

All the data supporting the findings of this study are publicly available in the figshare
repository. Segmentation data from ASCAT (array data) are available from https://doi.
org/10.6084/m9.figshare.9808496 and ascatNGS (for original (https://doi.org/10.6084/

Published in partnership with the Breast Cancer Research Foundation


http://picard.sourceforge.net
https://github.com/Crick-CancerGenomics/ascat
https://github.com/Crick-CancerGenomics/ascat
http://broadinstitute.github.io/picard/
https://cran.r-project.org/src/contrib/Archive/ADM3/
https://cran.r-project.org/src/contrib/Archive/ADM3/
https://cran.r-project.org/web/packages/BlandAltmanLeh/vignettes/Intro.html
https://cran.r-project.org/web/packages/BlandAltmanLeh/vignettes/Intro.html
https://cran.r-project.org/web/packages/irr/index.html
https://cran.r-project.org/web/packages/DescTools/index.html
https://cran.r-project.org/web/packages/DescTools/index.html
https://doi.org/10.6084/m9.figshare.9808496
https://doi.org/10.6084/m9.figshare.9808496
https://doi.org/10.6084/m9.figshare.9808505

m9.figshare.9808505) and downsampled WGS data (30x: https://doi.org/10.6084/m9.
figshare.9808511, 15x: https://doi.org/10.6084/m9.figshare.9808514, 10x: https://doi.
0rg/10.6084/m9.figshare.9808517)). Supplementary Figure 1 was generated using
these data. The HRD score and HRD score components matrix obtained for the array
data, are available from the following record: https://doi.org/10.6084/m9.
figshare.9808526. Similar data for the original coverageWGS data are located here:
https://doi.org/10.6084/m9.figshare.9808529 and the HRD score matrices for the
downsampled WGS data are found here: https://doi.org/10.6084/m9.
figshare.9809978 (30x), here: https://doi.org/10.6084/m9.figshare.9810053 (15x) and
here: https://doi.org/10.6084/m9.figshare.9820646 (10x). Figures 1, 2 and 3 were
derived from these data. The WGS performance and GC bias metrics for the four
differentially classified samples between original coverage and downsampled WGS-
derived HRD score are available here: https://doi.org/10.6084/m9.figshare.9810164
(WGS performance metrics) and here: https://doi.org/10.6084/m9.figshare.9810212
(GC bias metrics). Supplementary Figure 3 is derived from these data. The WGS
performance and GC bias metrics for the three samples that failed to run using
downsampled WGS data are available here: https:/doi.org/10.6084/m9.
figshare.9810218 (WGS performance metrics) and here: https://doi.org/10.6084/m9.
figshare.9810221 (GC bias metrics). Supplementary Figure 6 is derived from these
data. Data for the Circos plots of tumours FBC050798, FBC020636, FBC060411,
FBC070086, FBC013587, FBC040197 and FBC030130, are also available on figshare in
the following data records: https://doi.org/10.6084/m9.figshare.12271529
(FBC013587), https://doi.org/10.6084/m9.figshare.12271868 (FBC040197), https://doi.
0org/10.6084/m9.figshare.12271961 (FBC050798), https://doi.org/10.6084/m9.
figshare.12271859  (FBC070086),  https://doi.org/10.6084/m9.figshare.12271538
(FBC060411),  https://doi.org/10.6084/m9.figshare.12271871  (FBC020636) and
https://doi.org/10.6084/m9.figshare.12271877 (FBC030130). Supplementary tables
1-5 are available in figshare as part of this data record https://doi.org/10.6084/m9.
figshare.12301898%. The whole-genome sequencing data analysed during this study
are available in the European Genome-phenome Archive here: https://identifiers.org/
ega.study:EGAS00001003305.

CODE AVAILABILITY

The code used to analyse the data and generate figures presented in this publication
is available upon request.
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