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Machine learning enables polymer cloud-point engineering via

inverse design
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2

Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when
designing polymers with desired phase behavior. Here we demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via
machine learning. With a design space of four repeating units and a range of molecular masses, we achieve an accuracy of 4 °C root
mean squared error (RMSE) in a temperature range of 24-90 °C, employing gradient boosting with decision trees. The RMSE is >3x
better than linear and polynomial regression. We perform inverse design via particle-swarm optimization, predicting and

synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80 °C. Our approach challenges the status quo
in polymer design with a machine learning algorithm, that is capable of fast and systematic discovery of new polymers.
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INTRODUCTION

Polymers are ubiquitous in both structural and functional systems,
owing to their highly tunable physical, chemical, and electrical
properties."™ The development of polymers has historically been
based on an Edisonian approach. Herein, we develop a machine-
learning framework to predict polymer structure (topology,
composition, functionality, and size), on the basis of target-
phase properties, specifically the cloud point. This framework
accommodates the complex disorder across multiple length scales
that distinguishes polymers from small molecules,®™ inorganic
crystals,® and systems-structure optimization.”""

Phase properties, which describe the order of a polymer across
multiple length scales, are determined by interactions of polymers
with other polymers, the solution, and themselves. One such phase
property is the cloud point, the temperature at which polymers are
no longer miscible in solution.'” Numerous studies tabulate simple
relationships between cloud point and one or two experimental
variables (e.g. structure’® and temperature'*'®), or offer poly-
nomial fits to the data.'® Ramprasad et al. applied machine
learning to density-functional theory (DFT) calculations to predict
optoelectronic'”'® and physical'® bulk polymer properties.*'?
However, this approach is computationally expensive,”*° particu-
larly for polymer systems,' and does not enable scalable inverse
design over a wide range of conditions with high accuracy.?**?

In this study, we combine machine learning, domain expertise,
and experiment to solve the inverse-design problem for polymers.
Our framework (Fig. 1) has three parts: (1) data curation (defining
material descriptors) that relates poly(2-oxazolines) cloud point,
size, and relative ratios of four different monomer units; (2)
machine-learning algorithm selection and hyperparameter tuning
to enable fast forward prediction of cloud point based on the
structure with the evaluation of algorithmic robustness over
systematic error and differing data quality; and (3) use of said
algorithm for inverse design using particle-swarm optimization

(PSO) with design selection using an ensemble of neural networks.
We demonstrate the accuracy of our inverse-design paradigm by
predicting the compositions of, and synthesizing, 17 polymers, not
previously reported in the literature, with cloud points between 37
and 80°C, using a modular combination of four repeating
monomer units. We achieve ~4°C error, nearly within experi-
mental error (1-3 °C).

RESULTS AND DISCUSSION

We combine and curate literature and experimental data to create
the input into our machine-learning framework. Historical cloud-
point data for poly(2-oxazoline)s'®**~2° were curated into a set of
input variables ((1) molecular weight of the polymers; (2)
polydispersity index; (3) polymer type (homo, statistical, or block);
(4) the total number of each monomer unit in the final polymer (A:
EtOx, B: nPropOx, C: cPropOx, D: iPropOx, E: esterOx)) and output
variables (cloud point in °C) (Table S1). We synthesized 87 poly(2-
oxazoline)s by similar methods to augment this data (Table S2).
Cloud point was evaluated by dynamic-light scattering (DLS) in
accordance with best practices,*® particularly since DLS affords
greater weightage to the modal mass as a correction for the
asymmetric molecular weight distributions (MWD) of our synthe-
sized polymers (details in Supplementary Materials under the
heading “Curation and synthesis of polymer library”). Due to data
scarcity, esterOx was neither synthesized nor considered in inverse
design. The relationships of individual input variables to the
output cloud point are plotted in Fig. 2.

We test whether machine-learning methods have superior
predictive accuracies to simple regression methods in this multi-
variable parameter space®>' 3> We compare the root-mean-
squared errors (RMSE) of simple linear and quadratic regressions
against more robust machine-learning methods, including support
vector regressions (SVR), (ensembles of) neural networks (NN), and
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Fig. 1 Study framework. First, we train a machine-learning model to predict cloud point on the basis of the poly(2-oxazoline) structure, with
varying ratios of four monomer units (building blocks) and molecular weights. Second, we demonstrate inverse design using the trained
algorithm and particle-swarm optimization, predicting 17 polymer structures from user-defined cloud points. The model accommodates the
inherent complexity of polymers over multiple length scales. The scatter plots for model training and inverse design correspond to Figs 3e
and 4d, respectively
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Fig.2 Data summary. The dependencies cloud points to the mole fraction of (a) EtOx; (b) nPropOx; (c) cPropOx; (d) iPropOx; and (e) molecular
mass (M), where all zero values were filtered from the graphs, and, (f) the number distribution of cloud point, where zero represents polymers
without a CP

gradient boosting regression with decision trees (GBR) (Fig. 3; S3). testing is performed with the experimental data. The RMSE and
The accuracies of the various models are determined by splitting inference times are reported in Table S3.

the input data set into training, validation, and test sets, with Linear and polynomial regressions, while significantly faster
training and validation performed from the historical data, while than the others, performed poorly when compared with SVR, NN,
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Fig. 3 Machine-learning performance. (Top row) Comparison of three regression methods (a-c: linear, polynomial (order-2), and gradient
boosting (with decision trees) regressions). The literature data are split into 68 training data points and 7 validation data points. Test data
points are 42 experimental data points produced in the lab. The results were compared using the root-mean-squared error. We observe that
GBR achieves the best generalization. (Bottom row) Final GBR model performance on three different random train-test splits of the combined

data set

and GBR. Of the latter three, GBR was the more accurate out-of-
the-box without extensive hyperparameter tuning. Moreover, it
possesses fast inference speed, which is essential for efficient
exploration of the parameter space in inverse design. We chose
GBR as our primary forward model to balance fast inference speed
and good test RMSE. The predictive accuracy was further
improved by tuning via a cross-validation grid search on
hyperparameters. We used both historic and experimental data,
with a test set of 10%, to validate our choice of hyper-parameters
with the test error on three randomly split training and test sets
(Fig. 3). We now observe improved performance with an increased
data set and thorough tuning.

This algorithm is shown to generalize well across the variation in
polymer data set of varying polydispersity. The historical data sets
had narrow polydispersity indices with the assumption of
symmetrical MWDs, while the synthesized polymers had broad
and unsymmetrical MWD. Nevertheless, the model trained on the
historical data still performed adequately on data from our
synthesized polymers. The robustness of this algorithm in handling
variations in the data renders this far more powerful than less
sophisticated algorithms, which may require highest quality of
data. With a sufficiently accurate model, we finally retrain (using
the tuned hyper-parameters) on the entire data set to produce a
finalized forward model that we use for subsequent inverse design.

The feature importance ranking based on Gini importance or
gain (roughly the mean improvement in objective due to splits in
the chosen feature, see the ref. ** for more details) (Fig. S4) indicates
that “units of A” and “molecular mass” are the two most important
features defining cloud point. We note that these insights are not
trivially derived from Fig. 2, which indicates similarly strong
dependences of variables a—c on cloud point. Also, the molecular
mass correlating most strongly with cloud point is the mode, not
the median or mean (Fig. S2), which we speculate could indicate a
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critical threshold, e.g., of polymers with molecular mass above a
certain concentration necessary to induce globule formation.
However, we note that this statistical relationship depends on the
model and fitting algorithm employed, and certainly does not imply
the presence of causal relationships, for which more rigorous
theoretical and experimental studies must be conducted.

While a forward predictive models in machine-learning
approaches for materials science are fairly common, inverse
design is far more challenging. This is because the descriptors,
which are usually high dimensional, are difficult to predict from
outputs which are low dimensional. In the case of our polymer
data set, the output of cloud point is a single number, attributed
to the five numbers representing molecular mass and composition
of the polymer.

Inverse design would provide the ability to design polymers
based on a desired final property, and accelerate the synthesis
process of target polymers based on design constraints to meet
desired cloud points. To further realize new material discovery, we
propose to extrapolate from our training data set by designing
terpolymers, which are nonexistent in our training set, and limiting
EtOx composition, which is common.

Typically, inverse optimization on piecewise constant functions
provides a large number of different predicted designs. These may
achieve our optimization and constraint target according to the
fitted GBR model. However, the quality of these designs vary,
particularly in the case of extrapolation. By extrapolation, we mean
designs that are different in class from the training data set (e.g.,
binary vs. ternary systems), or in a more precise sense, those that
lie outside of the convex hull of the training data points, which is
the smallest convex set containing all the points. Validating all of
produced designs experimentally would be inefficient and so a
filtering method with an ensemble of M three-layer fully
connected neural networks (NN) was employed to select the
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Inverse Design. (a) Framework of the selection criteria, where the data set is used to train GBR and NN ensemble, PSO predicts polymer

design (x*) a desired CP (y*), and the design is verified for accuracy by the NN ensemble where CP agreement is a downselection criteria.
(b) lllustration of the validity of the filtering procedure. We observe that given limited training data, not all extrapolated points are valid.
However, when an ensemble of neural networks trained with distinct initializations agree on a certain input, then we have a much greater
confidence in the validation of their predictions. (c) Final PSO-based inverse-design performance, with experimental values (orange triangles)
showing an RMSE of 3.9 °C. (d) Forward model (NN ensemble) performance of the polymers synthesized from design (orange triangles)

most promising design candidates for experimental validation.
Each NN’s trainable parameters are initialized with distinct,
random values, resulting in different fitted predictors

{f,... ,fu}, due to the non-convex nature of the objective
function and random initialization. Note that this is even the case
when a deterministic training algorithm is used (e.g., full-batch
gradient descent), hence this heterogeneity is inherent in our
model choice. For each design x, we then compared the ensemble
of NN-predicted cloud points {fi(x), ... ,fu(x)} with the GBR
prediction f(x) and only experimentally validated designs where
f(x) ~ %Zf‘; f(x)(NN  predictions agree with GBR) and
Var{f(x), ... ,fu(x)} was small. This ensures that x is predicted
with high confidence and not an ad-hoc extrapolation. As far as
we are aware, there is no concrete theory analyzing the
relationship between generalization properties of neural networks
with the variance of the ensemble predictions, in which each
network is trained with random initial conditions. However, we
found experimentally that this is an effective filtering strategy.
Figure 4 illustrates the principle of this approach. Although the
NNs are also good approximators for the cloud point, they were
not used as the forward model for producing inverse-design
candidates because the feed-forward step of the NN ensemble is
still too slow compared with GBR, which consists of simple
summing of piecewise constant functions.

npj Computational Materials (2019) 73

Using this technique, we downselected 17 polymers over our
four desired cloud points (37, 45, 60, 80 °C) designing polymers
with more than two components—unseen in the training data.
Several design constraints were imposed in order to narrow the
search space, based on a weightage to minimize EtOx and also to
limit the polymer design within the bounds of what could be
made with our laboratory resources. From this series of design and
downselection, we observe that a significant proportion of the
target and obtained designs (~35%) lie strictly outside the convex
hull of the training data (see Table S4). Hence, some of these
designs are also extrapolations in a precise mathematical sense.

These polymers were synthesized, although an average of three
iterations were required to achieve the target mass and
composition of the designs, owing to the difficulties with
terpolymer synthesis, where the Mayo-Lewis equation does not
apply in calculating required feed ratio of monomer for desired
final copolymer composition. The mass and composition of the
synthesized polymers are reported in Table S4, showing minimal
deviation from algorithmic design, along with their cloud points
(an average of three measurements). The RMSE of the obtained
cloud points was 3.9 °C, however, when the polymer structure of
the new polymers is fed back into the NN ensemble, a larger RMSE
is observed (6.1 °C) (Fig. 4). Deviation from the target cloud points
was within test RMSE between 37 and 60 °C, but above it at 80 °C,
and can be attributed to sparseness of the data set at higher
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temperatures (Fig. 2f)—an in-depth analysis is provided in
Supplementary Materials under the heading “Machine-Learning
Validation”. These results show that our combination of slow and
fast algorithms are able to design polymers with unique
compositions with control over the desired physical property
and structural design.

Overall, a significant conceptual advance in polymer design has
been achieved via judicious application of machine-learning
methods. This was done in three important steps. First, we
curated and categorized historical and new data. Second, we
selected and fine-tuned a machine-learning model based on
gradient boosting regression with decision trees, resulting in a
cloud point predictive accuracy of 3.9 °C (RMSE). The model was
able to generalize well with both well-defined historic data sets as
well as newly synthesized polymers of unsymmetrical MWDs.
Third, polymer inverse design by particle-swarm optimization
which predicted the design of new polymers based on desired
cloud points spread over the range of the cloud points of the
training data (37, 45, 60, 80 °C). We discuss how our inverse-design
methodology is scalable to more than one objective function. We
also demonstrated how we could extrapolate beyond the training
set via an ensemble of neural networks as a cross-validation
technique to downselect 17 polymers with the lowest variance
across predictions. The RMSE of predicted polymers were similar
to those of the forward model. This methodology offers
unprecedented control of polymer design, which may significantly
accelerate polymer design for one or more objective properties
well beyond cloud points.

METHODS

Materials

2-n-propyl-2-oxazoline (nPropOx)," 2-cyclopropyl-2-oxazoline (cPropOx),?
and 2-isopropyl-2-oxazoline (iPropOx)® were synthesized as described in
the literature, and distilled over calcium hydride and stored with molecular
sieves (size 5A) in a glovebox. In all, 2-ethyl-2-oxazoline (EtOx, Sigma-
Aldrich) was distilled over calcium hydride and stored with molecular
sieves (size 5A) in glovebox. All other reagents were used as supplied
unless otherwise stated.

Analytical methods

Nuclear magnetic resonance (NMR). The compositions of the polymers
were determined using '"H NMR spectroscopy. 'H NMR spectra were on
JEOL 500-MHz NMR system (JMN-ECA500IIFT) in CDCls. The residual
protonated solvent signals were used as reference.

Size exclusion chromatography (SEC). Gel permeation chromatography
(GPC) measurements were performed in THF (flowrate: 1 mL/min) on a
Viscotek GPC Max module equipped with Phenogel columns (1072 and
107> A) (size: 300x7.80mm) in series heated to 40°C. The average
molecular weights and polydispersities were determined with a Viscotek
TDA 305 detector calibrated with poly(methyl methacrylate) standards.

Dynamic-light scattering (DLS). Measurements at various temperatures
were conducted using a Malvern Instruments Zetasizer Nano ZS
instrument equipped with a 4 mV He-Ne laser operating at | =633 nm,
an avalanche photodiode detector with high quantum efficiency, and an
ALV/LSE-5003 multiple tau digital correlator electronics system. on Malvern
Nano ZS. Solutions of polymers (5 mg/mL) were prepared by dissolving
polymer in deionized water at room temperature. The solutions were then
heated to 100°C and cooled down to remove thermal memory, before
measurements were taken.

EXPERIMENTAL METHODS

For all polymerizations, the polymerization mixture was prepared
in vials that were dried in 100 °C oven overnight before use, and
crimped air-tight in a glovebox. The mixture contained the
monomers (EtOx, nPropOx, cPropOx, iPropOx) of desired ratios,
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with a total monomer concentration of 4 M, anhydrous acetonitrile
(ACN) and methyl tosylate (MeOTs) as initiator. The amount of
methyl tosylate added was determined by the various [MI/[l]
ratios. Temperature controlled polymerizations were performed in
sealed vials in a microwave reactor equipped with IR temperature
sensor at 140 °C for different length of time. The mixture was then
cooled to ambient temperature and quenched by addition of
tetramethylammonium hydroxide (2.5 wt% in methanol, 2 equiva-
lence relative to initiator). The solutions were concentrated by
removing some of the solvent under reduced pressure, then
precipitated in cold diethyl ether. The product was collected and
dried under reduced pressure overnight. All polymers were
redissolved in THF for SEC, CDCl; for '"H NMR and deionized
water for DLS. 'H NMR of P((EtOx)w(nPropOx),(cPropOx),(iPro-
pOx),) (500 MHz, CDCl5, 8, ppm): 0.8 (d, 66.5 Hz, 4 yH, CHCH, CH,),
0.96 (s, 3x H, CH,CH,CH5), 1.11 (s, 6z H, CHCH3CH;), 1.12 (s, 3w H,
CH,CH;), 1.64 (s, 2x H, CH,CH,CHs) 230 (d, 56.5Hz, 2x H,
NCOCH,CH,CHs), 2.38 (s, 2w H, NCOCH,CHs), 2.70 (d, 61.0Hz, y
H, CHCH,CHy,), 2.80 (d, 123.5 Hz, z H, CHCH5CHj), 3.49 (s, 2(w+x+y
+2) H, CH, backbone). Whereby w, x, y, and z are the mole ratio of
EtOx, nPropOx, cPropOx, and iPropOx, respectively.
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Supplementary Materials (Figures S3-S5, Tables S1-S4), and also in our repository
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our code implementation.
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