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Recent advances in computing power have enabled the generation of large datasets for materials, enabling data-driven approaches
to problem-solving in materials science, including materials discovery. Machine learning is a primary tool for manipulating such
large datasets, predicting unknown material properties and uncovering relationships between structure and property. Among
state-of-the-art machine learning algorithms, gradient-boosted regression trees (GBRT) are known to provide highly accurate
predictions, as well as interpretable analysis based on the importance of features. Here, in a search for lead-free perovskites for use
in solar cells, we applied the GBRT algorithm to a dataset of electronic structures for candidate halide double perovskites to predict
heat of formation and bandgap. Statistical analysis of the selected features identifies design guidelines for the discovery of new

lead-free perovskites.
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INTRODUCTION

Identifying optimal materials in applications research is a time-
consuming step due to the vast scope of possible materials
composed of three-dimensional (3D) networks of elements
selected from the periodic table. Data-driven research has recently
received attention as a new route to accelerating this step.'™® This
approach uses a pre-computed materials database and statistical
tools that efficiently screen candidates in a search for optimal
materials. The availability of open-access databases of material
properties,'®'* along with machine learning (ML) techniques, has
rapidly advanced research in this area. Over the last decade, ML
has been applied to materials science problems in a variety of
directions, such as prediction and classification of crystal
structures,”’>""”  development of interatomic potentials,'®2°
finding of optimal density functionals for density functional
theory,”™?* and building of predictive models of material
properties.>*%’

The use of ML in materials science, however, has been hindered
by the accuracy and interpretability of predictive models. Complex
interaction among compositions of materials leads to highly
nonlinear relationships between material features and target
properties. To accurately describe such relationships, nonlinear ML
algorithms have been utilized due to their flexible forms. However,
lack of interpretability of most nonlinear ML predictive models
prevents further mechanistic understanding such as finding key
ingredients for target properties. Thus, finding ML algorithms that
can achieve both accurate prediction and interpretability is crucial
to the further advance of data-driven materials research.

Tree-based learning algorithms can be one candidate due to
their advantages in both accuracy and interpretability.?® Utilizing
tree-based algorithms, we here focus on finding optimal
candidates for double perovskite solar cells. While recent solar
cell technology has been prompted by the development of hybrid

lead perovskites having an increase of power conversion efficiency
and low-cost manufacturing, the inclusion of lead ion raises
environmental and health issues preventing commercializa-
tion.??3% Alternatively, a new strategy using mixed mono- and
tri-valent cations, in the form of the double perovskite A,B' "B>"X,,
has been introduced to replace lead-based perovskite solar cell
materials.3'* In this approach, sizable combinations of double
perovskites can be possible, and thus a combination of high-
throughput computations and the ML technique can be a
powerful tool to explore the large combinatorial space.

Here, employing the gradient-boosted regression tree (GBRT)
algorithm and a dataset of calculated electronic structures of
A,B'TB3*X;, we present an ML-based investigation, which can be
ultimately used to identify Pb-free double perovskite solar cell
materials. The GBRT method allows us to obtain highly accurate
predictive models for the heat of formation (AHg) and bandgap
(Eg), with importance scores for each feature of materials. Based
on the scores, we extract crucial features to determine the values
AHe and E4 of halide double perovskites, enabling an overall
understanding of the relationships between features and proper-
ties. Finally, we discuss the relevance of extracted features to the
chemical and physical aspects of AHr and Eg and practical
approaches of the ML model toward finding optimal candidates of
Pb-free halide double perovskites solar cell materials.

RESULTS
Dataset of Pb-free halide double perovskites

For the ML investigation, we first generated a dataset of the
electronic structures of halide double perovskites. Figure 1a
presents the crystal structure of the double perovskite A,B8'B3* X,
Compared to the original perovskite, this structure incorporates
two different types of cations, B'" and B>, instead of a single B
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Fig. 1 a Crystal structure of double perovskite with A, B'",

, and X-sites denoted by light blue, blue, red, and gray spheres, respectively. b

Structural deformation by tilting of octahedral unit presents. c List of chemical elements considered in a dataset of halide double perovskites.
Distribution of calculated d heat of formation (AHg) and e bandgap (E;). In each panel, average values are depicted as a white point

cation. With anion X, both B'" and B*" cations form octahedral
units. Usually, the perovskite has a structural phase transition
upon tilting and rotating of the octahedral unit. As shown in Fig.
1b, two possible crystal structures can be considered: one has a
cubic space group; the other has an orthorhombic space group.

In this study, we considered coinage elements and lower group
Xlll elements for B'", and upper group Xl and lower group XV
elements for B>". Then, substitutable combinations for di-valent
lead ion could span over 30 combinations. Furthermore, we
considered a series of alkali metals from K to Cs for the A-site (Li
and Na were not considered because of their small size). Here, for
simplicity of calculation, organic molecules, such as methyl
ammonium, were not included. Halogen ions were assigned for
the X-site. Figure 1c¢ summarizes all combinations of chemical
constituents. In sum, along with the two space groups of the
crystal structure, 540 hypothetical compounds of A,B' TB>" X, were
considered.

Using first-principles density functional theory (DFT), we
generated a dataset, including values of AHg and Eg for the 540
compounds. AHg indicates the stability of a compound compared
to those of the elemental phases of its chemical constituents.
Generally, a more negative value of AHg indicates a more stable
compound. On the other hand, E4 can represent the capability to
absorb solar energy, which is critical to achieving high perfor-
mance of a solar cell. The optimal value for solar absorption is
reported to range from 1.1 eV to 1.8 eV.>* However, note that Eqis
severely underestimated in this work due to the limitation of the
standard DFT.3® Previous studies have shown that a DFT bandgap
from 0.3 eV to 0.8 eV can recover to an optimal value of a solar cell
material if more accurate computation methods such as hybrid
DFT or GW are used.>”8 Further computational details for these
two quantities can be found in the method section.

We can detect a few notable characteristics of AHr and £
without relying on ML analysis. In the case of AHE, all candidate
materials have negative values, indicating that all can be stably
synthesized (see Fig. 1d). Another prominent observation about
AHe is its dependence on halogen anion, which contrasts to its
weak dependence on other elements. As halogen atoms change
from iodine to chlorine, AH decreases. On the other hand, the
relationship between E4 and atomic species and space group is
more complicated, two remarkable characteristics of which we
summarize in the following. First, in most cases, E4 increases by
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changing the space group (SG) from cubic to orthorhombic (Fig.
Te). Second, it is found that E; mostly increases as halogen atoms
change from iodine to chlorine. However, in mapping between Eg4
and materials, no other dependencies are observed.

Machine learning and features

We next apply the machine learning algorithms to the dataset of
halide double perovskites. In general, machine learning study
requires the appropriate selection of a learning algorithm and an
optimized set of input features. In this study, we employed the
Gradient-Boosted Regression Tree (GBRT), which is one of the tree-
based machine learning algorithms. Decision tree learning is a
machine learning method that uses a tree-like diagram, usually a
binary tree, to predict a target variable. The goal is to create a tree
in which each node represents a split based on one of the input
features, and each leaf represents the prediction of the target
variable. The prediction can be nonlinear because the partitioning
of the input variable space is repeated recursively.>* Compared to
other ML methods, the decision tree is advantageous for its
accuracy and speed, although it is prone to overfitting.*® Using
ensemble methods such as bagging and boosting can prevent
overfitting, and thus can improve the accuracy.*’~** GBRT adopts
the gradient boosting method, which combines weak learners into
one strong learner using the gradient descent algorithm.

Furthermore, the predictive model can be used to record the
improvement of prediction results for a specific feature as each
node corresponding to a single feature is added to the trees. In
this manner, one can measure the feature importance auto-
matically.** This feature importance fosters interpretability of
predicted results and it leads to the extraction of key-features,
which we will show later in the results. In the present work, we
adopted a gradient boost method to generate a regression tree
ensemble that is implemented in the XGBoost library.?® See
further details in the method section.

Another critical step for achieving good prediction performance
is the selection of appropriate input features, referred to as feature
engineering. For the dataset of materials, features should clearly
describe a single given material and, also, discriminate separate
materials. In this study, we selected 32 features, including
chemical information of atomic constituents and geometric
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Fig. 2 Square of Pearson correlation coefficient matrix halide
double perovskites. Size and color of circles vary with values

information such as bond length and crystal symmetry. The total
of 32 features include the following:

Pauling’s electronegativity (x), ionization potential (IP), highest
occupied atomic level (h), lowest unoccupied atomic level (I), and s-,
p-, and d- valence orbital radii r, r, and rq of isolated neutral atoms
A, B'", B>, and X; atomic distance (D) between cations and the
nearest halogen atom; space group of crystal (SG). Unlike the other
features, SG is considered a categorical variable for cubic and
orthorhombic symmetry.

Here, we note that the GBRT algorithm cannot appropriately
evaluate the importance scores of two strongly correlated
features. The reason is that two strongly correlated features
cannot be distinguished in the learning process. Thus, reducing
the dimensions of the feature space can improve the quality of
prediction while simultaneously decreasing the computing cost.
Here, we implemented a dimensionality reduction based on the
square of the Pearson correlation matrix among features. For each
pair of features x and y, the square of the correlation coefficient
Ry, is defined as

R — 271 i =X)(vi —¥)
Xy
VI %7 S0, (- y)?

where X and y are the sample means of features x; and y; of the i-
th material over a total of n compounds. As shown in Fig. 2, strong
correlations are found in several pairs of features: (1) all atomic
features of halogen atoms at the X-site, (2) r, and r, for A-, B' ™, or
B**site atoms, and (3) IE and h for A-, B'*-, or Bﬁr—site atoms. A
lack of atomic variation at the X-site (only three atoms: Cl, Br, and )
led to strong correlations among all pairs of atomic features. The
same trend was observed at the A-site, although this trend was
not as strong as it was at the X-site. The correlation matrices were
used to downselect features of the halide double perovskite
dataset. We selected y as a representative feature of all atomic
features of the X-site atoms. Furthermore, we selected only ry and
excluded r,, for the A-, B'*-, and B>*-site atoms. For IE and h of the
A-, B'"-, or B**-site atoms, we considered the only h. We found
that machlne learning performance is almost the same under the
dimensional reduction from the Pearson correlation matrix among
features.

)

Predictive model and feature importance

We performed regression using GBRT to predict values of £ and
AHe of the halide double perovskites A,B'"B3*Xs. Flgure 3a
presents the prediction of AHg. The results show that averaged
root-mean-square-error (RMSE) of test sets for AHg is 0.021eV/
atom. Even though the number of the current dataset was limited,
it is noteworthy that the accuracy of the predictive model of AHg
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Fig. 3 Prediction of a heat of formation and b bandgap for halide
double perovskites. Orange filled circles correspond to training
dataset and blue circles to test dataset. Red solid lines indicate the
reference line corresponding to the perfect fit. Feature importance
from GBRT for ¢ heat of formation and d bandgap of halide double
perovskite

from GBRT is comparable to the fundamental error of 0.024 eV/
atom that results from differences between the experimental and
DFT-based values of AH of ternary oxides.”® In the case of E,, the
averaged RMSE of the test sets is equal to 0.223 eV (Fig. 3b), which
is worse than the error of AHg. However, as the effective range
(1.1-1.8 eV) of the bandgap of solar cell material is much larger
than the RMSE, such low accuracy of E4 could be acceptable for
solar cell applications.

The origin of the high accuracy of the predictive models can be
attributed to several things. One is the nonlinear nature of the
GBRT algorithm, in contrast to that of most linear algorithms (See
Supplementary Information 1). Another reason for the high
accuracy could be the structural similarity of the materials
considered in the dataset. In the present study, crystal structures
of all materials are perovskite. Given the same structure, materials
having similar chemical constituents might have similar proper-
ties, which allows for more feasible interpolation of properties in
the predictive models. Discussing structural similarity is beyond
the scope of our study, but it is becoming a significant topic in ML
studies of materials science.*®*’

On top of providing highly accurate predictive models, the
GBRT method provides interpretation of the results via feature
importance scores, which is the main advantage of this method.
Figure 3¢, d show the importance score of all features for AHg and
Eg respectively. For AHg, it is revealed that the type of halogen
anions, represented by xy, is the most important feature (Fig. 3c).
Remarkably, the importance score of Xy is more than two times
higher than that of the secondly-ranked feature, Dgs+. Beyond the
first two features, importance scores steeply decrease, indicating
that AHg strongly depends on only a few features of materials. On
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the other hand, the feature importance used to predict Eg is more
dispersed (Fig. 3d). This implies a more complex relationship
between E4 and the material features, which is consistent with the
tendency observed without ML techniques (see Fig. 1e). We found
that although SG is the most important feature, the following
features, such as Xx hg+, g+, Dg+, rdg+, or rdg+, are not
negligible.

Extraction of key-features and application

In this section, we suggest possible utilization of the feature
importance scores in an efficient search for target materials. First,
we show that the feature importance scores can be utilized to
extract key-features determining target properties. To this end, we
recursively excluded the least important feature and built a
predictive model using only the remaining set of features and
learning new decision trees. This process was repeated until the
top three features remained for each target property. Figure 4a, b
show how the error in the prediction of AHr and E changes under
the process of extracting key-features. Remarkably, we found that
RMSEs increase almost monotonically in both cases, which
indicates that a feature with a higher feature score has stronger
predictive power.

Through this process, we selected the most important features
for each target properties. For AHg, RMSE abruptly increases when
the number of features is smaller than five (Fig. 4a). This means
that at least five features are required to predict AHg within RMSE
of 0.036 eV. In the case of Eg, seven features comprise minimal set
to predict E; within an RMSE of 0.322eV (Fig. 4b). The list of
selected features includes Xy, Dgs+, Da, hgi+, and Dgi- for AHg, and
SG, Xxir hB'H, /31+, D33+, I’d33+, and fdgwr for Eg.

Key-features extracted from the feature importance score of
GBRT method can have various implications for a fast search for
new material. For instance, selected key-features can be utilized as
an optimal set of features in another type of ML algorithms such
as classification. We considered a binary classification with class 1
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Fig. 4 Root-mean-square-error (RMSE) of a heat of formation and
the b bandgap of halide double perovskite as a function of the
number of features. In each panel, the blue curve corresponds to the
training set and the orange curve to the test set
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for E4 in the range of 0.3-0.8eV and class 2 for otherwise, to
search for an optimal candidate of solar cell materials. Figure 5
presents the accuracy of classification tasks, as well as correspond-
ing confusion matrices where the classification task was
performed with a different number of features. With a smaller
number of features, the prediction accuracy is lower than that
with all features. However, it is notable that classification with the
top seven key-features selected for E; provides a good
approximation to that with the full features. As the classification
can be accelerated with the reduced feature space, materials
screening before a further investigation can be feasible in a
massive dataset.

The mechanistic understanding of the relationship between
features and target properties can provide a practical guide in the
search for optimal double perovskite solar cell materials. For
example, Cs,InAgClg is one of newly synthesized Pb-free halide
double perovskite, but its bandgap energy is too large to be used
as a solar cell material.>** Knowing key-features determining E,,
one may have several plausible remedies to decrease Eg, such as
anion-mixing from the electronegativity of halogen anions and
partial-substitution/alloying for In and Ag from the highest
occupied and lowest unoccupied orbitals of B'" ions, the distance
between B> ion and anion, radii of d-orbitals of B'" and B>*.

However, we note that an explicit relationship between features
and properties is still difficult to obtain directly from the feature
importance score, and additional steps would be needed. To this
end, one may still utilize the process of feature selection described
above and fit the properties using basis functions of the reduced
features. Such an explicit relationship can be used to further
mechanistic understanding of target properties such as revealing
interaction between important features, but it is out of the scope
of our paper.

DISCUSSION

In the importance-score-based selection process of the GBRT
method, scientific knowledge is not reflected. Here, we consider
whether the roles of the features selected using the GBRT method
in determining the target properties are consistent with previous
known scientific knowledge.

First, we investigated the role of the features selected for AH
for the bonding mechanism. The top five selected features for AHg
were Xy, Dgs+, Da, hgi+, and Dgi+ (Fig. 4), among which the most
important feature was Xx. Interestingly, it is well-known that
differences between electronegativities of bonding partners are
good indicators of the bonding character and bonding strength,
which strongly affect AHg. Compared to other groups of elements,
the halogen group shows relatively large variation in electro-
negativity. This could be attributed to a strong dependency of AHg
on Xx. Along with electronegativity, the distances between cation
and anion (Dy4, Dgi+, and Dgs+) are also good indicators of bonding
strength. Usually, strong bonding is accompanied by a shorter
bond length. In the case of hgi+, IPg is strongly correlated with
hgi+, (see Fig. 2), and IP is also an important chemical quantity to
explain ionic bonding. In this way, the top five selected features
for AHg are all relevant to the bonding mechanism, which is
important to determine AHf.

In the case of E5, more complicated theories are required to
understand the role of the selected features. For this purpose, we
performed DFT analysis of the band structure, explicitly focusing
on the selected features. Generally, symmetry-lowering by tilting
of the octahedral unit of a halide perovskite increases E; because
of bandwidth shrinkage.*® In the case of halide double perovskite,
a similar transformation of band structure is found. Figure 6a-d
show the band structures of cubic and orthorhombic phases of
the representative compounds. In all cases, the bandwidths of the
conduction and valence bands were reduced by the tilted
octahedral units, and this led to increases of the bandgap in
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orthorhombic phases. For other compounds, the same trend
occurs, as shown in Fig. Te. Thus, SG is relevant in determining Eg.

To check the validity of features xx, hg+, lgi+, Dgs+, rdgs+, and
rdgi+, we plotted a schematic diagram of the orbital hybridization
between cations and anions in halide double perovskites based on
the DFT band structure calculations (see Fig. 6e). The diagram
shows that Eg originates from energy differences between two
hybridized states, the valence band maximum (VBM), composed
of an anti-bonding state involving B' "-site and X-site atoms, and
the conduction band minimum (CBM), composed of an anti-
bonding state involving B*"-site and X-site atoms. Even though
complicated interaction exists, the energy levels of the valence
electrons of B'*, B**, and X play important roles in determining
the value of E; of a given compound. The highest occupied and
lowest unoccupied atomic levels can be good indicators of the
energy levels of the valence electrons. In addition to the atomic
levels, the electronegativity can play a crucial role in determining
E4 by controlling energy splitting between the bonding and anti-
bonding states, denoted by AE in Fig. 6e. This splitting indicates
the strength of the hybridization among the orbitals. The high
electronegativity of the compounds leads to tightly bound
electronic distribution around the atoms and reflects strong
hybridization via small bonding length, such as Dgs-.

In this study, we used the GBRT method to investigate the ML
prediction of the values AHg and E, of halide double perovskites.
The GBRT method provided outstanding prediction performance
for those properties, as well as providing an interpretable feature
importance score. Notably, for AHg, GBRT worked accurately, with
an error comparable to the fundamental error associated with the
difference between experimental and DFT values. The prediction
of E; was also acceptable for use in the search for solar cell
materials. Key-features extracted based on the importance score
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means set of materials with a bandgap in a range of [0.3 eV, 0.8 eV] and class “0”

provide a better mechanistic understanding of AHg and Eg. On top
of the accurate and interpretable predictive models, we further
verified that the key-feature was relevant to scientific knowledge.

METHODS

Density functional theory (DFT)

Structural optimization, total energy, and electronic band structure of 540
halide double perovskites were performed within density functional theory
(DFT) formalism. We utilized a plane-wave basis set (cutoff energy =
350eV), and the projector augmented wave method,* implemented in
the Vienna Ab-initio simulation package (VASP)>*°! For the exchange
correlational functional, the generalized gradient approximation was
adopted within Perdue-Ernzerhof-Burke formalism.>> A 5x5x5 regular
grid was employed for momentum space sampling. The heat of formation,
AHg, was calculated using the following formula:

AHp = Eiot (AB' B3 Xs) — (2Eief (A) + Eret (B'™) + Erel (B>T) + 6Erel (X)),

where E, is the total energy and E, is the reference energy. For the band
structures, spin-orbit interaction was considered.

Atomic features

The highest occupied atomic level (h) and the lowest unoccupied atomic
level (/) were taken from the atomic parameters of the VASP pseudopo-
tential >®>' We set h as the highest orbital energy of the partially or fully
occupied orbitals and / as the lowest orbital energy of the unoccupied
ones. If the orbital energies of the unoccupied orbitals were not available
in the parameter files, the highest orbital energy was set at [ In
determining h and /, we considered degenerated atomic orbitals to be the
same orbital.
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Gradient-boosted regression tree

The supervised learning model has a loss function to be minimized. In
XGBoost the loss function of the model (ensemble of trees f,) is

L= "1y + > Qlf)
7 k

where [ is a function that measures the difference between the prediction
and the target and Q is a regularization term (complexity of the tree) to
prevent overfitting. This loss function cannot be optimized using
traditional optimization methods: the model is trained in an additive
manner by adding a tree at a time that most improves the model (most
decreases the loss) to the existing set of trees. Let x; be an i-th sample and
ny) be its prediction with the current set of t — 1 trees. The model needs
to add the t-th tree f; to minimize the loss function

LO(f) = Z (i, 9 + £(x)) + Q(F).

It is impossible, however, to check all possible tree structures f, to be
added. So, the algorithm starts from a root (single leaf) and greedily adds
branches to the tree. For each step, the model finds a leaf to split, and a

feature and its value for the split that maximize loss reduction after the

current

split. If the current tree structure is f,( ) and the structure after the split

is ft“p"t), then the loss reduction by branching can be calculated by the
difference of the loss, Dycore (f;) = £ <ft(c”"e"t>> — Lo (ﬁ(SP'i')). This means

that for each branch of the trees, the model knows, which feature is used
for the split and its loss reduction.?® For each split of the trees during
model training, the algorithm finds (approximately) the feature and
splitting point that provide the largest cost decrease. It is possible to
calculate the number of times each feature is selected for a split in the
trees, or the average of the gain of the splits that use each feature. The
library offers these numerical values as an F-score of type weight or type
gain, respectively. In this study, we used gain.

The hyperparameters of each model were optimized using a cross-
validated grid search or a randomized search over the parameter settings.
The RMSE of the target variable was used as a cost function for all models.
For all ML models and each model’s training, randomly chosen 80%
samples of the data are used for training; the remaining 20% are used for a
test set. We averaged 200 evaluations, 40 sets of fivefold training/test set
splitting with random shuffling (which also have 80% of the data as
training set) and calculated the importance scores of the figures. In the
gradient-boosted regression tree, several hyperparameters exist. A
parameter subsample for bagging (subsample ratio of the training
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instance) and colsample_bytree (subsample ratio of features) for the
random forest were optimized to prevent overfitting. The regularization
parameters were also optimized. The values of the hyperparameters used
here are:

max_depth = 6, min_child_weight = 1, colsample_bytree = 0.5,

subsample = 0.7, reg_alpha = 0.1, learning_rate = 0.03.

The regularization parameters were also optimized. The parameter
max_depth is for maximum depth of a tree, and min_child_weight is for
the minimum number of instances needed in each node. The smaller
max_depth and the larger min_child_weight are, the less the training is
likely to overfit. The parameter reg_alpha is an L1 regularization term on
weights.

Gradient-boosted classification trees

The classifications were performed for halide double perovskite dataset
with gradient booted classification trees (GBCT). For these classifications
and predictions for all data, the halide double perovskite dataset was
separated into five disjoint sub-datasets, and then train data consisted of
four sub-datasets and test data of the other sub-dataset. This means that
there were five predictions for the full halide double perovskite dataset. In
establishing the predictive model, typically given hyperparameters of
GBCT were adopted for the classifications. The given parameter values for
the classifications used here are:

max_depth = 4, min_child_weight = 4, colsample_bytree = 0.8,

subsample = 0.8, reg_alpha = 0.1, learning_rate = 0.1.

DATA AVAILABILITY

A dataset on halide double perovskites is provided in the Supplementary Information
(See the separate Excel File and corresponding explanation in part 2 of
Supplementary Information). Other electronic data in this study are available from
the corresponding authors upon reasonable request. A dataset on oxide double
perovskites is available via the Computational Materials Repository.
[https://cmr.fysik.dtu.dk/low_symmetry_perovskites/low_symmetry_perovskites.
html#low-symmetry-perovskites].
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