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Investigating the relationship between
breast cancer risk factors and an Al-
generated mammographic texture feature
in the Nurses’ Health Study i
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The mammogram risk score (MRS), an Al-driven mammographic texture feature, strongly predicts
breast cancer risk independently of breast density, though underlying mechanisms remain unclear.
Using data from the Nurses’ Health Study Il (292 cases, 561 controls), we validated MRS’s association
with breast cancer and evaluated its relationships with established breast cancer risk factors through
observational analyses, polygenic score analyses, and Mendelian randomization. MRS was
significantly associated with breast cancer risk before (OR=1.92 per SD increase; 95% Cl:1.57 t0 2.35;
10-year AUC=0.69) and after adjustment for predicted BI-RADS density (OR=1.85; 95% CI:1.49 to
2.30). Early life body size and adult body mass index (BMI) were inversely associated with MRS, while
benign breast disease history and predicted BI-RADS density showed positive associations; after
adjusting for density, associations between MRS and the other three risk factors were attenuated.
Polygenic score analyses and Mendelian randomization consistently demonstrated significant
positive associations between genetic predictors of breast density measures (dense area, percent
density, predicted BI-RADS density) and MRS. After adjusting for predicted BI-RADS density and BMI,
genetic predictors of higher waist-to-hip ratio were significantly associated with increased MRS. Our
findings reveal robust associations between breast density measures and MRS and suggest a
potential impact of central obesity on MRS. Future larger-scale validation studies are needed.

Breast cancer remains the most prevalent malignant cancer among women
worldwide'. While advances in mammographic screening have facilitated
early detection and risk stratification by assessing breast density’, traditional
measures of mammographic density primarily evaluate the relative amounts
of fibroglandular tissue (i.e., the functional breast tissue composed of epi-
thelial and stromal cells). This approach limits our ability to fully capture the
heterogeneity of individual breast tissue features, such as architecture and
spatial relations’. Recent research has leveraged accumulating digital
mammogram datasets coupled with sophisticated computational techni-
ques to quantify texture features of mammograms, aiming for more precise
and individualized risk predictions. These texture features capture detailed

patterns and variations in breast tissue that go beyond simple density
measurements’. A notable development in this area is the mammogram risk
score (MRS), an innovative, artificial intelligence (AI)-driven texture feature
derived from whole mammogram images that robustly predicts breast
cancer risk independently of breast density (5-year area under the receiver
operating characteristic curve [AUC] = 0.75)*°. However, given that the
MRS is derived from a deep learning model that lacks inherent interpret-
ability, its biological underpinnings remain unclear.

The risk of breast cancer is influenced by multiple factors beyond age
and genetic markers. Lifestyle, behavioral, and developmental factors, such
as anthropometric measures and reproductive events, collectively
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contribute to breast cancer susceptibility’ and may also relate to features in
breast tissue. Epidemiological studies have highlighted significant associa-
tions between traditional measures of mammographic density and various
risk factors, including early life and adult adiposity’™', height'>"”, age at
menarche'>", age at first birth'*"’, age at natural menopause'®, and other
reproductive/hormonal factors”. Utilizing germline genetic variants as
instrumental variables (IVs) to strengthen causal inference, Mendelian
randomization (MR) studies have reinforced associations with early life and
adult adiposity'™"’, offering protection against confounding and reverse
causation typical in observational studies™.

Given that texture features capture distinct aspects of breast tissue from
summary density measures, investigating how established risk factors relate
to these features could improve our understanding of their underlying
biology and provide valuable insights into breast cancer pathogenesis.
Previous studies have demonstrated phenotypic and genetic relationships
between adiposity and V*"*, a texture feature reflecting grayscale intensity
variations on digitized film mammograms®. MRS, by comparison, was
developed using supervised machine learning to not only predict variation
in whole digital images more accurately but also to capture biological fea-
tures relevant to breast cancer risk’. These characteristics make MRS a
promising target for investigation aimed at advancing breast cancer pre-
vention. Yet, to date, no observational or MR study has explored these
associations for the MRS.

With an overarching goal of deepening the understanding of the bio-
logical underpinnings of MRS and its potential role in breast cancer sus-
ceptibility, the present study comprehensively investigates the relationships
between established breast cancer risk factors—encompassing anthropo-
metrics, reproductive and hormonal factors, family history, and traditional
mammographic density metrics—and MRS, through comprehensive
observational and genetic analyses performed within the Nurses’ Health
Study IT (NHS II).

Results

Participant characteristics and MRS-breast cancer association

inthe NHS I

This nested case-control study comprised 853 women (292 cases and 561
controls) with a mean age of 55.3 (+5.45 years) at the time of the mam-
mogram. The majority (64.1%) were postmenopausal. A comparison of risk
factor distribution between groups divided by median MRS can be found in
Table 1. Notably, compared to those below the median, participants with
above-median MRS were younger, more likely to have lower body mass
index (BMI) and waist-to-hip ratio (WHR), denser breasts, a history of
benign breast disease at the time of mammogram, and more likely to be
breast cancer cases (47.8% vs 20.7%) (all P < 0.05).

External validation in NHS II, which included 201 cases and 561
controls after excluding cases diagnosed within 6 months of mammo-
graphy, demonstrated a strong association between MRS and breast cancer
risk (odds ratio [OR] = 1.92 per standard deviation [SD] difference in MRS;
95% confidence intervals [CI]: 1.57 to 2.35; P=198x107"% 10-year
AUC = 0.69) (Supplementary Table 1, Supplementary Figs. 1 and 2). Cases
were diagnosed 0.5-10.1 years (median 2.6) after the mammogram used for
MRS calculation. The association remained robust after adjusting for pre-
dicted Breast Imaging Reporting and Data System (BI-RADS) density
(OR = 1.85;95% CI: 1.49 to 2.30; P = 2.50 x 10~*) (Supplementary Table 1).

Associations between observed breast cancer risk factors

and MRS

Both predicted BI-RADS density (= 0.31SD difference in MRS per SD
difference in predicted BI-RADS density; 95% CIL: 0.25 to 0.38;
P =1.94 x 107") and history of benign breast disease (8 = 0.23 SD difference
in MRS with vs. without history; 95% CI: 0.10 to 0.36; P=4.50 x 107
showed positive associations with MRS. Early life body size (8 = —0.08 SD
difference in MRS per SD difference in body size; 95% CI: —0.14 to —0.02;
P=9.59x107") and adult BMI (8= —0.08 SD difference in MRS per SD
difference in BMI; 95% CI: —0.14 to —0.02; P=1.11 x 10~?) demonstrated

negative associations. No statistically significant associations were observed
for the other examined risk factors (all P> 0.05, Table 2). These results
remained consistent in both direction and statistical significance when
restricted to controls only or additionally adjusted for menopausal status
(Supplementary Tables 2 and 3). When adjusted for predicted BI-RADS
density, associations with history of benign breast disease (8 =0.11), early
life body size (f=—0.02), and adult BMI (8 =0.05) were all attenuated
towards the null (Table 2, Supplementary Table 2).

Associations between polygenic scores for breast cancer risk
factors and MRS

Linear regressions of MRS on polygenic score (PGS) for risk factors revealed
significant positive associations for dense area (5= 0.16 SD difference in
MRS per SD difference in PGS; 95% CI: 0.06 to 0.25; P=1.37 x 107%) and
percent density (8 =0.14 SD difference in MRS per SD difference in PGS;
95% CI: 0.05 to 0.23; P=3.29x 107%). No significant associations were
observed between the PGS for other risk factors and MRS (Table 3). A
similar pattern of associations was observed in analyses restricted to controls
and in models adjusted for menopausal status (Supplementary Tables
4 and 5). After adjusting for predicted BI-RADS density, the association for
percent density remained strong, whereas the association for dense area
weakened slightly. A significant association was additionally observed
between higher PGS for WHR adjusted for BMI (WHRadjBMI) and
increased MRS (8 =0.12 SD difference in MRS per SD difference in PGS;
95% CI: 0.03 to 0.21; P=1.18 x 107%) (Table 3, Supplementary Table 4).

Mendelian randomization between breast cancer risk factors
and MRS

Linear regressions of risk factors on their corresponding PGS revealed
significant genetic associations for 7 risk factors, including height, BMI, age
at menarche, early life body size, WHR, predicted BI-RADS density, and age
at natural menopause (F-statistics: 212.56 to 5.36, Supplementary Table 6).
While PGS for dense area was significantly associated with predicted BI-
RADS density (R* = 0.03, F=9.09, P = 2.76 x 10~*), PGS for percent density
showed no association (R* = 0.00, F=1.47, P =0.23). The dense area PGS
was thus used as an IV for predicted BI-RADS density in subsequent two-
stage least squares (2SLS) analyses. WHRadjBMI, age at first birth, and
number of children ever born were excluded from 2SLS due to weak
instrument strength (F-statistic < 5). Associations adjusted for menopausal
status or predicted BI-RADS density are detailed in Supplementary
Tables 7 and 8.

2SLS analyses found a significant association between genetically
predicted BI-RADS density and MRS (8 = 0.84 SD difference in MRS per SD
difference in predicted BI-RADS density; 95% CIL: 021 to 1.46;
P=8.85x10""), while identifying no statistically significant associations
between the other 6 genetically predicted risk factors and MRS. Among the
other risk factors, the strongest effect estimates were observed for age at
natural menopause (5 = —0.80 SD difference in MRS per SD difference in
genetically predicted age at natural menopause, 95% CI: —2.58 to 0.98,
P =0.38) and early life body size (8= —0.13 SD difference in MRS per SD
difference in genetically predicted early life body size, 95% CI: —0.59 to 0.33,
P=0.57), neither of which reached statistical significance (Table 4). All
additional adjustments yielded similar results (Table 4, Supplementary
Tables 9 and 10).

Two-sample MR analyses identified significant associations between
genetically predicted dense area and MRS (5 = 0.83 SD difference in MRS
per SD difference in dense area; 95% CI: 0.39 to 1.27; P=2.09 x 10™*), and
genetically predicted percent density and MRS (8 =1.14 SD difference in
MRS per SD difference in percent density; 95% CIL: 0.55 to 1.74;
P=1.61x107*). No evidence supported significant causal associations with
other risk factors (Fig. 1). Sensitivity analyses using MR-Egger regression,
weighted median, weighted mode, and inverse-variance weighted (IVW)
excluding outlier SNPs yielded consistent results (Supplementary Table 11).
MR-Clust analysis found all variants for dense area and percent density
clustered into a single group with similar causal effects, suggesting no
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Table 1 | Baseline characteristics of participants according to median mammogram risk score

Characteristic All MRS < the median level MRS > the median level P

N =853 N =426 N =427
Age, years 55.3 (5.45) 56.4 (5.21) 54.3 (5.48) <0.001
Early life body size 2.56 (1.16) 2.64 (1.21) 2.49 (1.10) 0.059
Body mass index, kg/m? 26.8 (6.06) 27.4 (6.45) 26.2 (5.57) 0.003
Waist-to-hip ratio 0.83(0.07) 0.83(0.07) 0.82 (0.07) 0.035
Waist-to-hip ratio adjusted for BMI 0.00 (0.07) 0.00 (0.07) 0.00 (0.07) 0.648
Height, inch 64.9 (2.52) 64.9 (2.48) 65.0 (2.55) 0.523
Age at menarche, years 13.2 (2.95) 13.2 (2.98) 13.2 (2.92) 0.913
Age at first birth, years 26.3 (4.93) 26.0 (4.71) 26.7 (5.12) 0.075
Menopausal status <0.001
Premenopausal 233 (27.8%) 86 (20.6%) 147 (34.8%)
Postmenopausal 538 (64.1%) 302 (72.4%) 236 (55.9%)
Unsure 68 (8.10%) 29 (6.95%) 39 (9.24%)
Age at natural menopause, years 49.7 (4.14) 49.5 (4.37) 50.0 (3.80) 0.094
Postmenopausal hormone use 0.108
Premenopausal or postmenopausal not on therapy 626 (77.4%) 322 (79.3%) 304 (75.4%)
Postmenopausal on therapy 183 (22.6%) 84 (20.7%) 99 (24.6%)
No. pregnancies >6 months 1.94 (1.24) 1.96 (1.25) 1.92 (1.22) 0.664
History of benign breast disease 0.013
Yes 525 (61.5%) 244 (57.3%) 281 (65.8%)
No 328 (38.5%) 182 (42.7%) 146 (34.2%)
Predicted BI-RADS density® <0.001
a, almost entirely fatty 40 (5.10%) 33 (8.44%) 7(1.78%)
b, scattered areas of fibroglandular tissue 320 (40.8%) 209 (53.5%) 111 (28.2%)
¢, heterogeneously dense 396 (50.4%) 140 (35.8%) 256 (65.0%)
d, extremely dense 29 (3.69%) 9 (2.30%) 20 (5.08%)
Family history of breast cancer 0.14
Yes 160 (18.8%) 71 (16.7%) 89 (20.8%)
No 693 (81.2%) 355 (83.3%) 338 (79.2%)
Breast cancer cases <0.001
Yes 292 (34.2%) 88 (20.7%) 204 (47.8%)
No 561 (65.8%) 338 (79.3%) 223 (52.2%)
Mammaogram risk score 0.00 (1.00) —0.84 (0.58) 0.84 (0.49) <0.001

“Predicted BI-RADS density was assessed using a deep learning algorithm previously developed to predict mammographic breast density from digital mammograms. The algorithm categorizes breasts
from a (almost entirely fatty) to d (extremely dense), matching an experienced mammographer’s evaluation.

evidence of heterogeneous causal mechanisms; for other risk factors, no
variants showed significant effects (Supplementary Fig. 3). Chi-square tests
on Wald ratios across all IVs for each risk factor revealed no statistically
significant associations between risk factor-associated genetic variants and
MRS (all P> 0.05, Supplementary Table 12).

The patterns of associations were robust to both restriction to
control subjects (Supplementary Table 11) and adjustment for meno-
pausal status (Supplementary Tables 13 and 14, Supplementary Fig. 4).
Utilizing IV-outcome associations adjusting for predicted BI-RADS
density, two-sample MR showed a significant association between
genetically predicted WHRadjBMI and MRS (IVW: f=0.51 SD differ-
ence in MRS per SD difference in WHRadjBMI; 95% CI: 0.15 to 0.87;
P=6.10x 107*) (Fig. 1), consistent across all sensitivity analyses. Asso-
ciation with percent density remained substantially unchanged, while
association for genetically predicted dense area was attenuated (Fig. 1,
Supplementary Tables 15 and 16, Supplementary Fig. 5).

Discussion

To the best of our knowledge, this study presents one of the first and most
comprehensive examinations to date of the relationships between known
breast cancer risk factors and MRS—an Al-generated mammographic

texture feature derived from full-field digital mammograms. Our analyses
revealed robust phenotypic and genetic associations between various
mammographic density measures—including predicted BI-RADS density,
absolute dense area, and percent density—and the MRS, as well as a sug-
gestive association between higher WHRadjBMI and increasing MRS.
Our external validation of the MRS in the predominantly White NHS
1T cohort demonstrated its robust predictive capability for breast cancer risk,
supporting the generalizability of the algorithm to an independent popu-
lation. The MRS maintained good discriminatory power for long-term risk,
achieving a 10-year AUC of 0.69, which compares favorably with the 5-year
AUCG:s reported in the original validation cohorts (0.75 in the Joanne Knight
Breast Health Cohort at Washington University [WashU cohort]; 0.74 in
the Emory Breast Imaging Dataset [EMBED]; 27-46% Non-Hispanic Black
women)°. This result underscores the stability of the MRS as a risk marker
over an extended follow-up period. Notably, our mutual adjustment ana-
lyses provide insight into the relationship between MRS, breast density, and
breast cancer risk. The association between MRS and breast cancer inci-
dence remained strong after adjusting for predicted BI-RADS density;
conversely, the association for predicted BI-RADS density was substantially
attenuated after adjusting for MRS. This pattern suggests that while both are
important risk factors, MRS may capture mammographic information that
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Table 2 | Linear regression of mammogram risk score on each breast cancer risk factor

Risk factor® Crude model®

Model adjusted for predicted BI-RADS density®

N BETA SE P N BETA SE P
Early life body size 837 —0.082 0.032 9.59x10° 770 —0.022 0.032 0.479
Body mass index 849 —0.082 0.032 1.11x1072 781 0.049 0.035 0.165
Waist-to-hip ratio 728 —0.059 0.034 0.085 668 —0.006 0.035 0.868
Waist-to-hip ratio adjusted for BMI 725 —0.006 0.034 0.869 665 0.008 0.034 0.807
Height 853 —0.024 0.032 0.440 785 —0.011 0.031 0.720
Age at menarche 850 0.003 0.032 0.922 782 —-0.016 0.032 0.619
Age at first birth 699 0.031 0.035 0.384 649 0.037 0.034 0.277
Age at natural menopause® 535 0.075 0.042 0.074 489 0.059 0.041 0.152
Postmenopausal hormone use® 518 0.139 0.094 0.139 475 0.022 0.093 0.815
No. pregnancies >6 months 761 —0.005 0.033 0.876 722 0.029 0.033 0.387
History of benign breast disease 853 0.229 0.065 4.50x107* 785 0.111 0.065 0.091
Predicted BI-RADS density 785 0.314 0.033 1.94x107%° - - - -
Family history of breast cancer 853 0.017 0.081 0.838 785 0.003 0.080 0.974

BMI body mass index.

“All risk factors reflect measurements taken at adulthood, either at cohort baseline or at the time of the mammogram, except for early life body size, which reflects recalled values from childhood.

“Models include adjustments for age and breast cancer case-control status.

“Models include adjustments for age, predicted BI-RADS density, and breast cancer case-control status.
9Analyses of age at natural menopause and postmenopausal hormone use were limited to postmenopausal women.

Table 3 | Linear regression of mammogram risk score on polygenic score for each breast cancer risk factor

Risk factor® Crude model®

Model adjusted for predicted BI-RADS density®

N BETA SE P N BETA SE P
Early life body size 383 -0.027 0.050 0.588 353 0.035 0.050 0.482
Adult body size 383 -0.003 0.049 0.950 353 0.037 0.049 0.444
Waist-to-hip ratio 383 0.008 0.048 0.870 353 0.073 0.048 0.124
Waist-to-hip ratio adjusted for BMI 383 0.071 0.048 0.139 353 0.118 0.047 1.18 x 10°%
Height 383 -0.004 0.049 0.932 353 -0.027 0.048 0.580
Age at menarche 383 -0.022 0.049 0.658 353 -0.059 0.049 0.223
Age at first birth 383 -0.006 0.049 0.908 353 -0.033 0.047 0.489
Age at natural menopause 383 -0.034 0.049 0.492 353 -0.045 0.047 0.344
Number of children ever born 383 -0.055 0.049 0.261 353 -0.044 0.048 0.357
Dense area 383 0.155 0.048 1.37x10°%® 353 0.093 0.049 0.062
Non-dense area 383 0.001 0.048 0.979 353 0.009 0.047 0.850
Percent density 383 0.141 0.048 3.29x10°% 353 0.126 0.048 9.36x10°%

BMI body mass index.

Al risk factors reflect measurements taken at adulthood, except for early life body size, which reflects recalled values from childhood.
“Models include adjustments for age, genotyping platform, the top 10 genetic principal components, and breast cancer case-control status.
“Models include adjustments for age, predicted BI-RADS density, genotyping platform, the top 10 genetic principal components, and breast cancer case-control status.

is more proximally located on the causal pathway to breast cancer than
summary density measures alone. These findings collectively underscore
MRS’s potential to enhance breast cancer risk stratification across diverse
clinical settings and populations.

Our findings align with previously reported significant phenotypic
relationships between mammographic density and breast texture
features'”"****, The moderate correlation between predicted BI-RADS
density and MRS (r ~ 0.31) further corroborates that while these measures
are related, they are likely to reflect distinct aspects of mammographic
information. Beyond the phenotypic association, our genetic analyses
provide converging evidence for a shared genetic architecture and potential
causal link between mammographic density and MRS. These findings
corroborate and extend previous evidence from different texture measures
and study designs that demonstrated similar causal relationships®,

enhancing the credibility of MRS as a biologically plausible risk factor for
breast cancer. Future studies should aim to elucidate the specific biological
processes reflected by MRS and their implications for breast cancer etiology.

Moving beyond density, investigating the effects of lifestyle, behavioral,
and developmental/biological risk factors on breast tissue characteristics, as
summarized in mammograms, is crucial for extracting biological insights
into modifiable factors for prevention studies and understanding pathways
for potential preventive drug targets. While MRS itself represents a novel
feature with limited existing literature, it is important to contextualize our
findings within the existing body of research on other mammographic
features. For instance, previous studies have demonstrated associations
between various breast cancer risk factors and mammographic density, and
between risk factors and other texture features such as V***. Our study of
MRS builds upon previous findings by focusing on MRS—a supervised,
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Table 4 | Two-stage least squares regression between each breast cancer risk factor (exposure) and mammogram risk score

(outcome)

Risk factor®

Crude model®

Model adjusted for predicted BI-RADS density®

N BETA SE P N BETA SE P
Early life body size 370 -0.132 0.234 0.574 341 0.215 0.269 0.424
Body mass index 381 —0.012 0.175 0.946 351 0.153 0.201 0.446
Waist-to-hip ratio 336 0.081 0.304 0.790 307 0.702 0.542 0.196
Height 383 —0.007 0.084 0.932 353 —0.045 0.080 0.579
Age at menarche 383 —0.081 0.183 0.659 353 —0.222 0.186 0.232
Age at natural menopause® 259 —0.800 0.907 0.378 240 —1.068 1.388 0.442
Predicted BI-RADS density 353 0.835 0.317 8.85x10°% - - - -
Al risk factors reflect measurements taken at adulthood, except for early life body size, which reflects recalled values from childhood.
“Models include adjustments for age, genotyping platform, the top 10 genetic principal components, and breast cancer case-control status.
“Models include adjustments for age, predicted BI-RADS density, genotyping platform, the top 10 genetic principal components, and breast cancer case-control status.
YAnalyses of age at natural menopause were restricted to postmenopausal women.
A . .
Outcome: Mammogram risk score # SNPs Estimate LCI UCI P-value
Early life body size 131 -021 -096 054 0.58
Adult body size 208 -0.02 -0.68 0.64 0.95
Waist—to—hip ratio 245 —®— 0.02 042 046 092
Waist—to—hip ratio adjusted for BMI 274 — @ 0.26 -0.12 0.63 0.18
Height 9701 @ 0.00 -0.15 0.14 0.98
Age at menarche 352 —— -0.11 -035 0.13 0.37
Age at first birth 64 — 80— -0.01 -0.32 0.29 0.92
Age at natural menopause 274 -003 -0.10 0.04 0.37
Number of children ever born 14 -105 -3.18 1.09 0.34
Dense area 24 —— 0.83 039 127 209x10™*
Non-dense area 17 -003 -0.72 0.66 0.93
Percent density 16 —O— 1.14 055 174 161x10™*
[ I I I I T 1
-15 -1 -0.5 0 0.5 1 15 2
Beta (95% Cls)
B
Outcome: Mammogram risk score # SNPs Estimate LCI UCI P-value
Early life body size 131 —— 0.28 -044 0.99 045
Adult body size 208 — 027 -041 0.96 043
‘Waist—to—hip ratio 245 —@— 0.34 -0.10 0.79 0.13
Waist—to—hip ratio adjusted for BMI 274 —@— 0.51 0.15 0.87 6.10x107
Height 9701 @ -004 -0.18 0.10 0.57
Age at menarche 352 —@ -0.14  -0.37 0.09 0.22
Age at first birth 64 —@— -0.09 -0.37 0.18 0.52
Age at natural menopause 274 { } -003 -0.10 0.04 0.35
Number of children ever born 14 @ -085 292 122 042
Dense area 24 —@— 046 -0.05 0.98 0.08
Non-dense area 17 o 0.07 -0.75 0.90 0.86
Percent density 16 —— 095 027 163 606x1073

f
-15

-1 -0.5 0 0.5 1

Beta (95% Cls)

Fig. 1 | Two-sample Mendelian randomization analysis examining associations
between genetically predicted risk factors (exposures) and mammogram risk

score (outcome). Results are shown A before and B after adjusting for predicted BI-
RADS density in Nurses’ Health Study IT (NHS II). Point estimates (circles) and 95%
confidence intervals (error bars) were calculated using the inverse-variance weighted

approach. Effect estimates are interpreted as the standard deviation change in MRS
per one-unit increase in the exposure as defined in the original GWAS. All risk
factors represent adult measurements, except for early life body size, which was
retrospectively reported for childhood. BMI body mass index, LCI lower confidence
interval, UCI upper confidence interval.
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risk-optimized score trained via a ResNet-18 convolutional neural network
and validated in large, diverse cohorts to identify tissue patterns most pre-
dictive of future breast cancer incidence. This approach offers a com-
plementary perspective for investigating the biology of risk-relevant
mammographic changes.

The emergence of a statistically significant association between genetic
predictors of WHRadjBMI and MRS only after adjusting for predicted BI-
RADS density suggests that fat distribution, independent of overall body
mass, might influence breast tissue characteristics in ways not fully captured
by mammographic density alone. The ability of MRS to reveal this rela-
tionship indicates its value as an advanced imaging feature in reflecting
nuanced aspects of breast tissue composition that may be relevant to cancer
risk assessment. Future studies are needed to validate our results and
investigate the biological mechanisms underlying the complex interplay
between fat distribution, breast tissue texture features, and breast cancer
susceptibility.

Several limitations of our study should be acknowledged. First, our
sample size was relatively limited, which may have led to insufficient sta-
tistical power to detect associations with some risk factors, particularly those
with smaller effect sizes. We emphasize that null findings observed should
not be interpreted as definitive evidence of no association, and that larger
studies with greater statistical power are needed. Second, our analysis was
limited by the availability of only craniocaudal (CC)-view mammograms.
As the MRS algorithm is optimized using four views, our reported predictive
accuracy likely represents a conservative estimate of its full potential.
Nevertheless, the strong performance achieved with this two-view approach
underscores the algorithm’s utility in common, real-world scenarios where
imaging sets may be incomplete, thus broadening its applicability in diverse
data settings. Third, our analysis was based on a nested case-control design,
which could potentially introduce ascertainment bias. However, we expect
that this design would not substantially affect our results, given our careful
adjustment for case-control status and the consistency of our findings in
control-only analyses”. Fourth, while we evaluated predicted BI-RADS
density (which mimics qualitative visual assessments by radiologists)*', we
were unable to adjust for quantitative density measures due to data una-
vailability. This limitation may have reduced our statistical power to detect
associations, potentially underestimating relationships between other breast
cancer risk factors and MRS. Additionally, our 2SLS analyses may have been
affected by phenotype mismatches between the traits used to derive PGS
from genome-wide association studies (GWAS) and the corresponding
phenotypes measured in our study. For example, the use of quantitative
dense area PGS to instrument qualitative BI-RADS density categories could
potentially violate the restriction exclusion assumption and introduce bias
in our causal estimates.

Our study has several notable strengths. A key advantage is the avail-
ability of genetic data, digital mammogram data, and comprehensive cov-
ariate data on the same set of samples, allowing for integrated analyses across
multiple domains. Triangulating evidence from both observational and
genetic studies mitigated biases inherent in each study design, providing a
multi-perspective evaluation of associations. The MRS algorithm was
developed independently of the NHS II cohort, reducing the possibility for
overfitting or circular reasoning in our analyses. Developed using standard
digital mammograms, sophisticated statistical methods, and large-scale
populations, the MRS itself represents an advanced texture feature with
significant potential in clinical settings.

To conclude, this study provides initial insights into the etiologic
underpinnings of MRS. We validated that MRS serves as a robust predictor
of breast cancer risk, providing information independent of and beyond that
captured by traditional density measurements. Our investigation further
revealed robust associations between breast density measures and MRS and
suggests a potential impact of central obesity on MRS. Future research
should encompass larger-scale studies to definitively characterize these
associations and elucidate the underlying biological mechanisms. As our
understanding of mammographic texture features advances, tools like MRS
that offer a more nuanced view of risk beyond conventional measures may

become integral to personalized breast cancer assessment and prevention
strategies.

Methods

Study participants

The current study leverages resources from the NHS II, a large prospective
cohort established in 1989 with 116,429 female and predominantly White
(>90%) registered nurses aged 25-42 from 14 states™. Between 1996 and
1999, blood samples were collected from 29,611 women, forming a blood
subcohort™. Genotype data from four platforms (Affymetrix 6.0, llumina
HumanHap, lllumina OmniExpress, and Illumina OncoArray) imputed to
the 1000 Genomes Phase 3 version 5 reference panel were used in this study.
Pre-diagnostic screening mammograms, conducted as close as possible to
the blood draw date, were collected as part of a breast cancer case-control
study nested within the blood subcohort. Participants have been followed up
biennially through self-administered questionnaires to update exposure
information and disease diagnoses. For this study, we initially included 853
women (292 cases and 561 controls) with eligible full-field digital mam-
mograms. Among these, 383 women (143 cases and 240 controls) had
available imputed genotype data and were included in the genetic analyses.
Detailed descriptions of the full genotyping and quality control pipeline*, as
well as the mammogram collection and processing procedure™*, are
available in previous publications. Cohort participants provided written
informed consent. The study protocol was approved by the institutional
review boards of the Brigham and Women’s Hospital and Harvard T.H.
Chan School of Public Health, and those of participating registries as
required.

Risk factors measurement

Information on various established risk factors for breast cancer was col-
lected for NHS II women. These factors included early life and adult body
size, fat distribution, height, reproductive characteristics, and family history
of breast cancer. Early life body size, WHR, height (inches), and age at
menarche were reported via the baseline questionnaire in 1989. Body sizes at
ages 5 and 10 years were recalled using Stunkard’s nine-level pictogram
(levels 1-9: most lean to most overweight)”. The average of these two
measurements was used to represent early life body size. For other covari-
ates, we used the most recent information from the biennial questionnaires
preceding the date of the mammogram. These covariates included: BMI, age
at first birth, menopausal status, age at natural menopause, current post-
menopausal hormone use, parity (number of pregnancies 26 months),
history of benign breast disease, and family history of breast cancer. BMI
(kg/m®) was calculated by dividing weight (kg) by the square of baseline
height (m). WHRadjBMI was further calculated by regressing WHR on
BMI and using the residuals from this regression.

We also assessed predicted BI-RADS density using a deep learning
algorithm, which was previously developed to predict mammographic
breast density from digital mammograms™. The algorithm categorizes
breasts from a (almost entirely fatty) to d (extremely dense), matching an
experienced mammographer’s evaluation (weighted « for agreement with
radiologists = 0.85). We coded these categories as 1, 2, 3, 4, with higher
numbers indicating denser breasts. The digital mammograms used for MRS
calculation were used to assess predicted BI-RADS density. Other quanti-
tative density measures, such as absolute dense area and percent density,
were not directly measured for the NHS II participants included in
this study.

Mammogram risk score measurement

The MRS is an Al-derived score capturing the texture information
embedded in the whole digital mammograms, represented by millions of
pixels*. It was developed utilizing 220,868 mammograms from 10,126
racially diverse, initially cancer-free women in the WashU cohort™, of
whom 505 developed breast cancer during follow-up. Validation was per-
formed using 150,352 mammograms from 15,885 women in EMBED,
demonstrating consistently robust predictive performance (5-year
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AUC=0.74)°. The algorithm, previously described in detail’, takes all
standard mammogram views (CC and/or mediolateral oblique) from both
breasts as input with the option of additional clinical risk factors. The
outputs of the algorithm include MRS, which is a transparent weighted sum
of feature coefficients, probability of 5-year breast cancer onset, and relative
risk for each woman that can be used for risk calibration. For the current
study, we generated an MRS for each of the 853 women by applying the
algorithm to their pair of digital CC-view mammograms (one from each
breast), totaling 1706 images. We used the earliest digital mammograms
available for each woman.

Genetic variants and polygenic scores for risk factors
We selected the largest available GWAS conducted among women of Eur-
opean ancestry for early life and adult body size, WHR, WHRadjBM],
height, age at menarche, age at first birth, age at natural menopause, number
of children ever born, dense area, non-dense area, and percent density. For
each risk factor, we collected lists of genetic variants reported as genome-
wide significant (P < 5.0 x 10~°) in the original female-specific GWAS, along
with their beta coefficients. When such variants were not explicitly reported,
we applied PLINK’s clumping function” (parameters: P < 5.0 x 10~%, linkage
disequilibrium #* < 0.001 within a 10 Mb window) to obtain this informa-
tion. For height, for which no female-specific GWAS is known to be publicly
accessible, we used genetic variant information from the largest available sex-
combined GWAS. This approach was justified as no statistically significant
evidence for sex differences in height genetics has been reported™.

To ensure these established variants were reliably imputed in the NHS
IT data, we included only those with matching alleles, non-ambiguous SNPs,
a minimum imputation score >0.3 across all genotyping platforms, and a
minor allele frequency >0.005. These selected variants were used for the PGS
calculation and as IVs in causal inference analyses. Detailed information on
GWAS sources and quality control of genetic variants is provided in Sup-
plementary Table 17.

Statistical analysis

We generated descriptive statistics for all variables. Continuous variables
were described using mean and SD, while categorical variables were
described using frequency and percentage. We assessed differences between
higher and lower MRS groups (using the median value as the cutoff) using
Student’s t-test or Wilcoxon rank-sum test for continuous variables and
Chi-square test for categorical variables.

We first validated the association between MRS and breast cancer in
NHS II using logistic regression after excluding 91 cases diagnosed within
6 months after the mammogram used for calculation. To evaluate the
association between breast cancer risk factors and MRS, four main analyses
were performed: (i) linear regressions of MRS on each observed risk factor to
quantify their observational association without accounting for genetic
predisposition; (ii) linear regressions of MRS on the PGS associated with
each risk factor to evaluate the relationship between genetic predisposition
to each risk factor and MRS; (iii) MR analysis via 2SLS regressions of MRS
on each genetically predicted risk factor, and (iv) two-sample MR of MRS
using GWAS summary statistics of each risk factor, to evaluate potential
causal associations. For all analyses, we standardized MRS and all non-
binary variables for easier comparison across risk factors. Binary variables
included postmenopausal hormone use, history of benign breast disease,
and family history of breast cancer, each categorized as “Yes” or “No.” In
two-sample MR, we retained the original scale of genetic associations from
the source GWAS.

For each risk factor, we calculated its weighted PGS using PLINK’s
“--score” function”, summing the products of effect allele dosage and cor-
responding beta coefficient across all selected genetic variants for each
woman. Prior to 2SLS regression, we assessed instrument strength by
regressing each risk factor on its corresponding PGS, obtaining F-statistics
and correlation coefficient estimates. To minimize weak instrument bias, we
excluded PGS with an F-statistic < 5 or a correlation P > 0.05 from the 2SLS
analysis. The 2SLS procedure involved two stages: first, regressing each risk

factor on its PGS; second, using the predicted values as independent vari-
ables in a regression model with MRS as the dependent variable.

For two-sample MR, we obtained the “IVs-exposure” associations
directly from the corresponding GWAS. The “IV-outcome” associations
were estimated from the NHS II dataset using PLINK’s “--glm” function”’;
for our primary analysis, this was performed in the full genetic dataset
(N = 383) with adjustment for case-control status. Our primary method was
the random-effect IVW approach™, which assumes a zero intercept and
estimates causality using random-effects meta-analysis. To validate MR
model assumptions™ and assess the robustness of our findings, we applied
complementary methods including MR-Egger regression (which detects
and accounts for directional pleiotropy)*’, weighted median (robust to up to
50% invalid instruments)*’, weighted mode (identifies the causal effect
estimate that is most consistent across all variants)*, and IVW excluding
outlier SNPs detected using Radial MR'’s iterative Cochran’s Q method®.
We considered a causal association significant if it reached statistical sig-
nificance in the IVW analysis and maintained a consistent direction across
all sensitivity analyses. Following two-sample MR, we performed two
additional analyses: an MR-Clust analysis to cluster genetic variants with
similar causal estimates, which may reflect heterogeneous causal
mechanisms*, and a Chi-square test on Wald ratios estimated in two-
sample MR across all IV for each risk factor to test if any of the risk factor-
associated genetic variants associate with MRS.

To mitigate confounding, we employed three adjustment sets across all
analyses. The crude model included age at mammogram and, where
appropriate, genotyping platform and the top 10 genetic principal com-
ponents. The second and third sets were additionally adjusted for meno-
pausal status and predicted BI-RADS density, respectively. To address
potential ascertainment bias arising from investigating MRS in a case-
control study design that implicitly conditions on breast cancer
status, we conducted all analyses using two approaches as previously
recommended™: (1) including case-control status as an additional
covariate (our primary approach to maintain sample size), and (2)
restricting analyses to controls only. 2SLS and TSMR analyses were
conducted using packages “ivreg”, “TwoSampleMR”, and “RadialMR”
in R (v4.1.0). We used the conventional P-value threshold of 0.05 to
define statistical significance, given the relatively limited sample size
and the exploratory nature of our study.

Data availability

The data that support the findings of this study are available from the
Nurses’ Health Studies; however, they are not publicly available. Investi-
gators interested in using the data can request access, and feasibility will be
discussed at an investigator’s meeting. Limits are not placed on scientific
questions or methods, and there is no requirement for co-authorship.
Additional data sharing information and policy details can be accessed at
http://www.nurseshealthstudy.org/researchers. Al GWAS summary sta-
tistics used in this study are publicly available.

Code availability
Analysis scripts used to generate the results of this study are available from
the corresponding author upon reasonable request.
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