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MammOnc-DB, an integrative breast
cancer data analysis platform for target
discovery
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Breast cancer (BCa), a leading malignancy among women, is characterized by morphological and
molecular heterogeneity. While early-stage, hormone receptor, and HER2-positive BCa are treatable,
triple-negative BCa and metastatic BCa remains largely untreatable. Advances in sequencing and
proteomic technologies have improved our understanding of the molecular alterations that occur
during BCa initiation and progression and enabled identification of subclass-specific biomarkers and
therapeutic targets. Despite the availability of abundant omics data in public repositories, user-friendly
tools for multi-omics data analysis and integration are scarce. To address this, we developed a
comprehensive BCa data analysis platform called MammOnc-DB (http://resource.path.uab.edu/
MammOnc-Home.html), comprising data from more than 20,000 BCa samples. MammOnc-DB
facilitates hypothesis generation and testing, biomarker discovery, and therapeutic targets
identification. The platform also includes pre- and post-treatment data, which can help users identify
treatment resistance markers and support combination therapy strategies, offering researchers and
clinicians a comprehensive tool for BCa data analysis and visualization.

Breast cancer (BCa) is one of the most common cancers in women
worldwide. Since the mid-2000s, the incidence of BCa has increased by
approximately 0.5% annually1. The etiology of BCa involves factors such as
genetic predisposition, lifestyle changes, and aging2. Genetic mutations,
familial history, demographic variables, medical background, and modifi-
able risk factors such as obesity, alcohol intake, and smoking are involved in
its development3–5. BCa tumors are classified into distinct subtypes
(Luminal A, Luminal B, HER2+, and TNBC), characterized by expression
levels of estrogen and progesterone receptors, and HER2 expression in
tumor cells. The hormone receptor-expressing BCa as well as HER2-
positive tumors have viable treatment options4,6. Early-stage BCa is con-
sidered curable; however, despite significant progress in diagnosis and

treatment, advanced/metastatic stage is associated with high mortality.
Although BCa initially responds to treatments, may eventually, can recur
anddevelop therapy resistance7,8.However, the heterogeneity of BCaposes a
substantial challenge in diagnosis and treatment, requiring precision med-
icine to address the diverse molecular subtypes involved9.

With the availability of high-throughput technologies from advanced
molecular profiling, such as next-generation sequencing and mass spec-
trometry, researchers can evaluate specific biomarkers and molecular sig-
natures associated with tumor subtypes and identify potential therapeutic
targets10.Althoughdata fromnext-generation sequencinghave shed light on
the molecular evolution of BCa, it is necessary to understand and process
these molecular data with clinical information to enhance the capability of
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precision medicine and precision targeting approaches11. Although large
amounts of data are available in public repositories, there are opportunities
to develop user-friendly resources that allow cancer researchers to leverage
the data effectively.

Large-scale cancer “Omics” data, generated using various techniques
such asmicroarray, bulk RNA-seq, scRNA-seq, ChIP-seq, andMS/MS data
for genetic, epigenetic, andproteomic data, are archived in numerous public
repositories. From the perspective of a researcher with limited bioinfor-
matics support, performing an in-depth analysis of the volume of genomic
and proteomic data available for BCa is challenging. A focused and com-
prehensive web resource that provides integrative analysis, including data
for metastatic BCa and response to BCa treatments, will be useful. Recog-
nizing unmet need and opportunities to develop a comprehensive resource
facilitating BCa data analysis and visualization, we developed the Mam-
mOnc-DB, a user-friendly portal for integrative analysis and visualizationof
BCa data.

MammOnc-DB incorporates data that were collected, curated, and
integrated from the NCBI Gene Expression Omnibus. In addition, we uti-
lized Proteomics Identifications Database (PRIDE) and ProteomeXchange
to obtain proteomic data. MammOnc-DB also contains multi-omics data
from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor
Analysis Consortium (CPTAC), the METABRIC, Cancer Cell Line Ency-
clopedia (CCLE), and Sweden Cancerome Analysis Network – Breast
(SCAN-B) Consortium. Our data procurement and processing included
multi-omics studies that included data for normal breast tissue, primary
BCa tissue, and metastatic BCa samples, with associated clinical informa-
tion. In addition, we included data on BCa patients treated with various
therapies.

Using MammOnc-DB, researchers can access multi-omic and multi-
ple publicly available BCa datasets. It provides information and enables
users to analyze the expression of genes (mRNAs, miRNAs, and lncRNAs)
and proteins in primary and metastatic BCa along with available normal
samples and across tumor subgroups based on tumor stage, tumor grade,
race, molecular subtype, histological subtype, or other available clin-
icopathologic features. By utilizingMammOnc-DB to identify differentially
expressed genes, one can identify the top differentially expressed genes
associatedwith specific clinical features. Additional options includeKaplan-
Meier survival analysis and evaluation of epigenetic changes. Users can
download high-resolution graphics depicting expression profiles and
patient survival information in various forms.

The MammOnc-DB enables researchers to utilize high-throughput
BCa omics data to identify potential biomarkers and therapeutic targets for
BCa. Furthermore, in silico validation of selected genes using the inde-
pendent studies integrated into this platform. With subgroup-specific data
analysis, one can identify gene alterations in subsets of BCa, allowing the
development of hypotheses and testing the underlying biology for this
dysregulation. In the future, our goal is to populate the MammOnc-DB
platform with additional data as they become available.

Results
Figure 1providesanoverviewofMammOnc-DB, andSupplementaryTable
1 lists the currently available studies within the MammOnc-DB. Step-by-
step explanation of data analysis and formatting is available in Supple-
mentary Note 1.

TheMammOnc-DB homepage allows users to select the type of omics
they are interested in, such as gene expression, protein expression, and gene
regulation, through themenu bar. Additionally, the platformalso contains a
tutorial page to assist users in using the portal effectively

The functionality of MammOnc-DB extends to various types of ana-
lysis, which are described in the following sections.

Heatmap facilitating identification of top differentially
expressed genes
The gene expression page ofMammOnc-DB features a left panel that allows
users to identify genes that are either over or under-expressed in a dataset

(Fig. 2A). For instance, if a user selects “TNBC”under “SCAN-B” in Panel 1,
theywill be directed to a dedicatedpage that displays the over-expressed and
under-expressed genes in the formof aheatmap. Figure2B showsaheatmap
representing the top 25 genes that are over- or under-expressed, comparing
non-TNBC tumors (n = 8332) and TNBC (n = 874) tumors in the SCAN-B
dataset. This page allows users to identify up to the top 250 over-or under-
expressed genes in the dataset. Moreover, by clicking on the gene name in
the chosen study, users can access expression information about each gene
in that study. Additionally, our portal offers the option of identifying over
and under-expressed lncRNAs and miRNAs using heatmap (Supplemen-
tary Fig. 1).

Identifying the expression pattern of a queried gene across dif-
ferent datasets with subgroup classifications
Using Panel 2 on the gene expression page, users can search for their
specific gene of interest and determine whether it is related to protein-
coding, miRNA, or lncRNA across a range of datasets and analyze their
expression patterns in relation to various clinicopathologic features
(Fig. 2A). In the gene expression page, users have the option to select
between “bulk RNA-sequencing” or “scRNA-seq” data, enabling them to
input their gene of interest and choose a study from the available choices
(Fig. 3A). MammOnc-DB currently offers 20 studies for bulk RNA-seq
(TCGA-BRCA, SCAN-B, ABiM_405, ABiM_100, OSLO2EMIT0,
GSE58135, GSE142731, GSE183947, GSE100925, GSE47462,
GSE184196, GSE122630, GSE163882, GSE130660, GSE99630,
GSE68359, GSE131276, GSE209998, GSE173661, and GSE96058), two
microarray (METABRIC and Van de Vijver et al.), two microarray
compendium datasets (Creighton breast tumor compendium and Neo-
adjuvant chemotherapy compendium), five scRNA-seq studies (Qian
et al., Gao et al.,Wu et al., Azizi et al., andGriffiths et al.,), andone snRNA-
seq (Bhat-Nakshatri et al.,)which are categorized into primary,metastatic,
and treatment-related studies of BCa.

For example, the PSAT1 gene was typed in the text box, “protein-
coding” was the gene type and the “METABRIC” study was selected.
Clicking the “Submit” button leads them to an intermediate page dis-
playing the gene name, analysis types, and external links to additional
resources (Fig. 3A). Clicking on the “Expression” button directs users to
the expression page, where box and jitter plots with corresponding p-
values for various categories are presented, with the statistical analysis
being an unpairedWelch t-test. Figure 3B shows a boxplot that illustrates
the expression pattern ofPSAT1 in theMETABRIC study. It compares ER
Negative (n = 429) and ER (n = 1445), positive patients, showing a sta-
tistically significant with a p-value less than 0.001. Users can also visualize
the results in terms of jitter plots by clicking the button. Examples of
PSAT1 expression in METABRIC, based on PR Status, and PAM50 and
Claudin subtype are shown as jitter plots in Fig. 3B. Data from additional
studies and classifications for different genes are represented in Supple-
mentary Fig. 2.

The DepMap button at the bottom allows users to access a compre-
hensive dataset consisting of 40 BCa cell lines and their corresponding gene
effect scores. These scores are derived from CRISPR knockout screens
conducted byDempster et al.12. This feature allows users to assess the impact
of gene knockout in each cell line. An example ofPSAT1 gene knockout and
the associated gene effect score in various breast cancer cell lines are depicted
as a bar plot in Fig. 3C.

In addition to analyzing gene expression, users can utilize the “Survi-
val”button toperformKaplan–Meier analysis for their genesof interest. The
survival profile of PSAT1 in the METABRIC dataset shows that higher
expression of PSAT1 was significantly associated with poor survival
(p < 0.001), as illustrated in Fig. 3D. Supplementary Fig. 3 present additional
multivariate Kaplan-Meier plots of lncRNA (PCAT1) and miRNA (hsa-
mir-7706) from TCGA dataset.

Furthermore, users can retrieve scRNA-seq and snRNA-seq data
through the gene expression section, allowing them to discern expression
patterns within various clusters visualized as UMAP, violin plots, and
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ridge plots (see Fig. 4). An illustration of the expression pattern of
ARID5B in Azizi et al., is provided as an example, displaying UMAP,
violin plots, and ridge plots, comparing its expression in different sub-
classes of T cells. Additional studies and classifications are presented in
Supplementary Fig. 4.

Analyzing the expression patterns of target proteins across
various datasets and patient subgroups
Users can determine the expression pattern of a specific protein by
utilizing the protein expression page in MammOnc-DB. This page was
designed similarly to the gene expression page. Users can input the name

Fig. 1 | Graphical abstract. MammOnc-DB, a web-based proteo-genomics platform for analysis and visualization of multi-omics breast cancer data.
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Fig. 2 | An overview of gene expression analysis. AUsers can switch between RNA-
seq and scRNA-seq data. In Panel 1, users can access a compilation of studies, along
with relevant clinical characteristics, allowing for the examination of over-expressed
and under-expressed genes. Panel 2 allows users to assess the expression of genes of

interest across various studies. B Heatmap generated from Panel 1 of the gene
expression page. The Heatmap shows the top over-expressed and under-expressed
genes in the SCAN-B dataset, comparing non-TNBC and TNBC tumors.
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Fig. 3 | Overview of gene exploration across various studies. A Users can explore
genes of interest by entering their names into the text box and selecting from
available studies. Upon submission, users are redirected to an intermediate page
listing links to analyze expression and survival associations.BBox-whisker and jitter
plots illustratingPSAT1 expression in subgroups of theMETABRIC study, including

ER Status, PR Status, and PAM50 and Claudin subtypes, and lists additional
available classifications. C Bar plot depicting the gene effect score of PSAT1 in
multiple breast cancer cells using data from DepMap. D Kaplan–Meier plots
showing the association between PSAT1 expression and patient survival in the
METABRIC dataset.

https://doi.org/10.1038/s41523-025-00750-x Article

npj Breast Cancer |           (2025) 11:35 5

www.nature.com/npjbcancer


of the gene of interest for the available studies (CPTAC, Tommaso De
Marchi et al., (PXD01431), Goming et al., (PXD018830), and Anurag M
et al.,) and the protein expression results were observed through a box
and jitter plot format (Fig. 5A). An illustrative example of TK1

expression is shown in Fig. 5B, which displays the total and phospho-
protein expression of TK1 in relation to various clinical features.
Additional studies and classifications are presented in Supplementary
Fig. 5.

Fig. 4 | Illustration of the single cell RNA-seq data analysis functionalities.
AUsers can input a gene of interest and select from available studies.BExpression of
ARID5B across various T cell clusters from Azizi et al. 72 study. The expression is

visualized using UMAP, violin plot, and ridge plot, providing insights into the gene’s
expression patterns in distinct T cell clusters.
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Transcription factor binding site analysis: ChIP-seq data
exploration
Processed ChIP-seq datasets are incorporated into MammOnc-DB to
evaluate histone modifications, Transcription factor binding (GATA3,

FOXA1), and ER ligand treatment in different breast cancer BCa cell lines
(GSE85158, GSE165280, GSE178253, GSE117941, and GSE178373). To
facilitate interpretation, ChIP-seq results are presented in an interactive
genomevisualization format.Users can enter a specific gene andobserve the

Fig. 5 | Protein expression analysis inMammOnc-DB. AUsers can input a gene of interest and perform various analysis from the available studies.B Expression pattern of
TK1 total and phospho-protein are shown as an example in various clinical features available in CPTAC.
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binding of markers in either the promoter or gene body regions (Fig. 6A).
Figure 6B shows a graphical representation of ChIP-seq results in
MammOnc-DB. The figure displays the binding patterns of ER bound to
different ligands (Tamoxifen, E2, GD 0927, and GNE 274) at STK11

genomic locations in the MCF7 cell line, providing a visual depiction in
the IGV.

Case studies have also been included and are available in Supple-
mentary Note 2.

Fig. 6 | Gene regulation analysis functionalities. A Option for selecting gene of interest to investigate its regulation from studies available in MammOnc-DB. B IGV plot
showing ER ligand binding in the region of STK11 in MCF7 cell line is shown as an example here.
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Discussion
Large-scale cancer omics data have been generated due to advancements in
high-throughput technologies, including sequencing techniques and a
reduction in the cost of sequencing. Omics data are critical for under-
standing the molecular changes and mechanisms underlying breast cancer
development and progression, which can help to identify biomarkers and
therapeutic targets. Tomaximize theutility of publicly availablemulti-omics
data, there is a need to develop an easy-to-use web portal that enables
researchers and clinicians to perform comprehensive analyses of these data
and visualize them. Data collection, processing, and analysis require dedi-
cated effort from experts in various fields, including pathology, computa-
tional biology, and statisticians.

We created MammOnc-DB platform to explicitly focus on BCa-
related omics data analysis and visualization. While our previous effort
UALCAN provides pan-cancer data analysis13,14, MammOnc-DB incor-
porates transcriptomics and proteomics data from various consortia and
public repositories. This platform utilizes bulk RNA-seq, single-cell RNA-
seq (scRNA-seq), single-nucleus RNA-seq (snRNA-seq), ChIP-seq, and
mass spectrometry (MS) data. Bulk RNA-seq provides a comprehensive
view of gene expression patterns across tumor tissues, offering a broad
understanding of the transcriptional landscape. Conversely, scRNA-seq
explores the heterogeneity of cells, uncovering distinctive cell populations
within tumors. This level of analysis is essential for identifying rare cell types,
elucidating tumor progression, and mapping cellular lineage connections.
Additionally, scRNA-seq data can unveil specific transcriptional profiles of
individual cell types, which may be obscured in bulk RNA-seq data, facil-
itating a more accurate identification of potential therapeutic targets and
biomarkers. ChIP-seq enables the discovery of DNA-protein interactions
and epigenetic changes, shedding light on the regulatory processes gov-
erning gene expression. This approach is necessary for understanding the
impact of transcription factors and other regulatory proteins on the
advancement of BCa. In addition, MS investigations unveil the proteomic
profile, outlining protein levels, modifications after translation, and inter-
actions between proteins. By combining these sets of data, a holistic
understanding of the molecular changes in BCa can be achieved.

Integrating multi-omics data in MammOnc-DB allows users to con-
duct in-silico analysis and validation of target genes that are specific to
various tumor subgroups. This functionality facilitates hypothesis genera-
tion based on available data. Moreover, the platform serves as a tool for
discovering new biomarkers crucial for early detection, prognosis, and
prediction of responses to treatment. By analyzing pre- and post-treatment
data, researchers and clinicians can identify markers that indicate therapy
response, which could guide clinical decision-making. Incorporating gene
expression, gene regulation, and protein data enhances the reliability of the
identified biomarkers.

Despite the advancements and the potential of MammOnc-DB, lim-
itations should be acknowledged. Due to the lack of access to raw data,
different normalization methods were present in the processed data, which
could introduce variability and affect the comparability and interpretation
of the results. Since MammOnc-DB relies on publicly available datasets,
there is a potential for bias introduced by the selection and representation of
these datasets.

Someof the recent efforts provide valuable insights intomethodologies
for surface target discovery or the development of online platforms.
Schettini et al., describes an in silico approach to identifying breast cancer
subtype-specific cell surface antigens, focusing on selecting safe and effective
targets for CAR-T cell therapies and antibody-drug conjugates15. Another
study explores the expression of antibody-drug conjugates (ADC) targets
and the data can be explored at TNMPLOT (https://tnmplot.com)16.
CARTAR (https://gmxenomica.github.io/CARTAR/) is a web tool to
identifying potential targets for CAR-T cell therapies. This study explores
the use of single-cell and spatial transcriptomics for mapping cell popula-
tions and identifying high-precision, targetable antigens17. While resources
such as cBioPortal (https://www.cbioportal.org/)18–20, UCSC Xena (https://
xena.ucsc.edu/)21, andGEPIA2 (https://gepia2.cancer-pku.cn/)22, are widely

used for cancer genomics research, MammOnc-DB distinguishes itself
through its comprehensive multi-omics integration and subgroup-specific
focus. In addition, MammOnc-DB incorporates primary and metastatic
breast cancer data alongside preclinical models such as drug-treated cell
lines and patient-derived xenografts (PDXs), making it uniquely suited for
identifying biomarkers specific to therapy response and resistance. More-
over, most major resources primarily rely on datasets like TCGA or
microarray data, with limited inclusion of proteomic and epigenetic infor-
mation. MammOnc-DB addresses this gap by integrating gene expression,
regulation, and protein data, enhancing the reliability of biomarkers iden-
tified. These comparisons show MammOnc-DB’s unique contributions
within the landscape of target discovery tools.

We will maintain platform dynamics by integrating into
MammOnc-DB additional molecular datasets, such as DNA copy
number alterations, DNA methylation data from Illumina arrays, and
information on transcription factors binding using ChIP-Seq data.
Further, we will include additional datasets as they become available.
Furthermore, we intend to analyze and include spatial transcriptomics
data from public repositories. We expect to be responsive to user’s needs
and suggestions when possible and will upgrade MammOnc-DB as
appropriate. In summary, MammOnc-DB will serve as a valuable
resource for BCa researchers and clinicians, enabling them to explore the
diverse multi-omics data related to BCa and facilitating discoveries of
BCa biomarkers and targets.

Methods
TCGA, CPTAC, SCAN-B, METABRIC, and CCLE data analysis
The Cancer Genome Atlas (TCGA) provides data on genomics and tran-
scriptomics for various cancers.WedownloadedRNA-sequencing data from
Genomics Data Commons (https://portal.gdc.cancer.gov/) related to TCGA
Breast cancer (BRCA). As TCGA provided level-3 data, we did not perform
data processing. In addition, we downloaded methylation data from TCGA
BRCA using the DownloadMethylationData() function from TCGA-
assembler (https://ccte.uchicago.edu/TCGA-Assembler/index.php). The
unwanted column information in the data was removed by using Pro-
cessMethylation450Data().When CpG sites corresponded tomore than one
gene, averagemethylation values were calculated using CalculateSingleValue
MethylationData().

We also obtained processed transcriptomic data from studies such as
SCAN-B, ABiM_405, ABiM_100, OSLO2-EMIT023–26, Creighton Breast
Tumor Compendium27,28, Van de Vijver et al.29, Neo-adjuvant Che-
motherapy Response Compendium dataset30, and METABRIC dataset31

through literature search. These studies included gene expression values
along with the patient clinical features.

FromtheHumanCancerCell LineEncyclopedia (CCLE)andDepMap
portal (https://depmap.org/portal/download/all/), CRISPR knockout
screens of BCa cell lines were obtained as gene-effect scores from Achilles
and Sanger’s SCORE project. In this study, the scores were normalized so
that nonessential genes had a median score of 0, while independently
identified common essential genes have a median score of -1. Gene Effect
scores were inferred using Chronos12. The integration of the Broad and
Sanger datasets followed themethodology outlined by Pacini et al., with the
exception that quantile normalization was omitted32.

In addition, we downloaded the BCa proteomics data from Clinical
Proteomic Tumor Analysis Consortium (CPTAC) from Proteomics Data
Commons (https://proteomics.cancer.gov/programs/cptac). The integra-
tion and analysis of these data have been previously reported33,34. In sum-
mary, protein expression values downloaded from the CPTAC data portal
were log2 normalized for each sample. Z-values for each protein in each
sample were then calculated as the number of standard deviations from the
median across samples.

RNA-seq Data Analysis. We procured raw data from NCBI GEO for
GSE5813535, GSE14273136, GSE18394737, GSE10092538, GSE4746239,
GSE184196 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
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GSE184196), GSE12263040, GSE16388241, GSE13066042, GSE9906343,
GSE6835944, and GSE13127645. The raw data from NCBI GEO were
downloaded using fastq-dump function from SRA Toolkit (https://
github.com/ncbi/sra-tools). The adapter sequences in the downloaded
fastq files were trimmed and quality checked by Trim Galore (https://
github.com/FelixKrueger/TrimGalore). The trimmed files were mapped
to hg38 genome by using theHISAT2 (https://daehwankimlab.github.io/
hisat2/) alignment tool, followed by bam conversion and sorting by
SAMTools46. The gene counts from the bam files were obtained by using
HTseq-counts function47. The gene counts were converted either to
FPKM or to RPKM by using R or the Python package, respectively
(https://github.com/AAlhendi1707/countToFPKM). When raw data
were not available for studies such as GSE20999848, GSE173661 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173661), and
GSE9605826, we procured the processed data and performed downstream
analysis. The statistical analysis was conducted with an unpaired
welch t-test.

Gene expression array data analysis. For the “Creighton Breast
Tumor Compendium” dataset27,28 of nine separate breast tumor expres-
sion profiling datasets for survival analysis, gene transcription profiling
datasets (all on Affymetrix U133 array, A set, and all with DMFS as an
outcome measure) were obtained from previous studies (Loi,
GEO:GSE6532; Wang, GEO:GSE2034; Desmedt, GEO:GSE7390; Miller,
GEO:GSE3494; Schmidt, GEO:GSE11121; Zhang, GEO:GSE12093;
Minn, GEO:GSE2603 and GEO:GSE5327, Chin, http://cancer.lbl.gov/
breastcancer/data.php. Genes within each dataset were first normalized
to standard deviations from the median; samples from the Loi dataset
that were also represented in Desmedt were excluded from Loi. When
multiple gene array probe sets referenced the same gene, the probe set
with the highest average variation across samples for the nine datasets
was selected to represent the gene.

For the chemotherapy response expression compendium dataset30, we
previously assembled a compendium of eight different public breast cancer
expression datasets49–55, involving gene expression profiling of pre-
treatment breast tumor biopsies from patients treated with neoadjuvant
chemotherapy, with patient response recorded at the end of treatment. The
compendium, representing 1240 tumor expression profiles, involved all
datasets being generatedusing the sameAffymetrix gene arrayplatform.We
normalized the expression valueswithin each dataset in the samemanner as
described above for the Creighton dataset.

Proteomics data analysis pipeline. The output files from PRIDE were
converted to raw format using msConvert56. We obtained raw files for
studies such as PXD01243157 and PXD01883058 from PRIDE.MaxQuant
and Andromeda search engines were used to process the downloaded
MS/MS data, with reference to Homo sapiens UniProt proteome
(UP000005640)59. The MaxQuant parameters were set based on the
proteolytic enzyme used, fixed and variable modifications, quantification
approach, and data acquisition method. To perform downstream sta-
tistical analysis, the output files from MaxQuant analysis were used as
inputfiles for Perseus60. NAvalueswere eliminated from the resulting file,
considering the condition that the row should have only three or fewer
values. Additionally, the values were log-normalized for further analysis.
In addition, we also downloaded processed gene level proteomics data
from Anurag M et al., research article61.

ChIP-seq data analysis. The data associated with GSE8515862,
GSE16528063, GSE17825364, GSE11794165, andGSE17837366 studieswere
downloaded from NCBI GEO using the fastq-dump from SRAToolkit
(https://github.com/ncbi/sra-tools). The quality of the raw data was
assessed by FastQC (https://github.com/s-andrews/FastQC), followed by
removing the adapter sequences using Trim Galore (https://github.com/
FelixKrueger/TrimGalore). The human reference (hg38) was used for
alignment with trimmed reads, using BWAmem14. Duplicate reads were

identified using Picard (https://github.com/broadinstitute/picard), fol-
lowed by merging the technical replicates using SAMtools46. The
obtained bam files were converted to bed and bigwig files using Bam-
ToBed and bamCoverage tools67. Peak calling was performed (Narrow-
Peaks for transcription factors and Broad Peaks for histonemodification)
with input DNA or IgG as controls, using MACS268.

scRNA-seqandsnRNA-seqdataanalysis. The processed data for BCa
single-cell sequencing were downloaded from the Curated Cancer Cell
Atlas (https://www.weizmann.ac.il/sites/3CA/)69. We procured asso-
ciated data and meta files for studies by Qian et al. 70, Gao et al. 71, Azizi
et al. 72, Wu et al. 73, and Griffiths et al. 74. For Bhat-Nakshatri et al. study,
we procured the data from CZ CELLxGENE (https://cellxgene.
cziscience.com/)75. Using the Seurat R package, we filtered the cells to
have at least 1000 genes in each barcode76. These filtered cell counts were
normalized, batch-corrected using Harmony, and annotated based on
the available clinical features77.

Data formatting and visualization
We integrated genomic, proteomic, and epigenetic studies into a user-
friendly web resource built using PERL CGI. The data analysis results were
depicted via interactive visualizations using public and in-house Java script
libraries, and Python Flask applications.

Using R and PERL scripts, gene expressionmatrix files from RNA-seq
and scRNA-seq studies and protein expressionmatrix files from proteomic
studies were categorized based on tumor grade, tumor stage, patient’s age,
patient’s race, nodal metastasis status, molecular subtype, treatment, and
other associated categories.

Categorized and formatted data files were utilized to generate various
graphical outputs such as heatmaps, box plots, jitter plots, Kaplan–Meier
curves, UMAP plots, and violin plots as representations that address het-
erogeneity by comparing gene/protein expression along with various clin-
ical features in each dataset. ChIP-seq results highlighting epigenetic
modifications near the gene region are displayed as IGV plots.

Visualizationof differentially expressedgenes. Heatmap visualization
was employed to visualize the most differentially expressed mRNAs,
miRNAs, lncRNAs, and proteins in various BCa datasets. To compile a
list of the top 250 genes that exhibited either over-expression or under-
expression in each subtype, we initially identified genes with FPKM
values that displayed significant differences (p values < 0.05). From this
initial selection, we considered only geneswith amedian FPKMvalue of 1
or higher. Finally, the genes were ranked based on the ratio of the mean
FPKM values in tumor samples to the mean FPKM values in normal
samples. To generate an interactive heatmap illustrating the top over- and
under-expressed genes in a dataset, we utilized the Highcharts library
from JavaScript (http://www.highcharts.com/).

Visualization of individual gene expression patterns. Box and Jitter
plots were employed to depict the expression levels of the genes in normal
samples, primary breast tumors, metastatic breast tumors, and various
treatment groups, along with the associated clinical characteristics. The
Highcharts library from JavaScript was used to generate the visualizations
representing the interquartile range (IQR), including minimum, 25th
percentile, median, 75th percentile, and maximum values, utilizing the
data obtained from data formatting.

Visualization of scRNA-seq and snRNA-seq based gene expres-
sion. The techniques utilized for visualizing single-cell and single-
nucleus RNA-seq data included UMAP, violin plots, and ridge plots.
These visualizations were generated using Python, with pandas (https://
pandas.pydata.org/) for data manipulation and Plotly (https://plotly.
com/python/) for creating the plots. This approach allowed the display of
gene expression patterns across various cell types and the representation
of clustering outcomes. The resulting images were stored and presented
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through HTML embedding, allowing for interactive exploration and
analysis of the single-cell RNA sequencing data.

Survival analysis usingKaplan-Meiercurves. Patient survival data and
gene or protein expression data from each dataset were utilized to create
Kaplan-Meier survival plots. A Perl script developed in-house was
employed to generate input files for survival analysis, which included
details such as patient id, survival time (days/months), patient vital status
(alive or deceased), and sample categories such as high-expression and
low/medium-expression groups. Patient categorization for survival
analysis was performed as previously described in Chandrashekar et al. 78.
In addition, we also added 5 year and 10 year KM survival plots to this
portal using the described method. To conduct multivariate analyses,
clinical features such as race, sex, subtype, and grade, among others, were
considered in relation to the expression and survival information. The
“survival” and “survminer” packages in Rwere utilized for univariate and
multivariate survival analyses, and statistical significance was assessed
using log-rank tests (https://cran.r-project.org/web/packages/
survminer/index.html). Finally, in-house JavaScript Kaplan-Meier
plots were created for genes in the dataset for which survival informa-
tion was available.

Visualization of ChIP-seq data. To facilitate the interactive visualiza-
tion of data from ChIP-seq analysis, the MammOnc-DB platform
incorporated the “igv.js” JavaScript developed by the IGV team (https://
github.com/igvteam/igv.js/) for peak calling. Bigwig files and broadpeak/
narrowpeak files from ChIP-seq data analysis were loaded to igv.js to
generate IGV plots.

Web server configuration
MammOnc-DB operates on a CentOS server that has 72 cores (Intel®
Xeon®CPUE2–2699 v3@ 2.30 GHz), 98GB of RAM, and 22 TBHDD. To
provide users with a seamless experience, the user interface of MammOnc-
DBwas created using PERL-CGI hosted on theApaches webserver (https://
httpd.apache.org/).

Data availability
The pre-processed data in this portal are available in the designated refer-
ences. The processed data may be made available by the corresponding
author to researchers on reasonable request.

Code availability
Theunderlying code for this portal is not publicly available butmaybemade
available by the corresponding author to researchers on reasonable request.
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