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Subtype- and race-specific variations in
the immune landscape of breast cancer:
therapeutic implications

Check for updates

Amod Sharma1,2, Sarabjeet Kour Sudan1,2, Kunwar Somesh Vikramdeo1,2, Mohammad Aslam Khan3,4,6,
Muhammad Tahir3, James E. Carter3, Todd Kendall5, Cindy Nelson4, Ajay P. Singh1,2 & Seema Singh1,2

Breast cancer is a heterogeneous disease with distinct molecular subtypes that disproportionately
affects Black women. Immune cells are a key component of the tumor microenvironment, influencing
tumor growth and treatment outcomes. Here, we explored immune landscape differences between
TNBC and non-TNBC subtypes, assessing any race-specific patterns. TNBC showed higher
infiltration ofB-cells, Tregcells, Th1cells, andCD8+cells, and fewermast cells thannon-TNBC.Race-
wise comparisons revealed that White TNBC had more Th1 cells than Black TNBC, while Black non-
TNBC exhibited higher NK and Treg cells but lower DCs. KEGG pathway analysis identified
immunosuppression in TNBC, with Black patients exhibiting the same regardless of molecular
subtype. Higher TAM and lower T-cell infiltration were linked to metastatic disease. In White patients,
lower immune cells (particularly T-cells, DCs, andNK cells) correlatedwithmoremetastasis, but not in
Black patients. These race- and subtype-specific immune differences may guide tailored
immunotherapies.

Breast cancer (BC) is the most frequently diagnosed malignancy in women
worldwide1. Approximately 316,950 women will be diagnosed with BC this
year in the United States alone, and nearly 42,170 will succumb to the
disease2. At the molecular level, BC is broadly classified into four molecular
subtypes, luminal A [estrogen and progesterone receptor positive (HR+),
human epidermal growth factor receptor 2 negative (HER2−)], luminal B
(HR+ HER2−/+ with high Ki67), HER2 enriched (HR− HER2+), and triple-
negative breast cancer (TNBC or HR- HER2−)3,4. Among these, luminal
subtypes have the best prognosis, followed by the HER2-enriched subtype
due to the availability of targeted therapies. TNBC has the worst prognosis
because of its highly aggressive nature and limited availability of effective
therapeutic options5,6.

Significant health disparities are observed in patients diagnosed with
BC; especially Black women appear to bear the greatest burden. Although
theBCdeath rate has declinedby approximately 44%over the past decade, it
has remained largely unchanged in Black women for the past several dec-
ades. Black women experience 38% higher mortality compared to their
White counterparts despite having a 5% lower incidence rate6,7. Moreover,
they are diagnosed with BC at a younger age and have nearly twice the

frequency of diagnosis with the TNBC subtype compared to White
women8,9. Black women diagnosed with the luminal subtype are also more
likely to relapse after endocrine therapy, further adding to their elevated
mortality rates10.Clearly, there is a critical need todeepenourunderstanding
of the molecular pathobiology of BC and develop new mechanism-based
therapies to improve its clinical management and address existing
disparities.

Immune system-targeted therapies have gained high prominence in
recent years and have shown great promise for the clinical management of
various cancers11–13. Immune cells are a crucial component of the tumor
microenvironment (TME) that play a significant role in tumordevelopment
and therapeutic outcomes14,15. Cancer and other stromal cells residing in
TMEmodulate the immune cell infiltration and their functional phenotypes
in away that creates an immunosuppressivemicroenvironment, helping the
tumor cells evade immune killing. Understanding these aspects can help
develop insights into BC pathobiology and holds promise for immune
therapeutic management. In the present study, we analyzed the immune
landscape of breast tumors and compared the differences across race or BC
molecular subtypes. We also determined the immune signaling pathways
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that were differentially regulated in these tumors and explored the rela-
tionship between immune infiltration and tumor metastasis.

Results
TNBCandnon-TNBCsubtypes exhibit differential tumor immune
microenvironment
To investigate the differences in the immune landscape betweenTNBC and
non-TNBCmolecular subtypes, we performed immune cell profiling on 81
BC tumor samples (55 non-TNBC and 26 TNBC) using the nanoString
PanCancer immune panel on the nCounter® pro analysis system (Fig. 1A).
The immune cell abundance score was determined for each sample by the
Rosalind software based on average expression values of their corre-
sponding marker genes. Unsupervised clustering based on the abundance
score of different immune cell types grouped all the samples into fourmajor
clusters (BC Clusters 1–4) in the heat map, with Cluster 1 and Cluster 4
exhibiting lowandhigh tumor-infiltrating lymphocytes (TILs), respectively,
andClusters 2 and3havingmoderateTILs (Fig. 1B). Immune cellswere also
clustered into threemajor clusters (IC-Clusters 1–3). IC-Cluster 1 consisted
of cells of myeloid lineage, such as tumor-associatedmacrophages (TAMs),
neutrophils, and dendritic cells (DC), except for mast cells, which were
placed alone in IC-Cluster 3. All the immune cells of lymphoid lineage, like
T-cells, B-cells, regulatory T-cells (Tregs), CD8+ T-cells, Th1 cells, and
natural killer (NK) cells,were grouped in IC-Cluster 2 (Fig. 1B).Notably, the
distribution of TNBC and non-TNBC samples within the BC-Clusters
revealed that the moderate and high TILs clusters contained a higher per-
centage of TNBC, while a greater percentage of non-TNBC were placed in
the low TILs cluster (Fig. 1C).

Since in our unsupervised clustering analysis, mast cells did not cluster
with other cells of the myeloid lineage, we examined their correlative
abundance with other immune cell types using the Pearson correlation
analysis. A significant positive correlation (r = 0.32, p = 0.003) was observed
with DC infiltration only (Fig. 1D) in both TNBC (r = 0.40, p = 0.039) and
non-TNBC (r = 0.45, p < 0.001) (Fig. S1A). Among other cell types of
myeloid origin, we observed the strongest significant correlation between
TAMand neutrophils (r = 0.61, p < 0.001) (Fig. 1E) in both TNBC (r = 0.66,
p < 0.001) and non-TNBC (r = 0.60, p < 0.001) (Fig. S1B). A significant
positive correlation was also observed between TAM and DC (r = 0.58,
p < 0.001) but not between DC and neutrophils (r = 0.18, p = 0.099) (Fig.
S1C, D). Among lymphoid-origin immune cells, the highest significant
correlation was observed between B-cells and T-cells (r = 0.85, p < 0.001)
(Fig. 1F) in both TNBC (r = 0.88, p < 0.001) and non-TNBC (r = 0.80,
p < 0.001) (Fig. S1E). Among the T cell subtypes, Tregs showed the highest
correlation with B-cells (r = 0.66, p < 0.001) compared to Th1 (r = 0.48,
p < 0.001) and CD8+T-cells (r = 0.57, p < 0.001) (Figs. 1G and S1F), which
was notably stronger in TNBC (r = 0.84, p < 0.001) than in non-TNBC
(r = 0.48, p < 0.001) (Fig. 1H). Besides, NK cells correlated strongly with
Tregs in TNBC, while they showed better correlations with CD8+T-cells
and Th1 cells in non-TNBC (Fig. 1I). In overall abundance score compar-
isons between TNBC and non-TNBC, a significantly higher (p = 0.047)
presence of lymphocytes represented by CD45 positivity was observed in
TNBC than in non-TNBC. TNBC also had significantly higher B-cell
infiltration (p = 0.025) and a strong trend for higher T-cells (p = 0.051) and
TAM (p = 0.066) infiltration as well; however, the mast cell infiltration was
significantly lower inTNBC than innon-TNBC (p < 0.001) (Fig. 1J).Among

Fig. 1 |Distinct tumor immunemicroenvironments inTNBCandnon-TNBCBC
subtypes. A Graphical presentation of the working strategy used for immune cell
abundance analysis in the tumor samples. B Heat map showing the unsupervised
hierarchical clustering of immune cell types and TNBC and non-TNBC cases based
on immune abundance scores and patterns.C Percentage distribution of TNBC and
non-TNBC samples in low, moderate, and high immune infiltration clusters
obtained from the heatmap. Scatter plot showing the Pearson correlation coefficient
(r) ofmast cells withDC (D), TAMwith neutrophils (E), B-cells with T-cells (F), and
B-cells with Treg cells (G) infiltration, calculated from the immune abundance

scores across total samples. (H and I) Scatter plot showing the Pearson correlation
coefficient (r) for infiltration of B-cells with Treg cells (H), NK cells with Treg cells,
CD8+ T-cells, and Th1 cells, calculated from the immune abundance scores in
TNBC and non-TNBC samples. Comparison of the immune abundance score
among TNBC and non-TNBC samples for overall immune infiltration represented
by CD45 positive cells, B-cell, mast cells, T-cells, TAM, neutrophils, DC, and NK
cells (J), Treg cells, Th1 cells, and CD8+ T-cells (K). A non-parametric
Mann–Whitney test was used to determine the p-value. A p-value < 0.05 was con-
sidered statistically significant.
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T-cell subpopulations, Tregs (p = 0.002), Th1 cells (p = 0.023), and CD8+
T-cells (p = 0.004) infiltrationwas significantly higher inTNBCcompared to
non-TNBC (Fig. 1K). When we compared immune cell infiltration in non-
TNBC subtypes between hormone receptor-positive (HR+) and hormone
receptor-negative (HR−), HR− samples had a significantly higher Treg cell
infiltration (p = 0.010) than HR+ samples (Fig. S1G).

Racial variations in the abundance of the TILs in TNBC and non-
TNBC samples
Next,we examinedwhether the pattern of immune cell infiltration inTNBC
andnon-TNBC subtypes variedbetweenWhite andBlack patients. For this,
we performed the unsupervised clustering of TNBC cases fromWhite and
Blackpatients and examined the sample distribution in clusterswith varying
levels of TILs. Analysis created two distinct clusters of TNBCwith relatively
high TILs (TNBC-Cluster 1) and lowTILs (TNBC-Cluster 2). The immune
cells were clustered into four clusters (IC Clusters 1–4), with IC-Cluster 1
having Mast cells, IC-Cluster 2 having other myeloid cells, IC-Cluster 3
having DC, and IC-Cluster 4 having all other immune cells of lymphoid
lineage (Fig. 2A). However, TNBC from Black and White patients showed
equal distribution inbothhigh and lowTILs clusters (Fig. 2B).Moreover,we
also did not observe significant differences in the immune cell abundance
scores between the Black andWhite patients (Fig. 2C). Interestingly, among
the T-cell subpopulations, we observed a significantly higher abundance of
Th1 cells (p = 0.008) inWhite TNBC patients along with a trend for higher
CD8+ T-cell abundance (p = 0.054) compared to the Black TNBC. No
significant difference in the abundance of Treg cells (p = 0.462) was
observed (Fig. 2D). Since the infiltration of Th1 cells and CD8+ T-cells was
higher inWhite thanBlackpatients, we checked the correlation of these cells
with other infiltrating cells. We found that Th1 cell infiltration was sig-
nificantly correlated with B-cells (r = 0.78, p < 0.001), NK cells (r = 0.76,
p = 0.001) and DC infiltration (r = 0.54, p = 0.046) in Black patients, while
this correlation was not present in the White patients (B-cells r = 0.11,

p = 0.713; NK cells r = 0.14, p = 0.656; DC r = 0.18, p = 0.557) (Fig. 2E). The
CD8+ T-cells also showed significant positive correlation with B-cells in
Blackpatients (r = 0.70,p = 0.004) andwithNKcells inbothWhite (r = 0.71,
p = 0.008) and Black patients (r = 0.85, p < 0.001) (Fig. S2A).

In the non-TNBC samples from Black and White patients, the unsu-
pervised hierarchical clustering created two distinct clusters, non-TNBC-
Cluster 1 and2,with relatively high and lowTILs, respectively. Immunecells
clustered into two major clusters, with all lymphoid origin cells being
clustered in IC-Cluster 1, and TAM and DC of myeloid lineage clustering
together in IC-Cluster 2. Neutrophils, NK cells, and mast cells were placed
independently in IC-Cluster 3, IC-Cluster 4, and IC-Cluster 5, respectively
(Fig. 3A). A slightly higher distribution (53.57%) of White non-TNBC was
observed in the high TILs cluster, while the reverse was true for Black non-
TNBC (48.15%) (Fig. 3B). When abundance scores for immune cell types
were compared betweenBlack andWhite non-TNBC,we foundNKcells to
be significantly higher in Black patients (p = 0.005), whereas DC cells were
significantly lower (p = 0.021) in these patients, compared to the White
patients (Fig. 3C). Among the T-cell subtypes, the Tregs were significantly
higher (p = 0.011) in Black non-TNBC compared to White patients
(Fig. 3D). When we compared immune cell infiltration in HR+ and HR-
subtypes in Black versus White non-TNBC patients, a significantly higher
infiltration of NK cells (p = 0.003) and Tregs (p = 0.016) in Black HR+
subtypewasobserved. Further, a trend for lowerDC(p = 0.064) inHR+ and
lower infiltration of mast cells (p = 0.057) and CD8+ T-cells (p = 0.057) in
HR- subtype in Black non-TNBC were also observed as compared to their
respective white non-TNBC (Fig. 3E).

TNBC tumors exhibit greater immunosuppression compared to
non-TNBC tumors despite higher TILs
From a total of 770 immune-related genes in the panel, we observed dif-
ferential expression of 152 genes between TNBC and non-TNBC samples,
of which 122 were upregulated and 30 downregulated (Fig. 4A, B, and

Fig. 2 | Black TNBC samples show reduced infiltration of Th1 and CD8+T-cells.
AHeatmap showing the unsupervised clustering of Black andWhite TNBC samples
and immune cell types based on immune abundance scores in the tumor.
B Percentage distribution of Black and White TNBC samples in low and high
immune infiltration clusters from the heatmap. Comparison of the immune abun-
dance score among Black and White TNBC samples for total immune cells
(CD45+), TAM, B-cells, T-cells, NK cells, neutrophils, mast cells, and DC (C), and

in T-cells subtype cells i.e., Th1, CD8+ T-cells and Treg cells (D), non-parametric
Mann–Whitney test was used to determine the p-value. E Scatter plot showing the
Pearson correlation coefficient (r) for the association between infiltration of
Th1 cells with B-cells, NK cells, and DC in Black and White TNBC samples; the
correlation was calculated from the abundance score of immune cells in the tumor
tissues. A p-value < 0.05 was considered statistically significant.
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Supplementary Table S1). The KEGG pathway enrichment analysis using
Enrichr web-based tool showed the primary immunodeficiency and PD-L1
expression andPD-1 checkpoint pathways to be among the top upregulated
pathways in TNBC, whereas complement and coagulation cascade, c-type

signaling, and Th17 cell differentiation pathways were among the top
downregulated pathways (Fig. 4C). Immunosuppressive genes such as
FOXP3, PDCD1, ICOS, LAG3, CTLA4, IDO1 were significantly over-
expressed in TNBC, while genes involved in immune activation such as

Fig. 3 | Black non-TNBC tumors have higher Treg cell infiltration. A Heat map
showing the unsupervised clustering of Black and White non-TNBC samples and
immune cell types based on immune abundance scores in the tumor. B Percentage
distribution of Black and White non-TNBC samples in low and high immune
infiltration clusters from the heatmap. Comparison of the immune abundance score
amongBlack andWhite non-TNBC samples for total immune cells (CD45+), TAM,

NK cells, DC, B-cells, T-cells, mast cells, and neutrophils (C), and in T-cells subtype
cells, i.e., Th1, CD8+ T-cells, and Treg cells (D). E Fold change in immune abun-
dance score and corresponding p-values in Black samples compared to White
counterpart in HR+ and HR− BC subtypes. The p-value was calculated using the
non-parametric Mann-Whitney test. A p-value < 0.05 was considered statistically
significant.

Fig. 4 | TNBC tumors exhibit greater immunosuppression than non-TNBC
tumors. A Volcano plot representing the up-regulated (red dots) and down-
regulated (blue dots) genes in TNBC compared to the non-TNBC samples. B Heat
map representing the expression pattern of the differentially expressed genes among
the TNBC and non-TNBC samples. C KEGG pathway analysis of the differentially
expressed genes showing up-regulated and down-regulated pathways in TNBC

compared to non-TNBC samples. D Representation of selected up-regulated genes
associated with immunosuppression (FOXP3, PDCD1, ICOS, LAG3, CTLA4,
IDO1) and down-regulated genes associated with immune activation (GATA3,
IKBKB) in TNBC compared to non-TNBC samples. The p-value was calculated
using the non-parametric Mann-Whitney test. A p-value < 0.05 was considered
statistically significant.
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GATA3 and IKBKB were significantly repressed (Fig. 4D). These findings
indicate that although TNBC have relatively higher TILs than non-TNBC,
they exhibit higher immunosuppression and are thus good candidate for
immune checkpoint therapies.

TNBC and non-TNBC in Black patients exhibit greater immuno-
suppression than in white patients
In separate race-specific comparisons within TNBC, we found a total of 95
differentially expressed genes, of which 80 were upregulated and 15
downregulated in Black patients compared to theWhite patients (Fig. 5A).
The heatmap shows the gene expression pattern across all samples (Fig. 5B
and Supplementary Table S2). The KEGG pathway enrichment analysis
showed cytokine-cytokine receptor interaction, and primary immunodefi-
ciency pathways to be among the top upregulated pathways in Black TNBC
compared to White TNBC, whereas TNF, IL-17, and NOD-like receptor
signaling pathways were among the top downregulated pathways (Fig. 5C).

Race-wise comparison of non-TNBC identified a total of 123 differentially-
expressed genes, of which 82 were upregulated and 41 downregulated
(Fig. 5D, E, and Supplementary Table S3). The pathway prediction analysis
suggested upregulation of NK cell-mediated cytotoxicity and cancer and
primary immunodeficiency pathways in Black patients whereas comple-
ment and coagulation cascades,NFκB signaling, and antigenprocessing and
presentation pathways were among the top downregulated pathways in
these patients (Fig. 5F). Genes regulating Th1 cells inflammatory response,
TBX21 (p = 0.009) and Th1 cells differentiation, CD44 (p = 0.009), were
significantly upregulated in White TNBC compared to Black TNBC, while
genes involved in the suppression of Th1 differentiation, CRP (p = 0.020),
was significantlyupregulated inBlackTNBC(Fig. 5G). Besides,we observed
a downregulation of the complement pathway-related genes, C1R
(p = 0.024), C6 (p < 0.001), C3 (p = 0.026), and CFD (0.005) in Black non-
TNBC patients, compared to the respective subtype from white patients
(Fig. 5H).

Fig. 5 | Black patients exhibit greater immunosuppression compared to White
patients. A Volcano plot representing the up-regulated (red dots) and down-
regulated (blue dots) genes in Black TNBC samples compared to the White TNBC.
BHeat map representing the expression pattern of the differentially expressed genes
among the Black and White TNBC samples. C KEGG pathway analysis of the
differentially expressed genes showing up-regulated and down-regulated pathways
in Black patients compared toWhite patients in TNBC.DVolcano plot representing
the up-regulated (red dots) and down-regulated (blue dots) genes in Black non-
TNBC samples compared to the White non-TNBC. E Heat map representing the
expression pattern of the differentially expressed genes among the Black non-TNBC

and White non-TNBC samples. F KEGG pathway analysis of the differentially
expressed genes showing up-regulated and down-regulated pathways in Black
patients compared toWhite patients in non-TNBC samples.GRepresentative genes
supporting Th1 function (TBK21 and CD44) were down-regulated, and
Th1 suppression (CRP) was up-regulated in Black TNBC compared toWhite TNBC
patients. H Complement pathway-associated genes were down-regulated in Black
non-TNBC compared to White non-TNBC patients. The p-value was calculated
using the non-parametric Mann–Whitney test. A p-value < 0.05 was considered
statistically significant.
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Race- and subtype-specific association of specific immune cell
type abundance with breast cancer metastasis
Having observed race- and subtype-specific differences in the tumor
immune landscape, we sought to investigate the association of the abun-
dance of different immune cell types with BC metastasis. Our analysis
revealed that metastasis-positive cases had significantly higher TAM infil-
tration (p = 0.002) in the TME in both non-TNBC (p = 0.046) and TNBC
subtypes (p = 0.047) (Fig. 6A). In addition, we found that T-cell abundance
was significantly lower in metastatic cases (p = 0.038), however, this asso-
ciationwas significant in the non-TNBCgroup (p = 0.048) but not inTNBC
(p = 0.216) (Fig. 6B). Further analysis of T-cell subsets indicated a strong
trend for lower CD8+ T-cells in metastatic BC (p = 0.055), especially
metastatic non-TNBC (p = 0.053) (Fig. 6C). In race-wise correlation, we
observed that metastasis was significantly associated with the lower overall
abundance of immune cells in White patients as indicated by CD45 score
(p = 0.030). Further, in these patients, T-cells (p = 0.023), DC (p = 0.048),
and NK-cells (p = 0.012) had a lower presence in cases with confirmed
metastasis than those with non-metastatic disease. No significant associa-
tion of immune cell abundance with metastatic disease was reported in
Black patients (Fig. 6D).

Discussion
The type and abundance of immune cells present in the TME play a crucial
role in influencing both the cancer progression and the treatment outcomes.
Moreover, it could also be a good predictor for response to immune
checkpoint therapies and help in treatment planning16–18. Immune cells
normally recognize and eliminate abnormal cells, including cancer cells.
However, cancer cells often develop mechanisms to evade immune detec-
tion by creating an immunosuppressive environment that reduces the
efficacy of the immune response. In our study, we observed a differential
immune landscape between TNBC and non-TNBC subtypes along with
race-specific differences in White and Black patients. Cells of myeloid and
lymphoid lineages clustered together, with some cells showing a unique

clustering pattern. The infiltration of immune cells in the TME is influenced
by tumor stromal composition, antigen presentation, vascularization, etc.,
but it is mainly regulated by chemokine secretion by cells present in the
tumor19–21. Certain chemokines serve as chemoattractant for myeloid line-
age cells, such as CCL2, CXCL2, and β-defensin, which recruit macro-
phages, neutrophils, and DCs, respectively22,23, whereas CCL19, CCL21,
and CXCL13 are associated with lymphoid cell (T-cells and B-cells)
infiltration24–26. Another chemokine, CCL5, is associated with the recruit-
ment of T-cells and NK-cells in the TME27.

The presence and recruitment of immune cell types in the TME is also
greatly influenced by the crosstalk among them22,28,29. We observed the
highest correlation of TAM with neutrophils among the myeloid lineage
cells and B-cells with T-cells among cells of the lymphoid lineage. Further,
B-cells andNKcells were strongly correlatedwithTreg cells in TNBC,while
theNKcells showed abetter correlationwithTh1andCD8+T-cells in non-
TNBC, suggesting that tumor cell-intrinsic properties may also influence
the crosstalk among immune cells and thusTME composition. Studies have
shown that B-cells present in tumors can convert T helper cells into T
regulatory cells30,31. Conversely, the Tregs can also suppress B-cell and NK
cell function and create an immunosuppressed environment32–35. Thus, it is
crucial to understand how these interactions vary between molecular sub-
types and what their impact is on clinical outcomes.

Cancer progression as well as the outcome of immune- and chemo-
therapies is influenced by the immune-active or suppressed state of the
TME36,37. A higher presence of TILs in the TME can be indicative of a better
prognosis38,39. However, in our study, TNBC, which has the worst
prognosis40, was found to have higher TILs in the TME. The pathway
analysis of the genes differentially regulated in TNBC compared to non-
TNBC suggested that the former have an immunosuppressed TME. This
could likely be a reason why TNBC maintains an aggressive progression
leading to its poor prognosis, despite having overall higherTILs in theTME.
TNBChad a higher presence of B-cells andTregs, which are shown to shape
immunosuppressiveTME41. It has been reported that tumors growslower in

Fig. 6 | Association of immune cell abundance with BC metastasis in subtype
and race. ARelative abundance of TAM in total BC, non-TNBC andTNBC samples,
showing the metastatic tumors had significantly higher abundance of TAMs.
B Relative abundance of T-cells in total BC, non-TNBC, and TNBC samples,
showing the lower abundance of T-cells was significantly associated with metastasis
in non-TNBC samples but not in TNBC samples. C Relative abundance of CD8+

T-cells in total BC, non-TNBC andTNBC samples, showing a trend for lowerCD8+
T-cells abundance in non-TNBC tumors was associated with metastasis.D Relative
abundance of total immune cells (CD45), T-cells, DC, and NK-cells in White and
Black samples, showing their associationwithmetastasis. The p-value was calculated
using the non-parametric Mann–Whitney test. A p-value < 0.05 was considered
statistically significant.
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B-cell deficient mice exhibiting stronger Th1 and CD8+ T-cell responses42.
Additionally, theCD40-CD40L interactionsbetweenB-cells and tumor cells
derives IL-10 production leading to immunosuppression in the TME43.
Further, the depletion of B-cells inmicemodel increased effectiveness of the
chemotherapeutic agent oxaliplatin44. In humans, high B-cell infiltration in
bladder, prostate, breast, and renal cancer has been linked to worse
outcomes45. It is suggested that the antigen presentation by B-cells induces
tolerogenic pathways in CD8+ T-cells, leading to anergy and impaired
cytotoxic function46–48. The B-cells often differentiate into regulatory B-cells
(Bregs) in TME, producing IL-10, IL-35, and TGFβ to suppress CD4+ Th1
and CD8+ T-cell functions49,50. Along these lines, earlier studies have
reported the highest percentage of regulatory B-cells in TNBC, compared to
other subtypes51, and a reducedoverall survival inBCpatientswhose tumors
exhibit a higher correlative presence of Bregs and Tregs52.

Interestingly, we observed a low abundance of themast cells in TNBC.
Their low count in the axillary lymph node is shown to be inversely pro-
portional to the metastasis in BC patients53, and their higher presence in
tumors is associated with resistance to anti-PD-1 therapy in the humanized
mouse melanoma model54. Combining agonistic anti-OX40 immunother-
apy with mast cell blockade results in robust anti-tumor immunity in
pancreatic cancer55. Since we observed TNBC to have low mast cells, it
makes them a good candidate for immunotherapy. All the above observa-
tion aligns with clinical data of TNBC being the most aggressive and lethal
breast cancer subtype, particularly in Black women. Similarly, some clinical
studies have also shown a more favorable response of TNBC to immune
checkpoint therapy than non-TNBC56,57. Since TNBC tumors have higher
infiltration of Tregs andB-cells, a combined immune therapy targeting both
PD-1 along with B-cell specific immune checkpoints such as TIM-1, CD40,
or BTLA, could prove to be more effective in TNBC58,59. Therefore, ana-
lyzing specific immune cell populations can assist in precision oncology and
improve the survival of BC patients.

The immune composition of TNBC varied significantly in Black and
White patients and could have implications for disparate outcomes. Black
TNBC had lower levels of Th1 and CD8+ T-cells in the tumor thanWhite
TNBC, along with an upregulation of immunodeficiency pathways and
downregulation of immune-activating pathways. The Th1 and CD8+
T-cells promote immunity against BC cells, and higher infiltration of Th1
andCD8+T-cells is associatedwith better overall survival inBC60–62.On the
other hand, the race-wise immune landscape comparison of non-TNBC
tumors showed Black patients to have higher NK and Treg cells with lower
DCcells. TheNKcells candirectly attack and kill the cancer cells, while Treg
cells can inhibit the activity of NK cells by directly interacting with them
or by secreting IL-10 and TGFβ, hindering the anti-tumor immune
response63,64. Decreased NK cell activity has been associated with higher
metastasis in BC65. Activated DCs play a crucial role in initiating immune
responses by antigen presentation to CD4+ and CD8+ T cells, which leads
to the maturation and activation of tumor-specific cytotoxic T
lymphocytes66. Lower DC infiltration in Black non-TNBC thanWhite non-
TNBCmay thus cause activation of effector T-cells. The pathway analysis of
the differentially expressedgenes showed the immunodeficiency andPD-L1
pathway to be upregulated and the complement pathway downregulated in
Black non-TNBC relative to White non-TNBC. The complement pathway
stimulates the effector function of CD4+Th1 cells and CD8+T-cells while
reducing the Treg population in tumors67–69. This suggests that Black non-
TNBC patients have an immunosuppressed microenvironment compared
to White non-TNBC patients.

We found metastatic tumors, both TNBC and non-TNBC, to have
significantly higher infiltration of TAMs, which have been associated with
immune suppression and tumor progression70,71. Conversely, T-cell
abundance, particularly CD8+ T-cells, was lower in metastatic non-
TNBC patients, which is often associated with poorer prognosis in cancer
patients21,72. In White patients, metastasis was associated with lower TILs,
including T-cells, DCs, and NK cells. We have recently shown that Black
patients exhibit higher serum cortisol levels, and cortisol induces M2
polarization of macrophages to cause immunosuppression73. Other factors,

including genetics and higher prevalence of obesity among Black women,
could also contribute to the suppressive immune landscape and its relation
to metastasis and disease prognosis74–77.

In conclusion, this study highlights important differences in the
immune landscape between TNBC and non-TNBC, as well as significant
racial disparities in immune infiltration and immune activation pathways.
Despite higher immune infiltration, TNBC exhibits a more immunosup-
pressive environment characterized by the presence of B-cells and Tregs.
Race-specific differences, particularly in the abundance of key immune cell
types such as T-cells, NK cells, and DCs, may contribute to disparate out-
comes in Black and White patients (Fig. 7). A potential limitation of our
study; however, is that all the clinical samples were procured from a single
institution and thus do not have broad geographic distribution. Therefore, a
future multi-institutional collaboration could not only strengthen these
observations but also demonstrate if geographic and other region-specific
factors (such as cultural, food choices, etc.) have an impact on the immune
landscape.Moreover, although race is a social construct and socioeconomic
factors play a significant role in cancerhealthdisparities, future studies could
incorporate ancestry profiling to examine if there are lineage-specific dif-
ferences as well. Nonetheless, our findings highlight the importance of
considering both tumor subtype and patient race when designing immune-
based therapies. Further, our data suggest that targeted strategies to mod-
ulate immune cell populations, such as enhancing DC and NK cell infil-
tration, may be particularly beneficial in improving the response to
treatment in specific racial populations.

Methods
Biospecimens
The studywas conducted following the determination of “exempt” status by
the Institutional Review Board (IRB). De-identified Formalin-fixed
paraffin-embedded (FFPE) BC tissue blocks were obtained from the
Department of Pathology, University of SouthAlabama. The tissue samples
consisted of histologically confirmed non-TNBC (n = 55) and TNBC
(n = 26) cases and were selected following H&E staining-based determi-
nation by a certified pathologist for the presence of more than 30% cancer
cell area within the tumor. The description of basic characteristic features of
the BC patients involved in the study is provided in Table 1. The racial
classifications of the patients are based on self-reported data.

Reagents
The details of the reagents, kits, and other resources used in the study, along
with their sources and catalog numbers, are provided in supplementary
Table S4.

RNA isolation
FFPE tissues were sliced into 5 µm thick sections using a microtome and
used for RNA isolation. The sections were collected in 1.5ml micro-
centrifuge tubes, to which a deparaffination solution (Cat. No. 19093,
Qiagen, MD, USA) was added. Samples were heated to 56 °C for 3min to
dissolve the paraffin, and the RNAwas isolated using the RNeasy FFPE kit
(Cat. No. 73504, Qiagen, MD, USA) according to the manufacturer’s pro-
tocol. The quantitative andqualitative analysis ofRNAwas performedusing
a Nanodrop 1000 (Thermo Scientific, MA, USA).

Immune profiling and gene expression data
The immune profiling of the BC tissue was performed on the nanoString
nCounter® pro analysis system using the PanCancer Immune Profiling
Panel (nanoString Technologies, WA, USA). The RNA (150 ng in 5 µL
volume)wasmixedwith 5 µLof hybridizationbuffer, 3 µLof reporter probe,
and 2 µL of capture probe per sample and subjected to RNA-probe hybri-
dization reaction for 18 h at 65 °C in a thermocycler. The hybridized sam-
ples were immobilized in the sample cartridge for imaging and counting
using the nCounter Pro prep station, followed by cartridge scanning on the
nCounter ProDigital Analyzer (nanoString,WA, USA) to obtain the count
data in RCC file format.
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In silico data analysis
The data analysis was performed using Rosalind online software. After
performing the data quality check and normalization, the immune cell
abundance score and differentially expressed genes for different compar-
isons were obtained from the Rosalind software. The unsupervised hier-
archical clustering and heat maps for immune abundance in tissue samples
were created using Clustergrammer online software78. The heat maps for
differentially expressed genes were created by GraphPad Prism using the
data obtained from analysis by Rosalind software. The KEGG pathway
analysis of the up-regulated anddown-regulated geneswas performedusing
Enrichr79–81 online software.

Statistical analysis
All the statistical analysis was performed using the GraphPad Prism soft-
ware (GraphPadSoftware,CA). Statistical comparisons between twogroups
were performed by an unpaired, non-parametric Mann-Whitney test. The
Pearson correlation coefficient was used to determine the association
between immune cell type infiltration. A p-value of lower than 0.05 was
considered statistically significant.

Table 1 | Characteristics of breast cancer patients

Patient cohort

Total
patients (n = 81)

White
(n = 40)

Black
(n = 41)

Characteristics

Age at diagnosis,
range (mean)

25–85 (58.1) 25–85 (59.7) 32–83 (56.5)

Race

White 40 N/A N/A

Black 41 N/A N/A

Subtype

Non-TNBC

HR+ HER2+/− 48 (59.3%) 25 (62.5%) 23 (56.1%)

HR− HER2+ 7 (8.6%) 3 (7.5%) 4 (9.8%)

TNBC

HR− HER2− 26 (32.1%) 12 (30%) 14 (34.1%)

Fig. 7 | Schematic summary depicting the subtype
and race-specific differences in BC immune
landscape. TNBC exhibit overall higher immune
cell infiltration, specifically having a greater abun-
dance of B-cells, Tregs, Th1, and CD8+ T-cells,
compared to the non-TNBC. Pathway analysis of
differentially expressed genes show activation of
immunosuppressive pathways despite greater
immune cell infiltration. TNBC fromWhite patients
have a higher presence of Th1 and CD8+ T-cells in
the TME than those from Black patients, while non-
TNBC from Black patients exhibit a higher accu-
mulation of NK and Treg cells but lower DC, com-
pared to that in White patients. Black patients show
reduced immune activation regardless of molecular
subtype. Higher TAM and lower T-cell infiltration
in all BC patients, and lower TILs inWhite patients,
are indicative of the metastatic disease.
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Data availability
Thedata that support thefindings of this study are available on request from
the corresponding author.
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