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W) Check for updates

Artificial intelligence in breast pathology — dawn of a new era

Artificial intelligence methods are been increasingly used for analysis of pathology slides. In this issue of the Journal, Sandbank et al.
describe the validation and utility of a robust second reader system that can distinguish in situ and standfirst invasive carcinomas

from non-neoplastic lesions of the breast.
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The field of pathology is challenging with discordance noted even
amongst expert pathologists. Although subjectivity and discor-
dance amongst experts are inherent in the field of medicine,
discordance amongst pathologists have been traditionally viewed
as a matter of grave concern. This is in part due to the fact that
pathologic analysis forms the foundation for disease manage-
ment. A diagnosis of cancer or a benign proliferation or presence
or absence of predictive biomarker may result in a dramatic
change in therapeutic options as compared to regimen A or B,
particularly when there is equipoise. Thus, the need for objectivity
in pathologic analysis has been clearly voiced by oncologists and
pathologists alike.

The search for objectivity has led to the development and
popularity of gene expression signatures, which although in some
cases are no better than histologic grade, and provide objective
numerical values for risk of recurrence. This subjectivity of grade
was further highlighted to promote the objectivity of molecular
assays. This has recently come back full circle with the adoption of
multi-parametric scores such as RSClin, which calls for the
incorporation of two subjective parameters (tumor size and
grade) with the 21-gene recurrence score in prognostic determi-
nation'. It goes without saying that greater objectivity will
promote better prognostication.

Artificial intelligence (Al) in pathology (also called Pathomics)
has blossomed in to a strong discipline wherein objectivity can be
achieved. Whole slide images (WSI) can be generated with relative
ease and made available to data scientists, who can extract 1000 s
of features from these images. These features are correlated with
biologic phenotype to create algorithms that enable recognition
of phenotype, akin to that in genomics. In the early days, a variety
of machine learning methods such as support vectors, and
random-forests, were deployed, however, convoluted neural
networks (CNN) has become the workhorse of pathomic analysis.
CNNs are designed to use multi-level image structure, where basic
image features such as contours are defined by changes in
neighborhood pixel intensities and larger patterns are effectively
successive combinations of smaller ones?. CNNs make predictions
directly from images without relying on manually engineered
intermediate steps; the image is gradually transformed in to a set
of features that can be used for algorithm development. CNN-
based algorithms have been successfully used for tumor detec-
tion, classification and prognostication as well as predicting
response to therapy?™.

Although theoretically simple, the Al-based analyses are
complicated by the fact that these algorithms detect everything
on the slides including scratches, ink-dots, dust marks and
fingerprints. The analysis is also dependent on a number of pre-
analytic and analytic factors including section thickness, the
tinctorial characteristics of the H&E (hematoxylin and eosin) stain,
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and scanners used. Therefore, although the literature is full of
examples of successful algorithms for tumor classification and
prognostication, many tend to do poorly when applied to external
cohorts. This “domain shift” needs to be mitigated before an
algorithm can be clinically successful.

As of June 2022, a wide range of Artificial Intelligence (Al) as a
Medical Device (AlaMDs) have received regulatory clearance
internationally, with at least 343 devices cleared by the US Food
and Drug Administration (FDA)>. In view of the rapid development
of a large number of AlaMDs, the U.S. Food and Drug
Administration (FDA), Health Canada, and the United Kingdom'’s
Medicines and Healthcare products Regulatory Agency (MHRA)
have jointly identified 10 guiding principles that can inform the
development of Good Machine Learning Practice (GMLP)®. These
guiding principles will help promote safe, effective, and high-
quality medical devices that use artificial intelligence and machine
learning (Al/ML). There are major concerns regarding the presence
of systemic, statistical and computational as well as human biases
in Al”. In addition, there is major movement in the field of Al for
the development of ethical AI®. This requires assessment of
algorithms not only through the lens of performance but also
through the various actors, processes, and objectives that drive
the development and eventual deployment of the algorithm?.

Whole slide-based Al algorithms are often considered black
boxes, as it is far from clear which features they are recognizing.
The explainability is often restricted to a few features that by
themselves would not explain the success of the algorithm. It has
been argued that explainable Al will engender trust with the
health-care workforce, provide transparency into the Al decision
making process, and potentially mitigate various kinds of bias®'°.
However, Ghassemi et al.'" suggest that this represents a false
hope. They argue that rigorous internal and external validation of
Al models could be a more direct means of achieving the goals
often associated with explainability. They caution against having
explainability be a requirement for clinically deployed models. In
light of these comments, the work by Sandbank et al.'? provides a
route to explainability by training algorithm on histological
features. The CNN-based algorithm was developed to detect 51
different features associated with breast cancer. These features
included cytological and morphological features of tumor cells in
addition to other features such as inflammation, microcalcifica-
tions and adenosis.

Sandbank et al.'? have sought to develop and validate an assay
for the detection of invasive and in situ breast carcinomas in a
large series of cases. The initial work involved expert labor-
intensive annotations and labeling of 1000s of areas from
2000 slides by a team of 18 pathologists. These 2000 slides were
selected from a series of 115,000 slides to ensure representation of
rare and unusual morphologies. Furthermore, to overcome the
impact of domain shift, these cases were obtained from 9 different
laboratories, each with their own pre-analytical variables. Initial
training on a large number of cases with additional cross-
laboratory training adds to the robustness of Al analysis. The
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failure to do so often leads to failure of many Al algorithms during
the external validation.

The need for a large number of cases and associated manual
annotation has been identified as a major bottleneck for Al
analysis'>. Newer methods are being developed that can
circumvent these needs. Ren et al.'* have proposed that
unsupervised domain adaptation could be performed using color
normalization and/ or adversial training techniques. Unsupervised
methods can be used to structure extremely large datasets.
Similarly, self-supervised learning can be used to help models
learn morphological, geometrical and contextual content of
images using unlabeled data. Lastly, generative adversial networks
(GAN) can be used to train on real images and synthesize realistic
synthetic data; this can augment datasets and increase the
performance of models with limited training’. Conditional GAN
has been used for color normalization'®. Janowczyk et al.'” have
developed an open source quality control tool (HistoQC) for digital
pathology slides to recognize and address the issues related to
H&E quality.

Another important parameter for evaluation is the general-
izability of the algorithm. Sandbank et al.'? validate their algorithm
by obtaining slides/cases from two different institutions, stained
with local methods (H&E and HES) which were scanned using 2
FDA-approved scanners. Furthermore, they use a large number of
clinical cases to compare the diagnosis with expert pathologists.
The analysis was performed on 5954 cases (12,031 slides) with
alerts for invasive and in situ carcinoma. Invasive alert was raised
for 363 (4.2%) of the slides of which 272 cases had been diagnosed
as benign. Similarly, in situ alert was raised for 333 slides (3.8%; 237
cases). A review of these cases/ slides showed that 75% of the
alerts were for necrosis, fibroadenomatous changes, hyperplasia or
other features while 25% required additional workup to confirm or
refute a malignant diagnosis; 2% of these called for additional
second opinion. Overall the study showed that the algorithm could
achieve a high AUC (0.99 for invasive cancer and 0.97 for in situ
disease). This study design and output supports the notion that the
algorithm could be generalizable.

The authors also took the opportunity to study concordance
between the study pathologists and the original pathology
report'2. This analysis highlighted 11 discrepantly called cases
between pathologists; seven had been called DCIS/ADH, while
four cases were called benign. The review lead to the issuance of
amended reports on these cases. From the patient management
point of view, this indicates that the pathology labs misdiagnosed
only four cases (an error rate of ~0.00067) for invasive cancer and
14 cases for in situ disease (an error rate of ~0.0023) out of 5954
cases, a remarkable performance.

The limitations of the study'? include the fact that the work was
performed on biopsies and not excision specimens. The latter
tend to be enriched for variants of benign lobules showing
varying degrees of atrophy, in addition to other benign
proliferations. However, the authors state that they were planning
to extend the work in addressing these and other issues related to
grading and assessment of margins. Al algorithms can be
impacted by patient populations and healthcare disparities.
Furthermore, they can systematically mis-represent and exacer-
bate health problems in minority populations'®'°. Although the
racial distribution of the patient population is not provided, the
current study was involved assessment of the algorithm in a large
metropolitan area, which is likely to have multi-ethnic patient
population. Furthermore, it is unlikely that the patient ethnicity
and health inequities will affect the performance of an algorithm
developed for the histological diagnosis of cancer.

Overall, this work offers an excellent blue print for the
development and validation of algorithms in digital pathology.
The main question before us now is what degree of validation is
necessary prior to clinical deployment of the algorithm as a second-
read system. Is the development and validation in 7485 cases
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(15,124 slides) from at least nine different institutions sufficient? Is an
error rate of a few percentage points good enough? | for one, would
gladly accept such a tool to prevent the less than 0.001% error that
pathologists make. The question, however, ultimately boils down to
the cost of doing the second reads and what the patients and
payers are ready to accept as human error.
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