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Abstract

Lymph node metastasis correlate with breast cancer prognosis; however, the cellular mechanisms
underlying the earliest metastatic events remain unclear. In spatial transcriptomic analysis of a
patient with breast cancer at single cell resolution, we identified 30 tumor cells representing the
initial metastatic seeding in a lymph node. These cells originated from multiple epithelial—
mesenchymal (EM) transition status and included six distinct subpopulations with biological
significance. Only cells exhibiting metabolic shift toward fatty acid metabolism successfully
established lymph node colonies, implicating this shift in metastatic fitness. The tumor
microenvironment surrounding these cells showed immunosuppressive and tumor-promoting
features, supporting metastasis establishment. Cross-referencing these expression profiles with

public datasets revealed that poor prognosis correlated not with fully mesenchymal or metastatic




populations, but with hybrid EM cells exhibiting epithelial and mesenchymal traits. These
findings highlight the metabolic and phenotypic plasticity of metastatic cells and serve as
translational bridges between the spatial evolution of tumor cells in the extremely early stages of

lymph nodes metastasis and clinical prognosis in breast cancer.

Introduction

Axillary lymph nodes are considered the “first stop” in breast cancer metastasis 2. The presence
of metastatic tumor cells in these nodes correlate with poor prognosis 3. Tumor cell profiles in
metastases have been studied extensively. For example, Lee et al. used a mouse model and found
that a shift toward fatty acid oxidation (FAO), driven by the selective activation of the
transcription coactivator YAP in lymph node metastases, is essential for their establishment &,
Liu et al. used single-cell RNA sequencing (RNA-seq) and spatial transcriptomics to compare
the microenvironments of primary and lymph node metastatic tumors, reporting that in lymph
node metastases, compared with primary tumors, T cell activation, cytotoxicity, and proliferation
are markedly suppressed while dendritic cells show reduced ability to prime and activate T cells
9.

Although the requirements for lymph node metastasis and the niche environment are becoming
clearer, how these molecular characteristics relate to cellular plasticity, possibly involving EMT
and MET, remains uncertain. Notably, almost no studies have reported the first metastatic event
in the lymph nodes. This is because it is difficult to track the trajectory of metastasis in humans,

and it is extremely difficult to observe transient and plastic EMT states in vivo.




Substantial evidence supports the role of epithelial-to-mesenchymal transition (EMT) and
mesenchymal-to-epithelial transition (MET) in metastasis 1. EMT is a cellular process in
which epithelial cells acquire mesenchymal cell characteristics, causing dramatic changes in
tissue structure and function. Cells take on a fibroblast-like morphology and increase their
motility (ability to move) and invasiveness (ability to invade surrounding tissues). MET is a
process that reverses the changes in cellular phenotype induced by EMT. In cancer cells,
suppression of EMT-Transcription factors like TWIST1 is necessary to promote MET, which is
required for proliferation after metastasis '2.Despite extensive debate, it remains unclear how
EMT or MET contributes to metastatic potential and whether it is a necessary condition for
metastasis 191316, A major challenge in addressing this question lies in EMT’s broad and
evolving definition. EMT was once considered a binary switch between epithelial and
mesenchymal states. However, several in vitro studies have shown that EMT progresses
gradually, forming hybrid subpopulations that occupy intermediate states between epithelial and
mesenchymal identities 1728, Interestingly, tumor cell subpopulations nearest to the mesenchymal
state do not necessarily exhibit the highest metastatic potential °. Indeed, high metastatic
potential often lies in the hybrid state. Conversely, evidence suggests that metastatic potential
and the reverse process, MET, are not correlated, indicating that EMT and MET may need to be
considered separately ’. To understand the molecular events driving metastasis, it is essential to
examine how EMT progresses in the primary tumor by dissecting its intermediate states and
how, and to what extent, metastasized cells restore epithelial traits in the lymph node %.

In the present study, we used the Xenium in situ hybridization platform, which enables spatial

gene expression profiling at the single-cell resolution, to track tumour cells in vivo during the




metastasis process. The purpose of the study was to clarify the spatial evolution of tumor cells in

the extremely early stages of breast cancer lymph nodes metastasis.

Results

Multi-omics analysis in each breast cancer region

Before analyzing spatial patterns at the primary site and metastatic lymph node, we first
examined the molecular features of the primary cancer via multiregional bulk analysis. The
patient, an 80-year-old female (BRC-26), underwent surgery without neoadjuvant therapy. Her
clinical diagnosis was stage Il invasive breast carcinoma of the HER2 type, i.e., ER-negative,
PgR-negative, and HER2-positive (for full clinicopathologic details, refer to Supplementary
Table 1). For high-quality molecular analysis, especially RNA-seq, we freshly froze part of the
tumor tissue harvested during surgery. We roughly dissected samples from histologically
noncancerous regions (NC regions; NC-1 and NC-2) and cancerous regions (Ca regions; Ca-3
and Ca-4) (Fig. 1a and Supplementary Fig. 1a). Histologically, Ca-4 appeared sparser and less
adhesive compared with Ca-3 (Supplementary Fig. 1b). We subjected these tissues to RNA-seq,
enzymatic methylation sequencing (EM-seq), and whole-genome sequencing (WGS) (refer to
Supplementary Table 2 for statistical analyses).

We first performed transcriptome analysis using RNA-seq to compare gene expression between
the NC and Ca regions. Of 4,584 differentially expressed genes (DEGS), 2,248 and 2,336 were
significantly upregulated and downregulated in the cancer region (Supplementary Fig. 1c). Gene
pathway enrichment analysis of these DEGs showed that “cell adhesion” pathways were
enriched in NC regions, whereas pathways for “carboxylic acid metabolism,” and “cell cycle”

were enriched in Ca regions (Fig. 1b), suggesting progressive malignant transformation from NC




to Ca regions 2X. DNA methylation analysis revealed more extensive genome-wide
hypomethylation in Ca regions compared with NC regions (Fig. 1c). Furthermore, promoters,
intergenic regions, and gene bodies all showed reduced methylation (Supplementary Fig. 1d).
Hypomethylation of intergenic and intron regions, especially repetitive sequences, can promote
chromosomal instability and mutations, potentially increasing cancer risk 2224, These results
confirm that breast cells undergo malignant transformation as they progress from NC to Ca
regions.

Within Ca regions, we observed significant changes in key metastasis-related genes (Fig. 1d).
Expression of EMT markers, such as Vimentin %, and transcription factors Snail and ZEB2,
considered, known EMT regulators 2?7, increased from Ca-3 to Ca-4. Correspondingly, DNA
methylation levels declined from Ca-3 to Ca-4 (Supplementary Fig. 1e), consistent with previous
reports that EMT-related genes are epigenetically regulated 2830, Similarly, methylation of the
THY1 gene, which was highly expressed in Ca-4, decreased from Ca-3 to Ca-4 (Fig. 1e, f).
THY1, a GPI-anchored protein involved cell adhesion, migration, and polarity, can suppress lung
metastasis when its integrin signaling is inhibited 3132, THY1, which regulates cancer cell
migration and invasion, also appears epigenetically controlled. These molecular profiles indicate
that malignant transformation from NC to Ca regions, along with DNA methylation differences
within Ca regions, may underlie varying EMT phenotypes in tumor cells 334,

WGS results further supported cancer progression from NC to Ca regions. We detected
mutations in KMT2C (Y987H), the most frequently mutated histone methyltransferase in breast
cancer °, across all regions (Fig. 1g). PIK3CA (H1047R), a known cancer driver, was mutated in
all regions except NC-1. Mutations in transcription factor FOXA1 (R262P) and histone

demethylase KDMG6A (P281R) were specific to Ca regions (Fig. 1h). Copy number variation




(CNV) analysis revealed chromosomal abnormalities in Ca regions (Fig.1i). These findings
suggest that tumor development occurred against a background of clonal mammary gland
expansion 6. Overall, multiregional analyses indicated that breast cancer follows a well-
characterized molecular trajectory from NC to Ca regions. Importantly, these molecular features

aligned closely with histological observations, especially regarding gene regulation.

Spatial analysis of the breast cancer at single-cell resolution

To investigate the molecular mechanisms of metastasis in detail, we performed spatial gene
expression analysis at single-cell resolution on primary tumors and paired axillary metastatic
lymph nodes from the patient shown in Fig. 1. In addition to the primary tumor adjacent to the
bulk analysis region and lymph node metastases from the same case, we included a tumor-
draining lymph node (TdL) as a comparison specimen (Fig. 2a). The TdL was a clinically
diagnosed as metastasis-negative by rapid intraoperative evaluation.

We applied Xenium spatial gene expression profiling using a custom 380-gene breast cancer
panel (refer to Supplementary Table 3 for the gene list). Across the primary tumor, metastatic
lymph node and TdL, Xenium detected 1,005,436 cells (Fig. 2b). Using gene expression
signatures 3"%° and histological location information, we annotated clusters by major cell types.
The luminal cell cluster was subdivided into two clusters, (i) and (ii), with (i) further branching
into four subclusters: L1: luminal 1; L2: luminal 2; B: basal; and M: mesenchymal like (Fig. 2c).
We identified genes significantly upregulated within each cluster. KRT8 and KRT18, markers of
mammary ductal epithelial cells, were enriched in L1 and L2, whereas KRT5 and KRT14,
myoepithelial markers, were enriched in cluster B (Supplementary Fig. 2). Consistent with

expression information, spatial localization of L1, L2, and B clusters matched the lobular




architecture of the mammary gland (Fig. 2d). High ANKRD30A expression in L2 and elevated
KIT and KRT23 expression in L1 aligned with two previously reported mature luminal cell types
40: mature luminal cell 2 (KRT18+/ANKRD30A+) and mature luminal cell 1
(KRT18+/KRT23+/KIT+). L1, L2, and B clustered on the lobules, whereas M cells were
distributed sporadically throughout the tumor, suggesting reduced cell adhesion (Fig. 2e).
Consistent with this, the M cluster showed increased expression of EMT markers, including
THY1, an EMT-related gene shown in Fig. 1le. Collectively, these findings support a role for
THY1 expression in EMT initiation from normal lobule cells (L1, L2, and B), potentially
regulated through DNA methylation.

Although cluster (i) encompassed lobular and early EMT-stage cells, cluster (ii) localized
pathologically to tumor regions and comprised definitive cancer cells. Strong ANKRD30A
expression in cluster (ii) (Fig. 2f) suggested that L2 may be the tumor’s cell of origin *°. Uniform
manifold approximation and projection (UMAP) showed that metastatic lymph node tumor cells
formed distinct clusters. Based on high ANKRD30A expression, we defined L2 as the tumor-
originating cell and applied pseudotemporal trajectory analysis using Monocle 3 4. The inferred
trajectory showed branching from L2 into (ii)-1, progressing to (ii)-2, and finally differentiating
into metastatic tumor cells in lymph nodes (Fig. 2g). Taken together, these findings suggest a
progression pathway in which cancer cells originate from L2, acquire EMT potential in the M

cluster, and ultimately establish metastases within cluster (ii) in lymph nodes.

Spatial analysis of the lymph nodes reveals six transcriptionally distinct EMT states
When inspecting spatial gene expression data to further investigate the mechanisms underlying

metastasis, we unexpectedly identified a small cluster of only 30 cells within the TdL, a site




clinically diagnosed as metastasis-free; these cells spanned a region approximately 200 um in
diameter (Fig. 3a). Gene expression analysis revealed clear KRT19 expression, an epithelial
marker absent in normal lymph node cells. Additional hematoxylin and eosin (HE) staining
confirmed their morphology was consistent with cancer cells. The identification of these cells in
the TdL provided a rare opportunity to examine molecular events at an extremely early stage of
metastasis. This form of early dissemination is clinically referred to as isolated tumor cells
(ITCs), a term we adopt hereafter.

When we visualized ITCs on the UMAP plane, we observed transcriptional heterogeneity (Fig.
3b, left panel), indicating that ITCs comprise several distinct cell types. To better characterize
the biology of ITCs and the roles of different cell states in metastasis, we applied nonhierarchical
clustering to subclassify tumor cells into six groups (C1-C6) and assigned each ITC to one of
these clusters (Fig. 3b, right panel). Owing to the small number of ITCs detected, subsequent
analyses focused on the clusters to which each ITC mapped. For each subpopulation associated
with an ITC, we identified distinct signaling pathways linking histology, spatial location, and
gene expression (Fig. 3c—e and Supplementary Table 4).

C6 occupied a position on the UMAP closest to EMT initiation (corresponding to the M cluster
in Fig. 2c). Its scattered distribution within the primary tumor suggested low intercellular
adhesion. C6 cells expressed high levels of ETM-related markers, such as VIM and CDH3, as
well as stemness markers characteristic of breast cancer, including CD24'°" and CD44"9" (Fig.
3d). In contrast, epithelial marker expression was low, indicating a sustained mesenchymal
phenotype. Gene enrichment analysis showed activation of EMT, stem cell signaling, TGF-3
signaling, WNT signaling, immune checkpoint pathways, and antianoikis signaling (Fig. 3e).

Signals from the microenvironment, such as TGF-p and Wnt ligands, induce various EMT-




related transcription factors 4243, EMT also promotes PD-L1 expression, activating immune
checkpoint pathways 4%, These findings suggest that C6 represents tumor cells in an extreme
mesenchymal phenotype, capable of evading anoikis and immune clearance. In contrast, C4 most
strongly retained epithelial features and was the most predominant cell population within lymph
node metastases, forming the tumor mass (Fig. 3c). C4 cells showed enrichment of cholesterol
homeostasis and fatty acid metabolism pathways, with upregulation of fatty acid metabolism—
related molecules in metastatic lymph nodes (Fig. 3e, f). A previous mouse-based lymph node
metastasis study demonstrated that a metabolic shift toward FAO in tumor cells is required for
lymph node colonization by cancer cells 8. Thus, C4 represents a cancer cell population that has
acquired an extreme epithelial phenotype and metabolic reprogramming suited for metastatic
growth.

Clusters C1, C2, C3, and C5 represented hybrid epithelial-mesenchymal (EM) cell populations
that coexpressed epithelial and mesenchymal markers (Fig. 3d). The degree of coexpression
differs among clusters, each cluster exhibited distinct features. C5 showed the strongest
enrichment for the G2M checkpoint pathway (Fig. 3g). Prior studies have indicated that breast
cancers with G2M activity display higher proliferative activity, increased MYC pathway
activation, earlier metastasis, and worse survival ¢, suggesting that C5 may represent a more
aggressive hybrid EMT subpopulation. C3 was enriched for VEGF signaling and glycolysis,
likely reflecting a hypoxic environment in the tumor core that promotes angiogenesis and
glycolysis #7. C2, localized at the tumor periphery, i.e., the invasive front, displayed activation of
matrix metalloproteinases (MMPs) and canonical Wnt signaling. Cells at tumor margins exhibit
EM plasticity and migratory behavior *¢, with MMP signaling #? and the Wnt/p catenin pathway

49 known to promote invasion. Canonical Wnt signaling was also enriched in C2 and hybrid




EMT subpopulations (C3 and C6), consistent with reports that Wnt7A/B maintains the hybrid
EM state 1248,

C1 showed activation of retinoid metabolism and lipid transport pathways. Retinoic acid
activates retinoic acid receptors and retinoid X receptors, driving expression of fatty acid
metabolism genes *°. Considering that C1 gene expression aligns closely with C4 (the most
significantly proliferating cluster in lymph node metastases, involving elevated fatty acid
metabolism), we speculate that C1 may act as a precursor population to C4.

To validate these results, we added spatial transcriptome and protein expression analysis of
lymph node metastases in different patients. As a result, expression of the FASN which was the
molecule shown in Figure 3f was confirmed in metastatic lymph nodes in both transcriptome and
protein expression(Supplementary figure 3). We also conducted multiplex fluorescent
immunostaining of EMT-associated molecules in tumour cells was performed. As a result, we
identified tumour cells co-expressing both epithelial markers and mesenchymal markers
simultaneously(Supplementary Figure 4). This observation in patient of breast cancer
demonstrates that a genuine EMT continuum does indeed exist.

Collectively, these findings suggest that hybrid EM cells undergo functional adaptation within
primary tumor, with C6 as a possible EMT origin, C2 as an intermediate, C3 and C5 representing
divergent aggressive states, and C1 transitioning toward the epithelialized, proliferative C4. The
important thing is that each hybrid EMT subtype has different functional capabilities and that

these cells are present in primary tumour from the very early stages of metastasis (Fig. 3h).

Analysis of the tumor microenvironment in metastasized lymph node




The major bottleneck for cancer cells infiltrating a lymph node is the new tumor
microenvironment (TME) °%. To address this, we compared interactions between tumor cells and
their surrounding TME in the TdL and the metastatic lymph node (Fig. 4a). Notably, we detected
distinct interaction patterns specific to each TME (Fig. 4b). One interaction detected uniquely in
the TdL was the CD45-MRC1 ligand-receptor interaction, occurring between CD45 on T cells
and MRC1 on macrophages (Fig. 4c). MRCL1, an endocytosis receptor belonging to the C-type
lectin family, is expressed on cells like dendritic cells, macrophages, and endothelial cells *2. It
has been shown to inhibit CD45 activity on T cells via direct interaction, leading to upregulation
of the immune checkpoint protein CTLA4 and induction of antigen-specific T cell tolerance >,
Therefore, immune escape may begin through this mechanism in the TdL.

Metastatic lymph nodes uniquely exhibited coinhibitory ligand—receptor interactions, such as
VEGFA-KDR and CD86-CTLAA4, consistent with the promotion of angiogenesis and the
establishment of a T cell-exhausted environment already formed at this stage (Fig. 4d). Among
interactions involving collagen, cancer-associated fibroblasts (CAFs) exhibited the highest
number of interactions (Supplementary Fig. 5). Representative interactions in metastatic lymph
nodes included COL1A1-CD44 and COL4A1-CD44, both known to promote tumor
proliferation and progression %7 In the chemokine signaling category, the CXCL16-CXCR6
interaction was particularly prominent in metastatic lymph nodes (Supplementary Fig. 5). High
CXCL16 expression is associated with histological malignancy and is implicated in tumor
progression and metastasis via activation of the CXCL16-CXCRG6 axis 8. These TME-derived

signals appear to constitute necessary conditions for successful metastasis.

Transcriptional profiling of hybrid EMT and its association with patient outcomes




Prompted by the preceding analyses, we sought to determine whether the transcriptional profiles
we identified are associated with patient prognosis in a broader clinical context. To this end, we
reanalyzed a previously reported SCRNA-seq dataset from metastatic lymph nodes of patients
with breast cancer # (Fig. 5a). Further clustering of cancer cells from the dataset revealed five
clusters (sc8,sc4,sc2,s¢15 and sc10) (Fig. 5b). According to publicly available information,
sc2,sc4 and sc8 were metastatic lymph node-derived samples, and sc15, sc10 was derived from
the primary tumor. A metabolic shift toward fatty acids were observed in metastatic lymph node-

derived samples(sc2,sc4 and sc8) (Fig. 5¢). These observations are consistent with our results

shown in Figure 3 and support our findings that a metabolic shift toward fatty acid metabolism is
necessary for the formation of metastatic colonies in lymph nodes. To investigate whether
molecular subtype signatures derived from our Xenium data are associated with clinical
outcomes, we evaluated their prognostic relevance using the METABRIC dataset *°.
Interestingly, the subtypes associated with poor prognosis were not clusters that formed
metastatic colonies in lymph node (e.g., C4) or those showing strong mesenchymal features (C6)
but rather clusters C5 and C3, which exhibited signatures of G2M cell cycle progression and
increased glycolytic activity (Supplementary Fig. 6).

To validate this finding, we mapped the hybrid EM clusters identified in our Xenium analysis
(C1-C6) to the corresponding cancer cell subclusters (sc2, sc4, sc8, sc10, and sc15) in the public
SCRNA-seq dataset. This revealed a one-to-one correspondence between C5 and sc8 and between
C6 and sc15 (Fig. 5d). Consistent with our findings, only sc8 (corresponding to the C5 signature
in our Xenium data) was significantly associated with poor prognosis [log-rank P = 2e-09,
hazard ratio (HR) = 1.527, 95% confidence interval (CI) = 1.329-1.755] (Fig. 5e). In contrast,

sc15, which displayed the highest mesenchymal programming and corresponded to the C6




signature in our Xenium data, tended to more favorable prognosis (log-rank P = 0.01, HR =

0.836, 95% CI = 0.727-0.961, Supplementary Fig. 7).

Discussion

In this study, we tracked the entire metastatic cascade of breast cancer at single-cell resolution
and identified the relationship between spatial evolution of tumour cells and dynamic
heterogeneity within the EMT spectrum. Our capture of early-stage metastatic events, including
exceptionally early dissemination to lymph nodes, provides a rare in vivo snapshot of EMT
dynamics during initial colonization. Thus, we were able to uncover distinct subpopulations with
specific biological roles and their potential clinical relevance.

Through detailed analysis of pioneering metastatic tumour cells within metastatic cascade, we
identified six distinct types of hybrid epithelial-mesenchymal (EM) cells that play key roles in
the early stages of metastasis. The subpopulation that underwent a lipid metabolic shift
successfully formed colonies in lymph nodes. This is consistent with previous studies indicating
that FAO supports lymph node metastasis in breast cancer & . Interestingly, the subpopulation
responsible for forming lymph node colonies that underwent a lipid metabolic shift, as well as
the subpopulation with the most mesenchymal features, was not associated with poor clinical
prognosis. This supports previous evidence that mesenchymal-like phenotypes may correlate
with favorable outcomes in patients with breast cancer . Instead, poor prognosis was linked to
transcriptional programs associated with MY C and E2F signaling, along with increased aerobic
glycolysis and G2/M cell cycle activity. In particular, MYC reprograms metabolism toward
enhanced glycolytic flux 8, and breast cancers with enriched G2M signaling have been

associated with elevated MY C pathway activity, increased proliferation, early distant metastasis,




and worse survival %6, Collectively, these findings suggest that distinct EMT subpopulations
drive different aspects of tumor progression: some mediate niche colonization, whereas others
may drive aggressive metastasis and recurrence, implying the need for tailored therapeutic
strategies 1. A key question concerns how hybrid EM cells disseminate in lymph nodes: do
metastases arise via the sequential model, where fully EMT-induced M cells colonize distant
sites by MET, or via the cooperative model, which mesenchymal cells support Epithelial cells,
which serve as metastasis-initiating cells ®2? Both models are considered plausible based on prior
studies. In the present study, the observation of multiple EMT states in ITCs at an extremely
early metastatic stage (Fig. 3a), along with similar mixtures of hybrid EM cells in the primary
tumor (Fig. 3h), supports the cooperative metastasis model, where different cell states
collaborate to initiate metastasis.

We also examined the early interactions between metastatic tumor cells and the lymph node
microenvironment. Comparisons between the TdL and metastatic lymph nodes showed that a
coordinated, immunosuppressive environment forms around tumor cells in newly colonized
niches. These environments are likely shaped, in part, by the metabolic phenotypes of the tumor
cells themselves. For example, lactic acid, a byproduct of glycolysis, has been shown to promote
alternative splicing in T cells and enhance CTLA-4 expression in a Foxp3-dependent manner 3.
The plasticity of EMT observed in this study may contribute to the ecosystem that supports
metastasis outgrowth, including immunomodulatory effects 4.

Despite the novel insights in this study, it has several limitations. First, our in-depth analysis was
conducted on tissue from a single patient, limiting the generalizability of our conclusions.
Second, owing to the limited number of cells available, we were unable to perform molecular or

biochemical validations. However, by integrating our findings with prior knowledge and publicly




available single-cell RNA-seq datasets, we were able to infer the likely roles of key
subpopulations and validate their clinical relevance. On the other hand, it is important to note
that prognostic validation is indirect. In this analysis, we attempted to correlate the observed
gene expression modules with the patient outcomes.

We have to carefully evaluate the confounding factor when the detected prognostic signatures of
the tumor cells at the single cell level should be applied to the signature of the bulk tumor
tissues. Neoplastic heterogeneity as well as the non-malignant cell types are represented in the
latter profiles. Nevertheless, we believe this analysis has an important meaning, since the single
cell analysis at this scale is not easy. Finally, we could not definitively distinguish whether the
observed metastasis occurred via hematogenous or lymphatic dissemination. Future studies
should also aim to elucidate whether distinct molecular features exist between these metastatic

pathways.

Methods

Clinical sample

The analysis of tumor samples was performed in accordance with relevant national laws and
recognized ethical guidelines (Declaration of Helsinki) for the protection of people participating
in biomedical research. This study was approved by the Clinical Ethics Committee of St.
Marianna University School of Medicine (approval number: 2297-i103). Informed consent was
obtained from the patient. The surgical specimen was from an 80-year-old female patient, who
received surgery for breast cancer (BRC-26). This study is based on samples taken from surgical

residues that were available after histopathological analyses and were not required for diagnosis.




There is no interference with clinical practice. The patient had not received neoadjuvant or
adjuvant chemotherapy (detailed clinicopathologic findings are provided in Supplementary Table
1). The same specimen was used in our previous study . For multiregional, multi-omics
analyses, fresh frozen samples of the primary tumor and adjacent normal tissue were used. Two
nontumor regions (NC1 and NC2) and two tumor regions (Ca3, a solid tumor region, and Ca4, a
sparse tumor region), as well as normal breast tissue from the same specimen (used as the
control), were microdissected using the AVENIO MilliSect system (Roche, Pleasanton, CA) and
subjected to multi-omics analysis, including RNA-seq, WGS, and EM-seq. For spatial analyses
via Xenium, formalin-fixed paraffin-embedded (FFPE) samples of the primary tumor, lymph

node metastases, and TdL were used.

RNA-seq

RNA-seq was conducted as previously described %. Briefly, total RNA was extracted from
frozen normal breast tissue using the RNeasy Micro Kit (Qiagen). RNA-seq libraries were
prepared using the SMART-Seq Stranded Kit (Takara Bio). Paired-end 150-bp sequencing was

performed on the NovaSeq 6000 system (Illumina).

RNA-seq data analysis

RNA-seq data from the normal tissue obtained in this study and four tumor regions from our
previous study % were analyzed. Adapter trimming was performed using fastp (v0.23.2) %. Reads
mapping to rRNA were removed using Bowtie 2 (v2.3.4.3) % The retained reads were aligned to
the human reference genome GRCh38.p12 using STAR (v2.7.5¢) 8. Gene-level read counts

were obtained using featureCounts (v2.0.2) ®°, and RPKM values were calculated. DEGs




between histological classes were identified using DESeq?2 (v1.42.1) "° applying the Wald test
with an adjusted P-value cutoff of <0.1. Gene enrichment analysis was performed using

Metascape "t .

Preparation of EM-seq and WGS libraries

EM-seq and WGS library preparations were conducted as described previously "2, Briefly,
gDNA was extracted from normal tissue using NucleoSpin Tissue XS (MACHEREY-NAGEL),
and 100 ng of this gDNA was fragmented using the M220 Focused-ultrasonicator (Covaris).
Adapter ligation was conducted using the NEBNext Enzymatic Methyl-seq Kit (New England
BioLabs). Half of the adapter-ligated DNA was used for WGS library preparation (five cycles
PCR amplification), and the other half was employed for EM-seq library preparation, which
included TET oxidation, APOBEC conversion, and PCR amplification (six cycles). Libraries

were sequenced as paired-end 150-bp reads on the NovaSeq 6000 system (lllumina).

EM-seq data analysis

EM-seq data from the normal tissue obtained in this study and four tumor regions from our
previous study were analyzed following established protocols %. Briefly, adapter trimming was
conducted using Trim Galore (v0.6.4_dev; https://github.com/FelixKrueger/TrimGalore).
Trimmed reads were aligned to the human reference genome using Bismark (v0.22.1) 7.
Duplicate reads were removed using deduplicate_bismark, and methylation information in a CpG
context was extracted via bismark_methylation_extractor. Genome-wide methylation profiles,
including patterns in CpG islands, CpG shores, and promoter regions, were visualized as

described previously ™. Differentially methylated regions (DMRs) among NC-1, NC-2, Ca-3,




and Ca-4 and the broader NC and Ca regions were identified using metilene v0.2-8 >, as per our
previous study %. Promotor methylation was analyzed among NC-1, NC-2, Ca-3, and Ca-4
spanning 1 kb upstream to 500 bp downstream of transcription start sites, focusing on DMRs

with methylation differences >10%. Visualisation was performed using IGV “°.

Point mutation detection

WGS reads were aligned to the human reference genome using BWA-MEM (v0.7.17) 77 with
default settings. Duplicate reads were marked using Picard MarkDuplicates (v2.23.8)
(https://broadinstitute.github.io/picard/). Somatic mutations were called using GATK Mutect2

and filtered with FilterMutectCalls (v4.1.3.0) ’®. Variants were annotated via ANNOVAR .

CNV detection
CNVsin NC-1, NC-2, Ca-3, Ca-4, and normal samples were detected using FACETS (v0.6.2),
as described previously . Copy number gains and losses were defined as >4 copies and <1

copy, respectively.

Spatial heatmaps of gene expression levels and average methylation rates

Spatial heatmaps of gene expression levels and average methylation rates were generated using a
custom workflow implemented on Nikon’s pilot analysis platform. Specifically, microscopic
images (Olympus BX53, 2x objective) with substantial overlap were aligned using similarity
transformation based on scale-invariant feature transform—detected feature point pairs. This
alignment produced a composite image of the entire specimen with a common coordinate

system. Manually dissected region contours were aligned to this coordinate system. Regions of




interest were color-coded by gene expression levels or average methylation rates. The average
methylation rate was calculated as the mean frequency of methylation at CpG sites covered by at

least five reads within the predefined promoter regions.

In situ gene expression analysis via Xenium

Spatial subclonal analysis at single-cell resolution was performed using the Xenium Slides &
Sample Prep Reagents (10x Genomics), a predesigned human breast panel, and a custom panel,
as previously described . Briefly, FFPE tissue sections (5 pm thickness) of the primary tumor,
lymph node metastases, and TdL were mounted onto Xenium slides. Following deparaffinization
and decrosslinking, probe hybridization, probe circularization, and rolling circle amplification
were performed. Detection of amplified probes was conducted using the Xenium Analyzer (10x
Genomics). In total, 380 target genes, comprising 280 from the predesigned panel and 100 from

the custom panel, are listed in Supplementary Table 1.

Computational processing of Xenium in situ expression data and analysis

Raw output files from the Xenium Analyzer were processed using Seurat (v5.0.2) 8. Data
normalization was performed using the SCTransform method. Clustering analysis and UMAP
visualization were conducted using the first 30 principal components, with the former performed
via the FindNeighbors and FindClustersing functions. The same parameters were applied to
subclustering analyses (Figs. 2c and 3). For each cluster relevant to downstream analysis, DEGs
were identified using the FindMarkers() function in Seurat with the default parameters (only.pos
= TRUE, min.pct = 0.25, logfc.threshold = 0.25). Cluster annotation was based on previously

published gene expression signatures -° and spatial histological context.




Trajectory analysis

Trajectory and pseudotime analysis of luminal cells was performed using Monocle 3 (v1.3.4) %%,
Preprocessing was performed using the preprocess_cds function, with the number of dimensions
set to 100. Dimensionality reduction and clustering were implemented using the
reduce_dimension and cluster_cells functions, respectively. Principal graph learning was
conducted with the learn_graph function. Based on spatial and Xenium data, mature luminal cell
2 was designated as the trajectory root. Pseudotime ordering was visualized using the plot_cells

function.

Identifying enriched gene signatures in Xenium clusters

To investigate the functional characteristics of Xenium clusters (C1-C6 in Fig. 3e), pathway and
gene set enrichment analyses were performed using Metascape ! based on the top 50 DEGs per
cluster (Supplementary Table 5). Enrichment was assessed across GO categories, including
Biological Process, Cellular Component, and Molecular Function, as well as other biological

pathways.

Analysis of intercellular communication networks

Intercellular communication within metastatic lymph nodes and the TdL was analyzed using the
CellChat package (v1.6.1) 82, which quantitatively identifies cell-cell interactions and
communications. Following the official pipeline (https://github.com/jinworks/CellChat),

analyses were performed using default settings. Statistically significant ligand—receptor




interactions (P < 0.05) were extracted. Visualization of cell—cell interactions was achieved using
circle plots, bar plots, heatmaps, and violin plots.

Multiplexed immunostaining by PhenoCycler

Multiplexed immunostaining was performed using the PhenoCycler system (Akoya Biosciences)
according to the manufacturer’s instruction. Briefly, FFPE tissue sections were prepared at 5-pm
thickness adjacent to those for Visium analysis and mounted onto the coverslip. The section was
deparaffinized, and antigen activation was performed using pressure cooker for 20 min. Then,
tissue sections were stained with 11 antibodies for 3 h (Supplementary Table 8). The section was
washed, and the antibodies were fixed. Imaging analysis was conducted using the PhenoCycler

instrument (Akoya Biosciences) and BZ-X810 fluorescence microscope (Keyence).

Computational processing of PhenoCycler multiplexed immunostaining data

Data processing was performed using the CODEX Processor (version 1.8). Visualization was
performed using the obtained QPTIFF file by QuPath (version 0.3.2) &, Cell segmentation was
performed using StarDist (QuPath StarDist extension, version 0.3.2)8 on the QuPath software.
Pixels in the QPTIFF images encoded as 8-bit integers (0-255) were used as expression levels of

each protein.

Published dataset processing
We downloaded a publicly available single-cell RNA-seq dataset (GSE180286 from Guan et al.
4). Data integration and clustering were performed in Seurat (v5.0.2) 8, focusing on HER2-

positive breast tumors and two lymph node samples (GSM5457205, GSM5457206, and




GSMb5457207). Louvain clustering at a resolution of 0.1 yielded nine clusters: one T cell cluster,
three B cell clusters, one NK cell cluster, one CAF1 cluster, and one macrophage cluster.
Clusters of the same cell type were merged (Fig. 5a). Subclustering was performed on the cancer

cell populations (Fig. 5b).

Clinical validation using METABRIC data

Clinical validation was conducted using the METABRIC dataset *°. METABRIC gene
transcriptome data, as well as clinical and sample level metadata, were downloaded from
cBioPortal (https://www.cbioportal.org). Analysis was performed on 1,980 breast cancer cases
with available survival outcomes. For each cancer cluster defined in Fig. 5c, the top 100 DEGs
(Supplementary Table 6) were used to score individual METABRIC samples. ROC curve
analysis was used to define optimal cutoffs for stratifying patients into high and low score
groups. Disease-free survival was analyzed using the survival (v3.5-7) and survminer (v0.4.9) R
packages. HRs and 95% Cls were calculated using Cox proportional hazards models. Statistical

significance was evaluated via the log-rank test.

Statistical Analysis
Statistical methods and tests are detailed in the figure legends. All analyses were performed

using R (v4.3.2) or Python.

Data availability
The Xenium and bulk multi-omics data supporting the findings of this study are available at the

DDBJ Japanese Genotype-phenotype Archive (https://gr-sharingdbs.dbcls.jp) under accession




number JGAD000946. The single-cell RNA-seq dataset from Guan et al. * was downloaded from
Gene Expression Omnibus (GSE180286). METABRIC transcriptome and clinical data were
downloaded from cBioPortal (https://www.cbioportal.org). Additional data are available from

the corresponding authors upon reasonable request.
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Figure Legends

Fig. 1 | Multi-omics analysis across regions of breast cancer tissue.

a)HE images of breast cancer tissue with regions sampled for multi-omics analysis. Two
noncancerous regions (NC-1 and NC-2; pink lines) and two cancerous regions (Ca-3, a solid
tumor region; Ca-4, a sparse tumor region; light blue lines) were dissected (also refer to
Supplementary Fig. 1). Scale bar: 1 mm.

b) Gene enrichment analysis using DEGs from noncancerous (upper panel) and cancerous
regions (lower panel). Bar graphs show the top 10 enriched clusters; color scale indicates —log10
adjusted P-values.




c) Violin plots showing genome-wide (50 kb window) methylation rates measured by nanoEM
across each region. Red line indicate mean.P-values were calculated using the two-sided
Wilcoxon rank-sum test with Bonferroni correction. *P < 0.05, **P < 0.01, ***P < 0.001, ****p
< 0.0001.

d) Heatmaps showing Z-score—normalized gene expression levels (from TPM values) and
promoter CpG methylation levels of selected genes involved in cancer metastasis in Ca-3 and
Ca-4. Promoter regions were defined as 1 kb upstream to 500 bp downstream of the transcription
start site. Genes with the most variable promoter methylation across NC-1, NC-2, Ca-3, Ca-4,
and normal breast tissue were selected.

e) Spatial visualization of THY1 gene expression (left) and promotor methylation (right) using
our custom viewer. Color scale represents Z-scores (normalized from TPM) for gene expression
and average methylation rate for methylation.

f) Methylation pattern of THY1 detected by EM-seq visualized using the IGV; the middle panel
shows a heatmap of methylation rates across regions.

g) Mutation status of breast cancer-related genes across regions. Categories include MAPK-PI3K
signaling, cell cycle regulation, DNA damage and apoptosis, chromatin remodeling, cell
adhesion, transcription regulation, and clinically relevant genes.

h) Representative mutations in KMT2C (Y987H) and KDMG6A (P281R) across regions.

i) Genome-wide copy number profiles by chromosome for each region, with cancer-related
genes showing gains (red) or losses (blue) indicated in the inset.

Fig. 2 | Spatial analysis of the breast cancer at single-cell resolution.

a)Workflow of the study. Primary tumor (P), metastatic lymph node (ML), tumor-draining
lymph node (TdL) samples were collected and processed for Xenium analysis. Middle panel: HE
staining; right panel: annotated major cell types from b).

b) UMAP of 1,005,436 cells analyzed via Xenium Explore, annotated by cell type using
canonical markers and histological location. Right panel shows subpopulation of luminal cells (n
= 245,385 cells).

¢) UMAP visualization of luminal cells ; right panel shows subclustered labeled as mature
luminal 1 (L1), mature luminal 2 (L2), basal (B), and mesenchymal like (M) cells.

d) Histological location and gene expression in clusters representing normal lobules. Violin plot
shows log-normalized expression levels of markers for mature luminal (ANKRD30A and KIT),
basal (KRT23) cells. Scale bar: 100 um.

e) Histological location of M clusters. Violin plot shows log-normalized expression of DEGs for
M clusters; bubble plot shows EMT-related gene expression. Dot size represents the percentage
of cells expressing. Color indicates mean expression relative to other subsets. Scale bar: 500 pum.
f) Histological location in cancer cluster(ii)v and expression of L2 marker ANKRD30A.




g) Monocle 3 trajectory analysis of luminal cell differentiation, revealing two main trajectories.
The UMAP axes correspond to b). vCells are color-coded by pseudotime. Red winding lines in
the objects indicate putative developmental trajectories.

Fig. 3 | Spatial analysis of lymph nodes reveals six transcriptionally distinct EMT states.
a) Isolated tumor cells (ITCs) within the TdL. Enlarged view (upper panel), KRT19 expression
(middle panel), and HE staining (lower panel). Scale bar: 100 pum.

b) UMAP placement of ITCs and reclustering of tumor cells, cell numbers per cluster shown in
footnotes.

c) Histological localization of cancer cell clusters.

d) Bubble plot showing expression of related to EMT transcription factors, adhesion molecules,
and stemness markers across clusters; violin plot shows representative marker expression.

e) Pathway enrichment using top 50 DEGs (Supplementary Table 5) in clusters C1-C6; heatmap
shows enrichment scores (gray: not significant).

f) Xenium spatial plot of FASN and SCD transcripts. Color shows log-normalized expression
levels.

g) Violin plot of G2M signature scores across cancer clusters using Seurat; P-values were
determined via the Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P <
0.0001.

h) Representation of cancer clusters within the primary tumor; cell counts shown in footnotes.

Fig. 4 | Analysis of the TME in metastatic lymph nodes.

a)ROI analyzed for cell-cell communication. Pie chart shows proportions of TME components.
Scale bar: 100 pm.

b) Overview of intercellular interactions. Arrows and edge show directionality; color indicates
cell type; circle size is proportional to cell count; edge thickness indicates the number of
interactions between populations. Bar chart ranks signaling pathways by differential information
flow between metastatic lymph nodes and the TdL (dark red shows enrichment in metastatic
lymph nodes; dark green shows enrichment in the TdL).

¢) Heatmaps showing CD45 signaling interactions in metastatic lymph nodes; color scale
represents communication probabilities; empty squares show zero probability. Violin plot shows
gene expression levels.

d) VEGF and CD86 signaling interactions in the TdL, shown as heatmaps and violin plots, as in

C).

Fig. 5| Transcriptional profiling of hybrid EMT and its association with patient outcomes.




a) UMAP annotated by dataset (left) and major cell types (right). Datasets: primary tumor
(GSM5457205); lymph nodes (GSM5457206 and GSM5457207).

b) UMAP of reclustered tumor cells.

c) Dot plot compares metabolic pathway scores from MSigDB C2 gene sets across subclusters
(sc2-sc15); color scale shows —logl0-adjusted P-value.

d) Correlation of public tumor clusters (sc2, sc4, sc8, sc10, and sc15) with Xenium clusters (C1-
C6). The top 50 DEGs (Supplementary Table 5) from Xenium clusters were used to generate
signature scores. Violin and feature plots show Xenium signature scores. The UMAP axes
correspond to b). C5 and C6 correspond to sc8 and sc15, respectively.

e) Survival analysis using the METABRIC cohort. Signature scores based on top 100 DEGs
(Supplementary Table 6) for sc8 and sc15 were computed using UCell. Kaplan—Meier survival
plots show disease-free survival stratified by high vs. low signature scores. P-values from log-
rank test; adjusted HRs from univariate Cox proportional hazards model, with the low-scores as
the reference.
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