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Abstract 

Lymph node metastasis correlate with breast cancer prognosis; however, the cellular mechanisms 

underlying the earliest metastatic events remain unclear. In spatial transcriptomic analysis of a 

patient with breast cancer at single cell resolution, we identified 30 tumor cells representing the 

initial metastatic seeding in a lymph node. These cells originated from multiple epithelial–

mesenchymal (EM) transition status and included six distinct subpopulations with biological 

significance. Only cells exhibiting metabolic shift toward fatty acid metabolism successfully 

established lymph node colonies, implicating this shift in metastatic fitness. The tumor 

microenvironment surrounding these cells showed immunosuppressive and tumor-promoting 

features, supporting metastasis establishment. Cross-referencing these expression profiles with 

public datasets revealed that poor prognosis correlated not with fully mesenchymal or metastatic 
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populations, but with hybrid EM cells exhibiting epithelial and mesenchymal traits. These 

findings highlight the metabolic and phenotypic plasticity of metastatic cells and serve as 

translational bridges between the spatial evolution of tumor cells in the extremely early stages of 

lymph nodes metastasis and clinical prognosis in breast cancer. 

 

 

Introduction 

Axillary lymph nodes are considered the “first stop” in breast cancer metastasis 1-2. The presence 

of metastatic tumor cells in these nodes correlate with poor prognosis  3-7. Tumor cell profiles in 

metastases have been studied extensively. For example, Lee et al. used a mouse model and found 

that a shift toward fatty acid oxidation (FAO), driven by the selective activation of the 

transcription coactivator YAP in lymph node metastases, is essential for their establishment 8. 

Liu et al. used single-cell RNA sequencing (RNA-seq) and spatial transcriptomics to compare 

the microenvironments of primary and lymph node metastatic tumors, reporting that in lymph 

node metastases, compared with primary tumors, T cell activation, cytotoxicity, and proliferation 

are markedly suppressed while dendritic cells show reduced ability to prime and activate T cells 

9. 

Although the requirements for lymph node metastasis and the niche environment are becoming 

clearer, how these molecular characteristics relate to cellular plasticity, possibly involving EMT 

and MET, remains uncertain. Notably, almost no studies have reported the first metastatic event 

in the lymph nodes. This is because it is difficult to track the trajectory of metastasis in humans, 

and it is extremely difficult to observe transient and plastic EMT states in vivo. 
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Substantial evidence supports the role of epithelial-to-mesenchymal transition (EMT) and 

mesenchymal-to-epithelial transition (MET) in metastasis 10-11. EMT is a cellular process in 

which epithelial cells acquire mesenchymal cell characteristics, causing dramatic changes in 

tissue structure and function. Cells take on a fibroblast-like morphology and increase their 

motility (ability to move) and invasiveness (ability to invade surrounding tissues). MET is a 

process that reverses the changes in cellular phenotype induced by EMT. In cancer cells, 

suppression of EMT-Transcription factors like TWIST1 is necessary to promote MET, which is 

required for proliferation after metastasis 12.Despite extensive debate, it remains unclear how 

EMT or MET contributes to metastatic potential and whether it is a necessary condition for 

metastasis 10,13-16. A major challenge in addressing this question lies in EMT’s broad and 

evolving definition. EMT was once considered a binary switch between epithelial and 

mesenchymal states. However, several in vitro studies have shown that EMT progresses 

gradually, forming hybrid subpopulations that occupy intermediate states between epithelial and 

mesenchymal identities 17-18. Interestingly, tumor cell subpopulations nearest to the mesenchymal 

state do not necessarily exhibit the highest metastatic potential 19. Indeed, high metastatic 

potential often lies in the hybrid state. Conversely, evidence suggests that metastatic potential 

and the reverse process, MET, are not correlated, indicating that EMT and MET may need to be 

considered separately 17. To understand the molecular events driving metastasis, it is essential to 

examine how EMT progresses in the primary tumor by dissecting its intermediate states and 

how, and to what extent, metastasized cells restore epithelial traits  in the lymph node 20. 

In the present study, we used the Xenium in situ hybridization platform, which enables spatial 

gene expression profiling at the single-cell resolution, to track tumour cells in vivo during the 
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metastasis process. The purpose of the study was to clarify the spatial evolution of tumor cells in 

the extremely early stages of breast cancer lymph nodes metastasis. 

 

Results 

Multi-omics analysis in each breast cancer region 

Before analyzing spatial patterns at the primary site and metastatic lymph node, we first 

examined the molecular features of the primary cancer via multiregional bulk analysis. The 

patient, an 80-year-old female (BRC-26), underwent surgery without neoadjuvant therapy. Her 

clinical diagnosis was stage II invasive breast carcinoma of the HER2 type, i.e., ER-negative, 

PgR-negative, and HER2-positive (for full clinicopathologic details, refer to Supplementary 

Table 1). For high-quality molecular analysis, especially RNA-seq, we freshly froze part of the 

tumor tissue harvested during surgery. We roughly dissected samples from histologically 

noncancerous regions (NC regions; NC-1 and NC-2) and cancerous regions (Ca regions; Ca-3 

and Ca-4) (Fig. 1a and Supplementary Fig. 1a). Histologically, Ca-4 appeared sparser and less 

adhesive compared with Ca-3 (Supplementary Fig. 1b). We subjected these tissues to RNA-seq, 

enzymatic methylation sequencing (EM-seq), and whole-genome sequencing (WGS) (refer to 

Supplementary Table 2 for statistical analyses). 

We first performed transcriptome analysis using RNA-seq to compare gene expression between 

the NC and Ca regions. Of 4,584 differentially expressed genes (DEGs), 2,248 and 2,336 were 

significantly upregulated and downregulated in the cancer region (Supplementary Fig. 1c). Gene 

pathway enrichment analysis of these DEGs showed that “cell adhesion” pathways were 

enriched in NC regions, whereas pathways for “carboxylic acid metabolism,” and “cell cycle” 

were enriched in Ca regions (Fig. 1b), suggesting progressive malignant transformation from NC 
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to Ca regions 21. DNA methylation analysis revealed more extensive genome-wide 

hypomethylation in Ca regions compared with NC regions (Fig. 1c). Furthermore, promoters, 

intergenic regions, and gene bodies all showed reduced methylation (Supplementary Fig. 1d). 

Hypomethylation of intergenic and intron regions, especially repetitive sequences, can promote 

chromosomal instability and mutations, potentially increasing cancer risk 22-24. These results 

confirm that breast cells undergo malignant transformation as they progress from NC to Ca 

regions. 

Within Ca regions, we observed significant changes in key metastasis-related genes (Fig. 1d). 

Expression of EMT markers, such as Vimentin 25, and transcription factors Snail and ZEB2, 

considered, known EMT regulators 26-27, increased from Ca-3 to Ca-4. Correspondingly, DNA 

methylation levels declined from Ca-3 to Ca-4 (Supplementary Fig. 1e), consistent with previous 

reports that EMT-related genes are epigenetically regulated 28-30. Similarly, methylation of the 

THY1 gene, which was highly expressed in Ca-4, decreased from Ca-3 to Ca-4 (Fig. 1e, f). 

THY1, a GPI-anchored protein involved cell adhesion, migration, and polarity, can suppress lung 

metastasis when its integrin signaling is inhibited 31-32. THY1, which regulates cancer cell 

migration and invasion, also appears epigenetically controlled. These molecular profiles indicate 

that malignant transformation from NC to Ca regions, along with DNA methylation differences 

within Ca regions, may underlie varying EMT phenotypes in tumor cells 33-34. 

WGS results further supported cancer progression from NC to Ca regions. We detected 

mutations in KMT2C (Y987H), the most frequently mutated histone methyltransferase in breast 

cancer 35, across all regions (Fig. 1g). PIK3CA (H1047R), a known cancer driver, was mutated in 

all regions except NC-1. Mutations in transcription factor FOXA1 (R262P) and histone 

demethylase KDM6A (P281R) were specific to Ca regions (Fig. 1h). Copy number variation 
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(CNV) analysis revealed chromosomal abnormalities in Ca regions (Fig.1i). These findings 

suggest that tumor development occurred against a background of clonal mammary gland 

expansion 36. Overall, multiregional analyses indicated that breast cancer follows a well-

characterized molecular trajectory from NC to Ca regions. Importantly, these molecular features 

aligned closely with histological observations, especially regarding gene regulation. 

 

Spatial analysis of the breast cancer at single-cell resolution 

To investigate the molecular mechanisms of metastasis in detail, we performed spatial gene 

expression analysis at single-cell resolution on primary tumors and paired axillary metastatic 

lymph nodes from the patient shown in Fig. 1. In addition to the primary tumor adjacent to the 

bulk analysis region and lymph node metastases from the same case, we included a tumor-

draining lymph node (TdL) as a comparison specimen (Fig. 2a). The TdL was a clinically 

diagnosed as metastasis-negative by rapid intraoperative evaluation. 

We applied Xenium spatial gene expression profiling using a custom 380-gene breast cancer 

panel (refer to Supplementary Table 3 for the gene list). Across the primary tumor, metastatic 

lymph node and TdL, Xenium detected 1,005,436 cells (Fig. 2b). Using gene expression 

signatures 37-39 and histological location information, we annotated clusters by major cell types. 

The luminal cell cluster was subdivided into two clusters, (i) and (ii), with (i) further branching 

into four subclusters: L1: luminal 1; L2: luminal 2; B: basal; and M: mesenchymal like (Fig. 2c). 

We identified genes significantly upregulated within each cluster. KRT8 and KRT18, markers of 

mammary ductal epithelial cells, were enriched in L1 and L2, whereas KRT5 and KRT14, 

myoepithelial markers, were enriched in cluster B (Supplementary Fig. 2). Consistent with 

expression information, spatial localization of L1, L2, and B clusters matched the lobular 
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architecture of the mammary gland (Fig. 2d). High ANKRD30A expression in L2 and elevated 

KIT and KRT23 expression in L1 aligned with two previously reported mature luminal cell types 

40: mature luminal cell 2 (KRT18+/ANKRD30A+) and mature luminal cell 1 

(KRT18+/KRT23+/KIT+). L1, L2, and B clustered on the lobules, whereas M cells were 

distributed sporadically throughout the tumor, suggesting reduced cell adhesion (Fig. 2e). 

Consistent with this, the M cluster showed increased expression of EMT markers, including 

THY1, an EMT-related gene shown in Fig. 1e. Collectively, these findings support a role for 

THY1 expression in EMT initiation from normal lobule cells (L1, L2, and B), potentially 

regulated through DNA methylation. 

Although cluster (i) encompassed lobular and early EMT-stage cells, cluster (ii) localized 

pathologically to tumor regions and comprised definitive cancer cells. Strong ANKRD30A 

expression in cluster (ii) (Fig. 2f) suggested that L2 may be the tumor’s cell of origin 40. Uniform 

manifold approximation and projection (UMAP) showed that metastatic lymph node tumor cells 

formed distinct clusters. Based on high ANKRD30A expression, we defined L2 as the tumor-

originating cell and applied pseudotemporal trajectory analysis using Monocle 3 41. The inferred 

trajectory showed branching from L2 into (ii)-1, progressing to (ii)-2, and finally differentiating 

into metastatic tumor cells in lymph nodes (Fig. 2g). Taken together, these findings suggest a 

progression pathway in which cancer cells originate from L2, acquire EMT potential in the M 

cluster, and ultimately establish metastases within cluster (ii) in lymph nodes. 

 

Spatial analysis of the lymph nodes reveals six transcriptionally distinct EMT states 

When inspecting spatial gene expression data to further investigate the mechanisms underlying 

metastasis, we unexpectedly identified a small cluster of only 30 cells within the TdL, a site 
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clinically diagnosed as metastasis-free; these cells spanned a region approximately 200 μm in 

diameter (Fig. 3a). Gene expression analysis revealed clear KRT19 expression, an epithelial 

marker absent in normal lymph node cells. Additional hematoxylin and eosin (HE) staining 

confirmed their morphology was consistent with cancer cells. The identification of these cells in 

the TdL provided a rare opportunity to examine molecular events at an extremely early stage of 

metastasis. This form of early dissemination is clinically referred to as isolated tumor cells 

(ITCs), a term we adopt hereafter. 

When we visualized ITCs on the UMAP plane, we observed transcriptional heterogeneity (Fig. 

3b, left panel), indicating that ITCs comprise several distinct cell types. To better characterize 

the biology of ITCs and the roles of different cell states in metastasis, we applied nonhierarchical 

clustering to subclassify tumor cells into six groups (C1–C6) and assigned each ITC to one of 

these clusters (Fig. 3b, right panel). Owing to the small number of ITCs detected, subsequent 

analyses focused on the clusters to which each ITC mapped. For each subpopulation associated 

with an ITC, we identified distinct signaling pathways linking histology, spatial location, and 

gene expression (Fig. 3c–e and Supplementary Table 4). 

C6 occupied a position on the UMAP closest to EMT initiation (corresponding to the M cluster 

in Fig. 2c). Its scattered distribution within the primary tumor suggested low intercellular 

adhesion. C6 cells expressed high levels of ETM-related markers, such as VIM and CDH3, as 

well as stemness markers characteristic of breast cancer, including CD24low and CD44high (Fig. 

3d). In contrast, epithelial marker expression was low, indicating a sustained mesenchymal 

phenotype. Gene enrichment analysis showed activation of EMT, stem cell signaling, TGF-β 

signaling, WNT signaling, immune checkpoint pathways, and antianoikis signaling (Fig. 3e). 

Signals from the microenvironment, such as TGF-β and Wnt ligands, induce various EMT-
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related transcription factors 42-43. EMT also promotes PD-L1 expression, activating immune 

checkpoint pathways 44-45. These findings suggest that C6 represents tumor cells in an extreme 

mesenchymal phenotype, capable of evading anoikis and immune clearance. In contrast, C4 most 

strongly retained epithelial features and was the most predominant cell population within lymph 

node metastases, forming the tumor mass (Fig. 3c). C4 cells showed enrichment of cholesterol 

homeostasis and fatty acid metabolism pathways, with upregulation of fatty acid metabolism–

related molecules in metastatic lymph nodes (Fig. 3e, f). A previous mouse-based lymph node 

metastasis study demonstrated that a metabolic shift toward FAO in tumor cells is required for 

lymph node colonization by cancer cells 8. Thus, C4 represents a cancer cell population that has 

acquired an extreme epithelial phenotype and metabolic reprogramming suited for metastatic 

growth. 

Clusters C1, C2, C3, and C5 represented hybrid epithelial–mesenchymal (EM) cell populations 

that coexpressed epithelial and mesenchymal markers (Fig. 3d). The degree of coexpression 

differs among clusters, each cluster exhibited distinct features. C5 showed the strongest 

enrichment for the G2M checkpoint pathway (Fig. 3g). Prior studies have indicated that breast 

cancers with G2M activity display higher proliferative activity, increased MYC pathway 

activation, earlier metastasis, and worse survival 46, suggesting that C5 may represent a more 

aggressive hybrid EMT subpopulation. C3 was enriched for VEGF signaling and glycolysis, 

likely reflecting a hypoxic environment in the tumor core that promotes angiogenesis and 

glycolysis 47. C2, localized at the tumor periphery, i.e., the invasive front, displayed activation of 

matrix metalloproteinases (MMPs) and canonical Wnt signaling. Cells at tumor margins exhibit 

EM plasticity and migratory behavior 48, with MMP signaling 42 and the Wnt/β catenin pathway 

49 known to promote invasion. Canonical Wnt signaling was also enriched in C2 and hybrid 
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EMT subpopulations (C3 and C6), consistent with reports that Wnt7A/B maintains the hybrid 

EM state 12,48. 

C1 showed activation of retinoid metabolism and lipid transport pathways. Retinoic acid 

activates retinoic acid receptors and retinoid X receptors, driving expression of fatty acid 

metabolism genes 50. Considering that C1 gene expression aligns closely with C4 (the most 

significantly proliferating cluster in lymph node metastases, involving elevated fatty acid 

metabolism), we speculate that C1 may act as a precursor population to C4. 

To validate these results, we added spatial transcriptome and protein expression analysis of 

lymph node metastases in different patients. As a result, expression of the FASN which was the 

molecule shown in Figure 3f was confirmed in metastatic lymph nodes in both transcriptome and 

protein expression(Supplementary figure 3). We also conducted multiplex fluorescent 

immunostaining of EMT-associated molecules in tumour cells was performed. As a result, we 

identified tumour cells co-expressing both epithelial markers and mesenchymal markers 

simultaneously(Supplementary Figure 4). This observation in patient of breast cancer 

demonstrates that a genuine EMT continuum does indeed exist. 

Collectively, these findings suggest that hybrid EM cells undergo functional adaptation within 

primary tumor, with C6 as a possible EMT origin, C2 as an intermediate, C3 and C5 representing 

divergent aggressive states, and C1 transitioning toward the epithelialized, proliferative C4. The 

important thing is that each hybrid EMT subtype has different functional capabilities and that 

these cells are present in primary tumour from the very early stages of metastasis (Fig. 3h). 

 

Analysis of the tumor microenvironment in metastasized lymph node 
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The major bottleneck for cancer cells infiltrating a lymph node is the new tumor 

microenvironment (TME) 51. To address this, we compared interactions between tumor cells and 

their surrounding TME in the TdL and the metastatic lymph node (Fig. 4a). Notably, we detected 

distinct interaction patterns specific to each TME (Fig. 4b). One interaction detected uniquely in 

the TdL was the CD45–MRC1 ligand–receptor interaction, occurring between CD45 on T cells 

and MRC1 on macrophages (Fig. 4c). MRC1, an endocytosis receptor belonging to the C-type 

lectin family, is expressed on cells like dendritic cells, macrophages, and endothelial cells 52. It 

has been shown to inhibit CD45 activity on T cells via direct interaction, leading to upregulation 

of the immune checkpoint protein CTLA4 and induction of antigen-specific T cell tolerance 53-55. 

Therefore, immune escape may begin through this mechanism in the TdL. 

Metastatic lymph nodes uniquely exhibited coinhibitory ligand–receptor interactions, such as 

VEGFA–KDR and CD86–CTLA4, consistent with the promotion of angiogenesis and the 

establishment of a T cell–exhausted environment already formed at this stage (Fig. 4d). Among 

interactions involving collagen, cancer-associated fibroblasts (CAFs) exhibited the highest 

number of interactions (Supplementary Fig. 5). Representative interactions in metastatic lymph 

nodes included COL1A1–CD44 and COL4A1–CD44, both known to promote tumor 

proliferation and progression 56-57. In the chemokine signaling category, the CXCL16–CXCR6 

interaction was particularly prominent in metastatic lymph nodes (Supplementary Fig. 5). High 

CXCL16 expression is associated with histological malignancy and is implicated in tumor 

progression and metastasis via activation of the CXCL16–CXCR6 axis 58. These TME-derived 

signals appear to constitute necessary conditions for successful metastasis. 

 

Transcriptional profiling of hybrid EMT and its association with patient outcomes 
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Prompted by the preceding analyses, we sought to determine whether the transcriptional profiles 

we identified are associated with patient prognosis in a broader clinical context. To this end, we 

reanalyzed a previously reported scRNA-seq dataset from metastatic lymph nodes of patients 

with breast cancer 4 (Fig. 5a). Further clustering of cancer cells from the dataset revealed five 

clusters (sc8,sc4,sc2,sc15 and sc10) (Fig. 5b). According to publicly available information, 

sc2,sc4 and sc8 were metastatic lymph node-derived samples, and sc15, sc10 was derived from 

the primary tumor. A metabolic shift toward fatty acids were observed in metastatic lymph node-

derived samples(sc2,sc4 and sc8)（Fig. 5c). These observations are consistent with our results 

shown in Figure 3 and support our findings that a metabolic shift toward fatty acid metabolism is 

necessary for the formation of metastatic colonies in lymph nodes. To investigate whether 

molecular subtype signatures derived from our Xenium data are associated with clinical 

outcomes, we evaluated their prognostic relevance using the METABRIC dataset 59. 

Interestingly, the subtypes associated with poor prognosis were not clusters that formed 

metastatic colonies in lymph node (e.g., C4) or those showing strong mesenchymal features (C6) 

but rather clusters C5 and C3, which exhibited signatures of G2M cell cycle progression and 

increased glycolytic activity (Supplementary Fig. 6). 

To validate this finding, we mapped the hybrid EM clusters identified in our Xenium analysis 

(C1–C6) to the corresponding cancer cell subclusters (sc2, sc4, sc8, sc10, and sc15) in the public 

scRNA-seq dataset. This revealed a one-to-one correspondence between C5 and sc8 and between 

C6 and sc15 (Fig. 5d). Consistent with our findings, only sc8 (corresponding to the C5 signature 

in our Xenium data) was significantly associated with poor prognosis [log-rank P = 2e-09, 

hazard ratio (HR) = 1.527, 95% confidence interval (CI) = 1.329–1.755] (Fig. 5e). In contrast, 

sc15, which displayed the highest mesenchymal programming and corresponded to the C6 
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signature in our Xenium data, tended to more favorable prognosis (log-rank P = 0.01, HR = 

0.836, 95% CI = 0.727–0.961, Supplementary Fig. 7). 

 

Discussion 

In this study, we tracked the entire metastatic cascade of breast cancer at single-cell resolution 

and identified the relationship between spatial evolution of tumour cells  and dynamic 

heterogeneity within the EMT spectrum. Our capture of early-stage metastatic events, including 

exceptionally early dissemination to lymph nodes, provides a rare in vivo snapshot of EMT 

dynamics during initial colonization. Thus, we were able to uncover distinct subpopulations with 

specific biological roles and their potential clinical relevance.  

Through detailed analysis of pioneering metastatic tumour cells within metastatic cascade, we 

identified six distinct types of hybrid epithelial–mesenchymal (EM) cells that play key roles in 

the early stages of metastasis. The subpopulation that underwent a lipid metabolic shift 

successfully formed colonies in lymph nodes. This is consistent with previous studies indicating 

that FAO supports lymph node metastasis in breast cancer 8 . Interestingly, the subpopulation 

responsible for forming lymph node colonies that underwent a lipid metabolic shift, as well as 

the subpopulation with the most mesenchymal features, was not associated with poor clinical 

prognosis. This supports previous evidence that mesenchymal-like phenotypes may correlate 

with favorable outcomes in patients with breast cancer 60. Instead, poor prognosis was linked to 

transcriptional programs associated with MYC and E2F signaling, along with increased aerobic 

glycolysis and G2/M cell cycle activity. In particular, MYC reprograms metabolism toward 

enhanced glycolytic flux 61, and breast cancers with enriched G2M signaling have been 

associated with elevated MYC pathway activity, increased proliferation, early distant metastasis, 
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and worse survival 46. Collectively, these findings suggest that distinct EMT subpopulations 

drive different aspects of tumor progression: some mediate niche colonization, whereas others 

may drive aggressive metastasis and recurrence, implying the need for tailored therapeutic 

strategies 11. A key question concerns how hybrid EM cells disseminate in lymph nodes: do 

metastases arise via the sequential model, where fully EMT-induced M cells colonize distant 

sites by MET, or via the cooperative model, which mesenchymal cells support Epithelial cells, 

which serve as metastasis-initiating cells 62? Both models are considered plausible based on prior 

studies. In the present study, the observation of multiple EMT states in ITCs at an extremely 

early metastatic stage (Fig. 3a), along with similar mixtures of hybrid EM cells in the primary 

tumor (Fig. 3h), supports the cooperative metastasis model, where different cell states 

collaborate to initiate metastasis. 

We also examined the early interactions between metastatic tumor cells and the lymph node 

microenvironment. Comparisons between the TdL and metastatic lymph nodes showed that a 

coordinated, immunosuppressive environment forms around tumor cells in newly colonized 

niches. These environments are likely shaped, in part, by the metabolic phenotypes of the tumor 

cells themselves. For example, lactic acid, a byproduct of glycolysis, has been shown to promote 

alternative splicing in T cells and enhance CTLA-4 expression in a Foxp3-dependent manner 63. 

The plasticity of EMT observed in this study may contribute to the ecosystem that supports 

metastasis outgrowth, including immunomodulatory effects 64. 

Despite the novel insights in this study, it has several limitations. First, our in-depth analysis was 

conducted on tissue from a single patient, limiting the generalizability of our conclusions. 

Second, owing to the limited number of cells available, we were unable to perform molecular or 

biochemical validations. However, by integrating our findings with prior knowledge and publicly 
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available single-cell RNA-seq datasets, we were able to infer the likely roles of key 

subpopulations and validate their clinical relevance. On the other hand, it is important to note 

that prognostic validation is indirect. In this analysis, we attempted to correlate the observed 

gene expression modules with the patient outcomes.  

We have to carefully evaluate the confounding factor when the detected prognostic signatures of 

the tumor cells at the single cell level should be applied to the signature of the bulk tumor 

tissues. Neoplastic heterogeneity as well as the non-malignant cell types are represented in the 

latter profiles. Nevertheless, we believe this analysis has an important meaning, since the single 

cell analysis at this scale is not easy. Finally, we could not definitively distinguish whether the 

observed metastasis occurred via hematogenous or lymphatic dissemination. Future studies 

should also aim to elucidate whether distinct molecular features exist between these metastatic 

pathways. 

 

 

Methods 

Clinical sample 

The analysis of tumor samples was performed in accordance with relevant national laws and 

recognized ethical guidelines (Declaration of Helsinki) for the protection of people participating 

in biomedical research. This study was approved by the Clinical Ethics Committee of St. 

Marianna University School of Medicine (approval number: 2297-i103). Informed consent was 

obtained from the patient. The surgical specimen was from an 80-year-old female patient, who 

received surgery for breast cancer (BRC-26). This study is based on samples taken from surgical 

residues that were available after histopathological analyses and were not required for diagnosis. 
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There is no interference with clinical practice. The patient had not received neoadjuvant or 

adjuvant chemotherapy (detailed clinicopathologic findings are provided in Supplementary Table 

1). The same specimen was used in our previous study 65. For multiregional, multi-omics 

analyses, fresh frozen samples of the primary tumor and adjacent normal tissue were used. Two 

nontumor regions (NC1 and NC2) and two tumor regions (Ca3, a solid tumor region, and Ca4, a 

sparse tumor region), as well as normal breast tissue from the same specimen (used as the 

control), were microdissected using the AVENIO MilliSect system (Roche, Pleasanton, CA) and 

subjected to multi-omics analysis, including RNA-seq, WGS, and EM-seq. For spatial analyses 

via Xenium, formalin-fixed paraffin-embedded (FFPE) samples of the primary tumor, lymph 

node metastases, and TdL were used. 

 

RNA-seq 

RNA-seq was conducted as previously described 65. Briefly, total RNA was extracted from 

frozen normal breast tissue using the RNeasy Micro Kit (Qiagen). RNA-seq libraries were 

prepared using the SMART-Seq Stranded Kit (Takara Bio). Paired-end 150-bp sequencing was 

performed on the NovaSeq 6000 system (Illumina). 

 

RNA-seq data analysis 

RNA-seq data from the normal tissue obtained in this study and four tumor regions from our 

previous study 65 were analyzed. Adapter trimming was performed using fastp (v0.23.2) 66. Reads 

mapping to rRNA were removed using Bowtie 2 (v2.3.4.3) 67. The retained reads were aligned to 

the human reference genome GRCh38.p12 using STAR (v2.7.5c) 68. Gene-level read counts 

were obtained using featureCounts (v2.0.2) 69, and RPKM values were calculated. DEGs 
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between histological classes were identified using DESeq2 (v1.42.1) 70 applying the Wald test 

with an adjusted P-value cutoff of <0.1. Gene enrichment analysis was performed using 

Metascape 71 . 

 

Preparation of EM-seq and WGS libraries 

EM-seq and WGS library preparations were conducted as described previously 72. Briefly, 

gDNA was extracted from normal tissue using NucleoSpin Tissue XS (MACHEREY-NAGEL), 

and 100 ng of this gDNA was fragmented using the M220 Focused-ultrasonicator (Covaris). 

Adapter ligation was conducted using the NEBNext Enzymatic Methyl-seq Kit (New England 

BioLabs). Half of the adapter-ligated DNA was used for WGS library preparation (five cycles 

PCR amplification), and the other half was employed for EM-seq library preparation, which 

included TET oxidation, APOBEC conversion, and PCR amplification (six cycles). Libraries 

were sequenced as paired-end 150-bp reads on the NovaSeq 6000 system (Illumina). 

 

EM-seq data analysis 

EM-seq data from the normal tissue obtained in this study and four tumor regions from our 

previous study were analyzed following established protocols 65. Briefly, adapter trimming was 

conducted using Trim Galore (v0.6.4_dev; https://github.com/FelixKrueger/TrimGalore). 

Trimmed reads were aligned to the human reference genome using Bismark (v0.22.1) 73. 

Duplicate reads were removed using deduplicate_bismark, and methylation information in a CpG 

context was extracted via bismark_methylation_extractor. Genome-wide methylation profiles, 

including patterns in CpG islands, CpG shores, and promoter regions, were visualized as 

described previously 74. Differentially methylated regions (DMRs) among NC-1, NC-2, Ca-3, 
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and Ca-4 and the broader NC and Ca regions were identified using metilene v0.2-8 75, as per our 

previous study 65. Promotor methylation was analyzed among NC-1, NC-2, Ca-3, and Ca-4 

spanning 1 kb upstream to 500 bp downstream of transcription start sites, focusing on DMRs 

with methylation differences >10%. Visualisation was performed using IGV 76. 

 

Point mutation detection 

WGS reads were aligned to the human reference genome using BWA-MEM (v0.7.17) 77 with 

default settings. Duplicate reads were marked using Picard MarkDuplicates (v2.23.8) 

(https://broadinstitute.github.io/picard/). Somatic mutations were called using GATK Mutect2 

and filtered with FilterMutectCalls (v4.1.3.0) 78. Variants were annotated via ANNOVAR 79. 

 

CNV detection 

CNVs in NC-1, NC-2, Ca-3, Ca-4, and normal samples were detected using FACETS (v0.6.2), 

as described previously 74. Copy number gains and losses were defined as ≥4 copies and ≤1 

copy, respectively. 

 

Spatial heatmaps of gene expression levels and average methylation rates 

Spatial heatmaps of gene expression levels and average methylation rates were generated using a 

custom workflow implemented on Nikon’s pilot analysis platform. Specifically, microscopic 

images (Olympus BX53, 2× objective) with substantial overlap were aligned using similarity 

transformation based on scale-invariant feature transform–detected feature point pairs. This 

alignment produced a composite image of the entire specimen with a common coordinate 

system. Manually dissected region contours were aligned to this coordinate system. Regions of 
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interest were color-coded by gene expression levels or average methylation rates. The average 

methylation rate was calculated as the mean frequency of methylation at CpG sites covered by at 

least five reads within the predefined promoter regions. 

 

In situ gene expression analysis via Xenium 

Spatial subclonal analysis at single-cell resolution was performed using the Xenium Slides & 

Sample Prep Reagents (10× Genomics), a predesigned human breast panel, and a custom panel, 

as previously described 80. Briefly, FFPE tissue sections (5 µm thickness) of the primary tumor, 

lymph node metastases, and TdL were mounted onto Xenium slides. Following deparaffinization 

and decrosslinking, probe hybridization, probe circularization, and rolling circle amplification 

were performed. Detection of amplified probes was conducted using the Xenium Analyzer (10× 

Genomics). In total, 380 target genes, comprising 280 from the predesigned panel and 100 from 

the custom panel, are listed in Supplementary Table 1. 

 

Computational processing of Xenium in situ expression data and analysis 

Raw output files from the Xenium Analyzer were processed using Seurat (v5.0.2) 81. Data 

normalization was performed using the SCTransform method. Clustering analysis and UMAP 

visualization were conducted using the first 30 principal components, with the former performed 

via the FindNeighbors and FindClustersing functions. The same parameters were applied to 

subclustering analyses (Figs. 2c and 3). For each cluster relevant to downstream analysis, DEGs 

were identified using the FindMarkers() function in Seurat with the default parameters (only.pos 

= TRUE, min.pct = 0.25, logfc.threshold = 0.25). Cluster annotation was based on previously 

published gene expression signatures 37-39 and spatial histological context. 
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Trajectory analysis 

Trajectory and pseudotime analysis of luminal cells was performed using Monocle 3 (v1.3.4) 41. 

Preprocessing was performed using the preprocess_cds function, with the number of dimensions 

set to 100. Dimensionality reduction and clustering were implemented using the 

reduce_dimension and cluster_cells functions, respectively. Principal graph learning was 

conducted with the learn_graph function. Based on spatial and Xenium data, mature luminal cell 

2 was designated as the trajectory root. Pseudotime ordering was visualized using the plot_cells 

function. 

 

Identifying enriched gene signatures in Xenium clusters 

To investigate the functional characteristics of Xenium clusters (C1–C6 in Fig. 3e), pathway and 

gene set enrichment analyses were performed using Metascape 71 based on the top 50 DEGs per 

cluster (Supplementary Table 5). Enrichment was assessed across GO categories, including 

Biological Process, Cellular Component, and Molecular Function, as well as other biological 

pathways. 

 

Analysis of intercellular communication networks 

Intercellular communication within metastatic lymph nodes and the TdL was analyzed using the 

CellChat package (v1.6.1) 82, which quantitatively identifies cell–cell interactions and 

communications. Following the official pipeline (https://github.com/jinworks/CellChat), 

analyses were performed using default settings. Statistically significant ligand–receptor 
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interactions (P < 0.05) were extracted. Visualization of cell–cell interactions was achieved using 

circle plots, bar plots, heatmaps, and violin plots. 

Multiplexed immunostaining by PhenoCycler 

Multiplexed immunostaining was performed using the PhenoCycler system (Akoya Biosciences) 

according to the manufacturer’s instruction. Briefly, FFPE tissue sections were prepared at 5-µm 

thickness adjacent to those for Visium analysis and mounted onto the coverslip. The section was 

deparaffinized, and antigen activation was performed using pressure cooker for 20 min. Then, 

tissue sections were stained with 11 antibodies for 3 h (Supplementary Table 8). The section was 

washed, and the antibodies were fixed. Imaging analysis was conducted using the PhenoCycler 

instrument (Akoya Biosciences) and BZ-X810 fluorescence microscope (Keyence). 

 

Computational processing of PhenoCycler multiplexed immunostaining data 

Data processing was performed using the CODEX Processor (version 1.8). Visualization was 

performed using the obtained QPTIFF file by QuPath (version 0.3.2) 83. Cell segmentation was 

performed using StarDist (QuPath StarDist extension, version 0.3.2)84 on the QuPath software. 

Pixels in the QPTIFF images encoded as 8-bit integers (0–255) were used as expression levels of 

each protein. 

 

 

Published dataset processing 

We downloaded a publicly available single-cell RNA-seq dataset (GSE180286 from Guan et al. 

4). Data integration and clustering were performed in Seurat (v5.0.2) 81, focusing on HER2-

positive breast tumors and two lymph node samples (GSM5457205, GSM5457206, and 
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GSM5457207). Louvain clustering at a resolution of 0.1 yielded nine clusters: one T cell cluster, 

three B cell clusters, one NK cell cluster, one CAF1 cluster, and one macrophage cluster. 

Clusters of the same cell type were merged (Fig. 5a). Subclustering was performed on the cancer 

cell populations (Fig. 5b). 

 

Clinical validation using METABRIC data 

Clinical validation was conducted using the METABRIC dataset 59. METABRIC gene 

transcriptome data, as well as clinical and sample level metadata, were downloaded from 

cBioPortal (https://www.cbioportal.org). Analysis was performed on 1,980 breast cancer cases 

with available survival outcomes. For each cancer cluster defined in Fig. 5c, the top 100 DEGs 

(Supplementary Table 6) were used to score individual METABRIC samples. ROC curve 

analysis was used to define optimal cutoffs for stratifying patients into high and low score 

groups. Disease-free survival was analyzed using the survival (v3.5-7) and survminer (v0.4.9) R 

packages. HRs and 95% CIs were calculated using Cox proportional hazards models. Statistical 

significance was evaluated via the log-rank test. 

 

Statistical Analysis 

Statistical methods and tests are detailed in the figure legends. All analyses were performed 

using R (v4.3.2) or Python. 

 

Data availability 

The Xenium and bulk multi-omics data supporting the findings of this study are available at the 

DDBJ Japanese Genotype-phenotype Archive (https://gr-sharingdbs.dbcls.jp) under accession 
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number JGAD000946. The single-cell RNA-seq dataset from Guan et al. 4 was downloaded from 

Gene Expression Omnibus (GSE180286). METABRIC transcriptome and clinical data were 

downloaded from cBioPortal (https://www.cbioportal.org). Additional data are available from 

the corresponding authors upon reasonable request. 
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Figure Legends 

 

Fig. 1 | Multi-omics analysis across regions of breast cancer tissue. 

a)HE images of breast cancer tissue with regions sampled for multi-omics analysis. Two 

noncancerous regions (NC-1 and NC-2; pink lines) and two cancerous regions (Ca-3, a solid 

tumor region; Ca-4, a sparse tumor region; light blue lines) were dissected (also refer to 

Supplementary Fig. 1). Scale bar: 1 mm. 

b) Gene enrichment analysis using DEGs from noncancerous (upper panel) and cancerous 

regions (lower panel). Bar graphs show the top 10 enriched clusters; color scale indicates −log10 

adjusted P-values. 
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c) Violin plots showing genome-wide (50 kb window) methylation rates measured by nanoEM 

across each region. Red line indicate mean.P-values were calculated using the two-sided 

Wilcoxon rank-sum test with Bonferroni correction. *P < 0.05, **P < 0.01, ***P < 0.001, ****P 

< 0.0001. 

d) Heatmaps showing Z-score–normalized gene expression levels (from TPM values) and 

promoter CpG methylation levels of selected genes involved in cancer metastasis in Ca-3 and 

Ca-4. Promoter regions were defined as 1 kb upstream to 500 bp downstream of the transcription 

start site. Genes with the most variable promoter methylation across NC-1, NC-2, Ca-3, Ca-4, 

and normal breast tissue were selected. 

e) Spatial visualization of THY1 gene expression (left) and promotor methylation (right) using 

our custom viewer. Color scale represents Z-scores (normalized from TPM) for gene expression 

and average methylation rate for methylation. 

f) Methylation pattern of THY1 detected by EM-seq visualized using the IGV; the middle panel 

shows a heatmap of methylation rates across regions. 

g) Mutation status of breast cancer-related genes across regions. Categories include MAPK-PI3K 

signaling, cell cycle regulation, DNA damage and apoptosis, chromatin remodeling, cell 

adhesion, transcription regulation, and clinically relevant genes. 

h) Representative mutations in KMT2C (Y987H) and KDM6A (P281R) across regions. 

i) Genome-wide copy number profiles by chromosome for each region, with cancer-related 

genes showing gains (red) or losses (blue) indicated in the inset. 

Fig. 2 | Spatial analysis of the breast cancer at single-cell resolution. 

a)Workflow of the study. Primary tumor (P), metastatic lymph node (ML), tumor-draining 

lymph node (TdL) samples were collected and processed for Xenium analysis. Middle panel: HE 

staining; right panel: annotated major cell types from b). 

b) UMAP of 1,005,436 cells analyzed via Xenium Explore, annotated by cell type using 

canonical markers and histological location. Right panel shows subpopulation of luminal cells (n 

= 245,385 cells). 

c) UMAP visualization of luminal cells ; right panel shows subclustered labeled as mature 

luminal 1 (L1), mature luminal 2 (L2), basal (B), and mesenchymal like (M) cells. 

d) Histological location and gene expression in clusters representing normal lobules. Violin plot 

shows log-normalized expression levels of markers for mature luminal (ANKRD30A and KIT), 

basal (KRT23) cells. Scale bar: 100 μm. 

e) Histological location of M clusters. Violin plot shows log-normalized expression of DEGs for 

M clusters; bubble plot shows EMT-related gene expression. Dot size represents the percentage 

of cells expressing. Color indicates mean expression relative to other subsets. Scale bar: 500 μm. 

f) Histological location in cancer cluster(ii)v and expression of L2 marker ANKRD30A. 
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g) Monocle 3 trajectory analysis of luminal cell differentiation, revealing two main trajectories. 

The UMAP axes correspond to b). vCells are color-coded by pseudotime. Red winding lines in 

the objects indicate putative developmental trajectories. 

 

Fig. 3 | Spatial analysis of lymph nodes reveals six transcriptionally distinct EMT states. 

a) Isolated tumor cells (ITCs) within the TdL. Enlarged view (upper panel), KRT19 expression 

(middle panel), and HE staining (lower panel). Scale bar: 100 μm. 

b) UMAP placement of ITCs and reclustering of tumor cells, cell numbers per cluster shown in 

footnotes. 

c) Histological localization of cancer cell clusters. 

d) Bubble plot showing expression of related to EMT transcription factors, adhesion molecules, 

and stemness markers across clusters; violin plot shows representative marker expression. 

e) Pathway enrichment using top 50 DEGs (Supplementary Table 5) in clusters C1–C6; heatmap 

shows enrichment scores (gray: not significant). 

f) Xenium spatial plot of FASN and SCD transcripts. Color shows log-normalized expression 

levels.  

g) Violin plot of G2M signature scores across cancer clusters using Seurat; P-values were 

determined via the Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 

0.0001.  

h) Representation of cancer clusters within the primary tumor; cell counts shown in footnotes. 

 

Fig. 4 | Analysis of the TME in metastatic lymph nodes. 

a)ROI analyzed for cell–cell communication. Pie chart shows proportions of TME components. 

Scale bar: 100 μm. 

b) Overview of intercellular interactions. Arrows and edge show directionality; color indicates 

cell type; circle size is proportional to cell count; edge thickness indicates the number of 

interactions between populations. Bar chart ranks signaling pathways by differential information 

flow between metastatic lymph nodes and the TdL (dark red shows enrichment in metastatic 

lymph nodes; dark green shows enrichment in the TdL). 

c) Heatmaps showing CD45 signaling interactions in metastatic lymph nodes; color scale 

represents communication probabilities; empty squares show zero probability. Violin plot shows 

gene expression levels. 

d) VEGF and CD86 signaling interactions in the TdL, shown as heatmaps and violin plots, as in 

c). 

 

Fig. 5 | Transcriptional profiling of hybrid EMT and its association with patient outcomes.  
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a) UMAP annotated by dataset (left) and major cell types (right). Datasets: primary tumor 

(GSM5457205); lymph nodes (GSM5457206 and GSM5457207). 

b) UMAP of reclustered tumor cells. 

c) Dot plot compares metabolic pathway scores from MSigDB C2 gene sets across subclusters 

(sc2–sc15); color scale shows −log10-adjusted P-value. 

d) Correlation of public tumor clusters (sc2, sc4, sc8, sc10, and sc15) with Xenium clusters (C1–

C6). The top 50 DEGs (Supplementary Table 5) from Xenium clusters were used to generate 

signature scores. Violin and feature plots show Xenium signature scores. The UMAP axes 

correspond to b). C5 and C6 correspond to sc8 and sc15, respectively. 

e) Survival analysis using the METABRIC cohort. Signature scores based on top 100 DEGs 

(Supplementary Table 6) for sc8 and sc15 were computed using UCell. Kaplan–Meier survival 

plots show disease-free survival stratified by high vs. low signature scores. P-values from log-

rank test; adjusted HRs from univariate Cox proportional hazards model, with the low-scores as 

the reference. 
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